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Abstract

A class of permutations Π is called closed if π ⊂ σ ∈ Π implies π ∈ Π, where
the relation ⊂ is the natural containment of permutations. Let Πn be the set of all
permutations of 1, 2, . . . , n belonging to Π. We investigate the counting functions
n 7→ |Πn| of closed classes. Our main result says that if |Πn| < 2n−1 for at least one
n ≥ 1, then there is a unique k ≥ 1 such that Fn,k ≤ |Πn| ≤ Fn,k · nc holds for all
n ≥ 1 with a constant c > 0. Here Fn,k are the generalized Fibonacci numbers which
grow like powers of the largest positive root of xk − xk−1 − · · · − 1. We characterize
also the constant and the polynomial growth of closed permutation classes and give
two more results on these.

1 Introduction

A permutation σ = (b1, b2, . . . , bn) of [n] = {1, 2, . . . , n} contains a permutation π =
(a1, a2, . . . , ak) of [k], in symbols σ ⊃ π, if σ has a (not necessarily consecutive) sub-
sequence of length k whose terms induce the same order pattern as π. For example,
(3, 5, 4, 2, 1, 7, 8, 6, 9) contains (2, 1, 3), as (. . . , 5, . . . , 1, . . . , 6, . . .) or as (. . . , 4, 2, . . . , 9),
but it does not contain (3, 1, 2).

Let f(n, π) be the number of the permutations of [n] not containing π. The following
conjecture was made by R. P. Stanley and H. S. Wilf (it appeared first in print in Bóna
[11, 12, 13]).

The Stanley–Wilf conjecture. For every permutation π, there is a constant c > 0
such that f(n, π) < cn for all n ≥ 1.
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It is known to hold for all π of length at most 4 (Bóna [13]), for all layered π (Bóna [14], see
below for the definition of layered permutations), and for all π in a weaker form with an
almost exponential upper bound (Alon and Friedgut [3]). A permutation π of [n] is called
layered if [n] can be partitioned into intervals I1 < I2 < . . . < Ik so that every restriction
π|Ii is decreasing and π(I1) < π(I2) < . . . < π(Ik). (We call π layered also in the case
when π(I1) > π(I2) > . . . > π(Ik) and the restrictions π|Ii are increasing.) Equivalently, π
is layered (in the former sense) if and only if it contains neither (2, 3, 1) nor (3, 1, 2). Other
works dealing with the conjecture and/or the containment of permutations are, to name
a few, Adin and Roichman [1], Albert et al. [2], Bóna [12], Klazar [20], Stankova-Frenkel
and West [30], and West [34].

A class Π of permutations is closed if, for every π and σ, π ⊂ σ ∈ Π implies π ∈ Π.
The symbol Πn, n ∈ N = {1, 2, . . .}, denotes the set of all permutations in Π of length
n. The counting function of Π is the function n 7→ |Πn| whose value at n is the number
of permutations in Π of length n. For example, n 7→ 0 is the counting function of the
empty class Π = ∅, while the (closed) class of all permutations has the counting function
n 7→ n!. The Stanley–Wilf conjecture says, in effect, that except for the latter trivial
example, there are no other superexponential counting functions.

A reformulation of the Stanley–Wilf conjecture. Let Π be any closed class of
permutations different from the class of all permutations. Then |Πn| < cn for all n ≥ 1
and a constant c > 0.

Indeed, if Π is closed and π 6∈ Π, then |Πn| ≤ f(n, π) for all n ≥ 1. On the other hand,
for every π the function n 7→ f(n, π) is the counting function of the closed class consisting
of all permutations not containing π.

If one starts to investigate the realm of closed permutation classes from the top, one
gets immediately stuck at the question whether every counting function different from
the trivial n 7→ n! has to be at most exponential. In this article we take the other course
and start from the bottom, at the empty class Π = ∅. We shall investigate the counting
functions of ‘small’ closed permutation classes.

We summarize our results and give a few more definitions. Theorem 2.1 points out two
simple set-theoretical facts about the set of all closed classes. Theorem 2.2, due to P. Valtr,
gives a uniform lower bound on lim infn→∞ f(n, π)1/n. Sections 3 and 4 contain our main
results. Theorem 3.4 shows that any counting function grows either at most polynomially
or at least as the Fibonacci numbers Fn. Thus n 7→ Fn is the smallest superpolynomial
counting function. Theorem 3.8 classifies the possible exponential growth rates below
n 7→ 2n−1: Either |Πn| ≥ 2n−1 for all n ≥ 1, or there is a unique k ≥ 1 such that |Πn|
grows, up to a polynomial factor, as the generalized Fibonacci numbers Fn,k. Theorem 4.2
shows that any counting function is either eventually constant or grows at least as the
identity function n 7→ n. Thus n 7→ n is the smallest unbounded counting function.
Theorem 4.4 shows that if the function n 7→ |Πn| grows polynomially, then it is eventually

