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Abstract

Let T be a tree with t vertices. Clearly, an n vertex graph contains at most n/t
vertex disjoint trees isomorphic to T . In this paper we show that for every ε > 0,
there exists a D(ε, t) > 0 such that, if d > D(ε, t) and G is a simple d-regular graph
on n vertices, then G contains at least (1− ε)n/t vertex disjoint trees isomorphic to
T .

1 Introduction

We consider simple undirected graphs. Given a graph G and a family F of graphs, an
F -packing of G is a subgraph of G each of whose components is isomorphic to a member
of F . The F -packing problem is to find an F–packing of the maximum number of vertices.
There are various results on the F–packing problem (see e.g. [3, 9, 10, 11, 12, 13, 14, 15]).
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When F consists of a single graph F , we abuse notation by writing F–packing. The
very special case of the F–packing problem when F = K2, a single edge, is simply that
of finding a maximum matching. This problem is well-studied, and can be solved in
polynomial time (see, for example, [15]). However, if F is a connected graph with at least
three vertices then the F -packing problem is known to be NP-hard [13]. The F -packing
problem remains NP-hard even for 3-regular graphs if F is a path with at least 3 vertices
[11].

There are various directions for studying this generally intractable problem. One
possible direction is to try to obtain bounds on the size of the maximum F–packing
of various families of graphs, as well as the corresponding polynomial approximation
algorithms. The following is an example of such a result. It concerns the P3–packing
problem for 3-regular graphs, where P3 is the 3-vertex path.

Theorem 1.1. [12] Suppose that G is a 3-regular graph. Then G contains at least v(G)/4
vertex disjoint 3-vertex paths that can be found in polynomial time (and so for 3-regular
graphs there is a polynomial approximation algorithm that guarantees at least a 3/4–
optimal solution for the P3–packing problem).

Another direction is to consider some special classes of graphs in hope to find a poly-
nomial time algorithm for the corresponding F–packing problem. Here is an example of
such a result.

Theorem 1.2. [9] Suppose that G is a claw–free graph (i.e. G contains no induced
subgraph isomorphic to K1,3). Suppose also that G is connected and has at most two end–
blocks (in particular, 2–connected). Then the maximum number of disjoint 3–vertex paths
in G is equal to bv(G)/3c vertex disjoint 3-vertex paths. Moreover there is a polynomial
time algorithm for finding an optimal P3–packing in G.

An asymptotic approach provides another direction for studying this NP -hard prob-
lem. There is a series of interesting asymptotic packing results on sufficiently dense graphs.
They have beed iniciated by the following deep theorem of Hajnal and Szemerédi.

Theorem 1.3. [8] If G has n vertices and minimum degree at least (1 − 1/r)n, then G
contains bn/rc vertex-disjoint copies of Kr.

Theorem 1.3 has been generalized by Alon and Yuster for graphs other than Kr.

Theorem 1.4. [2] For every γ > 0 and for every positive integer h, there exists an
n0 = n0(γ, h) such that for every graph H with h vertices and for every n > n0, any
graph G with hn vertices and with minimum degree δ(G) ≥ (1− 1/χ(H) + γ)hn contains
n vertex-disjoint copies of H.

In this paper we consider an asymptotic version of the F–packing problem, where F
is a tree. Our main result is the following.

Theorem 1.5. Let T be a tree on t vertices and let ε > 0. Suppose that G is a d-regular
graph on n vertices and d ≥ 128t3

ε2
ln(128t3

ε2
). Then G contains at least (1 − ε)n/t vertex

disjoint copies of T .
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Both Theorem 1.3 and Theorem 1.4 require G to have Ω(n2) edges. Theorem 1.5
differs from these results in that our graphs are not required to be dense. Indeed, d above
is only a function of ε and the size of the tree and does not depend on n. Consequently,
Theorem 1.5 cannot possibly be extended to graphs other than trees, since the Turán
number of a cycle of length 2t is known to be at least Ω(n(2t+1)/2t) [4], and there exist
essentially regular graphs with about this many edges that contain no copy of C2t.

In this paper, we present two approaches for obtaining tree-packing results for regular
graphs. First, in Section 2 we give a short proof of an asymptotic version of Theorem
1.5. This proof relies on powerful hypergraph packing results of Frankl and Rödl [7]
and Pippenger and Spencer [17]. Next, in Section 3 we present a proof of Theorem 1.5,
based on a probabilistic approach. It uses another powerful result called the Lovász Local
Lemma (see e.g., [1]). In addition, it provides an explicit dependence of the degree on t
and ε. Section 4 contains some concluding remarks and an open question.

2 T -packings from matchings in hypergraphs

In this section we present the proof of the following asymptotic version of Theorem
1.5.

