Irreducible coverings by cliques and Sperner's theorem

Ioan Tomescu
Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14 R-70109 Bucharest, Romania.
ioan@math.math.unibuc.ro

Submitted: September 29, 2002; Accepted: October 22, 2002.
MR Subject Classifications: 05C69, 05C35, 06A07

Abstract

In this note it is proved that if a graph G of order n has an irreducible covering of its vertex set by $n-k$ cliques, then its clique number $\omega(G) \leq k+1$ if $k=2$ or 3 and $\omega(G) \leq\binom{ k}{k / 2\rfloor}$ if $k \geq 4$. These bounds are sharp if $n \geq k+1$ (for $k=2$ or 3) and $n \geq k+\binom{k\rfloor}{\lfloor k / 2\rfloor}$ (for $k \geq 4$).

Key Words: clique, irreducible covering, antichain, Sperner's theorem

1 Definitions and preliminary results

For a graph G having vertex set $V(G)$ and edge set $E(G)$ a clique is a subset of vertices inducing a complete subgraph of G which is maximal relative to set inclusion. The clique number of G, denoted $\omega(G)$, is the size of a largest clique in G [1]. A k-clique is a clique containing k vertices. A family of different cliques $c_{1}, c_{2}, \ldots, c_{s}$ of G is a covering of G by cliques if $\bigcup_{i=1}^{s} c_{i}=V(G)$. A covering C of G consisting of s cliques c_{1}, \ldots, c_{s} of G will be called an irreducible covering of G if the union of any $s-1$ cliques from C is a proper subset of $V(G)$. This means that there exist s vertices $x_{1}, \ldots, x_{s} \in V(G)$ that are uniquely covered by cliques of C, i.e., $x_{i} \notin \bigcup_{\substack{k=1 \\ k \neq i}}^{s} c_{k}$ for every $1 \leq i \leq s$.
If $G=K_{p, q}$, every clique of G is an edge and an irreducible covering by edges of $K_{p, q}$ consists of a set of vertex-disjoint stars, some centered in the part with p vertices and others in the part with q vertices of $K_{p, q}$, which cover together all vertices of $K_{p, q}$. Some properties of the numbers $N(p, q)$ of all irreducible coverings by edges of $K_{p, q}$ were deduced in [8] and the exponential generating function of these numbers was given in [9]. Also, by denoting $I(n, n-k)$ the maximum number of irreducible coverings of the vertices of an n-vertex graph by $n-k$ cliques, in [8] it was shown that $\lim _{n \rightarrow \infty} I(n, n-k)^{1 / n}=\alpha(k)$, where $\alpha(k)$ is the greatest number of cliques a graph with k vertices can have. The problem of determining $\alpha(k)$ was solved by Miller and Muller [2] and independently
by Moon and Moser [3]. Furthermore, $I(n, n-2)=2^{n-2}-2$ and the extremal graph (unique up to isomorphism) coincides with $K_{2, n-2}$ for every $n \geq 4$. In [10] it was proved that for sufficiently large $n, I(n, n-3)=3^{n-3}-3 \cdot 2^{n-3}+3$, and the extremal graph is (up to isomorphism) $K_{3, n-3}$, the second extremal graph being $K_{3, n-3}-e$.
There is a class of algorithms which yield all irreducible coverings for the set-covering problem, an example of an algorithm in this class being Petrick's algorithm [5]. This algorithm was intensively used for obtaining the minimal disjunctive forms of a Boolean function using prime implicants of the function or for minimizing the number of states of an incompletely specified Mealy type automaton A by finding a closed irreducible covering of the set of states of A by "maximal compatible sets of states", which are cliques in the graph of compatible states of $A[4,7]$, since every minimum covering is an irreducible one. The chromatic number $\chi(G)$ of G equals the minimum number of cliques from an irreducible covering by cliques of the complementary graph \bar{G}.

2 Main result

We will evaluate the clique number $\omega(G)$ when G of order n has an irreducible covering by $n-k$ cliques.

