An Analogue of Covering Space Theory for Ranked Posets

Michael E. Hoffman

Dept. of Mathematics U. S. Naval Academy, Annapolis, MD 21402 meh@usna.edu

Submitted: May 10, 2001. Accepted: October 11, 2001. MR Classifications: Primary 06A07,05A15; Secondary 57M10

Abstract

Suppose P is a partially ordered set that is locally finite, has a least element, and admits a rank function. We call P a weighted-relation poset if all the covering relations of P are assigned a positive integer weight. We develop a theory of covering maps for weighted-relation posets, and in particular show that any weighted-relation poset P has a universal cover $\tilde{P} \to P$, unique up to isomorphism, so that

- 1. $\widetilde{P} \to P$ factors through any other covering map $P' \to P$;
- 2. every principal order ideal of \widetilde{P} is a chain; and
- 3. the weight assigned to each covering relation of \widetilde{P} is 1.

If P is a poset of "natural" combinatorial objects, the elements of its universal cover \tilde{P} often have a simple description as well. For example, if P is the poset of partitions ordered by inclusion of their Young diagrams, then the universal cover \tilde{P} is the poset of standard Young tableaux; if P is the poset of rooted trees ordered by inclusion, then \tilde{P} consists of permutations. We discuss several other examples, including the posets of necklaces, bracket arrangements, and compositions.

1 Introduction

For topological spaces, the notion of a covering space is familiar (see, e.g., [9]): a covering map $p: X' \to X$ is a continuous surjection such that, for sufficiently small open sets $U \subset X$, $p^{-1}(U)$ is a disjoint union of open sets in X' each of which p maps homeomorphically onto U. For any space X satisfying appropriate hypotheses (e.g., that X is connected, locally arcwise connected and semilocally simply connected), there is a simply connected covering space $\pi: \tilde{X} \to X$, which is universal in the sense that it "factors through" any other connected cover of X, i.e., if $p: X' \to X$ is any covering map with X' conneced, then there is a covering map $f: \widetilde{X} \to X'$ so that $\pi = pf$. The universal covering space of X is unique up to homeomorphism over X.

In this paper we develop a theory of covering maps for ranked posets. More precisely, we define covering maps of "weighted-relation" posets, which are locally finite ranked posets with least element that have a positive integer weight associated with each of their covering relations. We show that every such weighted-relation poset P has a universal cover $\tilde{P} \to P$, unique up to isomorphism in an appropriate category, which factors through any other cover $P' \to P$. The universal cover \tilde{P} is "simple" in the sense that its Hasse diagram is a tree and all its covering relations have weight 1.

In many cases where P is a poset of familiar combinatorial objects, the elements of the universal cover \tilde{P} also have a simple description. For example, the poset of monomials in commuting variables x_1, \ldots, x_k has a universal cover whose elements are monomials in k noncommuting variables (Example 2 in §4 below); the poset of compositions (with an appropriate choice of weights) has as its universal cover the poset of Cayley permutations in the sense of [6] (Example 6). We discuss several other examples, including the posets of necklaces, bracket arrangements, partitions, and rooted trees.

2 Weighted-relation posets

Our terminology for posets follows [11]. Let (P, \preceq) be a locally finite poset with least element $\hat{0}$ and rank function $|\cdot|$. By a weight system on the relations of P, we mean a function n that assigns a nonnegative integer n(x, y) to every pair $x, y \in P$ so that 1. $n(x, y) \neq 0$ if and only if $x \preceq y$;

2. for all elements $x \prec y$ and nonnegative integers $|x| \leq k \leq |y|$,

$$n(x,y) = \sum_{|z|=k} n(x,z)n(z,y).$$

(Note that the second condition implies n(x, x) = 1 for all $x \in P$.)

We call a poset P together with a weight system on its relations a weighted-relation poset. By induction on |y| - |x| it is easy to prove from the definition that for any $x \prec y$ in P

$$n(x,y) = \sum_{x=x_1 \prec x_2 \prec \dots \prec x_k=y} n(x_1, x_2) n(x_2, x_3) \cdots n(x_{k-1}, x_k),$$

where the sum is over all saturated chains $x = x_1 \prec x_2 \prec \cdots \prec x_k = y$ from x to y: thus, to define n it suffices to give n(x, y) when y covers x. In particular, any ranked, locally finite poset with least element can be made a weighted-relation poset by assigning 1 to every covering relation.

