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Abstract

A graph is 3-e.c. if for every 3-element subset S of the vertices, and for every
subset T of S, there is a vertex not in S which is joined to every vertex in T
and to no vertex in S \ T. Although almost all graphs are 3-e.c., the only known
examples of strongly regular 3-e.c. graphs are Paley graphs with at least 29 vertices.
We construct a new infinite family of 3-e.c. graphs, based on certain Hadamard
matrices, that are strongly regular but not Paley graphs. Specifically, we show
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that Bush-type Hadamard matrices of order 16n2 give rise to strongly regular
3-e.c. graphs, for each odd n for which 4n is the order of a Hadamard matrix.

Key words: n-e.c. graphs, strongly regular graphs, adjacency property, Bush-type
Hadamard matrix, design
AMS subject classification: Primary 05C50, Secondary 05B20.

1 Introduction

Throughout, all graphs are finite and simple. A strongly regular graph SRG(v, k, λ, µ)
is a regular graph with v vertices of degree k such that every two joined vertices have
exactly λ common neighbours, and every two distinct non-joined vertices have exactly
µ common neighbours.

For a fixed integer n ≥ 1, a graph G is n-existentially closed or n-e.c. if for every
n-element subset S of the vertices, and for every subset T of S, there is a vertex not
in S which is joined to every vertex in T and to no vertex in S \ T. N-e.c. graphs
were first studied in [8], where they were called graphs with property P (n). For further
background on n-e.c. graphs the reader is directed to [5].

If q is a prime power congruent to 1 (mod 4), then the Paley graph of order q, written
Pq, is the graph with vertices the elements of GF (q), the field of order q, and distinct
vertices are joined iff their difference is a square in GF(q). It is well-known that Pq is
self-complementary and a SRG(q, (q − 1)/2, (q − 5)/4, (q − 1)/4). In [1] and [4], it was
shown that for a fixed n, sufficiently large Paley graphs are n-e.c.. Few examples of
strongly regular non-Paley n-e.c. graphs are known, despite the fact that for a fixed n
almost all graphs are n-e.c. (see [3] and [9]). The exception is when n = 1 or 2; see
[5] and [6]. Even for n = 3 it has proved difficult to find strongly regular n-e.c. graphs
that are not Paley graphs. In [1] it was shown that P29 is the minimal order 3-e.c. Paley
graph. As reported in [5], a 3-e.c. graph has order at least 20, and a computer search
has revealed two non-isomorphic 3-e.c. graphs of order 28, neither of which is strongly
regular.

In this article we construct new infinite families of strongly regular 3-e.c. graphs that
are not Paley graphs. The graphs we study are constructed from certain Hadamard
matrices; in particular, their adjacency matrices correspond to Bush-type Hadamard
matrices (see Theorem 5).

A co-clique in a graph is a set of pairwise non-joined vertices. The matrices In and
Jn are the n × n identity matrix and matrix of all ones, respectively. A normalized
Hadamard matrix is one whose first row and first column is all ones. For matrices A,B,
A⊗B is the tensor or Kronecker product of A and B.
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2 Bush-type Hadamard matrices

A Hadamard matrix H of order 4n2 is called a Bush-type Hadamard matrix if H = [Hij ],
where Hij are blocks of order 2n, Hii = J2n and HijJ2n = J2nHij , for i 6= j, 1 ≤ i ≤ 2n,
1 ≤ j ≤ 2n.

In the language of graphs, a symmetric Bush-type Hadamard matrix of order 4n2 is
the ∓-adjacency matrix (−1 for adjacency, +1 for non-adjacency) of a strongly regular
(4n2, 2n2 − n, n2 − n, n2 − n) graph. See Haemers and Tonchev [10] for a study of such
graphs.

K. A. Bush [7] proved that if there exists a projective plane of order 2n, then there
is a Bush-type Hadamard matrix. Although it is fairly simple to construct Bush-type
Hadamard matrices of order 16n2, very little is known about the existence or non-
existence of such matrices of order 4n2, for n odd. See [11] for details.

