Irreducible coverings by cliques and Sperner's theorem

Ioan Tomescu

Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14 R-70109 Bucharest, Romania. ioan@math.math.unibuc.ro

Submitted: September 29, 2002; Accepted: October 22, 2002. MR Subject Classifications: 05C69, 05C35, 06A07

Abstract

In this note it is proved that if a graph G of order n has an irreducible covering of its vertex set by n - k cliques, then its clique number $\omega(G) \le k + 1$ if k = 2 or 3 and $\omega(G) \le {\binom{k}{\lfloor k/2 \rfloor}}$ if $k \ge 4$. These bounds are sharp if $n \ge k + 1$ (for k = 2 or 3) and $n \ge k + {\binom{k}{\lfloor k/2 \rfloor}}$ (for $k \ge 4$).

Key Words: clique, irreducible covering, antichain, Sperner's theorem

1 Definitions and preliminary results

For a graph G having vertex set V(G) and edge set E(G) a clique is a subset of vertices inducing a complete subgraph of G which is maximal relative to set inclusion. The clique number of G, denoted $\omega(G)$, is the size of a largest clique in G [1]. A k-clique is a clique containing k vertices. A family of different cliques c_1, c_2, \ldots, c_s of G is a covering of G by cliques if $\bigcup_{i=1}^{s} c_i = V(G)$. A covering C of G consisting of s cliques c_1, \ldots, c_s of G will be called an irreducible covering of G if the union of any s - 1 cliques from C is a proper subset of V(G). This means that there exist s vertices $x_1, \ldots, x_s \in V(G)$ that are uniquely covered by cliques of C, i.e., $x_i \notin \bigcup_{k=1}^{s} c_k$ for every $1 \le i \le s$.

If $G = K_{p,q}$, every clique of G is an edge and an irreducible covering by edges of $K_{p,q}$ consists of a set of vertex-disjoint stars, some centered in the part with p vertices and others in the part with q vertices of $K_{p,q}$, which cover together all vertices of $K_{p,q}$. Some properties of the numbers N(p,q) of all irreducible coverings by edges of $K_{p,q}$ were deduced in [8] and the exponential generating function of these numbers was given in [9]. Also, by denoting I(n, n - k) the maximum number of irreducible coverings of the vertices of an n-vertex graph by n - k cliques, in [8] it was shown that $\lim_{n\to\infty} I(n, n - k)^{1/n} = \alpha(k)$, where $\alpha(k)$ is the greatest number of cliques a graph with k vertices can have.

The problem of determining $\alpha(k)$ was solved by Miller and Muller [2] and independently

by Moon and Moser [3]. Furthermore, $I(n, n-2) = 2^{n-2} - 2$ and the extremal graph (unique up to isomorphism) coincides with $K_{2,n-2}$ for every $n \ge 4$. In [10] it was proved that for sufficiently large n, $I(n, n-3) = 3^{n-3} - 3 \cdot 2^{n-3} + 3$, and the extremal graph is (up to isomorphism) $K_{3,n-3}$, the second extremal graph being $K_{3,n-3} - e$.

There is a class of algorithms which yield all irreducible coverings for the set-covering problem, an example of an algorithm in this class being Petrick's algorithm [5]. This algorithm was intensively used for obtaining the minimal disjunctive forms of a Boolean function using prime implicants of the function or for minimizing the number of states of an incompletely specified Mealy type automaton A by finding a closed irreducible covering of the set of states of A by "maximal compatible sets of states", which are cliques in the graph of compatible states of A [4,7], since every minimum covering is an irreducible one. The chromatic number $\chi(G)$ of G equals the minimum number of cliques from an irreducible covering by cliques of the complementary graph \overline{G} .

2 Main result

We will evaluate the clique number $\omega(G)$ when G of order n has an irreducible covering by n - k cliques.

Theorem 2.1 Let $k \ge 2$. If the graph G of order n has an irreducible covering by n - k cliques, then $\omega(G) \le k + 1$ if k = 2 or 3 and $\omega(G) \le \binom{k}{\lfloor k/2 \rfloor}$ if $k \ge 4$. Moreover, these bounds are sharp for every $n \ge k + 1$ if k = 2 or 3 and $n \ge k + \binom{k}{\lfloor k/2 \rfloor}$ if $k \ge 4$.

Proof: Let $C = \{c_1, \ldots, c_{n-k}\}$ be an irreducible covering by n-k cliques of G. It follows that there are n-k vertices $x_1, \ldots, x_{n-k} \in V(G)$ such that $x_i \in c_i \setminus \bigcup_{j \neq i} c_j$ for every $i = 1, \ldots, n-k$. Denoting $X = \{x_1, \ldots, x_{n-k}\}$ and $Y = V(G) \setminus X$ one has |Y| = k. Each clique c_i consists of x_i and a subset of Y. For every subset $A \subseteq Y$ let $X_A \subseteq X$ be defined by

$$X_A = \{ x_i \in X : c_i = \{ x_i \} \cup A \}.$$

It is clear that if $x_i, x_j \in X_A$ then $x_i x_j \notin E(G)$ since otherwise $A \cup \{x_i, x_j\}$ induces a complete subgraph in G whose vertex set contains strictly c_i and c_j , which contradicts the definition of a clique. Similarly, if $x_i \in X_A$, $x_j \in X_B$ and $A \subset B$ it follows that $x_i x_j \notin E(G)$ since otherwise $A \cup \{x_i, x_j\}$ induces a complete subgraph in G, thus contradicting the hypothesis that c_i is a clique.

