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1 Introduction

The goal of this paper is to give type-B analogues of enumerative results concerning com-
binatorial statistics defined on (type-A) noncrossing partitions and on certain classes of
permutations characterized by pattern-avoidance. To this end, we need B-analogues of
the combinatorial objects in question. As type-B noncrossing partitions we use those
studied by Reiner [20]. In the hyperoctahedral group, the natural B-analogue of the
symmetric group, we identify classes of restricted signed permutations with enumerative
properties analogous to those of the 132- and 321-avoiding permutations in the symmet-
ric group. We also propose definitions for four partition statistics (lsB, lbB, rsB, and rbB)
as type-B analogues, for noncrossing partitions, of the established statistics ls, lb, rs, rb
for type A. We show that these choices yield B-analogues of results which hold for type
A. In the remainder of this section we give a brief account of earlier work which moti-
vated our investigation, summarize the main results, and establish the basic definitions
and notation used throughout the paper.

The lattice NCA
n of (type-A) noncrossing partitions of an n-element set, whose in-

vestigation was initiated by Kreweras [16], turns out to support and to be related to a
remarkable range of interesting topics. As a poset, it enjoys elegant enumerative and
structural properties (see, e.g., [7], [8], [9], [16], [18], [23]), and properties of interest
in algebraic combinatorics (e.g., [17], [30]). The natural connection between noncross-
ing partitions and other combinatorial objects counted by the Catalan numbers leads
to relations of NCA

n with many aspects of enumerative combinatorics, as well as prob-
lems arising in geometric combinatorics, probability theory, topology, and mathematical
biology (a brief account and references appear in [25]).

Type-B noncrossing partitions of an n-element set, whose collection we denote by
NCB

n , were first considered by Montenegro [17] and systematically studied by Reiner
[20]. They enjoy a wealth of interesting properties which parallel those for type A, from
the standpoint of order structure, enumerative combinatorics, algebraic combinatorics
and geometric combinatorics (see [13], [20], [26]).

Here we extend the analogies between NCA
n and NCB

n in the context of enumeration,
by exploring three topics.

1. Four combinatorial statistics defined on type-B noncrossing partitions, how their
distributions compare, and how they relate to the order relation on NCB

n . Four
combinatorial statistics rbA, rsA, lbA, lsA defined for type-A set partitions in terms
of restricted growth functions have interesting equidistribution properties, [36], on
the entire set partition lattice ΠA

n , which also hold on type-A noncrossing partitions
[24], [38]. In fact, the distributions of these statistics on NCA

n yield q-analogues of
the Catalan and Narayana numbers which reflect nicely the rank-symmetry and
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rank-unimodality of NCA
n . In Section 2 we propose and establish properties of

type-B analogues of these four statistics, applicable to NCB
n . Our definitions of

rbB, rsB, lbB, lsB on NCB
n are modeled on descriptions given in [24] for the values

of the type-A statistics on NCA
n . We show that, as in the case of type-A, rsB

and lbB are equidistributed on each rank of NCB
n . The same holds for lsB and

rbB. The two q-analogues of the Whitney numbers
(
n
k

)2

k
of NCB

n obtained from

these two pairs of statistics, NCB
n,k(q) and NC∗Bn,k(q), reflect the rank-symmetry

and unimodality of NCB
n :

1

qk
NCB

n,k(q) =
1

qn−k
NCB

n,n−k(q), (1)

1

q(
k
2)
NC∗Bn,k(q) =

1

q(
n−k

2 )
NC∗Bn,n−k(q). (2)

The rank-symmetry of these distributions is apparent from their expressions (corol-
laries 1 and 2), and can be seen directly combinatorially. Also analogously to type
A, finer distribution properties hold in relation to the order structure on NCB

n : we
exhibit a decomposition of NCB

n into symmetrically embedded boolean lattices,
such that the second pair of statistics is essentially constant on each boolean lat-
tice occurring in the decomposition. A by-product of our explicit decomposition
of NCB

n into symmetrically embedded boolean lattices (different from those con-
sidered in [13], [20]), is a type-B analogue of Touchard’s formula for the Catalan
numbers, (

2n

n

)
=

n∑
k=0

(
n

2k

)(
2k

k

)
2n−2k, (3)

along with a combinatorial, order-theoretic, proof.

2. Subsets of the hyperoctahedral group characterized by pattern-avoidance conditions.
In the symmetric group, for every 3-letter pattern ρ the number of ρ-avoiding per-
mutations is given by the Catalan number [15]; hence, the same as the number
of type-A noncrossing partitions. Other enumeration questions, for permutations
which avoid simultaneously several 3-letter patterns, are treated in [22]. Are there
similar results for the hyperoctahedral group? In Section 3 we investigate enumer-
ative properties of several classes of restricted signed permutations. The pattern
restrictions consist of avoiding 2-letter signed patterns. We show that every 2-letter
pattern is avoided by equally many signed permutations in the hyperoctahedral
group. These are more numerous than the type-B noncrossing partitions, namely,∑n
k=0

(
n
k

)2
k! in the hyperoctahedral group Bn. A q-analogue of this expression ap-

pears in work of Solomon [28], in connection with a Bruhat-like decomposition of
the monoid of n×n matrices over a field with q elements. Solomon defines a length
function on the orbit monoid such that its distribution over rank-k matrices is given

by
[
n
k

]2
q

[k]q!. This same expression can be viewed in our context as the distribution
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of a combinatorial statistic on a class of pattern-avoiding signed permutations. We
treat also the enumeration of signed permutations avoiding two 2-letter patterns
at the same time. Among such double pattern restrictions we identify four classes
whose cardinality is equal to

(
2n
n

)
= #NCB

n . They are the signed permutations

which avoid simultaneously the patterns 21 and 2 1, and three additional classes
readily related to this one by means of reversal and barring operations. We note
that a different class of

(
2n
n

)
elements of the hyperoctahedral group Bn, the set of

top fully commutative elements, appears in work of Stembridge including [34].

3. Partition statistics applied to NCB
n vs. permutation statistics applied to pattern-

avoiding signed permutations. In type-A, the classes Sn(132) and Sn(321) of 132-
and 321-avoiding permutations in the symmetric group Sn are not only equinu-
merous with NCA

n , but we have equidistribution results [24] relating permutation
and set partition statistics (the definitions of these statistics are given in the next
subsection):∑
σ∈Sn(132)

pdesA(σ)+1qmajA(σ) =
∑

σ∈Sn(321)

pexcA(σ)+1qDenA(σ) =
∑

π∈NCAn

pbkA(π)qrbA(π).

(4)
In Section 4 we establish a type-B counterpart of (4) relating partition statistics
applied to NCB

n and permutation statistics applied to Bn(21, 2 1).

The proofs rely on direct combinatorial methods and explicit bijections. The final
section of the paper consists of remarks and problems for further investigation.