For completeness we include the following result of Kharaghani [12].

Theorem 1. If the order of an Hadamard matrix is 4n, then there is a Bush-type
Hadamard matrix of order 16n2.

Proof. Let K be a normalized Hadamard matrix of order 4n. Let c1, c2, . . . , c4n be the
column vectors of K. Let Ci = cic

t
i, for i = 1, 2, . . . , 4n. Then it is easy to see that:

1. Ct
i = Ci, for i = 1, 2, . . . , 4n;

2. C1 = J4n, CiJ4n = J4nCi = 0, for i = 2, 3, . . . , 4n;

3. CiC
t
j = 0, for i 6= j, 1 ≤ i, j ≤ n;

4.
4n∑
i=1

CiC
t
i = 16n2I4n.

Now consider a symmetric Latin square with entries 1, 2, . . . , 4n with constant diag-
onal 1. Replace each i by Ci. We then obtain a Bush-type Hadamard matrix of order
16n2.

Example 2. We give an example of a Bush-type Hadamard matrix of order 64. For
ease of notation, we use − instead of −1. Let K be the following Hadamard matrix:

1 1 1 1 1 1 1 1
1 − 1 − 1 − 1 −
1 1 − − 1 1 − −
1 − − 1 1 − − 1
1 1 1 1 − − − −
1 − 1 − − 1 − 1
1 1 − − − − 1 1
1 − − 1 − 1 1 −


=

(
c1 c2 c3 c4 c5 c6 c7 c8

)
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Then for i = 1, . . . , 8, let

Ci = cic
t
i,

and let

H =



C1 C2 C3 C4 C5 C6 C7 C8

C2 C1 C4 C3 C6 C5 C8 C7

C3 C4 C1 C2 C7 C8 C5 C6

C4 C3 C2 C1 C8 C7 C6 C5

C5 C6 C7 C8 C1 C2 C3 C4

C6 C5 C8 C7 C2 C1 C4 C3

C7 C8 C5 C6 C3 C4 C1 C2

C8 C7 C6 C5 C4 C3 C2 C1


By Theorem 1, H is a Bush-type Hadamard matrix of order 64.

Lemma 3. Let H = [Hij] be a Bush-type Hadamard matrix of order 4n2. Let M =
H − I2n ⊗ J2n. Then M contains two SRG(4n2, 2n2 − n, n2 − n, n2 − n).

Proof. The row sums of H are all 2n. Thus the negative entries in H can be viewed as
the incidence matrix of a SRG(4n2, 2n2 − n, n2 − n, n2 − n)-graph. Since negating all
the off diagonal blocks of H leaves a Bush-type Hadamard, the positive entries of M
also form a SRG(4n2, 2n2 − n, n2 − n, n2 − n)-graph.

Note that the two graphs may not be isomorphic in general. We call the matrix M
a twin graph.

3 Bush-type Hadamard matrices and 3-e.c. graphs

A graph G is 3-e.c. if for each triple x, y, z of distinct vertices from G, there are 8 vertices
from V (G) \ {x, y, z}, one joined to each of x, y, z; 3 joined to exactly two of x, y, z; 3
joined to exactly one of x, y, z; and one joined to none of x, y, z. From the perspective
of the (1,−1)-adjacency matrix A of G this is equivalent to the following condition:
for each 3 distinct rows r1, r2, r3 from A, representing vertices x, y, z in G, there are 8
columns in the submatrix formed by r1, r2, r3, distinct from the columns representing
x, y, z, which contain all the 8 possible patterns of 1’s and −1’s. Since our graphs are
constructed as (1,−1)-adjacency matrices, we use the latter condition when checking
whether our graphs are 3-e.c.. We first prove the following lemma.