The motivation for this definition comes from thinking of a covering relation $x \prec y$ of P as indicating y can be built from x by some kind of elementary operation: n(x, y) is the number of ways this can be done. Then in general n(u, v) is the number of ways that v can be built up from u via a sequence of elementary operations. For examples see §4 below.

Let \mathcal{W} be the category whose objects are weighted-relation posets, and whose morphisms are defined as follows. A morphism of weighted-relation posets P, P' is a rank-preserving function $f: P \to P'$ such that, for any elements t, s of P,

$$n(f(t), f(s)) \ge \sum_{s' \in f^{-1}(f(s))} n(t, s').$$
(1)

In particular, any such function f is order-preserving. Also, if f has an inverse f^{-1} that is also a morphism of weighted-relation posets, then n(f(t), f(s)) = n(t, s) for all $t, s \in P$.

We call a weighted-relation poset P simple if n(x, y) is 1 or 0 for any $x, y \in P$. The following result is evident.

Proposition 2.1. If P is a weighted-relation poset, the following are equivalent: (i) P is simple; (ii) the Hasse diagram of P is a tree, and every covering relation has weight 1; (iii) for every $x \in P$, $n(\hat{0}, x) = 1$.

We also record the following fact, which is an immediate consequence of inequality (1).

Proposition 2.2. If $f : P \to P'$ is a morphism of weighted-relation posets and P' is simple, then f is an injective function and P is simple.

3 Covering maps

Let P' and P be weighted-relation posets. We say that a rank-preserving function π : $P' \to P$ is a covering map if, whenever $s, r \in P$ with $\pi(s') = s$,

$$n(s,r) = \sum_{r' \in \pi^{-1}(r)} n(s',r').$$
(2)

Note that equation (2) implies that π is a morphism of weighted-relation posets, and taking $s = \hat{0}$, we see that π is also surjective.

To prove that a given rank-preserving function is a covering map, it suffices to prove equation (2) for |r| - |s| = 1. For suppose (2) holds when |r| - |s| = 1, and suppose inductively it holds for |r| - |s| < n, n > 1. Let $r, s \in P$ with |r| - |s| = n, and let $\pi(s') = s$. Then

$$n(s,r) = \sum_{|t|=|s|+1} n(s,t)n(t,r) = \sum_{|t|=|s|+1} \sum_{t'\in\pi^{-1}(t)} \sum_{r'\in\pi^{-1}(r)} n(s',t')n(t',r'),$$

and since the sets $\pi^{-1}(t)$, as t runs through the rank-(|s|+1) elements of P, partition the rank-(|s|+1) elements of P',

$$n(s,r) = \sum_{|t'|=|s'|+1} \sum_{r'\in\pi^{-1}(r)} n(s',t')n(t',r') = \sum_{r'\in\pi^{-1}(r)} n(s',r').$$

The electronic journal of combinatorics 8 (2001), #R32

If P is a fixed weighted-relation poset, there is a category \mathcal{W}/P of covers of P whose objects are covering maps $\pi : P' \to P$. A morphism from $\pi_1 : P_1 \to P$ to $\pi_2 : P_2 \to P$ in \mathcal{W}/P is a morphism $f : P_1 \to P_2$ in \mathcal{W} such that $\pi_2 f = \pi_1$. In fact, all such functions f are covering maps.

Theorem 3.1. Suppose $\pi_i : P_i \to P$ is a covering map for i = 1, 2, and suppose $f : P_1 \to P_2$ is a morphism of weighted-relation posets such that $\pi_2 f = \pi_1$. Then f is a covering map.

Proof. We show f satisfies equation (2) above. Let $s, r \in P_2, s' \in P_1$ with f(s') = s. Since π_2 is a covering map,

$$n(\pi_2(s), \pi_2(r)) = \sum_{i=1}^k n(s, r_i),$$

where $\pi_2^{-1}(\pi_2(r)) = \{r_1, \ldots, r_k\}$. For each r_i in the image of f,

$$\sum_{r' \in f^{-1}(r_i)} n(s', r') \le n(s, r_i).$$
(3)

Now $\bigcup_{i=1}^{k} f^{-1}(r_i) = \pi_1^{-1}(\pi_2(r))$, and since π_1 is a covering map we have

$$\sum_{r' \in \pi_1^{-1}(\pi_2(r))} n(s', r') = n(\pi_2(s), \pi_2(r)) = \sum_{i=1}^{\kappa} n(s, r_i).$$
(4)

Comparing (3) and (4), we see there is a contradiction unless each of the sets $f^{-1}(r_i)$ is nonempty and (3) is an equality for all *i*.

