Min-Wise independent linear permutations

Tom Bohman*
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213, U.S.A.
E-mail:tbohman@andrew.cmu.edu
Colin Cooper ${ }^{\dagger}$
School of Mathematical Sciences, University of North London, London N7 8DB, UK.
E-mail:c.cooper@un1.ac.uk
Alan Frieze ${ }^{\ddagger}$
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213, U.S.A., E-mail:alan@random.math.cmu.edu

Submitted: January 12, 2000; Accepted: April 23, 2000

Abstract

A set of permutations $\mathcal{F} \subseteq S_{n}$ is min-wise independent if for any set $X \subseteq[n]$ and any $x \in X$, when π is chosen at random in \mathcal{F} we have $\mathbb{P}(\min \{\pi(X)\}=\pi(x))=$ $\frac{1}{|X|}$. This notion was introduced by Broder, Charikar, Frieze and Mitzenmacher and is motivated by an algorithm for filtering near-duplicate web documents. Linear permutations are an important class of permutations. Let p be a (large) prime and let $\mathcal{F}_{p}=\left\{\pi_{a, b}: 1 \leq a \leq p-1,0 \leq b \leq p-1\right\}$ where for $x \in$ $[p]=\{0,1, \ldots, p-1\}, \pi_{a, b}(x)=a x+b \bmod p$. For $X \subseteq[p]$ we let $F(X)=$

[^0]$\max _{x \in X}\left\{\mathbb{P}_{a, b}(\min \{\pi(X)\}=\pi(x))\right\}$ where $\mathbb{P}_{a, b}$ is over π chosen uniformly at random from \mathcal{F}_{p}. We show that as $k, p \rightarrow \infty, \mathbb{E}_{X}[F(X)]=\frac{1}{k}+O\left(\frac{(\log k)^{3}}{k^{3 / 2}}\right)$ confirming that a simply chosen random linear permutation will suffice for an average set from the point of view of approximate min-wise independence.

1 Introduction

Broder, Charikar, Frieze and Mitzenmacher [3] introduced the notion of a set of min-wise independent permutations. We say that $\mathcal{F} \subseteq S_{n}$ is min-wise independent if for any set $X \subseteq[n]$ and any $x \in X$, when π is chosen at random in \mathcal{F} we have

$$
\begin{equation*}
\mathbb{P}(\min \{\pi(X)\}=\pi(x))=\frac{1}{|X|} \tag{1}
\end{equation*}
$$

The research was motivated by the fact that such a family (under some relaxations) is essential to the algorithm used in practice by the AltaVista web index software to detect and filter near-duplicate documents. A set of permutations satisfying (1) needs to be exponentially large [3]. In practice we can allow certain relaxations. First, we can accept small relative errors. We say that $\mathcal{F} \subseteq S_{n}$ is approximately min-wise independent with relative error ϵ (or just approximately min-wise independent, where the meaning is clear) if for any set $X \subseteq[n]$ and any $x \in X$, when π is chosen at random in \mathcal{F} we have

$$
\begin{equation*}
\left|\mathbb{P}(\min \{\pi(X)\}=\pi(x))-\frac{1}{|X|}\right| \leq \frac{\epsilon}{|X|} \tag{2}
\end{equation*}
$$

In other words we require that all the elements of any fixed set X have only an almost equal chance to become the minimum element of the image of X under π.

Linear permutations are an important class of permutations. Let p be a (large) prime and let $\mathcal{F}_{p}=\left\{\pi_{a, b}: 1 \leq a \leq p-1,0 \leq b \leq p-1\right\}$ where for $x \in[p]=\{0,1, \ldots, p-1\}$,

$$
\pi_{a, b}(x)=a x+b \bmod p
$$

where for integer n we define $n \bmod p$ to be the non-negative remainder on division of n by p.
For $X \subseteq[p]$ we let

$$
F(X)=\max _{x \in X}\left\{\mathbb{P}_{a, b}(\min \{\pi(X)\}=\pi(x))\right\}
$$

where $\mathbb{P}_{a, b}$ is over π chosen uniformly at random from \mathcal{F}_{p}. The natural questions to discuss are what are the extremal and average values of $F(X)$ as X ranges over $\mathcal{A}_{k}=\{X \subseteq[p]:|X|=k\}$. The following results were some of those obtained in [3]:

Theorem 1

(a) Consider the set $X_{k}=\{0,1,2 \ldots k-1\}$, as a subset of $[p]$. As $k, p \rightarrow \infty$, with $k^{2}=o(p)$,

$$
\mathbb{P}_{a, b}\left(\min \left\{\pi\left(X_{k}\right)\right\}=\pi(0)\right)=\frac{3}{\pi^{2}} \frac{\ln k}{k}+O\left(\frac{k^{2}}{p}+\frac{1}{k}\right) .
$$

(b) As $k, p \rightarrow \infty$, with $k^{4}=o(p)$,

$$
\frac{1}{2(k-1)} \leq \mathbb{E}_{X}[F(X)] \leq \frac{\sqrt{2}+1}{\sqrt{2} k}+O\left(\frac{1}{k^{2}}\right)
$$

where \mathbb{E}_{X} denotes expectations over X chosen uniformly at random from \mathcal{A}_{k}.

In this paper we improve the second result and prove

Theorem 2

As $k, p \rightarrow \infty$,

$$
\mathbb{E}_{X}[F(X)]=\frac{1}{k}+O\left(\frac{(\log k)^{3}}{k^{3 / 2}}\right)
$$

Thus a simply chosen random linear permutation will suffice for an average set from the point of view of min-wise independence. Other results on min-wise independence have been obtained by Indyk [6], Broder, Charikar and Mitzenmacher [4] and Broder and Feige [5].

2 Proof of Theorem 2

Let $X=\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\} \subseteq[p]$. Let $\beta_{i}=a x_{i} \bmod p$ for $i=0,1, \ldots, k-1$. Let

$$
\begin{equation*}
i=i(X, a)=\min \left\{\beta_{0}-\beta_{j} \bmod p: j=1,2, \ldots, k-1\right\} . \tag{3}
\end{equation*}
$$

Let

$$
A_{i}=A_{i}(X)=\{a \in[p]: i(X, a)=i\}
$$

and note that

$$
\left|A_{i}\right| \leq k-1, \quad i=1,2, \ldots, p-1
$$

Then

$$
\min \{\pi(X)\}=\pi\left(x_{0}\right) \text { iff } 0 \in\left\{\beta_{0}+b, \beta_{0}+b-1, \ldots, \beta_{0}+b-i+1\right\} \bmod p
$$

Thus if

$$
Z=Z(X)=\sum_{i=1}^{p-1} i\left|A_{i}\right|
$$

$$
\begin{equation*}
\mathbb{P}_{a, b}\left(\min \{\pi(X)\}=\pi\left(x_{0}\right)\right)=\frac{Z}{p(p-1)} \tag{4}
\end{equation*}
$$

Fix $a \in\{1,2, \ldots, p-1\}$ and x_{0}. Then

$$
\begin{equation*}
\mathbb{P}\left(a \in A_{i}\right)=(k-1) \cdot \frac{1}{p-1} \prod_{t=1}^{k-2}\left(1-\frac{i+t}{p-1-t}\right) \tag{5}
\end{equation*}
$$

We write $Z=Z_{0}+Z_{1}$ where $Z_{0}=\sum_{i=1}^{i_{0}} i\left|A_{i}\right|$ where $i_{0}=\frac{4 p \log k}{k}$. Now, by symmetry,

$$
\begin{equation*}
\mathbb{E}_{X}\left(\mathbb{P}_{a, b}\left(\min \{\pi(X)\}=\pi\left(x_{0}\right)\right)=\frac{1}{k}\right. \tag{6}
\end{equation*}
$$

and so

$$
\mathbb{E}_{X}(Z)=\frac{p(p-1)}{k}
$$

It follows from (5) that

$$
\begin{align*}
\mathbb{E}\left(Z_{1}\right) & \leq(k-1) \sum_{i=i_{0}+1}^{p-1} i \exp \left\{-\frac{4(k-2) \log k}{k}\right\} \\
& \leq \frac{p^{2}}{k^{3}} \tag{7}
\end{align*}
$$

for large k, p.
We continue by using the Azuma-Hoeffding Martingale tail inequality - see for example $[1,2,7,8,9]$. Let x_{0} be fixed and for a given X let \hat{X} be obtained from X by replacing x_{j} by randomly chosen \hat{x}_{j}. For $j \geq 1$ let

$$
d_{j}=\max _{X}\left\{\left|\mathbb{E}_{\hat{x}_{j}}(Z(X)-Z(\hat{X}))\right|\right\}
$$