Lemma 4. Let K be a normalized Hadamard matrix of order 4n with n odd and n > 1.
Consider any 3 × n submatrix of K not including the first row of K. Each of the
eight possible sign patterns appears as a column at least once among the columns of the
submatrix.
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Proof. Let K be a normalized Hadamard matrix of order 4n. Consider any three rows
of K which do not include the first row. Without loss of generality, we may assume that
the rows have the form

a b c d e f g h︷ ︸︸ ︷
+ · · ·
+ · · ·
+ · · ·

︷ ︸︸ ︷
+ · · ·
+ · · ·
− · · ·

︷ ︸︸ ︷
+ · · ·
− · · ·
+ · · ·

︷ ︸︸ ︷
+ · · ·
− · · ·
− · · ·

︷ ︸︸ ︷
− · · ·
+ · · ·
+ · · ·

︷ ︸︸ ︷
− · · ·
+ · · ·
− · · ·

︷ ︸︸ ︷
− · · ·
− · · ·
+ · · ·

︷ ︸︸ ︷
− · · ·
− · · ·
− · · ·

,

where each letter is a nonnegative integer. This leads to the linear system

a+ b+ c+ d+ e+ f + g + h = 4n

a+ b+ c+ d = 2n

a+ b+ e+ f = 2n

a+ c+ e+ g = 2n

a+ b− c− d− e− f + g + h = 0

a− b+ c− d− e+ f − g + h = 0

a− b− c+ d+ e− f − g + h = 0

It can be seen that the solution for this system is b = c = e = h and a = d = f =
g = n− h.

We need to find a positive solution to the system. Since K is normalized, a > 0 so
h 6= n. It is enough to show that h = 0 is not possible. If h = 0, then the three selected
rows have the following form:

a = n d = n f = n g = n︷ ︸︸ ︷
+ · · ·
+ · · ·
+ · · ·

︷ ︸︸ ︷
+ · · ·
− · · ·
− · · ·

︷ ︸︸ ︷
− · · ·
+ · · ·
− · · ·

︷ ︸︸ ︷
− · · ·
− · · ·
+ · · ·

(1)

Now consider a fourth row, and without loss of generality, we can rearrange the
columns so that the rows have the form:

a′ b′ c′ d′ e′ f ′ g′ h′︷ ︸︸ ︷
+ · · ·
+ · · ·
+ · · ·
+ · · ·

︷ ︸︸ ︷
+ · · ·
+ · · ·
+ · · ·
− · · ·

︷ ︸︸ ︷
+ · · ·
− · · ·
− · · ·
+ · · ·

︷ ︸︸ ︷
+ · · ·
− · · ·
− · · ·
− · · ·

︷ ︸︸ ︷
− · · ·
+ · · ·
− · · ·
+ · · ·

︷ ︸︸ ︷
− · · ·
+ · · ·
− · · ·
− · · ·

︷ ︸︸ ︷
− · · ·
− · · ·
+ · · ·
+ · · ·

︷ ︸︸ ︷
− · · ·
− · · ·
+ · · ·
− · · ·

,

where each primed letter is a nonnegative integer.
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This leads to the system

a′ + b′ = n

c′ + d′ = n

e′ + f ′ = n

g′ + h′ = n

a′ − b′ + c′ − d′ − e′ + f ′ − g′ + h′ = 0

a′ − b′ − c′ + d′ − e′ + f ′ + g′ − h′ = 0

a′ − b′ − c′ + d′ + e′ − f ′ − g′ + h′ = 0

a′ + c′ + e′ + g′ = 2n

whose solution is a′ = b′ = c′ = d′ = e′ = f ′ = g′ = h′ = n/2. Thus n must be even, a
contradiction.

Theorem 5. Let 4n be the order of a Hadamard matrix, n odd, n > 1. There is
a Bush-type Hadamard matrix of order 16n2 which is the adjacency matrix of a twin
SRG(16n2, 8n2−2n, 4n2−2n, 4n2−2n), whose vertices can be partitioned into 4n disjoint
co-cliques of order 4n. Furthermore, the graph is 3-e.c..

Proof. Consider the Bush-type Hadamard matrix H = [Hij], where Hij is the ij block
of H of size 4n × 4n, constructed in Theorem 1 from a Hadamard matrix of order 4n.
The fact that there is a twin SRG(16n2, 8n2 − 2n, 4n2 − 2n, 4n2 − 2n) whose vertices
can be partitioned into 4n disjoint co-cliques of order 4n, follows from Lemma 3.