Theorem 3.2. Suppose $\pi : P' \to P$ is a covering map and $f : Q \to P$ is a morphism of weighted-relation posets, with Q simple. Then f can be lifted to P', i.e., there is a morphism of weighted-relation posets $f' : Q \to P'$ such that $\pi f' = f$.

Proof. We define $f': Q \to P'$ by induction on rank; there is no problem getting started since f' must take $\hat{0} \in Q$ to $\hat{0} \in P'$. Suppose f' has already been defined for rank < n. For a rank-(n-1) element $z \in Q$ and a rank-n element $x \in f(Q)$ with $x \succ f(z)$, let

$$C(x,z) = \{ z' \in Q | z' \succ z, |z'| = n, \text{ and } f(z') = x \}.$$

Since the Hasse diagram of Q is a tree, sets of the form C(x, z) partition the rank-n elements of Q. We shall extend f' to C(x, z). For $z' \in C(x, z)$,

$$n(f(z), x) \ge \sum_{z' \in C(x, z)} n(z, z') = \text{card } C(x, z).$$

Let $S = \{y \in P' | y \succ f'(z) \text{ and } \pi(y) = x\}$. For any $y \in S$,

$$n(f(z), x) = n(\pi f'(z), \pi(y)) = \sum_{y' \in S} n(f'(z), y')$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 8 (2001), #R32

and hence

card
$$C(x, z) \le \sum_{i=1}^{k} n(f'(z), y_i),$$
 (5)

where $S = \{y_1, y_2, \ldots, y_k\}$. Choose a partition of C(x, z) into disjoint subsets S_1, \ldots, S_k (some possibly empty) so that S_i has cardinality at most $n(f'(z), y_i)$: this is possible because of inequality (5). Extend f' to C(x, z) by setting $f'(z') = y_i$ for all $z' \in S_i$. Then for all $z' \in C(x, z)$,

$$n(f'(z), f'(z')) \ge \sum_{f'(z'')=f'(z')} n(z, z'').$$

Reasoning in the same way as in the paragraph following equation (2) above, we can conclude that f' is extended as a morphism of weighted-relation posets; and by construction

$$\pi f'(z') = x = f(z')$$

for all $z' \in C(x, z)$.

Theorem 3.3. If P is a weighted-relation poset, there is a poset \widetilde{P} and a covering map $\pi : \widetilde{P} \to P$ so that \widetilde{P} is a simple weighted-relation poset. Further, the fiber $\pi^{-1}(x)$ of each $x \in P$ contains $n(\widehat{0}, x)$ elements.

Proof. Again we proceed by induction on the rank. Let $P^{(n)}$ be the set of elements of P of rank at most n. Suppose a covering $\pi : \widetilde{P}^{(n-1)} \to P^{(n-1)}$ with $\widetilde{P}^{(n-1)}$ simple has already been constructed, and let x be a rank-n element of P. Since P is locally finite, the set C(x) of elements covered by x is finite: let $C(x) = \{x_1, \ldots, x_r\}$. Each fiber $\pi^{-1}(x_i)$ contains $n(\hat{0}, x_i)$ rank-(n-1) elements of \widetilde{P} : call them $\widetilde{x}_{i1}, \widetilde{x}_{i2}, \ldots, \widetilde{x}_{im_i}$, where $m_i = n(\hat{0}, x_i)$. Let K(x) be the set

$$\{(i, j, k) | 1 \le i \le \text{card } C(x), 1 \le j \le n(\hat{0}, x_i), 1 \le k \le n(x_i, x)\},\$$

and define

$$\widetilde{P}^{(n)} = \widetilde{P}^{(n-1)} \cup \coprod_{x \in P, |x|=n} K(x)$$

Extend the weight system (and order) of $\widetilde{P}^{(n-1)}$ to $\widetilde{P}^{(n)}$ by putting

$$n(z, (i, j, k)) = \begin{cases} 1, & \text{if } z \preceq \widetilde{x}_{ij}, \\ 0, & \text{otherwise,} \end{cases}$$

for any $(i, j, k) \in K(x)$, $z \in \widetilde{P}^{(n-1)}$. Then $\widetilde{P}^{(n)}$ is simple: for any $(i, j, k) \in K(x)$ there is a unique chain to $\hat{0}$ passing through \widetilde{x}_{ij} , so

$$n(0, (i, j, k)) = n(0, \widetilde{x}_{ij})n(\widetilde{x}_{ij}, (i, j, k)) = 1.$$

(The set $C(x) \cap C(x')$ may be nonempty for $x \neq x'$, so the same point of $\widetilde{P}^{(n-1)}$ may be labelled as both \widetilde{x}_{ij} and \widetilde{x}'_{pq} , but this does not affect the conclusion since we are taking a disjoint union of the K(x).)