1.1 Definitions and notation

We will write [n] for the set {1, 2, . . . , n} and #X for the cardinality of a set X. In a
partially ordered set, we will write x <· y if x is covered by y (i.e., x < y and there
is no element t such that x < t < y). The q-analogue of the integer m ≥ 1 is [m]q: =
1+q+q2 + · · ·+qm−1. The q-analogue of the factorial is then [m]q!: = [1]q[2]q · · · [m]q for

m ≥ 1, integer, and [0]q!: = 1. Finally, the q-binomial coefficient is
[
m
k

]
q

: = [m]q!
[k]q![m−k]q!

.

Noncrossing partitions of type A, NCA
n . A partition π of the set [n] is, as usual, an

unordered family of nonempty, pairwise disjoint sets B1, B2, · · · , Bk called blocks, whose
union is [n]. Ordered by refinement (i.e., π ≤ π′ if each block of π′ is a union of blocks of
π), the partitions of [n] form a partially ordered set which is one of the classical examples
of a geometric lattice. We denote the set of partitions of [n] by ΠA

n since it is isomorphic
to the lattice of intersections of the type-A hyperplane arrangement in Rn (consisting of
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the hyperplanes xi = xj for 1 ≤ i < j ≤ n). The set of partitions of [n] having k blocks
is denoted by ΠA

n,k.

A partition π ∈ ΠA
n is a (type-A) noncrossing partition if there are no four elements

1 ≤ a < b < c < d ≤ n so that a, c ∈ Bi and b, d ∈ Bj for any distinct blocks Bi and
Bj. We denote the set of noncrossing partitions of [n] as NCA

n . With the refinement
order induced from ΠA

n , this is a lattice (though only a sub-meet-semilattice of ΠA
n ). It

is ranked, with rank function rkA(π) = n−bkA(π), where bkA(π) denotes the number of
blocks of the partition π. Further order-related properties established in [16] are that the
poset NCA

n is rank-symmetric and rank-unimodal with rank sizes given by the Narayana
numbers. Writing NCA

n,k for the number of noncrossing partitions of [n] into k blocks,
we have

#NCA
n,k =

1

n

(
n

k

)(
n

k − 1

)
, (5)

for 1 ≤ k ≤ n. Furthermore, NCA
n is self-dual [16], and admits a symmetric chain

decomposition [23]. A still stronger property is established in [23] for NCA
n : it admits

a symmetric boolean decomposition (SBD); that is, its elements can be partitioned into
subposets each of which is a boolean lattice whose maximum and minimum elements
are placed in NCA

n symmetrically with respect to rank.

Noncrossing partitions of type B, NCB
n . The hyperplane arrangement of the root

system of type Bn consists of the hyperplanes in Rn with equations xi = ±xj for
1 ≤ i < j ≤ n and the coordinate hyperplanes xi = 0, for 1 ≤ i ≤ n. The subspaces
arising as intersections of hyperplanes from among these can be encoded by partitions
of {1, 2, . . . , n, 1, 2, . . . , n} satisfying the following properties: i) if B = {a1, . . . , ak} is a
block, then B: = {a1, . . . , ak} is also a block, where the bar operation is an involution;
and ii) there is at most one block, called the zero-block, which is invariant under the bar
operation. The collection of such partitions, denoted ΠB

n , is the set of type-B partitions
of [n]. If 1, 2, . . . , n, 1, 2, . . . , n are placed around a circle, clockwise in this order, and if
cyclically successive elements of the same block are joined by chords drawn inside the
circle, then, following [20], the class of type-B noncrossing partitions, denoted NCB

n ,
is the class of type-B partitions of [n] which admit a cyclic diagram with no crossing
chords. Alternatively, a type-B partition is noncrossing if there are no four elements
a, b, c, d in clockwise order around the circle, so that a, c lie in one block and b, d lie in
another block of the partition.

As in the case of type A, the refinement order on type-B partitions yields a geo-
metric lattice (in fact, isomorphic to a Dowling lattice with an order-2 group), and the
noncrossing partitions constitute a sub-meet-semilattice as well as a lattice in its own
right. As a poset under the refinement order, NCB

n is ranked. Writing bkB(π) for the
number of pairs of non-zero blocks of π, the rank is given by rkB(π) = n− bkB(π). For
example, π = {1, 3, 5}, {1, 3, 5}, {4}, {4}, {2, 2} is an element of NCB

5 having bkB(π) = 2
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and rkB(π) = 3. If NCB
n,k denotes the type-B noncrossing partitions of [n] having k pairs

of non-zero blocks, then (see [20])

#NCB
n,k =

(
n

k

)2

, for 0 ≤ k ≤ n, (6)

and the total number of type-B noncrossing partitions of [n] is
(

2n
n

)
.

Like its type-A counterpart, NCB
n is rank-symmetric and unimodal (readily apparent

from the rank-size formulae in (6)). It is also self-dual and it admits a symmetric chain
decomposition [20], [13].

It is useful to recall from [20] a bijection between type-B noncrossing partitions and
ordered pairs of sets of equal cardinality,

NCB
n ↔ {(L,R) : L,R ⊆ [n],#L = #R}. (7)

It is defined as follows. If n = 0 or if π ∈ NCB
n consists of just the zero-block, the cor-

responding pair is (L(π), R(π)) = (∅, ∅). Otherwise, π has some non-zero block B con-
sisting of elements j1, j2, . . . , jm which are contiguous clockwise around the circle, in the
cyclic diagram of π. Then |j1| ∈ L(π) and |jk| ∈ R(π) (the absolute value sign means that
the bar is removed from a barred symbol; an unbarred symbol is unaffected). Remove the
elements of this block and ofB, and repeat this process until no elements or only the zero-
block remain in the diagram. For example, if π = {1, 6}, {1, 6}, {2, 3, 5}, {2, 3, 5}, {4, 4},
then (L(π), R(π)) = ({5, 6}, {1, 3}). We will refer to L(π) and R(π) as the Left-set and
Right-set of π. Clearly, we have #L(π) = #R(π) = bkB(π).

Restricted permutations. Let σ = σ1σ2 · · ·σn be a permutation in the symmetric
group Sn, and ρ = ρ1ρ2 · · · ρk ∈ Sk. We say that σ avoids the pattern ρ if there is no
sequence of k indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that (σip − σiq)(ρp − ρq) > 0 for
every choice of 1 ≤ p < q ≤ k. In other words, σ avoids the pattern ρ if it contains no
subsequence of k values among which the magnitude relation is, pairwise, the same as for
the corresponding values in ρ. We will write Sn(ρ) for the set of ρ-avoiding permutations
in Sn, and |ρ| = k to indicate that the length of the pattern ρ is k.

For example, σ = 34125 belongs to S5(321) ∩ S5(132), and contains every other 3-
letter pattern; for example, it contains the pattern ρ = 213 (in fact, four occurrences of
it: 315, 325, 415, 425).

