A note on the number of (k, ℓ)-sum-free sets

Tomasz Schoen
Mathematisches Seminar Universität zu Kiel
Ludewig-Meyn-Str. 4, 24098 Kiel, Germany
tos@numerik.uni-kiel.de
and
Department of Discrete Mathematics
Adam Mickiewicz University
Poznań, Poland

Abstract

A set $A \subseteq \mathbb{N}$ is (k, ℓ)-sum-free, for $k, \ell \in \mathbb{N}, k>\ell$, if it contains no solutions to the equation $x_{1}+\cdots+x_{k}=y_{1}+\cdots+y_{\ell}$. Let $\rho=\rho(k-\ell)$ be the smallest natural number not dividing $k-\ell$, and let $r=r_{n}$, $0 \leq r<\rho$, be such that $r \equiv n(\bmod \rho)$. The main result of this note says that if $(k-\ell) / \ell$ is small in terms of ρ, then the number of (k, ℓ)-sum-free subsets of $[1, n]$ is equal to $\left(\varphi(\rho)+\varphi_{r}(\rho)+o(1)\right) 2^{\lfloor n / \rho\rfloor}$, where $\varphi_{r}(x)$ denotes the number of positive integers $m \leq r$ relatively prime to x and $\varphi(x)=\varphi_{x}(x)$.

Submitted: February 15, 1999; Accepted: May 23, 2000.
1991 Mathematics Subject Classification: 11B75, 11P99.

A set A of positive integers is (k, ℓ)-sum-free for $k, \ell \in \mathbb{N}, k>\ell$, if there are no solutions to the equation $x_{1}+\cdots+x_{k}=y_{1}+\cdots+y_{\ell}$ in A. Denote by $\mathcal{S F}_{k, \ell}^{n}$ the number of (k, ℓ)-sum-free subsets of $[1, n]$. Since the set of
odd numbers is (2,1)-sum-free we have $\mathcal{S F}_{2,1}^{n} \geq 2^{\lfloor(n+1) / 2\rfloor}$. In fact Erdős and Cameron [6] conjectured $\mathcal{S F}_{2,1}^{n}=O\left(2^{n / 2}\right)$. This conjecture is still open and the best upper bounds for $\mathcal{S} \mathcal{F}_{2,1}^{n}$ given independently by Alon [1] and Calkin [3], say that, for $\ell \geq 1$,

$$
\mathcal{S} \mathcal{F}_{\ell+1, \ell}^{n} \leq \mathcal{S} \mathcal{F}_{2,1}^{n}=O\left(2^{n / 2+o(n)}\right)
$$

For $\ell \geq 3$ this bound was recently improved by Bilu [2] who proved that in this case $\mathcal{S F}_{\ell+1, \ell}^{n}=(1+o(1)) 2^{\lfloor(n+1) / 2\rfloor}$.

The case of k being much larger than ℓ was treated by Calkin and Taylor [4]. They showed that for some constant c_{k} the number of $(k, 1)$-sum-free subsets of $[1, n]$ is at most $c_{k} 2^{\frac{k-1}{k} n}$, provided $k \geq 3$. Furthermore, Calkin and Thomson proved [5] that for every k and ℓ with $k \geq 4 \ell-1$

$$
\mathcal{S F}_{k, \ell}^{n} \leq c_{k} 2^{(k-\ell) n / k}
$$

In order to study the behaviour of $\mathcal{S F}_{k, \ell}^{n}$ let us observe first that there are two natural examples of large (k, ℓ)-sum-free subsets of the interval $[1, n]$:

$$
\{\lfloor\ell n / k\rfloor+1, \ldots, n\}
$$

and

$$
\{m \in\{1,2, \ldots, n\}: m \equiv r \quad(\bmod \rho)\}
$$

where $\operatorname{gcd}(r, \rho)=1$ and $\rho=\rho(k-\ell)=\min \{s \in \mathbb{N}: s$ does not divide $k-\ell\}$. Thus,

$$
\mathcal{S} \mathcal{F}_{k, \ell}^{n} \geq \max \left(2^{\lfloor n / \rho\rfloor}, 2^{\lceil(k-\ell) n / k\rceil}\right)
$$