an integral linear combination of the polynomials
(

n−i
j

)
. The concluding part (Section 5)

contains some remarks and comments.
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Recall that N denotes {1, 2, . . .}, the set of positive integers, and [n] denotes the set
{1, 2, . . . , n}. More generally, for a, b ∈ N and a ≤ b, the interval {a, a + 1, . . . , b} is
denoted by [a, b]. If π is a permutation of [n], we say that n is its length and write
|π| = n. Let A1, A2, B1, B2 ⊂ N be four finite sets of the same cardinality. We call two
bijections f : A1 → A2 and g : B1 → B2 similar iff f(x) = j(g(h(x))) holds for every
x ∈ A1, where h : A1 → B1 and j : B2 → A2 are the unique increasing bijections. In other
words, using only the order relation we cannot distinguish the graphs of f and g. Every
bijection between two n-element subsets of N is similar to a unique permutation of [n].
For two permutations σ and π, σ contains π iff a subset of σ (regarded as a set of pairs)
is similar to π. We take the restriction π|X of a permutation π of [n] to a subset X ⊂ [n]
to be the unique permutation similar to the usual restriction. For a set of permutations
X we define

Forb(X) = {π : π contains no σ ∈ X}.
For any X, this is a closed class. Note that for every closed class Π there is exactly
one set X of permutations pairwise incomparable by ⊂ (that is, X is an antichain) such
that Π = Forb(X); the set X consists of the minimal permutations not in Π. Thus
the closed permutation classes correspond bijectively to antichains of permutations. A
function f : N → N eventually dominates another function g : N → N iff f(n) ≥ g(n)
for every n ≥ n0.

2 The number of closed classes and a lower bound

on f(n, π)

If Π and Π′ are closed classes of permutations and Π\Π′ is finite then, trivially, n 7→ |Π′
n|

eventually dominates n 7→ |Πn|. By the following theorem, there are uncountably many
classes such that this trivial comparison does not apply for any two of them.

Theorem 2.1 (1) There exist 2ℵ0 (continuum many) distinct closed classes of permu-
tations.

(2) In fact, there exists a set S of 2ℵ0 closed classes of permutations such that for every
Π, Π′ ∈ S, Π 6= Π′, both sets Π\Π′ and Π′\Π are infinite.

Proof. (1) It is known (see, for example, Spielman and Bóna [29]) that there is an infinite
antichain of permutations A. Then

{Forb(X) : X ⊂ A}
is a set of 2ℵ0 closed classes. Indeed, every Forb(X) is closed and it is easy to see that
X, Y ⊂ A, X 6= Y implies Forb(X) 6= Forb(Y ).

(2) In fact, if X, Y ⊂ A and π ∈ X\Y then π ∈ Forb(Y )\Forb(X). It suffices to show
that there is a system of 2ℵ0 subsets of A such that the set difference of every two distinct
members of the system is infinite. For the notational convenience we identify A with N.
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Recall that for X ⊂ N = A, the upper and lower asymptotic densities of X are defined
as

d(X) = lim sup
n→∞

|X ∩ [n]|
n

and d(X) = lim inf
n→∞

|X ∩ [n]|
n

.

For every real constant c, 0 < c < 1
2
, we select a subset Xc ⊂ N = A such that d(Xc) =

1 − c and d(Xc) = c. Then

S = {Forb(Xc) : 0 < c < 1
2
}

is a set of 2ℵ0 closed classes with the stated property. Indeed, for every two real constants
c, d ∈ (0, 1

2
), c 6= d, the set Xc\Xd is infinite because for X, Y ⊂ N with X\Y finite one

has d(X) ≤ d(Y ) and d(X) ≤ d(Y ). 2

Of course, there is nothing special about permutations in the previous theorem. It holds
for the closed classes in any countably infinite poset that has an infinite antichain. Do
there exist two closed classes of permutations such that their counting functions are in-
comparable by the eventual dominance? Are there 2ℵ0 such closed permutation classes?

We take the opportunity to include an unpublished lower bound on the size of a class
characterized by a forbidden permutation. The following theorem and its proof are due
to Pavel Valtr [33] and are reproduced here with his kind permission.

Theorem 2.2 Let c be any constant such that 0 < c < e−3 = 0.04978 . . .. Then for any
permutation π of length k, where k > k0 = k0(c), we have

lim inf
n→∞ f(n, π)1/n > ck2.