Now extend π to $\widetilde{P}^{(n)}$ by having π send each element of K(x) to x. Then $\pi^{-1}(x) = K(x)$ contains

$$\sum_{i=1}^{r} n(\hat{0}, x_i) n(x_i, x) = n(\hat{0}, x)$$

elements. Also, for any $z \in \widetilde{P}^{(n-1)}$ and rank-*n* element *x* of *P*, we have

$$n(\pi(z), x) = \sum_{i=1}^{r} n(\pi(z), x_i) n(x_i, x) = \sum_{i=1}^{r} \sum_{j=1}^{m_i} \sum_{k=1}^{n(x, x_i)} n(z, \tilde{x}_{ij}) n(\tilde{x}_{ij}, (i, j, k)) = \sum_{w \in \pi^{-1}(x)} n(z, w),$$

so π is extended as a covering map.

By a universal cover of P, we mean a cover $\widetilde{P} \to P$ so that, for any other cover $P' \to P$, there is a morphism of \mathcal{W}/P from $\widetilde{P} \to P$ to $P' \to P$.

Theorem 3.4. If P is a weighted-relation poset, a cover $\widetilde{P} \to P$ is universal if and only if \widetilde{P} is simple, and such a cover is unique up to isomorphism in W/P.

Proof. Suppose that $p: \widetilde{P} \to P$ is a cover with \widetilde{P} simple, and let $\pi: P' \to P$ be another cover. By Theorem 3.2, p can be lifted to a morphism $p': \widetilde{P} \to P'$ of weighted-relation posets so that $\pi p' = p$: but this means $p: \widetilde{P} \to P$ is a universal cover. Thus, a simple cover is universal.

Now suppose $\pi': P' \to P$ is a universal cover. By Theorem 3.3 there is a simple cover $\pi: \tilde{P} \to P$, and by universality there is a morphism of \mathcal{W}/P from π' to π . Thus there is a morphism of weighted posets $f: P' \to \tilde{P}$ which (by Theorem 3.1) is a covering map, hence surjective; and since \tilde{P} is simple, Proposition 2.2 says f is injective and P' is simple. It follows that f is an isomorphism of \mathcal{W}/P .

4 Examples

Example 1. Let P be the poset of subsets of $\{1, 2, \ldots, n\}$, ordered by inclusion, with each covering relation given weight 1. Then the universal cover \widetilde{P} can be identified with the set of linearly ordered subsets of $\{1, 2, \ldots, n\}$, with $A \preceq B$ in \widetilde{P} if A is an initial segment of B; and $\widetilde{P} \to P$ forgets the order. Evidently the fiber of any rank-k element of P has k! elements, so there are a total of $k! \binom{n}{k}$ rank-k elements in \widetilde{P} .

Example 2. Let M be the poset of monomials in k commuting variables x_1, \ldots, x_k , with $m \leq m'$ in M if there is a monomial m'' such that m' = mm''. The rank on M is given by total degree, each of the x_i having degree one; the least element of M is the empty monomial 1; and the covering relations are all given weight 1. Then the universal cover

 \widetilde{M} is isomorphic to the poset of monomials in k noncommuting variables X_1, \ldots, X_k , with weights given by

$$n(w, w') = \begin{cases} 1, & \text{if } w' = wX_i \text{ for some } i, \\ 0, & \text{otherwise,} \end{cases}$$

for |w'| - |w| = 1. Clearly \widetilde{M} is simple. The function $\pi : \widetilde{M} \to M$ that sends X_i to x_i (so, e.g., $\pi^{-1}(x_1^2x_2) = \{X_1^2X_2, X_1X_2X_1, X_2X_1^2\}$) is a covering map. The cardinality of the fiber of any monomial is given by

$$n(1, x_1^{i_1} x_2^{i_2} \cdots x_k^{i_k}) = \binom{i_1 + \cdots + i_k}{i_1 \ i_2 \ \cdots \ i_k},$$

and the total number of rank-*n* elements of \widetilde{M} is

$$\sum_{i_1+\dots+i_k=n} \binom{n}{i_1\ \cdots\ i_k} = k^n.$$

Example 3. Let \mathbb{N} be the set of circular necklaces made of beads of k colors: a rank-m element of \mathbb{N} is a necklace with m beads, and the least element is the empty necklace \emptyset . For a rank-(m-1) necklace p and a rank-m necklace $q, p \prec q$ if q can be obtained from p by insertion of a bead of any color, and n(p,q) is the number of ways to insert a bead into p to get q. For example, in the case k = 2,