In this note we study the case $k<\frac{\rho}{\rho-1} \ell$ so that $2^{\lfloor n / \rho\rfloor}>2^{\lceil(k-\ell) n / k\rceil}$, and we may expect $\mathcal{S F}_{k, \ell}^{n}$ to be close to $2^{\lfloor n / \rho\rfloor}$. Indeed, we will prove as our main result that for fixed k and ℓ there exists a bounded function $\xi=\xi(n)$ such that

$$
\mathcal{S} \mathcal{F}_{k, \ell}^{n}=(\xi+o(1)) 2^{\lfloor n / \rho\rfloor}
$$

provided $k<\left(1-\frac{c-1}{c \rho-1}\right) \frac{\rho}{\rho-1} \ell$, where $c=\frac{1+\ln 2}{2 \ln 2}$, and ℓ is sufficiently large.
For every natural numbers x, r let $\varphi_{r}(x)$ be the number of positive integers $m \leq r$ relatively prime to x and let $\varphi(x)$ abbreviate $\varphi_{x}(x)$. For a finite set A of integers A define:

THE ELECTRONIC JOURNAL OF COMBINATORICS 7 (2000), \#R30

$$
\begin{aligned}
d(A) & =\operatorname{gcd}(A), & d^{\prime}(A) & =d(A-A), \\
\Lambda(A) & =\max A-\min A, & \Lambda^{\prime}(A) & =\Lambda(A) / d^{\prime}(A) .
\end{aligned}
$$

Furthermore, let

$$
\begin{gathered}
\kappa(A)=\frac{\Lambda^{\prime}(A)-1}{|A|-2}, \quad \theta(A)=\frac{\max (A)}{\Lambda(A)}, \\
T(A)=(|A|-2)(\lfloor\kappa(A)\rfloor+1-\kappa(A))+1
\end{gathered}
$$

and

$$
h A=\left\{a_{1}+\cdots+a_{h}: a_{1}, \ldots, a_{h} \in A\right\} .
$$

For a specified set A, we simply write d, d^{\prime}, Λ, etc.
Our approach is based on a remarkable result of Lev [7]. Using an affine transformation of variables his theorem can be stated as follows.

Theorem 1. Let A be a finite set of integers and let h be a positive integer satisfying $h>2 \kappa-1$. Then there exists an integer s such that

$$
\left\{s d^{\prime}, \ldots,(s+t) d^{\prime}\right\} \subseteq h A
$$

for $t=(h-2\lfloor\kappa\rfloor) \Lambda^{\prime}+2\lfloor\kappa\rfloor T$.
Lemma 1. Let A be a finite set of integers and let h be a positive integer satisfying $h>2 \kappa-1$. Then $\left\{0, d^{\prime}, \ldots, t d^{\prime}\right\} \subseteq h A-h A$, where $t \geq(h+1-$ $2 \kappa) \Lambda^{\prime}$.
Proof. Theorem 1 implies that $h A$ contains $t=(h-2\lfloor\kappa\rfloor) \Lambda^{\prime}+2\lfloor\kappa\rfloor T+1$ consecutive multiples of d^{\prime}, so that

$$
\left\{0, \ldots, t d^{\prime}\right\} \subseteq h A-h A
$$

Furthermore,
$t=(h-2\lfloor\kappa\rfloor) \Lambda^{\prime}+2\lfloor\kappa\rfloor T=(h+2-2 \kappa-\tau) \Lambda^{\prime}+\frac{2\lfloor\kappa\rfloor(\kappa-\lfloor\kappa\rfloor)+2\lfloor\kappa\rfloor(\kappa-1)}{\kappa}$,
where

$$
\tau=\frac{2(\kappa-\lfloor\kappa\rfloor)(\lfloor\kappa\rfloor+1-\kappa)}{\kappa} .
$$

Since $\tau \leq 1$ and $\kappa \geq 1$, the result follows.