Theorem 2.1. Let T be a tree on t vertices. Let Gn be a dn-regular graph on n vertices.
Suppose that dn → ∞ when n → ∞. Then Gn contains at least (1 − o(1))n/t (and,
obviously, at most n/t) disjoint trees isomorphic to T .

The proof of this theorem is based on a hypergraph packing result of Pippenger and
Spencer [17]. The main idea behind this proof came from a result of Rödl [18] that
solved an old packing conjecture of Erdős and Hanani [5]. Rödl’s idea, now known as his
“nibble”, was used by Frankl-Rödl [7] to prove that under certain regularity and local
density conditions, a hypergraph has a large matching. Pippenger and Spencer used
probabilistic methods to extend and generalize the result in [7].

First we introduce some notions about hypergraphs. All hypergraphs we consider are
allowed to have multiple edges. Given a hypergraph H = (V, E), the degree d(v) of a
vertex v ∈ V is the number of edges containing v. For vertices v, w, the codegree cod(v, w)
of v and w is the number of edges containing both v and w. Let

∆(H) = max
v∈V

d(v), δ(H) = min
v∈V

d(v), C(G) = max
u,v∈V,u 6=v

cod(u, v).

A matching in H is a set of pairwise disjoint edges of H. Let µ(H) be the size of the
largest matching in H. A matching M is perfect if every vertex of H is in exactly one edge
of M . A hypergraph H is t-uniform if each of its edges consists of exactly t elements.

Theorem 2.2. [17] For every t ≥ 2 and ε > 0, there exist ε′ > 0 and n0 such that
if H is a t-uniform hypergraph on n(H) ≥ n0 vertices with δ(H) ≥ (1 − ε′)∆(H), and
C(H) ≤ ε′∆(H), then

µ(H) ≥ (1 − ε)n/t.
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We rephrase Theorem 2.2 in more convenient asymptotic notation.

Theorem 2.1′. Let H1,H2, . . . be sequence of t-uniform hypergraphs, with |V (Hk)| → ∞.
If δ(Hk) ∼ ∆(Hk), and C(Hk) = o(∆(Hk)), then µ(Hk) ∼ |V (Hk)|/t.

The above result says that under certain regularity and local density conditions on H,
one can find an almost perfect matching M in H, i.e., the number of vertices in no edge
of M is negligible. In fact, [17] proves something much stronger, namely that one can
decompose almost all the edges of H into almost perfect matchings, but we need only the
weaker statement.

Next we show how Theorem 2.2 can be applied to provide asymptotically optimal
tree-packings of regular graphs. For convenience, we omit the subscript k and the use of
integer parts in what follows. Our goal is to produce a large T -packing in G. By a copy
of T we mean a subgraph isomorphic to T .

Given u, v ∈ V (G) let c(v) and c(u, v) denote the number of copies of T in G containing
v and {u, v}, respectively (note that different copies may have the same vertex set). The
following lemma provides necessary estimates for the numbers c(v) and c(u, v).

Lemma 2.3. Let T be a tree with t vertices. Suppose that G is a d-regular graph on n
vertices. Then

(c1) c(v) = (1 + o(1))cTdt−1 (d → ∞) for every v ∈ V (G), where cT depends only on T
and does not depend on the choice of v, and

(c2) c(a, b) = O(dt−2) for every pair a, b ∈ V (G), a 6= b.

Proof. We first estimate c(v). Let us consider the rooted tree R obtained from T by
specifying a vertex r of T as a root. Let cr(v) denote the number of copies of R in G in
which the vertex v ∈ V (G) is chosen to be the root r.

It is easy to see that c(v) =
∑{cr(v)/g : r ∈ V (T )} = (1 + o(1))(t/g)dt−1, where g

is the size of the automorphism group of T . Therefore it suffices to show that cr(v) =
(1 + o(1))dt−1 for all r ∈ V (T ) and v ∈ V (G).

Let x1 be a leaf of R distinct from r, R1 = R − x1, and y1 be the vertex in R1

adjacent to x1. If (xi, yi, Ri) is already defined, let xi+1 be a leaf of Ri distinct from r,
Ri+1 = Ri−xi+1, and yi+1 be the vertex in Ri+1 adjacent to xi+1. Clearly r = yt−1 = Rt−1.
Now we estimate cr(v) as follows. There is only one way to allocate r in G, namely, to
allocate r in v. Since v is of degree d in G and G is simple, there are d ways to allocate
xt−1 in G. Suppose that Ri, 1 ≤ i < t − 1, is already allocated in G, and yi is allocated
in a vertex vi in G. Since vi is of degree d in G and G is simple, there are at most d and
at least d − t + i ways to allocate xi in G. Therefore