Then for any $t>0$ we have

$$
\begin{equation*}
\mathbb{P}\left(\left|Z_{0}-\mathbb{E}\left(Z_{0}\right)\right| \geq t\right) \leq 2 \exp \left\{-\frac{2 t^{2}}{d_{1}^{2}+\cdots+d_{k-1}^{2}}\right\} \tag{8}
\end{equation*}
$$

We claim that

$$
\begin{align*}
d_{j} & \leq \sum_{i=1}^{i_{0}} i+\sum_{i=1}^{i_{0}} \frac{(k-1) i^{2}}{p} \tag{9}\\
& \leq \frac{i_{0}^{2}}{2}+\frac{i_{0}^{3} k}{3 p}+O(p) \\
& \leq \frac{30(\log k)^{3} p^{2}}{k^{2}} \tag{10}
\end{align*}
$$

Explanation for (9): If $a \in A_{i}(X)$ because $a x_{j}=a x_{0}-i \bmod p$ then changing x_{j} to \hat{x}_{j} changes $\left|A_{i}\right|$ by one. This explains the first summation. The second accounts for those $a \in A_{i}(X)$ for which $a x_{0}-a \hat{x}_{j} \bmod p<i$, changing the minimum in (3). We then use $\left|A_{i}\right| \leq k-1$ and $\mathbb{P}\left(a x_{0}-a \hat{x}_{j} \bmod p<i\right)=\frac{i}{p}$.

Using (10) in (8) with $t=\varepsilon \frac{p^{2}}{k}$ we see that

$$
\mathbb{P}\left(\left|Z_{0}-\mathbb{E}\left(Z_{0}\right)\right| \geq \varepsilon \frac{p^{2}}{k}\right) \leq \exp \left\{-\frac{\varepsilon^{2} k}{450(\log k)^{6}}\right\}
$$

It now follows from (4), (6), (7) and the above that

$$
\mathbb{E}_{X}[F(X)]=\frac{1}{k}+O\left(\frac{1}{k^{2}}+\frac{1}{k} \int_{\varepsilon=0}^{\infty} \min \left\{1, k \exp \left\{-\frac{\varepsilon^{2} k}{450(\log k)^{6}}\right\}\right\} d \varepsilon\right)
$$

and the result follows.

References

[1] N. Alon and J.H. Spencer, The Probabilistic Method, Wiley, 1992.
[2] B. Bollobás, Martingales, isoperimetric inequalities and random graphs, in Combinatorics, A. Hajnal, L. Lovász and V.T. Sós Ed., Colloq. Math. Sci. Janos Bolyai 52, North Holland 1988.
[3] A.Z. Broder, M. Charikar, A.M. Frieze and M. Mitzenmacher, Min-Wise Independent permutations, Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998) 327-336.
[4] A.Z. Broder, M. Charikar and M. Mitzenmacher, A derandomization using min-wise independent permutations, Proceedings of Second International Workshop RANDOM '98 (M. Luby, J. Rolim, M. Serna Eds.) (1998) 15-24.
[5] A.Z. Broder and U. Feige, Min-Wise versus Linear Independence, Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (2000).
[6] P. Indyk, A small approximately min-wise independent family of hash-functions, Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (1999) 454-456.
[7] C.J.H. McDiarmid, On the method of bounded differences, Surveys in Combinatorics, 1989, Invited papers at the Twelfth British Combinatorial Conference, Edited by J. Siemons, Cambridge University Press, 148-188.
[8] C.J.H. McDiarmid, Concentration, Probabilistic methods for algorithmic discrete mathematics, (M.Habib, C. McDiarmid, J. Ramirez-Alfonsin, B. Reed, Eds.), Springer (1998) 195-248.
[9] M.J. Steele, Probability theory and combinatorial optimization, CBMS-NSF Regional Conference Series in Applied Mathematics 69, 1997.

[^0]: *Supported in part by NSF Grant DMS-9627408
 ${ }^{\dagger}$ Research supported by the STORM Research Group
 ${ }^{\ddagger}$ Supported in part by NSF grant CCR-9818411