Classes of restricted permutations arise naturally in theoretical computer science in
connection with sorting problems (e.g., [15], [35]), as well as in the context of combi-
natorics related to geometry (e.g., the theory of Kazhdan-Lusztig polynomials [4] and
Schubert varieties [12],[2]). Recent work on pattern-avoiding permutations from an enu-
merative and algorithmic point of view includes [1], [3], [5], [6], [19], [37].
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Trivially, if |ρ| = 2 then Sn(ρ) consists of only one permutation (either the identity
or its reversal). For length-3 patterns, it turns out that Sn(ρ) has the same cardinality,
independently of the choice of ρ ∈ S3 (see [15], [22]). The common cardinality is the nth
Catalan number,

#Sn(ρ) = Cn =
1

n+ 1

(
2n

n

)
for every ρ ∈ S3. (8)

That is, #Sn(ρ) = #NCA
n for each pattern ρ ∈ S3 and every n.

Restricted signed permutations. We will view the elements of the hyperoctahedral
group Bn as signed permutations written as words of the form b = b1b2 . . . bn in which
each of the symbols 1, 2, . . . , n appears, possibly barred. Thus, the cardinality of Bn

is n!2n. The barring operation represents a sign-change, so it is an involution, and the
absolute value notation (as earlier for type-B partitions) means |bj| = bj if the symbol
bj is not barred, and |bj| = bj if bj is barred.

Let ρ ∈ Bk. The set Bn(ρ) of ρ-avoiding signed permutations in Bn consists of those
b ∈ Bn for which there is no sequence of k indices, 1 ≤ i1 < i2 < · · · < ik ≤ n such
that two conditions hold: (1) b with all bars removed contains the pattern ρ with all
bars removed, i.e., (|bip| − |biq |)(|ρp| − |ρq|) > 0 for all 1 ≤ p < q ≤ k; and (2) for
each j, 1 ≤ j ≤ k, the symbol bij is barred in b if and only if ρj is barred in ρ. For
example, b = 34125 ∈ B5 avoids the signed pattern ρ = 1 2 and contains all the other
seven signed patterns of length 2; among the length-3 signed patterns, it contains only
ρ = 213, 231, 123, 312, 23 1, 312, and 2 13.

Combinatorial statistics for type-A set partitions. We recall the definitions of
four statistics of combinatorial interest defined for set partitions (see [36] and its bibliog-
raphy for earlier related work). Given a partition π ∈ ΠA

n , index its blocks in increasing
order of their minimum elements and define the restricted growth function of π to be
the n-tuple w(π) = w1w2 · · ·wn in which the value of wi is the index of the block of
π which contains the element i. Thus, if π = {1, 5, 6}{2, 3, 8}{4, 7}, then its restricted
growth function is w(π) = 12231132. Let lsA(π, i) denote the number of distinct values
occurring in w(π) to the left of wi and which are smaller than wi,

lsA(π, i): = #{wj: 1 ≤ j < i, wj < wi}. (9)

Similarly, “left bigger,” “right smaller,” and “right bigger” are defined for each index
1 ≤ i ≤ n:

lbA(π, i): = #{wj: 1 ≤ j < i, wj > wi}, (10)

rsA(π, i): = #{wj : i < j ≤ n,wj < wi}, (11)
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rbA(π, i): = #{wj : i < j ≤ n,wj > wi}. (12)

Now the statistics of interest are obtained by summing the contributions of the individual
entries in the restricted growth function of π:

lsA(π): =
n∑
i=1

lsA(π, i), lbA(π): =
n∑
i=1

lbA(π, i), (13)

rsA(π): =
n∑
i=1

rsA(π, i), rbA(π): =
n∑
i=1

rbA(π, i). (14)

The distributions of these statistics over ΠA
n and ΠA

n,k give q-analogues of the nth Bell
number and of the Stirling numbers of the second kind. One of the interesting properties
established combinatorially in [36] is that the four statistics fall into two pairs, {lsA, rbA}
and {lbA, rsA}, with equal distributions on ΠA

n,k, for every n, k.

In establishing similar results about the distributions over just noncrossing partitions,
the following alternative expressions were useful in [24] (Lemmas 1.1, 1.2, 2.1, 2.2). Later
in this paper, we will define type-B analogues of the four statistics, modeled after these
expressions.

For any partition π ∈ ΠA
n,k,

lsA(π) =
k∑
i=1

(i− 1)#Bi, (15)

lbA(π) = k(n+ 1)−
k∑
i=1

i#Bi −
k∑
i=1

mi. (16)

For any noncrossing partition π ∈ NCA
n,k,

rsA(π) =
k∑
i=1

Mi −
k∑
i=1

mi − n+ k, (17)

rbA(π) =
k∑
i=1

mi − k. (18)

In these expressions, the blocks are indexed in increasing order of their minima, and
mi,Mi denote the minimum and the maximum elements of the ith block.

Combinatorial statistics for permutations and signed permutations. Two
classical permutation statistics are the number of descents and the major index of a
permutation (see, e.g., [31]). We recall their definitions. If σ = σ1σ2 · · ·σn ∈ Sn, then its
descent set is DesA(σ): = {i ∈ [n− 1] : σi > σi+1}. The descent statistic and the major
index statistic of σ are

desA(σ): = #DesA(σ), majA(σ): =
∑

i∈DesA(σ)

i. (19)
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Pairs of permutation statistics whose joint distribution over Sn coincides with that of
desA and majA,

∑
σ∈Sn p

desA(σ)qmajA(σ), are called Euler-Mahonian. A celebrated Euler-
Mahonian pair is that obtained from excedences and Denert’s statistic (see, e.g., [10]),
which are defined as follows. The set of excedences of σ ∈ Sn is ExcA(σ): = {i ∈ [n] : σi >
i} and the excedence statistic is given by

excA(σ): = #ExcA(σ). (20)

The original definition of Denert’s statistic was given a compact equivalent form by Foata
and Zeilberger. Write σExc for the word σi1σi2 · · ·σiexcA(σ)

, where each ij ∈ ExcA(σ). That

is, the subsequence in σ consisting of the values which produce excedences. Similarly
write σNExc for the complementary subsequence in σ. For example, if σ = 42153, then
ExcA(σ) = {1, 4}, σExc = 45 and σNExc = 213. Then, based on [10], the Denert statistic
is given by

DenA(σ): = invA(σExc) + invA(σNExc) +
∑

i∈ExcA(σ)

i, (21)

where inv denotes the number of inversions. In our earlier example, we obtain DenA(42153) =
0 + 1 + (1 + 4) = 6.

We will be interested in type-B analogues of these permutation statistics. We say
that b = b1b2 . . . bn ∈ Bn has a descent at i, for 1 ≤ i ≤ n− 1, if bi > bi+1 with respect to
the total ordering 1 < 2 < · · · < n < n < · · · < 2 < 1, and that it has a descent at n if
bn is barred. As usual, the descent set of b, denoted DesB(b), is the set of all i ∈ [n] such
that b has a descent at i. For example, for b = 2135476 we have DesB(b) = {2, 3, 4, 7}.
The type-B descent and major index statistics are

desB(b): = #DesB(b), majB(b): =
∑

i∈DesB(b)

i. (22)

For signed permutations, more than one notion of excedence appears in the literature
(see [33]), from which we will use the following. Given b = b1b2 · · · bn ∈ Bn, let k be
the number of symbols in b which are not barred. Consider the permutation σb ∈ Sn+1

defined by σbn+1 = k + 1 and, for each 1 ≤ i ≤ n, σbi = j if bi is the jth smallest element
in the ordering 1 < 2 < · · · < n < n+ 1 < 1 < 2 < · · · < n. Then, following [33],

ExcB(b): = ExcA(σb), excB(b) = #ExcB(b), (23)

and we define
DenB(b) = DenA(σb). (24)
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2 Statistics on type-B noncrossing partitions

We begin by defining B-analogues of the set partition statistics described in section 1.1,
valid for noncrossing partitions of type B.