(d − t)t−1 < cr(v) < dt−1. (∗)

Since d → ∞, we have: cr(v) = (1 + o(1))dt−1 for all r ∈ V (T ) and v ∈ V (G).
Now we will estimate c(a, b), the number of copies of T in G containing both a and b

where a 6= b. For x, y ∈ V (T ), let cx,y(a, b) denote the number of copies of T containing
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a, b, with a playing the role of x and b playing the role of y. Clearly

c(a, b) ≤
(

t

2

)
max

x,y∈V (T )
cx,y(a, b),

because a, b play the role of some pair x, y in each copy of T containing them. Hence it
suffices to show that cx,y(a, b) ≤ dt−2.

Split T in two nontrivial trees X and Y where X is rooted at x and Y is rooted at y,
V (X) ∩ V (Y ) = ∅, and V (X) ∪ V (Y ) = V (T ). This can be done by deleting any edge
from the unique path between x and y. By (∗), there are at most d|V (X)|−1 copies of X in
G with a playing the role of x, and at most d|V (Y )|−1 copies of Y in G with b playing the
role of y. Thus cx,y(a, b) ≤ d|V (X)|−1d|V (Y )|−1 = dt−2.

Proof of Theorem 2.1 Given G, we must find a T -packing of size at least (1−o(1))n/t.
From G construct the hypergraph H = (V, E) with V = V (G) and E consisting of
vertex sets of copies of T in G (note that H can have multiple edges). Then claim (c1)
of Lemma 2.3 implies δ(H) = ∆(H) ∼ cT dt−1, and claim (c2) of Lemma 2.3 implies
C(H) = O(dt−2) = o(dt−1) = o(∆(H)). Hence, by Theorem 2.2, µ(H) ∼ |V (H)|/t = n/t.
This clearly yields a T -packing in G of the required size.

3 T -packings from the Lovász Local Lemma

This section contains a proof of Theorem 1.5 based on a probabilistic approach and
the so called Lovász Local Lemma. We use the following symmetric version of the Lovász
Local Lemma.

Theorem 3.1. [1] Let A1, . . . , An be events in a probability space. Suppose that each
event Ai is mutually independent of a set of all the other events Aj but at most d, and
that Prob[Ai] ≤ p for all i. If ep(d + 1) ≤ 1, then Prob[∧Ai] > 0.

Here we make no attempt to optimize our absolute constants. First we need the
following lemma. Given a partition V1, . . . , Vt of the vertex set of a graph G, let di(v)
denote the number of neighbors of a vertex v of G in Vi.

Lemma 3.2. Let t be an integer and let G be a d-regular graph satisfying d ≥ 4t3. Then
there exists a partition of V (G) into t subsets V1, . . . , Vt such that

d

t
− 4

√
d

t
ln d ≤ di(v) ≤ d

t
+ 4

√
d

t
ln d

for every v ∈ V and 1 ≤ i ≤ t.

Proof. Partition the set of vertices V into t subsets V1, V2, . . . , Vt by choosing for each
vertex randomly and independently an index i in {1, . . . , t} and placing it into Vi. For
v ∈ V (G) and 1 ≤ i ≤ t, let Ai,v denote the event that di(v) is either greater than
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d
t

+ 4
√

d
t
ln d or less than d

t
− 4

√
d
t
ln d. Observe that if none of the events Ai,v holds,

then our partition satisfies the assertion of the lemma. Hence it suffices to show that with
positive probability no event Ai,v occurs. We prove this by applying Theorem 3.1.

Since the number of neighbors of any vertex v in Vi, i = 1, 2, . . . , t, is a binomi-
ally distributed random variable with parameters d and 1/t, it follows by the standard
Chernoff’s-type estimates for Binomial distributions (cf. , e.g., [16], Theorem 2.3) that
for every v ∈ V

Pr

(
|di(v) − d

t
| > a

d

t

)
≤ 2e−

a2(d/t)
2(1+a/3) .

By substituting a to be 4
√

(t/d) ln d, we obtain that the probability of the event Ai,v is at
most 2e−4 lnd = 2d−4. Clearly each event Ai,v is independent of all but at most td(d − 1)
others, as it is independent of all events Aj,u corresponding to vertices u whose distance
from v is larger than 2. Since e · 2d−4 · (td(d − 1) + 1) < e · 2d−4 · td2 < 1, we conclude,
by Theorem 3.1, that with positive probability no event Ai,v holds. This completes the
proof of the lemma.

Next we prove the following tree-packing result for nearly-regular, t-partite graphs,
which is interesting in its own right.