Proof. Let π be a permutation of length k. A random permutation τ of length m contains
π with probability

Pr[τ ⊃ π] ≤ 1

k!

(
m

k

)
<

mk

(k!)2
.

We set m = bdk2c where 0 < d < e−2 is a constant. Then, by the Stirling asymptotics,
this probability goes to 0 with k → ∞ and for all sufficiently large k we have

f(m, π) >
m!

2
.

We can assume that π cannot be split as [k] = I ∪J , I < J , where both intervals I and J
are nonempty and π(I) < π(J). (Otherwise we replace π with the reversed permutation.)
Let n ∈ N and n = mt + u, where t ≥ 0 and 0 ≤ u < m are integers. It follows that none
of the f(m, π)tf(u, π) permutations

(b1, . . . , bu, d1 + a1
1, . . . , d1 + a1

m, d2 + a2
1, . . . , d2 + a2

m, . . . , dt + at
1, . . . , dt + at

m)

of length n, where di = u + (i − 1)m and (b1, . . . , bu) and (ai
1, . . . , a

i
m) are permutations

not containing π, contains π. Since m! > (m/e)m for large k,

f(n, π)1/n ≥ f(m, π)t/n >

(
m!

2

)t/n

>

(
m!

2

)1/m−1/n

>
21/n−1/m

(m!)1/n
· m

e
.
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By the choice of m, for any ε > 0 and k > k0 = k0(ε),

lim inf
n→∞ f(n, π)1/n >

(1 − ε)d

e
· k2.

2

Arratia [4] proved that limn→∞ f(n, π)1/n always exists, and therefore in the previous
bound we can replace lim inf with lim. For a general permutation π of length k the bound
is best possible, up to the constant c, because

f(n, (1, 2, . . . , k)) ≤ 1

(k − 1)!

∑
0≤i1,...,ik−1

i1+···+ik−1=n

(
n

i1, . . . , ik−1

)2

≤ (k − 1)2n

(k − 1)!
.

The first inequality follows from the fact that by Dilworth’s theorem, every permutation
with no increasing subsequence of length k can be partitioned into at most k − 1 de-
creasing subsequences. The second inequality follows by the multinomial theorem. Thus
limn→∞ f(n, (1, 2, . . . , k))1/n ≤ (k − 1)2. By the exact asymptotics found by Regev [27],
limn→∞ f(n, (1, 2, . . . , k))1/n = (k − 1)2.

Theorem 2.2 improves a result of M. Petkovšek, see Wilf [35, Theorem 4], that gives
a linear lower bound on lim infn→∞ f(n, π)1/n, namely

lim inf
n→∞ f(n, π)1/n ≥ k − 1,

where k is the length of π.

3 Below n 7→ 2n−1 — the Fibonacci growths

In this section we prove Theorem 3.8 which characterizes the exponential growth rates
possible for the closed permutation classes Π satisfying |Πn| < 2n−1 for at least one n ≥ 1.
For the proof of the following classic result see, for example, Lovász [24, Problem 14.25].

Theorem 3.1 (Erdős–Szekeres) Every sequence of n integers has a monotone subse-
quence of length at least n1/2.

A permutation π, |π| = n, has k alternations if there are 2k indices 1 ≤ i1 < j1 < i2 <
j2 < . . . < ik < jk ≤ n such that

π({i1, i2, . . . , ik}) > π({j1, j2, . . . , jk}).
A closed permutation class Π unboundedly alternates if for every k ≥ 1 there is a π ∈ Π
such that π or π−1 has k alternations.

Lemma 3.2 If a closed permutation class Π unboundedly alternates, then |Πn| ≥ 2n−1

for every n ≥ 1.
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Proof. We suppose that for any k there is a π ∈ Π with k alternations; the case with π−1

is analogous. Using Theorem 3.1 and the fact that Π is closed, we see that for every n ≥ 1
there is a π ∈ Π2n+1 such that the restriction π|{2i − 1 : 1 ≤ i ≤ n + 1} is monotone,
and π(i) > π(j) whenever i is odd and j is even. We may assume that the restriction is
increasing; the other case when it is decreasing is quite similar. Since Π is closed, there
is for every X ⊂ [2, n] some πX ∈ Πn such that πX(i) > πX(1) ⇔ i ∈ X. Distinct X give
distinct permutations πX and thus |Πn| ≥ 2n−1. 2

A word u = u1u2 . . . un has no immediate repetitions if ui 6= ui+1 for each 1 ≤ i ≤ n−1.
We say that u is alternating if u = ababa . . . for two distinct symbols a and b. For a word
u we denote `(u) the maximum length of an alternating subsequence of u. Let

Wm,l,n = {u ∈ [m]∗ : |u| = n & `(u) ≤ l}
be the set of all words over the alphabet [m] of length n which have no alternating
subsequence of length l + 1. Claim (1) of the following lemma is a result of Davenport
and Schinzel [15].