THE ELECTRONIC JOURNAL OF COMBINATORICS 7 (2000), \#R30

Lemma 2. Let $A \subseteq[1, n]$ be a (k, ℓ)-sum-free set, and let r be the residue class mod d^{\prime} containing A. Assume that either

$$
\begin{equation*}
d^{\prime}<\rho \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
(k-\ell) r \equiv 0 \quad\left(\bmod d^{\prime}\right) \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\kappa \geq \frac{k+1-(k-\ell) \theta}{2} . \tag{3}
\end{equation*}
$$

Proof. We may assume that $\ell>2 \kappa-1$, otherwise the assertion is obvious. By Lemma 1 we have

$$
\left\{0, d^{\prime}, \ldots, t d^{\prime}\right\} \subseteq \ell A-\ell A
$$

where $t \geq(\ell+1-2 \kappa) \Lambda^{\prime}$. Put $m=\min A$. Then any of the assumptions (1), (2) implies $d^{\prime} \mid(k-\ell) m$. Since A is a (k, ℓ)-sum-free set, it follows that

$$
(k-\ell) m>t d^{\prime} \geq(\ell+1-2 \kappa) \Lambda,
$$

which gives the required inequality.
Theorem 2. Assume that $k>\ell \geq 3$ are positive integers satisfying

$$
\begin{equation*}
\frac{k-\ell}{2} \cdot \max _{2 \leq x \leq \frac{\ell+1}{2}} \frac{\frac{\ln x}{x}+\frac{x-1}{x} \ln \frac{x}{x-1}}{\frac{k+1}{2}-x}<\frac{\ln 2}{\rho} \tag{4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathcal{S} \mathcal{F}_{k, \ell}^{n}=\left(\varphi+\varphi_{r}+o(1)\right) 2^{\lfloor n / \rho\rfloor}, \tag{5}
\end{equation*}
$$

where $0 \leq r<\rho$ and $r \equiv n(\bmod \rho)$.
Proof. In order to obtain the lower bound let us observe that there are exactly φ maximal (k, ℓ)-sum-free arithmetic progressions with the difference ρ. Precisely φ_{r} of them have length $\lceil n / \rho\rceil$ and $\varphi-\varphi_{r}$ are of length $\lfloor n / \rho\rfloor$. Since these progressions are pairwise disjoint, there are at least

$$
\left(\varphi+\varphi_{r}\right) 2^{\lfloor n / \rho\rfloor}
$$

(k, ℓ)-sum-free subsets of $[1, n]$.
Now we estimate $\mathcal{S} \mathcal{F}_{k, \ell}^{n}$ from above. First consider (k, ℓ)-sum-free sets satisfying neither (1), nor (2). Plainly each of these is contained in a residue class $r \bmod d^{\prime}$, where $d^{\prime} \geq \rho$ and $(k-\ell) r \not \equiv 0 \bmod d^{\prime}$. If $d^{\prime}=\rho$, by the same argument as above, exactly $\left(\varphi+\varphi_{r}\right) 2^{\lfloor n / \rho\rfloor} \quad(k, \ell)$-sum-free subsets of $[1, n]$ are contained in arithmetic progression $r \bmod \rho$, where $(k-\ell) r \not \equiv 0 \bmod \rho$. If $d^{\prime}>\rho$ then every progression $r \bmod d^{\prime}$ consists of at most $\lceil n /(\rho+1)\rceil$ elements hence it contains no more than $2^{[n /(\rho+1)\rceil}$ subsets. Furthermore we have less than n^{2} possible choices for the pair $\left(d^{\prime}, \rho\right)$, hence there are at most $2 n^{2} 2^{n /(\rho+1)}$ such (k, ℓ)-sum-free sets. Thus, the number of (k, ℓ)-sum-free sets satisfying neither (1), nor (2) does not exceed

$$
\left(\varphi+\varphi_{r}\right) 2^{\lfloor n / \rho\rfloor}+2 n^{2} 2^{n /(\rho+1)}
$$