2.1 The statistics lsB, lbB, rsB, rbB

In the correspondence π ↔ (L(π), R(π)) between NCB
n and pairs of equal-size subsets of

[n], the elements of L(π) and R(π) indicate the Left and Right delimiters of the non-zero
blocks. Hence, they can be viewed as analogous to the minimum and maximum elements
of the blocks of a type-A noncrossing partition. This suggests the following adaptation
of the definitions (15)-(18), to obtain type-B analogues of the four statistics applicable
to NCB

n :

lsB(π): =
bkB(π)+1∑

i=1

(i− 1)#Bi, (25)

lbB(π): = (n+ 1)bkB(π)−
bkB(π)+1∑

i=1

i#Bi −
∑

l∈L(π)

l, (26)

rsB(π): =
∑

r∈R(π)

r −
∑

l∈L(π)

l − n+ bkB(π), (27)

rbB(π): =
∑

l∈L(π)

l − bkB(π), (28)

where Bi is the block of π containing the ith smallest element of L(π), and BbkB(π)+1 is
the set of unbarred symbols in the zero-block.

For example, for π = {1}{1}{2, 3, 8}{2, 3, 8}{4, 5}{4, 5}{9}{9}{6, 6, 7, 7}, we have
(L(π), R(π)) = ({1, 4, 8, 9}, {1, 3, 5, 9}), and bkB(π) = 4. The indexed blocks are B1 =
{1}, B2 = {4, 5}, B3 = {8, 2, 3}, B4 = {9}, and from the zero-block we obtain B5 =
{6, 7}. Therefore, rsB(π) = 18 − 22 − 9 + 4 = −9, rbB(π) = 22 − 4 = 18, lsB(π) =
0 + 2 + 6 + 3 + 8 = 19, and lbB(π) = 10 · 4− (1 + 4 + 9 + 4 + 10)− 22 = −10.

Note that rsB and lbB may assume negative values. It is easy to see that rsB assumes
the values between −(k+1)(n−k) and (k−1)(n−k). As we will see in the next subsection,
lbB has the same distribution as rsB on every rank of NCB

n , so this is its range as well.
The definitions of these statistics could be easily modified to produce only nonnegative
values.
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2.2 Two equidistribution results

As in the type-A case, we have two pairs of statistics – (lbB, rsB) and (lsB, rbB) – which
are equidistributed on each rank of NCB

n . The results of this subsection show that each
of the two pairs of statistics satisfy finer distribution properties with respect to the order
relation on NCB

n .

Theorem 1 For each n > 0 and 0 ≤ k ≤ n, there is a bijection ϕ:NCB
n,k → NCB

n,k such

that lbB(π) = rsB(ϕ(π)) and L(π) = L(ϕ(π)). Therefore, for every L ⊆ [n], we have∑
π∈NCBn,k(L)

qlbB(π) =
∑

π∈NCBn,k(L)

qrsB(π), (29)

where NCB
n,k(L) is the collection of type-B noncrossing partitions of [n] having k pairs

of non-zero blocks and Left-set L.

Proof: Given π ∈ NCB
n with k pairs of non-zero blocks, we will define the desired

partition ϕ(π) by specifying its Left- and Right-sets. The Left-set is the same as for π,
L(ϕ(π)) = L(π). The Right-set R(ϕ(π)) consists of the partial sums of the sizes of the
(non-zero) blocks of π which contain the elements of L: R(ϕ(π)): = {∑i

j=1 #Bj , 1 ≤ i ≤
bkB(π)}. For the partition in the preceding example (end of subsection 2.1), we obtain
R(ϕ(π)) = {1, 3, 6, 7} and ϕ(π) = {1}{1}{2, 3, 9}{2, 3, 9}{4, 5, 6}{4, 5, 6}{7, 8}{7, 8}.

To check that rsB(ϕ(π)) = lbB(π), note that if, given n, we prescribe the Left-set L,
and thus the number bkB of non-zero blocks, then by the definitions (26) and (27), it

suffices to show that (bkB(π) + 1)n−∑bkB(π)+1
i=1 i#Bi =

∑
r∈R(ϕ(π)) r. This can be easily

verified by a direct calculation.

It remains to verify that ϕ is invertible. We consider a partition π′ ∈ NCB
n,k(L)

and we construct a partition π ∈ NCB
n,k(L) such that ϕ(π) = π′. Let the elements of

L(π′) = L and R(π′) be 1 ≤ l1 < l2 < · · · < lk ≤ n and 1 ≤ r1 < r2 < · · · < rk ≤ n,
respectively. Define b1: = r1 and bi = ri− ri−1 for i = 2, . . . , k. Note that there exists at
least one index i such that bi ≤ li+1 − li, where we set lk+1 = n+ l1, since otherwise we
would have rk = b1 + b2 + · · ·+ bk > n. For such an index i, let a total of bi clockwise
consecutive elements beginning with li constitute a block of the partition π. Since each
bi is no larger than n, this is a non-zero block. Apply the bar operation to obtain
the required pair of non-zero blocks in π. Now this process is repeated, with suitable
adjustments: elements of {1, . . . , n, 1, . . . , n} which have already been assigned to some
block of π are skipped when checking for clockwise consecutive elements. It is easy to
see that the partition π whose non-zero blocks are produced in this way lies in NCB

n,k(L)
and ϕ(π) = π′. 3
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Consequently, for each n, k, the statistics lbB and rsB give rise to the same q-analogue

of
(
n
k

)2
.

Corollary 1 The common distribution of the statistics lbB and rsB over type-B non-
crossing partitions of [n] having k pairs of non-zero blocks is given by:

NCB
n,k(q) : =

∑
π∈NCBn,k

qlbB(π) =
∑

π∈NCBn,k

qrsB(π) = q−(k+1)(n−k)
[
n

k

]2

q
. (30)

Proof: The preceding theorem implies the equidistribution of lbB and rsB on each rank
of NCB

n . The definition (27) of rsB is especially convenient for calculating the polynomial
NCB

n,k(q):

NCB
n,k(q) =

∑
π∈NCBn,k

qrsB(π)

= q−n+k
∑

L,R∈[n]
#L=#R=k

q
∑

r∈R r−
∑

l∈L l

= q−n+k

([
n

k

]
q
q(

k+1
2 )
)([

n

k

]
q−1

q−(k+1
2 )
)
.