Lemma 3.3 (1) If u = u1u2 . . . un is a word over [m] which has no immediate repeti-
tions and satisfies `(u) ≤ l, then

n ≤
(
m

2

)
(l − 1) + 1.

(2) For every m, l, n ≥ 1 we have

|Wm,l,n| ≤ (m + 1)c · nc

where c =
(

m
2

)
(l − 1) + 1.

(3) Suppose that the alphabet [m] is partitioned into r subalphabets A1, . . . , Ar and u is
a word over [m] such that every subword vi of u consisting of the occurrences of the
letters in Ai satisfies `(vi) ≤ l. Then u can be split into t intervals u = I1I2 . . . It

such that every Ii uses at most one letter from every Aj, and

t ≤ 2

(
m

2

)
(l − 1) + 2.

Proof. (1) Let u = u1u2 . . . un be over [m], without immediate repetitions, and let

n ≥
(

m
2

)
(l − 1) + 2. By the pigeon-hole principle, some l of the n − 1 two-element sets

{ui, ui+1} must coincide. It is easy to see that the corresponding positions in u contain
an l + 1-element alternating subsequence.

(2) Every word u ∈ Wm,l,n splits uniquely into intervals u = I1I2 . . . It such that
Ii = aiai . . . ai consists of repetitions of a single letter ai and ai 6= ai+1 for 1 ≤ i ≤ t − 1.
Contracting every Ii into one term, we obtain a word u∗ over [m], |u∗| = t, with `(u∗) ≤ l
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and no immediate repetitions. By (1), t ≤
(

m
2

)
(l − 1) + 1 = c. Clearly, u∗ and the

composition |I1|, |I2|, . . . , |It| of n determine u uniquely. Thus

|Wm,l,n| ≤ (#u∗) · nc ≤ (m + 1)c · nc.

(3) We consider the unique splitting u = I1I2 . . . It, where I1 is the longest initial
interval of u using at most one letter from every Aj , I2 is the longest following interval
with the same property, etc. Note that every pair IiIi+1 has a subsequence a, b (where b
is the first term of Ii+1) such that a, b ∈ Aj for some j and a 6= b. Now arguing similarly
as in (1), we see that

t ≤ 2

(
m

2

)
(l − 1) + 2.

2

The shifted Fibonacci numbers (Fn)n≥1 = (1, 2, 3, 5, 8, 13, 21, . . .) are defined by F1 =
1, F2 = 2, and Fn = Fn−1 + Fn−2 for n ≥ 3. The explicit formula is

Fn =
1√
5


(1 +

√
5

2

)n+1

−
(

1 −√
5

2

)n+1

 .

By induction, Fn ≤ 2n−1 for every n ≥ 1.
The next theorem identifies the jump from the polynomial to the exponential growth

and shows that n 7→ Fn is the first superpolynomial growth rate. Although it is fully
subsumed in the more general Theorem 3.8, we give a sketch of the proof. We think that
it may be interesting and instructive for the reader to compare how the concepts used
here develop later in the more complicated proof of Theorem 3.8.

Theorem 3.4 Let Π be any closed class of permutations. Then exactly one of the follow-
ing possibilities holds.

(1) There is a constant c > 0 such that |Πn| ≤ nc for all n ≥ 1.

(2) |Πn| ≥ Fn for all n ≥ 1.

Proof. (Extended sketch.) We split any permutation π into π = S1S2 . . . Sm where S1 is
the longest initial monotone segment, S2 is the longest following monotone segment, and
so on. We mark the elements in Si by i and read the marks from bottom to top (that
is, from left to right in π−1). In this way, we obtain a word u(π) over the alphabet [m],
where m = m(π) is the number of the monotone segments Si. For example,

if π = (3, 5, 4, 2, 1, 7, 8, 6, 9) then m(π) = 4 and u(π) = 2 2 1 2 1 4 3 3 4

because S1 = 3, 5, S2 = 4, 2, 1, S3 = 7, 8, and S4 = 6, 9. Note that π is determined
uniquely by u(π) and an m-tuple of signs (±,±, . . . ,±) in which + indicates an increasing
segment and − a decreasing one. For every pair Si, Si+1 we fix an interval Ti = Tπ,i =
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[min{a, b, c}, max{a, b, c}] where a, b, c is a non-monotone subsequence of SiSi+1 (such a
subsequence certainly exists). In our example, for i = 3 we may set a, b, c = 7, 8, 6 and
T3 = [6, 8].