$$n(\bigcirc,\bigcirc) = 2$$
 and $n(\bigcirc,\bigcirc) = 1.$

The universal cover \tilde{N} can be described as the poset of necklaces with labelled beads, i.e., the beads of a rank-*m* necklace are labelled 1, 2..., m, with $\tilde{N} \to N$ the function that forgets the labels. It is clear that \tilde{N} is simple, since there is a unique chain from any labelled necklace to \emptyset via the operation of removing the highest-label bead. A rank-*m* element of \tilde{N} can be thought of as a "*k*-colored permutation" mod rotation, so there are $k^m(m-1)!$ such elements. Also, the fiber of a given necklace $p \in N$ with *m* beads has $n(\emptyset, p) = m!/N(p)$ elements, where N(p) is the number of rotations that take *p* to itself (necessarily a divisor of *m*): *p* is called primitive if N(p) = 1. Evidently a necklace *p* with N(p) = d has a primitive "quotient necklace" of size $\frac{m}{d}$. Thus, if P(m) is the number of primitive necklaces of size *m*, we have

$$\sum_{d|m} P(\frac{m}{d}) \frac{m!}{d} = \sum_{|p|=m} n(\emptyset, p) = k^m (m-1)!,$$

or $\sum_{d|m} P(d)d = k^m$. By Möbius inversion we obtain the classical result

$$P(m) = \frac{1}{m} \sum_{d|m} \mu(d) k^{\frac{m}{d}}.$$

Cf. [7, Theorem 7.1].

The electronic journal of combinatorics 8 (2001), #R32

Example 4. Let \mathcal{B} be the set of balanced bracket arrangements: a rank-*n* element of \mathcal{B} is a sequence of *n* left brackets and *n* right brackets so that, reading left to right, the number of right brackets never exceeds the number of left brackets. For $b, b' \in \mathcal{B}$ with |b'| - |b| = 1, let n(b,b') be the number of ways to insert a balanced pair $\langle \rangle$ into *b* to obtain *b'*, e.g., $n(\langle \rangle \langle \rangle, \langle \rangle \rangle \rangle) = 1$ and $n(\langle \rangle \langle \rangle, \langle \rangle \langle \rangle) = 3$. The least element is the empty arrangement \emptyset . Then \mathcal{B} is a weighted-relation poset.

The universal cover \mathcal{B} has rank-*n* elements that are permutations $a_1a_2\cdots a_{2n}$ of the multiset $\{1, 1, 2, 2, \ldots, n, n\}$ such that, if $a_i > a_j$ and i < j, then there is some $k < j, k \neq i$, with $a_k = a_i$. In particular, if *s* is a rank-*n* element of $\widetilde{\mathcal{B}}$, then the two occurrences of *n* in *s* must be adjacent. We define a partial order on $\widetilde{\mathcal{B}}$ by declaring that the rank-*n* element $a_1a_2\ldots a_{2n}$ covers the rank-(n-1) element $a_1\cdots a_{i-1}a_{i+2}\cdots a_{2n}$, where $a_i = a_{i+1} = n$, and define the weight of all covering relations to be 1. Then $\widetilde{\mathcal{B}}$ is evidently simple.

Define $\pi : \widetilde{\mathcal{B}} \to \mathcal{B}$ by sending $s \in \widetilde{\mathcal{B}}$ to the bracket arrangement obtained by replacing the first occurrence of each positive integer in s by \langle , and the second occurrence of each positive integer by \rangle . Let s be a rank-(n-1) element of \mathcal{B} , with $\pi(s') = s$. Then a rank-nelement $r' \succ s'$ is obtained by inserting nn into s', corresponding to inserting $\langle \rangle$ into s. Thus, for any $r \succ s$ in \mathcal{B} with |r| - |s| = 1,

$$n(s,r) =$$
number of ways to insert $\langle \rangle$ into s to get r
= $\sum_{r' \in \pi^{-1}(r)} n(s',r'),$

so π is a covering map.