This implies that each clique c in G has the form $\{t_1, \ldots, t_s\} \cup \bigcap_{i=1}^s A_i$ for some $s \ge 2$, where $X_{A_i} \neq \emptyset$, $t_i \in X_{A_i} \subset X$ for every $1 \le i \le s$ and $\{A_1, \ldots, A_s\}$ is an antichain in the poset of subsets of Y, or c induces a maximal complete subgraph with vertex set included in $Y \cup \{x_i\}$ for some $1 \le i \le n-k$.

We will show for the first case that

$$\max_{s \ge 2} \max_{\{A_1, \dots, A_s\}} (s + |\bigcap_{i=1}^s A_i|) = \binom{k}{\lfloor k/2 \rfloor},\tag{1}$$

where the second maximum in the left-hand side of (1) is taken over all antichains of length $s \geq 2$, $\{A_1, \ldots, A_s\}$ in the poset of subsets of Y ($|Y| = k \geq 2$), ordered by inclusion. The proof of (1) is by double inequality. If we choose $\{A_1, \ldots, A_s\}$ to be the family of all $\lfloor k/2 \rfloor$ -subsets of Y we have $s = \binom{k}{\lfloor k/2 \rfloor}$ and $\bigcap_{i=1}^{s} A_i = \emptyset$, whence

$$\max_{s \ge 2} \max_{\{A_1, \dots, A_s\}} (s + |\bigcap_{i=1}^s A_i|) \ge \binom{k}{\lfloor k/2 \rfloor}.$$

On the other hand, let $B = \bigcap_{i=1}^{s} A_i$ and r = |B|. Since $s \ge 2$ and $\{A_1, \ldots, A_s\}$ is an antichain, it follows that $r \le k - 2$. By deleting elements of B from A_1, \ldots, A_s we get an antichain in the poset of subsets of $Y \setminus B$ ($|Y \setminus B| = k - r$), ordered by inclusion. By Sperner's theorem [6] it follows that

$$\max_{\{A_1,\dots,A_s\}} (s+|\bigcap_{i=1}^s A_i|) \le \binom{k-r}{\lfloor (k-r)/2 \rfloor} + r$$

and the last expression is less than or equal to $\binom{k}{\lfloor k/2 \rfloor}$ for every $k \ge 2$ and $0 \le r \le k-1$ and (1) is proved. Since any maximal complete subgraph in $Y \cup \{x_i\}$ can have at most k+1 vertices, it follows that

$$\omega(G) \le \max(k+1, \binom{k}{\lfloor k/2 \rfloor}),$$

i.e., $\omega(G) \le k+1$ if k=2 or 3 and $\omega(G) \le \binom{k}{\lfloor k/2 \rfloor}$ if $k \ge 4$.

If k = 2 or k = 3 we can consider a graph G consisting of n - k cliques of size k + 1 each having a k-clique in common; then G has order n, an irreducible covering by n - k cliques and $\omega(G) = k + 1$.

If $k \ge 4$ we define a graph G of order $n \ge k + \binom{k}{\lfloor k/2 \rfloor}$ possessing an irreducible covering by n - k cliques and $\omega(G) = \binom{k}{\lfloor k/2 \rfloor}$ as follows: Take a complete graph K_k and other n - k vertices x_1, \ldots, x_{n-k} . Let A_1, \ldots, A_p with $p = \binom{k}{\lfloor k/2 \rfloor}$ be all subsets of $V(K_k)$ of cardinality $\lfloor k/2 \rfloor$. Since $n - k \ge p$, there is a partition $X = X_1 \cup \ldots \cup X_p$ into p classes of $X = \{x_1, \ldots, x_{n-k}\}$. Now join by an edge each vertex $x \in X_i$ to each vertex $y \in A_i$ for every $1 \le i \le p$ and add edges between some pairs of vertices in X such that X induce a complete multipartite graph whose parts are X_1, \ldots, X_p . This graph has an irreducible covering by n - k cliques, clique number $\omega(G) = p = \binom{k}{\lfloor k/2 \rfloor}$ and $\prod_{i=1}^p |X_i|$ cliques with pvertices.

References

[1] B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998.

- [2] R. E. Miller, D. E. Muller, A problem of maximum consistent subsets, *IBM Research Report RC-240*, J. T. Watson Research Center, Yorktown Heights, New York, 1960.
- [3] J. W. Moon, L. Moser, On cliques in graphs, Israel J. of Math., 3(1965), 23-28.
- [4] M. C. Paull, S. H. Unger, Minimizing the number of states in incompletely specified sequential functions, *IRE Trans. Electronic Computers*, Vol. EC-8 (1959), 356-367.
- [5] S. R. Petrick, A direct determination of the irredundant forms of a Boolean function from the set of prime implicants, AFCRC-TR-56-110, Air Force Cambridge Research Center, 1956.
- [6] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Zeitschrift, 27(1928), 544-548.
- [7] I. Tomescu, Combinatorial methods in the theory of finite automata (in French), Logique, Automatique, Informatique, 269-423, Ed. Acad. R.S.R., Bucharest, 1971.
- [8] I. Tomescu, Some properties of irreducible coverings by cliques of complete multipartite graphs, J. of Combinatorial Theory, Series B, 2, 28(1980), 127-141.
- [9] I. Tomescu, On the number of irreducible coverings by edges of complete bipartite graphs, *Discrete Mathematics*, 150(1996), 453-456.
- [10] I. Tomescu, On the maximum number of irreducible coverings of an *n*-vertex graph by *n*-3 cliques, *Computing and Combinatorics*, Proceedings, 8th Annual Int. Conf., COCOON 2002, Singapore, August 2002, O. Ibarra, L. Zhang (Eds.), *LNCS* 2387, Springer (2002), 544-553.