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Abstract

A set of permutations F ⊆ Sn is min-wise independent if for any set X ⊆ [n]
and any x ∈ X, when π is chosen at random in F we have P (min{π(X)} = π(x)) =

1
|X| . This notion was introduced by Broder, Charikar, Frieze and Mitzenmacher
and is motivated by an algorithm for filtering near-duplicate web documents. Lin-
ear permutations are an important class of permutations. Let p be a (large)
prime and let Fp = {πa,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1} where for x ∈
[p] = {0, 1, . . . , p − 1}, πa,b(x) = ax + b mod p. For X ⊆ [p] we let F (X) =
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maxx∈X {Pa,b(min{π(X)} = π(x))} where Pa,b is over π chosen uniformly at ran-

dom from Fp. We show that as k, p→∞, EX [F (X)] = 1
k +O

(
(log k)3

k3/2

)
confirming

that a simply chosen random linear permutation will suffice for an average set
from the point of view of approximate min-wise independence.

1 Introduction

Broder, Charikar, Frieze and Mitzenmacher [3] introduced the notion of a set of min-wise
independent permutations. We say that F ⊆ Sn is min-wise independent if for any set
X ⊆ [n] and any x ∈ X, when π is chosen at random in F we have

P (min{π(X)} = π(x)) =
1

|X| . (1)

The research was motivated by the fact that such a family (under some relaxations)
is essential to the algorithm used in practice by the AltaVista web index software to
detect and filter near-duplicate documents. A set of permutations satisfying (1) needs
to be exponentially large [3]. In practice we can allow certain relaxations. First, we can
accept small relative errors. We say that F ⊆ Sn is approximately min-wise independent
with relative error ε (or just approximately min-wise independent, where the meaning is
clear) if for any set X ⊆ [n] and any x ∈ X, when π is chosen at random in F we have∣∣∣∣P(min{π(X)} = π(x)

)
− 1

|X|

∣∣∣∣ ≤ ε

|X| . (2)

In other words we require that all the elements of any fixed set X have only an almost
equal chance to become the minimum element of the image of X under π.

Linear permutations are an important class of permutations. Let p be a (large) prime
and let Fp = {πa,b : 1 ≤ a ≤ p− 1, 0 ≤ b ≤ p− 1} where for x ∈ [p] = {0, 1, . . . , p− 1},

πa,b(x) = ax+ b mod p,

where for integer n we define n mod p to be the non-negative remainder on division of
n by p.

For X ⊆ [p] we let
F (X) = max

x∈X
{Pa,b(min{π(X)} = π(x))}

where Pa,b is over π chosen uniformly at random from Fp. The natural questions
to discuss are what are the extremal and average values of F (X) as X ranges over
Ak = {X ⊆ [p] : |X| = k}. The following results were some of those obtained in [3]:
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Theorem 1
(a) Consider the set Xk = {0, 1, 2 . . . k − 1}, as a subset of [p]. As k, p → ∞, with
k2 = o(p),

Pa,b(min{π(Xk)} = π(0)) =
3

π2

ln k

k
+O

(
k2

p
+

1

k

)
.

(b) As k, p→∞, with k4 = o(p),

1

2(k − 1)
≤ EX [F (X)] ≤

√
2 + 1√

2k
+O

(
1

k2

)
,

where EX denotes expectations over X chosen uniformly at random from Ak.

In this paper we improve the second result and prove

Theorem 2
As k, p→∞,

EX [F (X)] =
1

k
+O

(
(log k)3

k3/2

)
.

Thus a simply chosen random linear permutation will suffice for an average set from the
point of view of min-wise independence. Other results on min-wise independence have
been obtained by Indyk [6], Broder, Charikar and Mitzenmacher [4] and Broder and
Feige [5].

2 Proof of Theorem 2

Let X = {x0, x1, . . . , xk−1} ⊆ [p]. Let βi = axi mod p for i = 0, 1, . . . , k − 1. Let

i = i(X, a) = min{β0 − βj mod p : j = 1, 2, . . . , k − 1}. (3)

Let
Ai = Ai(X) = {a ∈ [p] : i(X, a) = i}

and note that
|Ai| ≤ k − 1, i = 1, 2, . . . , p− 1.

Then

min{π(X)} = π(x0) iff 0 ∈ {β0 + b, β0 + b− 1, . . . , β0 + b− i+ 1} mod p.

Thus if

Z = Z(X) =

p−1∑
i=1

i|Ai|,
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Pa,b(min{π(X)} = π(x0)) =
Z

p(p− 1)
. (4)

Fix a ∈ {1, 2, . . . , p− 1} and x0. Then

P(a ∈ Ai) = (k − 1) · 1

p− 1

k−2∏
t=1

(
1− i+ t

p− 1− t

)
(5)

We write Z = Z0 + Z1 where Z0 =
∑i0

i=1 i|Ai| where i0 = 4p log k
k

. Now, by symmetry,

EX(Pa,b(min{π(X)} = π(x0)) =
1

k
(6)

and so

EX(Z) =
p(p− 1)

k
.

It follows from (5) that

E(Z1) ≤ (k − 1)

p−1∑
i=i0+1

i exp

{
−4(k − 2) log k

k

}
≤ p2

k3
(7)

for large k, p.

We continue by using the Azuma-Hoeffding Martingale tail inequality – see for example
[1, 2, 7, 8, 9]. Let x0 be fixed and for a given X let X̂ be obtained from X by replacing
xj by randomly chosen x̂j . For j ≥ 1 let

dj = max
X
{|Ex̂j(Z(X)− Z(X̂))|}.

Then for any t > 0 we have

P(|Z0 − E(Z0)| ≥ t) ≤ 2 exp

{
− 2t2

d2
1 + · · ·+ d2

k−1

}
. (8)

We claim that

dj ≤
i0∑
i=1

i+
i0∑
i=1

(k − 1)i2

p
(9)

≤ i20
2

+
i30k

3p
+O(p)

≤ 30(log k)3p2

k2
(10)
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Explanation for (9): If a ∈ Ai(X) because axj = ax0 − i mod p then changing xj
to x̂j changes |Ai| by one. This explains the first summation. The second accounts for
those a ∈ Ai(X) for which ax0−ax̂j mod p < i, changing the minimum in (3). We then
use |Ai| ≤ k − 1 and P(ax0 − ax̂j mod p < i) = i

p
.

Using (10) in (8) with t = εp
2

k
we see that

P
(
|Z0 − E(Z0)| ≥ ε

p2

k

)
≤ exp

{
− ε2k

450(log k)6

}
.

It now follows from (4), (6), (7) and the above that

EX [F (X)] =
1

k
+O

(
1

k2
+

1

k

∫ ∞
ε=0

min

{
1, k exp

{
− ε2k

450(log k)6

}}
dε

)
and the result follows. 2
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