To complete the proof it is sufficient to show that the number of (k, ℓ) -sum-free subsets of $[1, n]$ satisfying either (1) or (2) is $o\left(2^{n / \rho}\right)$. Denote by \mathcal{B} the set of all such subsets, and let

$$
\mathcal{B}(K, L, M)=\{A \in \mathcal{B}:|A|=K, \Lambda(A)=L, \quad \max A=M\}
$$

so that

$$
\mathcal{B}=\bigcup_{1 \leq K \leq L+1 \leq M \leq n} \mathcal{B}(K, L, M)
$$

We will prove that

$$
\begin{equation*}
\max _{1 \leq K \leq L+1 \leq M \leq n}|\mathcal{B}(K, L, M)| \leq e^{\mu n+O(\ln n)} \tag{6}
\end{equation*}
$$

where μ is the left-hand side of (4) which in turn implies that

$$
\begin{equation*}
|\mathcal{B}|=o\left(2^{n / \rho}\right) \tag{7}
\end{equation*}
$$

Let us define the following decreasing function $x(t)=(k+1-(k-\ell) t) / 2$. Note that $x(1)=(\ell+1) / 2, x\left(t_{2}\right)=2$ and $x\left(t_{1}\right)=1$, where

$$
t_{2}=\frac{k-3}{k-\ell} \geq 1 \quad \text { and } t_{1}=\frac{k-1}{k-\ell}
$$

Furthermore, put

$$
H(x)=\frac{\ln x}{x}+\frac{x-1}{x} \ln \frac{x}{x-1} .
$$

Observe that H is increasing on $(1,2]$ and decreasing on $[2, \infty)$. Moreover

$$
\mu=\max _{1 \leq t \leq t_{2}} \frac{H(x(t))}{t}
$$

and

$$
\begin{equation*}
\max _{\substack{1 \leq t \leq 1 \\ x \geq x(t)}} \frac{H(x)}{t}=\mu \tag{8}
\end{equation*}
$$

Indeed, if $1 \leq t \leq t_{2}$ then $x \geq x(t) \geq 2$ and $H(x) / t \leq H(x(t)) / t \leq \mu$. If $t_{2} \leq t \leq t_{1}$ then $H(x) / t \leq H(2) / t_{2}=H\left(x\left(t_{2}\right)\right) / t_{2} \leq \mu$.

Now we are ready to prove (7). For a fixed triple K, L, M with $1 \leq K \leq$ $L+1 \leq M \leq n$ put

$$
\theta=\frac{M}{L}, \quad \kappa=\frac{L-1}{K-2} .
$$

Then $\kappa(A) \leq \kappa$ and $\theta(A)=\theta$ for any $A \in \mathcal{B}(K, L, M)$. By Lemma 2 we have $\kappa \geq x(\theta)$. Since $\kappa \geq 1$ by definition, we infer that $H(\kappa) / \theta \leq \mu$ by (8). Using Stirling's formula we obtain

$$
\begin{aligned}
|\mathcal{B}(K, L, M)| & \leq\binom{ L-1}{K-2} \\
& =\exp (H(\kappa) L+O(\ln L)) \\
& =\exp \left(\frac{H(\kappa)}{\theta} M+O(\ln n)\right) \\
& \leq \exp (\mu n+O(\ln n))
\end{aligned}
$$

Thus

$$
|\mathcal{B}| \leq n^{3} \exp (\mu n+O(\ln n))
$$

which completes the proof of Theorem 2.
Corollary 1. The estimate (5) holds, provided $k>\ell \geq 3$ and

$$
\begin{equation*}
\frac{\max \left(\frac{1+\ln 2}{2}(k-\ell), 2\left(1+\ln \frac{\ell+1}{2}\right)\right)}{\ell+1}<\frac{\ln 2}{\rho} \tag{9}
\end{equation*}
$$

Proof. We need to show that the left-hand side of (4) is not larger than the left-hand side of (9). Since $\ln (1+u) \leq u$ for $u \geq 0$, we have

$$
\frac{x-1}{x} \ln \frac{x}{x-1} \leq \frac{1}{x}
$$

for $x \geq 1$, so that

$$
\begin{equation*}
\mu \leq \frac{k-l}{2} \max _{2 \leq x \leq \frac{\ell+1}{2}} \frac{1+\ln x}{x\left(\frac{k+1}{2}-x\right)} \tag{10}
\end{equation*}
$$