It remains to show that the graph is 3-e.c.. Given three rows of H, consider the
submatrix L consisting of these three rows. We need to show that each of the eight
possible sign patterns appears as a column among the columns of the submatrix.

The rows of H can be partitioned into 4n “zones”, corresponding to the rows of the
4n 4n× 4n subblocks of H. We consider three cases, based on where the three rows of
L are located relative to the zones.

Case 1 : The rows of L are selected from the same zone, say the j-th zone. Referring
to the proof of Theorem 1 we see that the leading columns of Ci’s form a rearrangement
of the columns of the original Hadamard matrix. The only case when not all 8 patterns
appear among the leading columns is if the leading columns appear in form like in
matrix (1). However, all Ci’s are of rank 1, so the negatives of each of the patterns in
the columns of matrix (1) appear among the columns of H, off the block Hjj. Thus all
eight patterns appear off the block Hjj.

Case 2 : Exactly two rows of L belong to the same zone. Suppose two rows r1 and
r2 are from the j-th zone and the other row, r3, is from the k-th zone, where k 6= j.
Without loss of generality we can assume that the entries of the blocks in the r1 and r2
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rows have the form:

n n n n︷ ︸︸ ︷
+ · · ·
+ · · ·

︷ ︸︸ ︷
+ · · ·
− · · ·

︷ ︸︸ ︷
− · · ·
+ · · ·

︷ ︸︸ ︷
− · · ·
− · · ·

(2)

We now look at the possible arrangement of row r1 relative to row r3. We observe that
in each block a similar arrangement as in (2) occurs. Since in each block, row r2 is a
multiple of row r1, we see that all eight patterns appear off the blocks Hjj and Hkk.

Case 3 : The three rows of L belong to three different zones, zones i, j, and k, with
i, j, and k distinct. Select l distinct from i, j, and k. Consider the three rows restricted
to the blocks Hil, Hjl, and Hkl. The rows are multiples of three distinct rows of the
original Hadamard matrix, so by Lemma 4 all eight patterns appear off the blocks Hii,
Hjj, and Hkk. (Note that the assumption that n is odd is only used in this part of the
proof.)

Of course, none of the graphs in Theorem 5 are Paley graphs. We think that the
assumption that n is odd can be dropped from Theorem 5, in view of the following
example and remark, and the proof above.

Example 6. A Bush-type Hadamard matrix of order 64 is not included in the previous
theorem. However, Example 2 leads to two (isomorphic) graphs which were verified to
be 3-e.c. by a computer calculation. We have verified that this graph is not 4-e.c.. We
do not know an example of a 4-e.c. graph that is not a Paley graph.

Remark 7. The only known Bush-type Hadamard matrix of order 4n2, n odd, n > 1
is of order 324 and is constructed in [11]. We tested this Bush-type Hadamard matrix
of order 324 by computer and have established that its graph is 3-e.c..

These observations lead us to the following conjecture.

Conjecture 8. Every Bush-type Hadamard matrix of order 4n2 with n > 1 contains a
twin 3-e.c. SRG(4n2, 2n2 − n, n2 − n, n2 − n).

We are grateful to the referee for pointing out a few minor errors and the following.
There are some strongly regular 3-e.c. graphs that are not Paley graphs. Some of them,
however, do have the same parameters. For example, there are 3-e.c. graphs that are
not Paley graphs, but have the same parameters as P37, P41, and P49. Furthermore,
although there does not exist a symmetric Bush-type Hadamard matrix of order 36
(see for example [2]), there is a unique 3-e.c. (36, 15, 6, 6) graph which is reproduced in
Figure 1.
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0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0
1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1
1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0
1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1
1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1
1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 0
1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 1
1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1
1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0
1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1
1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 1 0
0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0
0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1
0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0
0 1 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1
0 0 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1
0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0
0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0
0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0
0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1
0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1
0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1
0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 0
0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1
0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0


Figure 1: A 3-e.c. (36, 15, 6, 6) graph
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