Theorem 2.1 Let $k \geq 2$. If the graph G of order n has an irreducible covering by $n-k$ cliques, then $\omega(G) \leq \bar{k}+1$ if $k=2$ or 3 and $\omega(G) \leq\binom{ k}{\lfloor k / 2\rfloor}$ if $k \geq 4$. Moreover, these bounds are sharp for every $n \geq k+1$ if $k=2$ or 3 and $n \geq k+\binom{k}{\lfloor k / 2\rfloor}$ if $k \geq 4$.

Proof: Let $C=\left\{c_{1}, \ldots, c_{n-k}\right\}$ be an irreducible covering by $n-k$ cliques of G. It follows that there are $n-k$ vertices $x_{1}, \ldots, x_{n-k} \in V(G)$ such that $x_{i} \in c_{i} \backslash \bigcup_{j \neq i} c_{j}$ for every $i=1, \ldots, n-k$. Denoting $X=\left\{x_{1}, \ldots, x_{n-k}\right\}$ and $Y=V(G) \backslash X$ one has $|Y|=k$. Each clique c_{i} consists of x_{i} and a subset of Y. For every subset $A \subseteq Y$ let $X_{A} \subseteq X$ be defined by

$$
X_{A}=\left\{x_{i} \in X: c_{i}=\left\{x_{i}\right\} \cup A\right\} .
$$

It is clear that if $x_{i}, x_{j} \in X_{A}$ then $x_{i} x_{j} \notin E(G)$ since otherwise $A \cup\left\{x_{i}, x_{j}\right\}$ induces a complete subgraph in G whose vertex set contains strictly c_{i} and c_{j}, which contradicts the definition of a clique. Similarly, if $x_{i} \in X_{A}, x_{j} \in X_{B}$ and $A \subset B$ it follows that $x_{i} x_{j} \notin$ $E(G)$ since otherwise $A \cup\left\{x_{i}, x_{j}\right\}$ induces a complete subgraph in G, thus contradicting the hypothesis that c_{i} is a clique.
This implies that each clique c in G has the form $\left\{t_{1}, \ldots, t_{s}\right\} \cup \bigcap_{i=1}^{s} A_{i}$ for some $s \geq 2$, where $X_{A_{i}} \neq \emptyset, t_{i} \in X_{A_{i}} \subset X$ for every $1 \leq i \leq s$ and $\left\{A_{1}, \ldots, A_{s}\right\}$ is an antichain in the poset of subsets of Y, or c induces a maximal complete subgraph with vertex set included in $Y \cup\left\{x_{i}\right\}$ for some $1 \leq i \leq n-k$.
We will show for the first case that

$$
\begin{equation*}
\max _{s \geq 2} \max _{\left\{A_{1}, \ldots, A_{s}\right\}}\left(s+\left|\bigcap_{i=1}^{s} A_{i}\right|\right)=\binom{k}{\lfloor k / 2\rfloor}, \tag{1}
\end{equation*}
$$

where the second maximum in the left-hand side of (1) is taken over all antichains of length $s \geq 2,\left\{A_{1}, \ldots, A_{s}\right\}$ in the poset of subsets of $Y(|Y|=k \geq 2)$, ordered by inclusion. The proof of (1) is by double inequality. If we choose $\left\{A_{1}, \ldots, A_{s}\right\}$ to be the family of all $\lfloor k / 2\rfloor$-subsets of Y we have $s=\binom{k}{\lfloor k / 2\rfloor}$ and $\bigcap_{i=1}^{s} A_{i}=\emptyset$, whence

$$
\max _{s \geq 2} \max _{\left\{A_{1}, \ldots, A_{s}\right\}}\left(s+\left|\bigcap_{i=1}^{s} A_{i}\right|\right) \geq\binom{ k}{\lfloor k / 2\rfloor} .
$$

