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Abstract

We prove that for m < n, the maximum number of nonattacking queens that
can be placed on the n ×m rectangular toroidal chessboard is gcd(m,n), except in
the case m = 3, n = 6.

The classical n-queens problem is to place n queens on the n×n chessboard such that
no pair is attacking each other. Solutions for this problem exist for all for n 6= 2, 3 [1].
The queens problem on a rectangular board is of little interest; on the n × m board for
m < n, one can obviously place at most m nonattacking queens and for 4 ≤ m < n, one
can just take a solution on the m×m board and extend the board. Moreover, the reader
will easily find solutions on the 3× 2 and 4× 3 boards and so these give solutions on the
n × 2 and n × 3 boards for all 3 ≤ n and 4 ≤ n respectively.

In chess on a torus, one identifies the left and right edges and the top and bottom edges
of the board. On the n× n toroidal board, the n-queens problem has solutions when n is
not divisible by 2 or 3 [3], and the problem of placing the maximum number of queens when
n is divisible by 2 or 3 is completely solved in [2]. The traditional n-queens problem and
the toroidal n-queens problem are closely related, both logically and historically (see [4]).
However, unlike the rectangular traditional board, the queens problem on the rectangular
toroidal board is interesting and non-trivial and yet it seems that it has not been studied.

In order to work on the toroidal board we use the ring Zi = Z/(i), which we identify
with {0, . . . , i − 1}, and the natural ring epimorphism Z → Zi; x 7→ [x]i, where [x]i is
to be interpreted as the remainder of x on division by i. We give the squares of the
n × m toroidal board coordinate labels (x, y), x ∈ Zm, y ∈ Zn, in the obvious way.
The positive (resp. negative) diagonal is the subgroup P = {([x]m, [x]n) ; x ∈ Z} (resp.
N = {([x]m, [−x]n) ; x ∈ Z}). Notice that the diagonals are both subgroups of Zm × Zn

of index gcd(m, n). In addition, there is the vertical subgroup V = {(0, [x]n) ; x ∈ Z}
which has index m, and the horizontal subgroup H = {([x]m, 0) ; x ∈ Z} which has index
n. Queens at distinct positions (x1, y1), (x2, y2) are nonattacking if and only if (x1, y1)
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and (x2, y2) belong to distinct cosets of V, H, P and N . In particular, the n × m toroidal
board can support no more than gcd(m, n) nonattacking queens.

The aim of this paper is to prove the

Theorem. For m < n, the maximum number of nonattacking queens that can be placed
on the n×m rectangular toroidal chessboard is gcd(m, n), except in the case m = 3, n = 6.

Proof. First let d = gcd(m, n) and suppose that d 6= 3. Notice that in order to place d
nonattacking queens on the n×m toroidal board, it suffices to place d nonattacking queens
on the 2d×d toroidal board. Indeed, although the natural injection Zd×Z2d ↪→ Zm×Zn is
not in general a group homomorphism, it is easy to see that if two queens are nonattacking
in Zd×Z2d, their images in Zm×Zn are also nonattacking. Thus, without loss of generality,
we may assume that n = 2m. In this case gcd(m, n) = m.

If m ≡ 1, 2, 4, 5 (mod 6), a solution is easily obtained by placing a queen at each point
in the set A = {(i, 2i) ; i ∈ Zm}. Indeed, it is clear that no two distinct elements of A
belong to the same coset of H or V . If elements (i, 2i) and (j, 2j) belong to the same
coset of P , then i − j ≡ 2i − 2j (mod m) and so i ≡ j (mod m) which implies i = j. If
elements (i, 2i) and (j, 2j) belong to the same coset of N , then one has 3i ≡ 3j (mod m)
which also gives i = j when m is not divisible by 3.

Now suppose that m is divisible by 6, say m = 2k.6.l, where l is odd. Here the situation
is slightly more complicated; a solution is obtained by placing queens at positions (i, f(i)),
for i = 0, . . . , m − 1, where

f(i) =

{
2i + [i]6l ; if [i]3l = [i]6l,

2i + 1 + [i]6l ; otherwise.

The case where m ≡ 3 (mod 6) is a good deal more complicated; we consider two subcases.
First if m ≡ 3 (mod 12), say m = 12k + 3, a solution is obtained by placing queens at
positions (i, g(i)), for i = 0, . . . , m − 1, where

g(i) =




3i ; if i ≤ 4k,

2 ; if i = 4k + 1,

2 + m ; if i = 4k + 3,

3i − m + 4 ; if 4k + 2 ≤ i ≤ 10k and i is even,

3i − m + 2 ; if i = 10k + 2,

3i − m − 4 ; if 4k + 5 ≤ i ≤ 10k + 3 and i is odd,

3i − m ; if i ≥ 10k + 4.

On the other hand, if m ≡ 9 (mod 12), say m = 12k+9, a solution is obtained by placing
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queens at positions (i, h(i)), for i = 0, . . . , m − 1, where

h(i) =




3i ; if i ≤ 4k + 2,

2 ; if i = 4k + 3,

2 + m ; if i = 4k + 5,

3i − m + 4 ; if 4k + 4 ≤ i ≤ 10k + 6 and i is even,

3i − 2m − 2 ; if i = 10k + 8,

3i − m − 4 ; if 4k + 7 ≤ i ≤ 10k + 7 and i is odd,

3i − m ; if i ≥ 10k + 9.

The verification that the above functions f, g and h have the required properties is tedious
but elementary.

It remains to deal with the case where gcd(m, n) = 3. Here the reader will readily find
that there is no solution on the 6 × 3 board, but there are solutions on the 9 × 3 board.
It follows that there are solutions on the n × m board for all m < n with gcd(m, n) = 3
except in the case m = 3, n = 6. This completes the proof of the theorem.
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