The last equality follows from the independence of L and R, and standard properties
of q-binomial coefficients. We can take advantage of the well-known fact that

[
n
k

]
q

is a

polynomial in q of degree k(n− k), with non-zero constant term, and whose coefficients

form a symmetric sequence, to write
[
n
k

]
q−1

in terms of (the reciprocal of)
[
n
k

]
q
. This

leads to the desired formula for NCB
n,k(q). 3

The other two statistics are equidistributed on each rank of NCB
n in an even stronger

sense: we can exhibit an involution which preserves rank and interchanges the values of
lsB and rbB.

Theorem 2 For each n > 0 and 0 ≤ k ≤ n, there is a bijection ψ:NCB
n,k → NCB

n,k

such that lsB(π) = rbB(ψ(π)) and rbB(π) = lsB(ψ(π)).

Proof: First note that if k = 0, then we have all elements in the zero-block. For this
partition, both lsB and rbB vanish, and we let ψ fix it. Consider now the case when
there are k > 0 pairs of non-zero blocks, i.e., let π ∈ NCB

n,k. Let l1 < l2 < · · · < lk be
the elements of L(π), and bi be the cardinality of the (non-zero) block containing li, for
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i = 1, . . . , k. Let also bk+1 be the number of unbarred elements in the zero-block of π.
Thus,

∑k+1
i=1 bi = n. Define two sequences, `′ and b′ whose entries are:

`′1 : = 1 + bk+1

`′2 : = 1 + bk+1 + bk
...

`′k : = 1 + bk+1 + bk + · · ·+ b2

`′k+1 : = n+ 1 + bk+1

and

b′1 : = n+ 1− lk
b′2 : = lk − lk−1

...

b′k : = l2 − l1
b′k+1 : = l1 − 1.

We claim that there is a unique partition in NCB
n,k whose Left-set is {`′i : 1 ≤ i ≤ k}

and such that the non-zero block containing `′i has cardinality b′i for each i = 1, . . . , k.
Indeed, every type-B noncrossing partition at rank n − k < n has some non-zero block
consisting of contiguous elements in the circular diagram. It is easy to see that there
exists at least one index i ∈ [k] for which we have

b′i ≤ `′i+1 − `′i, (31)

since (by adding the relevant expressions above) we have b′1 + b′2 + · · · + b′k = n +
1 − l1 ≤ n, and

∑k
i=1 (`′i+1 − `′i) = n. For such an index i we can make a block of

b′i contiguous elements starting at `′i and moving clockwise. Delete the elements of
this block and their images under barring; remove b′i from the sequence b′; remove `′i
from the sequence `′; finally, replace `′m with `′m − `′i for each m > i. With these
updated sequences replacing `′ and b′, it is easy to check that some inequality of the
form (31) holds again, and another pair of non-zero blocks is obtained. The process
terminates with a partition π′ ∈ NCB

n,k and we set ψ(π) = π′. For example, if n = 10
and k = 5 and if π = {2}{2}{3, 5, 9}{3, 5, 9}{4}{4}{10, 1}{10, 1}{6, 8, 6, 8}, then for
π we have (l1, . . . , l5) = (2, 4, 7, 9, 10) and (b1, . . . , b5, b6) = (1, 1, 1, 3, 2, 2). We obtain
(`′1, . . . , `

′
5, `
′
6) = (3, 5, 8, 9, 10, 13) and (b′1, . . . , b

′
5, b
′
6) = (1, 1, 2, 3, 2, 1). This leads to

ψ(π) = π′ = {3}{3}{5}{5}{8, 6}{8, 6}{9, 2, 4}{9, 2, 4}{10, 1}{10, 1}{7, 7}.

It is easy to verify that ψ(ψ(π)) = π and that rbB(ψ(π)) = lsB(π) and lsB(π) =
rbB(ψ(π)). In the example, we have rbB(π) = lsB(ψ(π)) = 27 and lsB(π) = rbB(ψ(π)) =
30. 3
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Corollary 2 For every n, the statistics lsB and rbB are equidistributed on each rank of
NCB

n . The common distribution on partitions having k pairs of non-zero blocks is

NC∗Bn,k(q) =
∑

π∈NCBn,k

qlsB(π) =
∑

π∈NCBn,k

qrbB(π) =

(
n

k

)[
n

k

]
q
q(

k
2). (32)

Proof: The equidistribution on each rank follows from Theorem 2 and NC∗Bn,k(q) can be

readily determined using the definition (28) of rbB:

NC∗Bn,k(q) =
∑

π∈NCB
n,k

qrbB(π)

= q−k
∑

L,R⊆[n]
#L=#R=k

q
∑

l∈L l

= q−k
(
n

k

) ∑
L⊆[n],#L=k

q
∑

l∈L l,

which can be rewritten as claimed. 3

2.3 Relations with poset symmetry properties of NCB
n

The distributions of the statistics lbB, rsB, lsB, rbB enjoy several properties which reflect
order-theoretic symmetry in the structure of the lattice NCB

n .

Proposition 1 The rank-symmetry of NCB
n is respected by the distribution NCB

n,k(q) of

lbB, rsB, and by the distribution NC∗Bn,k(q) of lsB, rbB on type-B noncrossing partitions
of [n] with k pairs of non-zero blocks:

1

qk
NCB

n,k(q) =
1

qn−k
NCB

n,n−k(q),
1

q(
k
2)
NC∗Bn,k(q) =

1

q(
n−k

2 )
NC∗Bn,n−k(q). (33)

Each of these distributions is symmetric and unimodal.

Proof: The internal symmetry and unimodality as well as the external symmetry re-
lations follow immediately from the expressions (30) and (32) and classical properties
of q-binomial coefficients. Combinatorially, the bijection β:NCB

n,k → NCB
n,n−k map-

ping π to π′ so that L(π′) = [n] − L(π) and R(π′) = [n] − R(π) has the property
that rsB(π′) = rsB(π) − n + 2k, implying the external symmetry relation for NCB

n,k(q)
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claimed in (33). It also has the property that rbB(π′) = rbB(π) +
(
k
2

)
−
(
n−k

2

)
, implying

the external symmetry relation for NC∗Bn,k(q). 3

The symmetry of the distributions within each rank NCB
n,k can be made combinatori-

ally explicit. For rbB and lsB (next corollary) the argument is an immediate adaptation

of the standard combinatorial proof of the symmetry of the coefficients of
[
n
k

]
q
. For rsB

and lbB it is a consequence of how rsB relates to an order-theoretic property of NCB
n

(Theorem 3 and Corollary 4).

Corollary 3 On each rank of NCB
n , the statistics rbB and lsB are distributed symmet-

rically.