Theorem 3.3. Let T be a fixed tree with the vertex set u1, . . . , ut and let H be a t-partite
graph with parts V1, . . . , Vt such that |V1| = h and for every vertex v ∈ V (H) and every
1 ≤ i ≤ t the number di(v) of neighbors of v in Vi satisfies (1− δ)k ≤ di(v) ≤ (1+ δ)k for
some k > 0 and 0 ≤ δ < 1. Then H contains (1 − 2(t− 1)δ)h vertex disjoint copies of T
with the property that Vi contains the vertex of each copy corresponding to ui, 1 ≤ i ≤ t.

Proof. We use induction on t. For t = 1 the assertion is trivially true. Therefore let
t ≥ 2. Without loss of generality, we can assume that ut is a leaf adjacent to the vertex
ut−1. Let T ′ = T − ut and H ′ = H − Vt. Then by the induction hypothesis, we can find
at least (1 − 2(t − 2)δ)h vertex disjoint copies of T ′ in H ′ such that in all these copies
the vertices, corresponding to ut−1, belong to Vt−1. Denote the set of these vertices by S.
Consider all the edges between S and Vt. In the resulting bipartite graph B each vertex
is of degree at most (1+ δ)k. Therefore the edges of B can be covered by (1+ δ)k disjoint
matchings. In addition, note that each vertex from S has degree at least (1 − δ)k. Since
the number of edges in B is at least (1− δ)k|S|, we conclude that B contains a matching
of size at least

(1 − δ)k|S|
(1 + δ)k

=
1 − δ

1 + δ
|S| ≥ (1 − 2δ)|S|.

By adding the edges of this matching to the appropriate copies of T ′, we obtain at least
(1− 2δ)|S| = (1− 2δ)(1− 2(t− 2)δ)h ≥ (1− 2(t− 1)δ)h vertex disjoint copies of T . This
completes the proof of the statement.

Having finished all necessary preparations, we are now ready to complete the proof of
Theorem 1.5.

Proof of Theorem 1.5. Let G be a d-regular graph on n vertices with d ≥ 128t3

ε2
ln(128t3

ε2
)

and let T be a tree with t vertices. By Lemma 3.2, we can partition vertices of G into
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t parts V1, . . . , Vt such that |V1| ≥ n/t (pick V1 to be the largest part) and for every
vertex the number of its neighbors in Vi, 1 ≤ i ≤ t, is bounded by (1 ± δ)d/t, where
δ = 4

√
(t/d) ln d ≤ ε/2t. Thus by Theorem 3.3, G contains at least (1 − 2(t − 1)δ)|V1| ≥

(1 − ε)n/t vertex disjoint copies of T .

4 Concluding remarks

• The regularity requirement in Theorem 1.5 cannot be weakened to a minimum
degree requirement. To see this, let Gd be the complete bipartite graph with parts
X, Y of sizes d and d2, respectively. The minimum degree of Gd is d → ∞, but
clearly the largest T -packing has size at most d = o(|V (Gd)|). On the other hand, it
is easy to see that the proof of Theorem 1.5 remains valid for nearly-regular graphs.
More precisely one can show the following.

Proposition 4.1. Let T be a tree on t vertices. For all t and ε > 0, there exist two
positive numbers γ = γ(t, ε) and D(t, ε) such that the following holds: if d > D(t, ε)
and G is a graph on n vertices with (1 − γ)d ≤ δ(G) ≤ ∆(G) ≤ (1 + γ)d, then G
contains (1 − ε)n/t vertex disjoint copies of T .

It is also easy to see that the above results can be extended to d-regular multigraphs
provided all multiplicities are bounded.

• The dependency of the degree of the graph on both t and ε is needed in the statement
of Theorem 1.5. To see this, let G be a regular graph consisting of dεn/te disjoint
cliques of size k, where k = Θ(t/ε) is an integer such that k ≡ t−1( mod t). Clearly
any packing of G by a tree on t vertices misses at least t− 1 vertices in each clique.
Therefore altogether it will miss at least (t − 1)(εn/t) = Ω(ε|V (G)|) vertices. This
shows that in the statement of Theorem 1.5 the degree of the graph should be at
least Ω(t/ε). Thus there is a big gap between the upper and lower bounds and this
leads to the following

Question. What is the correct dependency of the degree of the graph G on t and
ε to guarantee (1 − ε)n/t vertex disjoint copies of T in G?

Acknowledgments. The first author thanks Michael Krivelevich for very useful remarks.
The second author thanks Brendan Nagle for very helpful discussions and for pointing
out some relevant references.
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[18] V. Rödl, On a Packing and Covering Problem, Europ. J. Combin. 5 (1985), 69–78.

the electronic journal of combinatorics 8 (2001), #R38 8