It is well known that there are C_n rank-*n* elements of \mathcal{B} , where

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

is the *n*th Catalan number. The number of rank-*n* elements of $\widetilde{\mathcal{B}}$ can be seen to be

$$(2n-1)!! = (2n-1)(2n-3)\cdots 3\cdot 1$$

as follows. If $s = a_1 a_2 \cdots a_{2n} \in \widetilde{\mathcal{B}}$, there are 2n - 1 possible choices of i so that a_i is the first occurrence of n in s. Once i is chosen, then $a_{i+1} = n$, so s covers the rank-(n-1) element $a_1 \cdots a_{i-1} a_{i+2} \cdots a_{2n}$ of $\widetilde{\mathcal{B}}$, which by induction can be chosen in (2n-3)!! ways. The phenomenon that labelling elements of a set enumerated by Catalan numbers gives a set enumerated by double factorials was noted in [3].

Example 5. Let \mathcal{F} be the set of partitions of nonnegative integers, ordered by inclusion of their Young diagrams. Thus, a partition λ of n covers a partition μ of n-1 if λ can be obtained from μ by increasing one part of μ by 1, or by adding a new part of size 1 to μ : and we assign weight 1 to every covering relation. Then a rank-n element of the universal cover $\widetilde{\mathcal{F}}$ is a Young diagram with boxes labelled $1, 2 \dots, n$ so that the labels increase from left to right and from top to bottom, i.e., a standard Young tableau. The ordering on $\widetilde{\mathcal{F}}$ is by inclusion, and $\widetilde{\mathcal{F}} \to \mathcal{F}$ is the obvious function. The cardinality $n(\emptyset, \lambda)$ of the fiber of

a partition λ is given by the hook-length formula (see [12, Cor. 7.21.6]). More generally, when $\mu \prec \lambda$ the number $n(\mu, \lambda)$ counts standard Young tableaux of skew shape λ/μ (see [12, Cor. 7.16.3] for a formula). There is also an algebraic interpretation of the numbers $n(\mu, \lambda)$: if we let s_{λ} be the Schur symmetric function corresponding to the partition λ , then

$$s_1^k s_\mu = \sum_{|\lambda| = |\mu| + k} n(\mu, \lambda) s_\lambda$$

(see [12, Sect. 7.15]).

Example 6. Let \mathcal{C} be the poset of compositions, i.e., finite sequences of integers, with rank given by the sum, and least element \emptyset . For compositions I, J with |J| - |I| = 1, we define

$$n(I,J) = \begin{cases} 1, & \text{if } J \text{ is obtained from } I \text{ by increasing one part;} \\ m, & \text{if there are } m \text{ ways to insert 1 into } I \text{ to get } J; \\ 0, & \text{otherwise.} \end{cases}$$

Thus, e.g., n(121, 122) = 1, n(121, 1121) = 2, and n(121, 212) = 0. This defines a weight system of \mathcal{C} , so \mathcal{C} is a weighted-relation poset.

A rank-*n* element of the universal cover \mathcal{C} is a Cayley permutation of length *n* as defined in [6], i.e., a length-*n* sequence *s* of positive integers such that any positive integer i < jappears in *s* whenever *j* does. The partial order on $\widetilde{\mathcal{C}}$ is defined as follows. If $s = a_1 \cdots a_n$ is a Cayley permutation, let $m(s) = \max\{a_1, \ldots, a_n\}$. Then *s* covers $a_1 \cdots a_{n-1}$ if the latter is a Cayley permutation: otherwise, *s* covers $p(a_1) \cdots p(a_{n-1})$, where *p* is the orderpreserving bijection from $\{a_1, \ldots, a_{n-1}\}$ to $\{1, 2, \ldots, m(s) - 1\}$. For example, the order ideal generated by 41332 is

$$41332 \succ 3122 \succ 312 \succ 21 \succ 1 \succ \emptyset.$$

If we give each covering relation weight 1, then $\widetilde{\mathcal{C}}$ is evidently simple.