Proof: It suffices to verify that this is the case for rbB. Let c: [n] → [n] be the map
defined by c(i) = n + 1 − i. Given π ∈ NCB

n,k, let π′ be the partition in NCB
n,k whose

Left- and Right-sets are L(π′) = c(L(π)) and R(π′) = c(R(π)). This gives an involution
on NCB

n,k with the property that rbB(π) + rbB(π′) = k(n− 1). But this is equal to the

sum of the minimum and maximum values assumed by rbB on NCB
n,k, and the symmetry

of the distribution is established. 3

We now turn to a stronger symmetry property of NCB
n and its relation to the statistic

rsB. The lattice NCB
n admits a symmetric boolean decomposition (SBD). That is, it is

possible to partition the elements of NCB
n into pairwise disjoint subposets having two

properties: 1) for each subposet there is a value r such that its elements lie at ranks
r, r+ 1, . . . , n− r in NCB

n , and the cover relations in the subposet are covering relations
in NCB

n , and 2) each subposet is isomorphic to a boolean lattice. Such a decomposition
is obtained for NCB

n in [20], by means analogous to those used in [23] to establish a
SBD for NCA

n ; related facts for NCB
n appears in [13]. Here we give an explicit SBD

of NCB
n , different from the earlier ones, having the property that the statistic rsB is

essentially constant on each boolean lattice. This is a refinement of the rank-symmetry
of NCB

n , which parallels the property (see [24]) of NCA
n that rsA is constant on each

boolean lattice of the SBD constructed in [23]. Two enumerative consequences are given
as corollaries.

Theorem 3 The lattice NCB
n admits a symmetric boolean decomposition with the prop-

erty that rsB(π) + rkB(π) = rsB(π′) + rkB(π′) if π, π′ belong to the same boolean lattice.

Proof: Let L1, R1 be two disjoint subsets of [n] of equal cardinality, say, #L1 = #R1 =
k. Consider all the pairs (L1 ∪ S,R1 ∪ S) where S ranges over all subsets of [n] −
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(L1 ∪ R1). Clearly, these pairs ordered by componentwise reverse containment form a
poset isomorphic to a boolean lattice of height n −#L1 −#R1 = n − 2k. Denote this
boolean lattice by B(L1, R1). Thus, (L1, R1) is its maximum element and (L0, R0): =
([n]−R1, [n]− L1) is its minimum element.

We claim that the image of B(L1, R1) under the bijection (7) is a boolean lattice
symmetrically embedded in NCB

n , and that the collection of these boolean lattices, as
(L1, R1) range over all pairs of disjoint subsets of equal cardinality, constitutes a SBD
of NCB

n .

Using the bijection (7), let the noncrossing partitions corresponding to the maximum
and minimum of B(L1, R1) be π1 ↔ (L1, R1) and π0 ↔ (L0, R0). It is clear that we have
rkB(π0) + rkB(π1) = n, as desired for a boolean lattice in a SBD. We verify that the
bijection (7) maps a covering (L1∪S ∪{s}, R1∪S∪{s}) <· (L1∪S,R1∪S) of B(L1, R1)
to a covering π <· π′ in NCB

n . Indeed, the elements s and s appear as singleton blocks
in π but not in π′; the remaining elements of the Left- and Right-sets are the same in π
and π′. It follows that π is covered by π′ in NCB

n .

Finally, the images in NCB
n of the boolean lattices of the form B(L1, R1) constitute a

partition of the elements of NCB
n . This follows from the observation that an element π ∈

NCB
n which is encoded by a pair (L(π), R(π)) belongs to a well-defined boolean lattice

B(L1, R1). Namely, the boolean lattice arising from the pair of sets L1 = L(π)−R(π) and
R1 = R(π)−L(π). Indeed, in every boolean lattice of the form B(L1, R1), the differences
(L1 ∪ S) − (R1 ∪ S) and (R1 ∪ S) − (L1 ∪ S) are equal to L1 and R1, respectively, for
every S.

The relation of this SBD to the rsB statistic is now obvious: the value of
∑
r∈R(π) r−∑

l∈L(π) l is constant for all π in the same boolean lattice of our SBD. Comparing this

difference with the definition (27) of rsB(π), it follows that rsB(π) + rkB(π) =
∑
r∈R1

r−∑
l∈L1

l has the same value for every π in the embedding of B(L1, R1) into NCB
n . 3

Several consequences follow now readily. First, we obtain an alternative combi-
natorial proof of the external symmetry of the polynomials NCB

n,k(q) stated in (33).
Compared to the proof of Proposition 1, here we see the compatibility of the statistic
rsB with the order structure of NCB

n .

Corollary 4 Let 0 ≤ k ≤ n
2
. There is a bijection γ:NCB

n,k → NCB
n,n−k such that

π ≤ γ(π) and rsB(π) + rkB(π) = rsB(γ(π)) + rkB(γ(π)) for each π ∈ NCB
n,k.

Proof: Consider the SBD of NCB
n constructed in Theorem 3, and a symmetric chain

decomposition of each of the boolean lattices B(L1, R1) defined in the proof of the
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theorem. Let γ(π) be the element in NCB
n,n−k which lies in the same boolean lattice as

π, and on the same chain in the symmetric chain decomposition of this boolean lattice.
It is then clear that γ has the desired properties. 3

We also obtain a further refinement of the rank-symmetry and rank-unimodality of
NCB

n .

Corollary 5 For any given value v, the distribution by rank of the type-B noncrossing
partitions of [n] for which the rsB + rkB statistic is equal to v,∑

π∈NCBn
rsB(π)+rkB(π)=v

qrkB(π) (34)

has symmetric and unimodal coefficients.

Proof: By Theorem 3, the range of summation in (34) is a disjoint union of boolean lat-
tices, themselves rank-symmetric and rank-unimodal posets. Since each of these boolean
lattices is embedded in NCB

n on consecutive ranks and symmetrically with respect to
rank, the desired conclusion follows. 3

One of the consequences of the SBD of NCA
n described in [23] is a combinatorial

proof of Touchard’s identity

Cn =
n−1∑
k=0

(
n− 1

2k

)
Ck 2n−1−2k. (35)

We close this section with a “type-B Touchard identity” which arises, along with an
order-theoretic combinatorial proof, from Theorem 3.

Corollary 6 For every n ≥ 0,

#NCB
n =

n∑
k=0

(
n

2k

)
#NCB

k 2n−2k. (36)

More explicitly, (
2n

n

)
=

n∑
k=0

(
n

2k

)(
2k

k

)
2n−2k. (37)

Proof: The total number of elements of NCB
n is obtained as the sum of the cardinalities

of the boolean lattices in the SBD of Theorem 3. There are
(
n
2k

)(
2k
k

)
choices for an

ordered pair (L1, R1) of disjoint k-subsets of [n]. Such a choice yields a boolean lattice
of height n− 2k, as seen in the proof of Theorem 3. 3
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3 Restricted signed permutations

In the symmetric group, patterns of length 2 are uninterestingly restrictive, while length-
3 patterns have the interesting property of leading to the same number of restricted
permutations in Sn, for all n, namely the nth Catalan number. Counterparts of these
cases for the hyperoctahedral group arise here from restrictions by patterns of lengths
1 and 2, respectively. The restricted classes Bn(1) and Bn(1) consist, obviously, of the
n! signed permutations in which all – respectively none – of the symbols are barred.
The eight length-2 signed patterns give rise to some enumeratively interesting classes of
signed permutations, which we examine in this section.