On the other hand, let $B=\bigcap_{i=1}^{s} A_{i}$ and $r=|B|$. Since $s \geq 2$ and $\left\{A_{1}, \ldots, A_{s}\right\}$ is an antichain, it follows that $r \leq k-2$. By deleting elements of B from A_{1}, \ldots, A_{s} we get an antichain in the poset of subsets of $Y \backslash B(|Y \backslash B|=k-r)$, ordered by inclusion. By Sperner's theorem [6] it follows that

$$
\max _{\left\{A_{1}, \ldots, A_{s}\right\}}\left(s+\left|\bigcap_{i=1}^{s} A_{i}\right|\right) \leq\binom{ k-r}{\lfloor(k-r) / 2\rfloor}+r
$$

and the last expression is less than or equal to $\binom{k}{\lfloor k / 2\rfloor}$ for every $k \geq 2$ and $0 \leq r \leq k-1$ and (1) is proved. Since any maximal complete subgraph in $Y \cup\left\{x_{i}\right\}$ can have at most $k+1$ vertices, it follows that

$$
\omega(G) \leq \max \left(k+1,\binom{k}{\lfloor k / 2\rfloor}\right)
$$

i.e., $\omega(G) \leq k+1$ if $k=2$ or 3 and $\omega(G) \leq\binom{ k}{\lfloor k / 2\rfloor}$ if $k \geq 4$.

If $k=2$ or $k=3$ we can consider a graph G consisting of $n-k$ cliques of size $k+1$ each having a k-clique in common; then G has order n, an irreducible covering by $n-k$ cliques and $\omega(G)=k+1$.
If $k \geq 4$ we define a graph G of order $n \geq k+\binom{k}{\lfloor k / 2\rfloor}$ possessing an irreducible covering by $n-k$ cliques and $\omega(G)=\binom{k}{\lfloor k / 2\rfloor}$ as follows: Take a complete graph K_{k} and other $n-k$ vertices x_{1}, \ldots, x_{n-k}. Let A_{1}, \ldots, A_{p} with $p=\binom{k}{\lfloor k / 2\rfloor}$ be all subsets of $V\left(K_{k}\right)$ of cardinality $\lfloor k / 2\rfloor$. Since $n-k \geq p$, there is a partition $X=X_{1} \cup \ldots \cup X_{p}$ into p classes of $X=\left\{x_{1}, \ldots, x_{n-k}\right\}$. Now join by an edge each vertex $x \in X_{i}$ to each vertex $y \in A_{i}$ for every $1 \leq i \leq p$ and add edges between some pairs of vertices in X such that X induce a complete multipartite graph whose parts are X_{1}, \ldots, X_{p}. This graph has an irreducible covering by $n-k$ cliques, clique number $\omega(G)=p=\binom{k}{\lfloor k / 2\rfloor}$ and $\prod_{i=1}^{p}\left|X_{i}\right|$ cliques with p vertices.

References

[1] B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998.
[2] R. E. Miller, D. E. Muller, A problem of maximum consistent subsets, IBM Research Report RC-240, J. T. Watson Research Center, Yorktown Heights, New York, 1960.
[3] J. W. Moon, L. Moser, On cliques in graphs, Israel J. of Math., 3(1965), 23-28.
[4] M. C. Paull, S. H. Unger, Minimizing the number of states in incompletely specified sequential functions, IRE Trans. Electronic Computers, Vol. EC-8 (1959), 356-367.
[5] S. R. Petrick, A direct determination of the irredundant forms of a Boolean function from the set of prime implicants, $A F C R C-T R-56-110$, Air Force Cambridge Research Center, 1956.
[6] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Zeitschrift, 27(1928), 544-548.
[7] I. Tomescu, Combinatorial methods in the theory of finite automata (in French), Logique, Automatique, Informatique, 269-423, Ed. Acad. R.S.R., Bucharest, 1971.
[8] I. Tomescu, Some properties of irreducible coverings by cliques of complete multipartite graphs, J. of Combinatorial Theory, Series B, 2, 28(1980), 127-141.
[9] I. Tomescu, On the number of irreducible coverings by edges of complete bipartite graphs, Discrete Mathematics, 150(1996), 453-456.
[10] I. Tomescu, On the maximum number of irreducible coverings of an n-vertex graph by $n-3$ cliques, Computing and Combinatorics, Proceedings, 8th Annual Int. Conf., COCOON 2002, Singapore, August 2002, O. Ibarra, L. Zhang (Eds.), LNCS 2387, Springer (2002), 544-553.