Let $\pi: \widetilde{\mathbb{C}} \to \mathbb{C}$ be the function that sends a sequence s to the sequence $i_1 i_2 \cdots i_k$, where i_j is the number of times j occurs in s; e.g., $\pi^{-1}(13) = \{1222, 2122, 2212, 2221\}$. To see that π is a covering map, consider compositions I, J with |J| = |I| + 1. Let $I = i_1 \cdots i_k$ and $s = a_1 \cdots a_n \in \widetilde{\mathbb{C}}$ with $\pi(s) = I$. Suppose first that J is obtained from I by increasing the size of one part, so $J = i_1 \cdots i_{r-1}(i_r + 1)i_{r+1} \cdots i_k$. Then n(I, J) = 1 and there is only one $t \succ s$ with $\pi(t) = J$, namely $t = a_1 \cdots a_n r$. Now suppose J is obtained from I by inserting 1, i.e., $J = i_1 \cdots i_r 1 i_{r+1} \cdots i_k$; without loss of generality we can assume $i_r \neq 1$. Then J contains a string of 1's of length n(I, J) after i_r . The possible elements $t \succ s$ in $\widetilde{\mathbb{C}}$ with $\pi(t) = J$ are of the form $t = q(a_1)q(a_2)\cdots q(a_n)(r+i)$, where i runs from 1 to n(I, J) and q is the order-preserving bijection from $\{a_1, \ldots, a_n\} = \{1, \ldots, k\}$ to $\{1, \ldots, r+i-1, r+i+1, \ldots, k+1\}$. Finally, if n(I, J) = 0, we must have n(s, t) = 0 for any $t \in \widetilde{\mathbb{C}}$ with $\pi(t) = J$ since the previous two cases have exhausted all the possibilities for t to cover s. So in any case,

$$n(I,J) = \sum_{t\in\pi^{-1}(J)} n(s,t)$$

when |J| - |I| = 1 and $\pi(s) = I$.

The cardinality of $n(\emptyset, I)$ of the fiber of a composition $I = i_1 \cdots i_k$ is evidently the multinomial coefficient

$$\binom{|I|}{i_1 \cdots i_k}.$$

There is an algebraic interpretation of the numbers n(I, J) analogous to that of the preceding example: if M_I is the monomial quasisymmetric function corresponding to the composition I (see [7, Sect. 9.4], or [12, Sect. 7.19] for definitions), then

$$M_1^k M_I = \sum_{|J|=|I|+k} n(I,J) M_J.$$

In particular, the multinomial coefficients $n(\emptyset, J)$ appear in the expansion of M_1^k .

Example 7. Let \mathcal{T} be the poset of rooted trees ordered by inclusion, i.e., $t' \succ t$ if t' can be obtained from t by adding new edges and vertices. The rank function is given by

|t| = number of vertices of t - 1,

and the least element is the tree • consisting of the root vertex. The weight system is defined as follows: if |t'| - |t| = 1, let n(t, t') be the number of vertices of t to which a new edge and terminal vertex may be added to obtain t'.

Rank-*n* elements of $\tilde{\mathcal{T}}$ are permutations of $\{1, 2, \ldots, n\}$. A permutation $\sigma = s_1 s_2 \cdots s_n$ of $\{1, \ldots, n\}$ with $s_i = n$ covers the permutation

$$\tau = s_1 \cdots s_{i-1} s_{i+1} \cdots s_n$$

of $\{1, \ldots, n-1\}$ (and no other). The least element is the empty permutation \emptyset . Then $\widetilde{\mathcal{T}}$ is clearly simple if we give each covering relation weight 1.

Now we define the covering map $\pi : \widetilde{\mathcal{T}} \to \mathcal{T}$. Let $\pi(\emptyset) = \bullet$, and given a nonempty permutation $\sigma = s_1 s_2 \cdots s_n$ define a rooted tree with vertices labelled $0, 1, \ldots, n$ as follows. Label the root 0, and attach the vertex labelled *i* to the vertex labelled j < i if *j* is the last element of the sequence $s_1 s_2 \ldots s_{k-1}$ that is smaller than *i*, where $s_k = i$; attach *i* to the root if no such *j* exists. This associates a labelled rooted tree with each $\sigma \in \widetilde{\mathcal{T}}$, and $\pi(\sigma)$ is just the rooted tree obtained by forgetting the labels. Thus, e.g.,

$$\pi(4231) = \quad \checkmark \quad .$$

To see that π is a covering map, note first that terminal vertices of $\pi(\sigma)$ correspond either to descents of σ (i.e., terms s_i with $s_i > s_{i+1}$), or to the final term. Now a permutation σ with $|\sigma| = n$ covers τ exactly when σ is obtained by inserting n into τ , e.g., 2413 \succ 213. This always introduces a new descent (or new final term) into τ , and corresponds to adding a new edge and terminal vertex to $\pi(\tau)$; moreover, the n possible places to insert n in a rank-(n-1) permutation τ correspond to the n vertices of $\pi(\tau)$ where a new edge and vertex can be attached. Thus, for trees r, s with |r| - |s| = 1 and $s = \pi(\tau)$,

$$\begin{split} n(s,r) &= \text{number of permutations } \sigma \succ \tau \text{ with } \pi(\sigma) = r \\ &= \sum_{\sigma \in \pi^{-1}(r)} n(\tau,\sigma). \end{split}$$