3.1 Single restrictions by 2-letter patterns

Divide the 2-letter signed patterns into two classes, S and D, according to whether the
two symbols are simultaneously barred or not,

S = {12, 21, 1 2, 2 1} and D = {12, 12, 21, 21}. (38)

Observation 1 It is immediately apparent that reversal (i.e., reading the permutation
right-to-left: b1b2 · · · bn 7→ bnbn−1 · · · b1) and barring (that is, b1b2 · · · bn 7→ b1 b2 · · · bn)
give bijections which show that if ρ and ρ′ are both in S or both in D, then #Bn(ρ) =
#Bn(ρ′).

In fact, like the length-3 patterns for the symmetric group, all the length-2 signed
patterns give rise to the same number of restricted signed permutations.

Proposition 2 If ρ and ρ′ are any 2-letter signed patterns, then for every n

#Bn(ρ) = #Bn(ρ′). (39)

Proof: Let βn(ρ): = #Bn(ρ). By Observation 1, it suffices to show that βn(12) =
βn(12). This is trivially true for n = 0 and we claim that the sequences (βn(12))n≥0 and(
βn(12)

)
n≥0

satisfy the same recurrence relation for n ≥ 1.

Let b = b1b2 . . . bn ∈ Bn(12) and consider the symbol b1. Suppose first that b1 is
not barred, say, b1 = i. Since b is 12-avoiding, i + 1, . . . , n must appear barred in
b, in arbitrary order. Also, 1, . . . , i − 1 can be arbitrarily barred or not, and can be
placed in any i − 1 positions from among positions 2, . . . , n, subject to the condition
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that they themselves form a 12-avoiding signed permutation. Consequently, the number
of b ∈ Bn(12) which begin with an unbarred symbol is

n∑
i=1

(
n− 1

i− 1

)
(n− i)!βi−1(12). (40)

If b1 = i for some i, then b ∈ Bn(12) if and only if b2 . . . bn is a 12-avoiding signed
permutation. This case contributes

nβn−1(12) (41)

further elements of Bn(12). Adding the expressions in (40) and (41) one obtains a
recurrence relation satisfied by βn(12) for n ≥ 1:

βn(12) = (n+ 1)βn−1(12) + (n− 1)!
n−2∑
j=0

βj(12)

j!
. (42)

Similarly, if b ∈ Bn(12), suppose first that b1 = i for some i. To avoid the pattern
12, it is necessary and sufficient that: i) the symbols larger than i be unbarred, ii) the
symbols smaller than i form a 12-avoiding signed permutation. Next, if b1 = i for some
i, then b2 · · · bn is an arbitrary 12-avoiding signed permutation of [n]−{i}. Thus, βn(12)
satisfies a recurrence relation identical to (42), and the proof is complete. 3

The common cardinality of all restricted classes Bn(ρ) for length-2 patterns is now
easy to determine.

Proposition 3 If ρ is any signed pattern of length 2, then for each n,

#Bn(ρ) =
n∑
k=0

(
n

k

)2

· k!. (43)

Proof: By Proposition 2, it suffices to show that formula (43) holds for ρ = 12. This
follows readily since each element of Bn(12) is a shuffle of an arbitrary permutation of,
say, k barred symbols and the decreasing sequence formed by the remaining, not barred,
symbols. Summing over k yields the formula. 3

In fact, finer enumerative results hold.

Observation 2 Fix n and any choice of a letter x ∈ {1, 2, . . . , n, 1, 2, . . . , n}. Then the
number of signed permutations b whose first entry is b1 = x is the same in Bn(12) as in
Bn(12).
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This is apparent in the proof of Proposition 2. It is analogous to the fact [22] that
in Sn(123) and in Sn(132) there are equally many permutations with a prescribed first
entry.

Other enumerative relations hold between subclasses of Bn(12) and Bn(12). For
example, essentially by iterating the preceding observation, one has:

Observation 3 For each n, the number of signed permutations whose leftmost unbarred
symbol occurs in position p is the same in the classes of restricted signed permutations
Bn(12) and Bn(12). We convene to set p = n+ 1 if all symbols are barred.

We close with a q-analogue of the expression (3), based on combinatorial statistics
on signed permutations. This q-analogue arises in a different context in [28].

Observation 4 For a signed permutation b ∈ Bn, define the statistics
suv(b): = the sum of the values which are not barred in b,
sup(b): = the sum of the positions of the symbols which are not barred in b,
uinv(b): = the number of inversions in the subword of b consisting of the unbarred

symbols.
Now define

s(b): = suv(b) + sup(b) + uinv(b)− k(k + 1), (44)

where k denotes the number of barred symbols in b. Then

∑
b∈Bn(1 2)

qs(b) =
n∑
k=0

[
n

k

]2

q
[k]q!. (45)

Indeed, in a signed permutation b ∈ Bn(1 2), the values, order, and positions of the
unbarred symbols are arbitrary, while the ordering of the barred symbols is forced, and
(45) follows readily. We note that alternative descriptions of the value of s(b) and other
choices of the pattern-restriction are possible.

3.2 Double restrictions by 2-letter patterns

By taking advantage of the operations of reversal, barring, and complementation (the
last one means bi is replaced with the value n + 1− |bi|, which we bar if and only if bi
is a barred symbol), the question of determining the cardinality of Bn(ρ, ρ′) for the 28
choices of two 2-letter signed patterns, reduces to 7 cases.
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Proposition 4 Given n and two length-2 signed patterns ρ, ρ′, let βn(ρ, ρ′) = #Bn(ρ, ρ′),
the number of signed permutations in Bn which avoid simultaneously ρ and ρ′. The value
of βn(ρ, ρ′) satisfies one of the following relations, according to which orbit (under re-
versal, barring, complementation) contains the pair ρ, ρ′:

βn(12, 21) = 2 · n!, (46)

βn(21, 12) = βn(21, 12) = βn(12, 12) = βn(12, 12) = (n+ 1)!, (47)

n! < βn(12, 21) < (n+ 1)! for n ≥ 3, (48)

βn(21, 2 1) =

(
2n

n

)
. (49)

Proof: Each relation can be established by examining the form of the restricted signed
permutations in question and resorting, as needed, to a recurrence relation and induction.

To verify (46) note that b ∈ Bn(12, 21) has either no unbarred symbol (in which
case it is one of the n! permutations of 1, . . . , n), or it has just one unbarred symbol i
inserted in any position in an arbitrary permutation of 1, . . . , i− 1, i+ 1, . . . , n. This
gives βn(12, 21) = n! + n(n− 1)!, as claimed in (46).

Consider now b ∈ Bn(21, 12). If b1 = i, then the smaller values 1, . . . , i − 1 must
be unbarred in b and can be permuted arbitrarily and placed in any of the positions
2 through n; the larger values i + 1, . . . , n must constitute a (21, 12)-avoiding signed
permutation. If b1 = i, then the discussion is similar. This leads to the recurrence
relation

βn(21, 12)

(n− 1)!
= 2 ·

n−1∑
j=0

βj(21, 12)

j!
(50)

for n ≥ 1, and β0(21, 12) = 1. We omit the simple exercise of solving for βn(21, 12), as
well as the similar argument for finding βn(21, 12) and βn(12, 12).