Furthermore,

$$
\begin{gathered}
\max _{2 \leq x \leq \frac{k-\ell}{2}} \frac{1+\ln x}{x\left(\frac{k+1}{2}-x\right)} \leq \frac{2}{\ell+1} \max _{2 \leq x \leq \frac{\ell+1}{2}} \frac{1+\ln x}{x}=\frac{1+\ln 2}{\ell+1} \\
\max _{\frac{k-\ell}{2} \leq x \leq \frac{\ell+1}{2}} \frac{1+\ln x}{x\left(\frac{k+1}{2}-x\right)} \leq \frac{1+\ln \frac{\ell+1}{2}}{\min _{\frac{k-\ell}{2} \leq x \leq \frac{\ell+1}{2}} x\left(\frac{k+1}{2}-x\right)}=4 \frac{1+\ln \frac{\ell+1}{2}}{(k-\ell)(\ell+1)}
\end{gathered}
$$

Combining the above inequalities with (10), the result follows.
Let us conclude this note with some further remarks on the range of k and ℓ satisfying (4). If $\frac{1+\ln 2}{2}(k-\ell) \leq 2\left(1+\ln \frac{\ell+1}{2}\right)$, that is $(k-\ell) \leq \frac{4}{1+\ln 2}(1+$ $\ln \frac{\ell+1}{2}$), then by Corollary 1 (4) holds, provided $\ell \geq \frac{2}{\ln 2}\left(1+\ln \frac{\ell+1}{2}\right) \rho(k-\ell)$. By the prime number theorem, $\rho(n) \leq(1+o(1)) \ln n$, hence the inequality $\ell \geq \frac{2}{\ln 2}\left(1+\ln \frac{\ell+1}{2}\right) \rho(k-\ell)$ is fulfilled for every sufficiently large ℓ. If $\frac{1+\ln 2}{2}(k-$ $\ell) \geq 2\left(1+\ln \frac{\ell+1}{2}\right)$ then (4) holds for every k and ℓ such that $\ell<k<\frac{c \rho}{c \rho-1} \ell=$ $\left(1-\frac{c-1}{c \rho-1}\right) \frac{\rho}{\rho-1} \ell$, where $c=\frac{1+\ln 2}{2 \ln 2}$. Thus, from Theorem 2 , one can deduce that there exists an absolute constant ℓ_{0} such that

$$
\mathcal{S \mathcal { F } _ { k , \ell } ^ { n }}=\left(\varphi+\varphi_{r}+o(1)\right) 2^{\lfloor n / \rho\rfloor},
$$

provided $\ell_{0}<\ell<k<\left(1-\frac{c-1}{c \rho-1}\right) \frac{\rho}{\rho-1} \ell$.

Acknowledgments. I would like to thank referees for many valuable comments. Due to their suggestions we were able to prove the main result of the note in its present sharp form.

THE ELECTRONIC JOURNAL OF COMBINATORICS 7 (2000), \#R30

References

[1] N. Alon, Independent sets in regular graphs and sum-free sets of finite groups, Israel J. Math. 73 (1991), 247-256.
[2] Yu. Bilu, Sum-free sets and related sets, Combinatorica 18 (1998), 449459.
[3] N. J. Calkin, On the number of sum-free sets, Bull. Lond. Math. Soc. 22 (1990), 141-144.
[4] N. J. Calkin, A. C. Taylor: Counting sets of integers, no k of which sum to another, J. Number Theory 57 (1996), 323-327.
[5] N. J. Calkin, J. M. Thomson, Counting generalized sum-free sets, J. Number Theory 68 (1998), 151-160.
[6] P. J. Cameron, P. Erdős, On the number of sets of integers with various properties, in R. A. Mollin (ed.), Number Theory: Proc. First Conf. Can. Number Th. Ass., Banff, 1988, de Gruyter, 1990, 61-79.
[7] V. F. Lev, Optimal representation by sumsets and subset sums, J. Number Theory 62 (1997), 127-143.