The cardinality $n(\bullet, t)$ of the fiber of a rank-*n* rooted tree *t* is the number of distinct labelled rooted trees (with labels coming from $\{0, 1, \ldots, n\}$ and strictly increasing as one moves away from the root) that are isomorphic to *t* when the labels are removed. Since there are *n*! rank-*n* elements of $\widetilde{\mathfrak{T}}$,

$$\sum_{|t|=n} n(\bullet, t) = n!.$$

In fact, if we let e(t) be the number of terminal vertices of the tree t we have

$$\sum_{|t|=n,e(t)=k} n(\bullet,t) = \left\langle \begin{array}{c} n\\ k-1 \end{array} \right\rangle$$

where $\langle {}^{p}_{q} \rangle$ is the number of permutations of $\{1, \ldots, p\}$ with q descents (Eulerian number), because of the correspondence between descents of σ and terminal vertices of $\pi(\sigma)$. Cf. [11, Prop. 1.3.16].

The numbers $n(\bullet, t)$ appear in connection with the "growth operator" on the Hopf algebra of rooted trees studied by Connes and Kreimer [2]. In [1, 5], $n(\bullet, t)$ is called the "Connes-Moscovici weight" of t, and some results about it are obtained. To describe them requires a few definitions. Given a tree t, let V(t) be the set of vertices of t, and for $v \in V(t)$ let t_v be the subtree consisting of v and all its descendents (with v as root): thus $t_r = t$ if r is the root of t, and $t_v = \bullet$ if v is a terminal vertex. Define the "tree factorial" of t by

$$t! = \prod_{v \in V(t)} (|t_v| + 1).$$

Also, if v_1, \ldots, v_k are the children of the root of t, define the symmetry group SG(t) to be the group of permutations σ of $\{1, \ldots, k\}$ such that t_{v_i} and t_{v_j} are isomorphic rooted trees when $\sigma(i) = j$. Define the symmetry degree of t to be

$$S_t = \prod_{v \in V(t)} \operatorname{card} SG(t_v).$$

For example, the tree $t = \pi(4231)$ above has t! = 10 and $S_t = 2$. In [1] it is shown that

$$n(\bullet, t) = \frac{(|t|+1)!}{t!S_t}.$$
(6)

Equation (6) is actually a variant of the generalized hook-length formula for rooted trees that appears in [10, Sect. 22], [4, Ex. 5.1.4-20], and [8]. To see this, note that if T is a realization of the rooted tree t as a planar directed graph (with arrows coming out from the root), then the number of ways to attach the labels $\{0, 1, \ldots, |t|\}$ to the vertices of Tso that the labels strictly increase outward from the root is $n(\bullet, t)S_t$. Also of interest is the result of [5] that

$$\sum_{|t|=n} \frac{n(\bullet,t)}{t!} = \frac{n!}{2^n}.$$

References

- D. J. Broadhurst and D. Kreimer, Renormalization automated by Hopf algebra, J. Symbolic Comput. 27 (1999), 581-600.
- [2] A. Connes and D. Kreimer, Hopf algebras, renormalization, and noncommutative geometry, Comm. Math. Phys. 199 (1998), 203-242.
- [3] M. R. T. Dale and J. W. Moon, The permuted analogues of three Catalan sets, J. Statis. Plann. Inference 34 (1993), 75-87.
- [4] D. E. Knuth, The Art of Computer Programming, vol. 3, 2nd ed., Addison-Wesley, Reading, Mass., 1998.
- [5] D. Kreimer, Chen's iterated integral represents the operator product expansion, Adv. Theor. Math. Phys. 3 (2000), 227-270.
- [6] M. Mor and A. S. Fraenkel, Cayley permutations, *Discrete Math.* 48 (1984), 101-112.
- [7] C. Reutenauer, Free Lie Algebras, Oxford University Press, New York, 1993.
- [8] B. E. Sagan, Enumeration of partitions with hooklengths, *European J. Combin.* **3** (1982), 85-94.
- [9] E. Spanier, *Algebraic Topology*, McGraw-Hill, New York, 1966.
- [10] R. P. Stanley, Ordered Structures and Partitions, Memoirs Amer. Math. Soc. No. 119, American Mathematical Society, Providence, R.I., 1972.
- [11] R. P. Stanley, *Enumerative Combinatorics*, vol. 1, Wadsworth and Brooks/Cole, Monterey, California, 1986.
- [12] R. P. Stanley, *Enumerative Combinatorics*, vol. 2, Cambridge University Press, New York, 1999.