In the last case of (47), Bn(12, 12), note that if b1 is an unbarred symbol, then the
pattern restriction forces b1 = n and that if b1 is a barred symbol, it may have any value.
In both cases, b2 · · · bn is a (12, 12)-avoiding signed permutation on [n] − {|b1|}. This
yields βn(12, 12) = (n+ 1)βn−1(12, 12).

Concerning (48), a similar analysis leads to the recurrence relation βn(12, 21) =
nβn−1(12, 21) + (n − 1)!

∑n−1
j=0

1
j!

for n ≥ 1, with β0(12, 21) = 1. From this the in-

equalities can be established by induction. The first few values are (βn(12, 21))n≥0 =
(1, 2, 6, 23, 108, . . .). An expression for βn(12, 21) can be obtained by iterating the
recurrence relation. From the recurrence relation one can also deduce βn(12, 21) =
2nβn−1(12, 21)− (n2 − 2)βn−2(12, 21) + (n− 2)2βn−3(12, 21) for n ≥ 3.
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Finally, to verify (49), we observe that if b ∈ Bn(21, 2 1) then b is determined by
the choice of which symbols in it are barred and where they are located. It is a shuffle
of the barred and unbarred symbols, each of which are ordered increasingly by absolute
value. For each 0 ≤ k ≤ n, there are

(
n
k

)
choices of the values to be barred, and again(

n
k

)
choices for their placement in b. Thus (49) follows by direct counting. 3

The last class of restrictions, which gives
(

2n
n

)
= #NCB

n pattern-avoiding signed
permutations, is of special interest here and is further considered in Section 4.

4 Relations between statistics on type-B noncross-

ing partitions and restricted signed permutations

Considering the set of type-B noncrossing partitions NCB
n and the elements of Bn which

avoid simultaneously the patterns 21 and 2 1, we obtain a B-analogue of the type-A
result of [24] stated in equation (4).

Theorem 4 For every n ≥ 1, there is a bijection γ:Bn(21, 2 1) → NCB
n such that

desB(b) = bkB(γ(b)) and majB(b) = rbB(γ(b)) + bkB(γ(b)). As a consequence,∑
b∈Bn(21,2 1)

pdesB(b)qmajB(b) =
∑

π∈NCBn

(pq)bkB(π)qrbB(π) (51)

and the common expression for these joint distributions is
n∑
k=0

(
n

k

)[
n

k

]
q
pkq(

k+1
2 ). (52)

Proof: Based on their characterization used in the proof of Proposition 4, the permuta-
tions in Bn(21, 2 1) are in bijection with the ordered pairs of subsets of [n] having equal
cardinality, b↔ (P (b), B(b)). The subset B(b) is the set of values which are barred in b
and the subset P (b) is the set of their positions in b. Recalling from subsection 1.1 the
definition of the descent statistic for the hyperoctahedral group, we have P (b) = Des(b).

Let γ(b) be the type-B noncrossing partition whose encoding by its pair of Left- and
Right-sets is (Des(b), B(b)). Then, by the definitions of the statistics, it is clear that
(51) holds. The expression (52) is immediate from (32). 3

The expression (52) is a p, q-analogue of
∑n
k=0

(
n
k

)2
=
(

2n
n

)
in which one of the

binomial coefficients
(
n
k

)
is replaced by a q-binomial coefficient. George Andrews asked
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whether it is possible to derive a p, q-analogue in which the other binomial coefficient
becomes a p-binomial coefficient.

Proposition 5 For n ≥ 1, the joint distribution of the statistics rsB and rbB on type-B
noncrossing partitions satisfies the relation

pn
∑

π∈NCBn

prsB(π)(pq)rbB(π) =
n∑
k=0

[
n

k

]
p

[
n

k

]
q
p(

k+1
2 )q(

k
2). (53)

Proof: By the correspondence π ↔ (L(π), R(π)) and the definitions of rsB and rbB, the
left hand side of (53) equals

pn
n∑
k=0

∑
L,R⊆[n]

#L=#R=k

p(
∑

r∈R r)−n q(
∑

l∈L l)−k, (54)

which can be written as the right-hand-side of (53). 3

We consider now the excedence and Denert statistics defined for type B in (23) and
(24).

Proposition 6 For every n, the joint distribution of the excedence and Denert statistics
on the (21, 2 1)-avoiding signed permutations in Bn agrees with the joint distribution of
the statistics bkB and rbB + bkB on the noncrossing partitions in NCB

n :∑
b∈Bn(21,2 1)

pexcB(b)qDenB(b) =
∑

π∈NCBn

(pq)bkB(π)qrbB(π). (55)

Proof: For signed permutations in the class Bn(21, 2 1) the excedences defined via (23)
coincide with the descents, as was observed by Galovich [11], so majB and DenB agree
as well. Thus the conclusion follows from the preceding result. 3
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5 Further questions

1. Signed permutations restricted by 2-letter patterns. In view of Proposition 2, we
may write βn for the common cardinality of Bn(ρ) for all signed 2-letter patterns
ρ. For n ≥ 0, this sequence begins with the values 1, 2, 7, 34, 209, 1546, .... A
sequence beginning with the same values appears in [27]. The reference is [21] and
the sequence is described by the recurrence relation

a0 = 1, an = 2nan−1 − (n− 1)2an−2 for n ≥ 1. (56)

One can verify that this and the recurrence (42) produce the same sequence. In-
deed, a0 = β0 = 1, and assuming inductively that ai = βi for i < n, we have
an = βn if and only if

2nan−1 − (n− 1)2an−2 = (n+ 1)an−1 + (n− 1)!
n−2∑
i=0

ai
i!
, (57)

which can be rewritten as

(n− 1)an−1 = n(n− 1)an−2 + (n− 1)!
n−3∑
i=0

ai
i!
. (58)

But this is equivalent to the recurrence (42) satisfied by βn.

Thus, for each 2-letter signed pattern ρ, the cardinality βn of the class of restricted
signed permutations Bn(ρ) satisfies the recurrence (56). It would be interesting to
find a combinatorial explanation for this recurrence for the numbers βn. Similarly,
it would be interesting to find a combinatorial proof of the 3-term recurrence for
βn(12, 21) stated in the proof of Proposition 4.

2. Bijections among classes of restricted signed permutations.

In enumerating signed permutations which avoid simultaneously two 2-letter pat-
terns (Proposition 4), we found in equation (47) that #Bn(21, 12) = #Bn(21, 12) =
#Bn(12, 12) = #Bn(12, 12) = (n + 1)!. The first three cases are representatives
of size-2 orbits of double restrictions, while the fourth case is in an orbit of size
4. This, as well as the difference in the natural recurrence relations used in the
proof of (47), raise the question of finding explicit bijections among these classes
of restricted signed permutations.

3. Combinatorial statistics on (unrestricted) type-B set partitions. How might the
definitions (25)-(28) of statistics for type-B noncrossing partitions be extended to
the entire lattice ΠB

n of type-B partitions? Do analogues of the properties for
type-A partitions statistics in [36] hold?
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