For a closed permutation class Π and π ranging over Π we distinguish four cases.
Case 1a: m(π) is bounded and so is `(u(π)). Case 1b: m(π) is bounded and `(u(π))
is unbounded. Case 2a: m(π) is unbounded and the maximum number of mutually
intersecting intervals in the system S(π) = {Tπ,1, Tπ,3, Tπ,5, . . .} is unbounded as well.
Case 2b: m(π) is unbounded and so is the maximum number of mutually disjoint intervals
in the system S(π).

In case 1a we use (2) of Lemma 3.3 and deduce the polynomial upper bound of claim
(1). In case 1b, the class Π unboundedly alternates and, by Lemma 3.2, |Πn| ≥ 2n−1 ≥ Fn.
In case 2a, the class Π again unboundedly alternates and |Πn| ≥ 2n−1 ≥ Fn. In case 2b,
it follows by Theorem 3.1 and the definition of Tπ,i, that either for every n ≥ 1 we have
(2, 1, 4, 3, 6, 5, . . . , 2n, 2n − 1) ∈ Π or for every n ≥ 1 we have (2n − 1, 2n, 2n − 3, 2n −
2, . . . , 1, 2) ∈ Π. Using the fact that Π is closed, we conclude that in this case, |Πn| ≥ Fn.
2

To state Theorem 3.8, we need a few more definitions and lemmas. For k an integer
and F a power series, [xk]F denotes the coefficient at xk in F . We define the family of
generalized Fibonacci numbers Fn,k ∈ N, where k ≥ 1 and n are integers, by

Fn,k = [xn]
1

1 − xk − xk−1 − · · · − x
.

In particular, Fn,1 = 1 for every n ≥ 1 and Fn,2 = Fn. More generally, Fn,k = 0 for n < 0,
F0,k = 1, and

Fn,k = Fn−1,k + Fn−2,k + · · ·+ Fn−k,k for n > 0.

Lemma 3.5 Let k ≥ 1 be fixed.

(1) For n → ∞, we have the asymptotics

Fn,k = ckα
n
k + O(βn

k ), ck =
αk

k(αk − 1)

αk+1
k − k

,

where αk is the largest positive real root of xk − xk−1 − xk−2 − · · · − 1 and βk is a
constant such that 0 < βk < αk.

(2) The roots αk satisfy inequalities 1 = α1 < α2 < α3 < . . . < 2, and αk → 2 as
k → ∞.

(3) For all integers m and n,
Fm,k · Fn,k ≤ Fm+n,k.

(4) For every n ≥ 1 we have

Fn,k ≤ 2n−1 and Fn,n = 2n−1.
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Proof. (1) Since ∑
n≥0

Fn,kx
n =

1

1 − xk − xk−1 − · · · − x
,

the asymptotics of Fn,k follows by the standard technique of decomposing rational func-
tions into partial fractions (see, for example, Stanley [31, p. 202]). We need to prove only
that αk is a simple root of the reciprocal polynomial pk(x) = xk−xk−1−xk−2−· · ·−1 and
that on the complex circle |z| = αk, the polynomial pk has no other root besides αk. The
constant βk can then be set to ε+the second largest modulus of a root of pk. The form
of the coefficient ck follows by a simple manipulation from the identity ck = αk−1

k /p′k(αk)
provided by the partial fractions decomposition.

Clearly, 1 ≤ αk < 2. Since xp′k − kpk = xk−1 + 2xk−2 + · · · + k, we have p′k(αk) >
k(k +1)/4 and αk is a simple root of pk. Since pk = (xk+1 − 2xk +1)/(x− 1), pk(x) = 0 is
equivalent to xk = 1/(2−x). It is clear that no z, |z| = αk, z 6= αk, satisfies this equation.

(2) This is immediate from the identity αk
k = 1/(2 − αk) used in (1).

(3) and (4): These are easy to verify inductively by the recurrence for Fn,k. We only
prove (3). We proceed by induction on m + n. For m < 0 or n < 0 the inequality is true.
It also holds for m = n = 0. Let m ≥ 0 and n ≥ 1. Then

Fm,kFn,k = Fm,k

n−1∑
i=n−k

Fi,k ≤
m+n−1∑

i=m+n−k

Fi,k = Fm+n,k.

2

We list approximate values of the first few roots αk:

k 2 3 4 5 6 10
αk 1.61803 1.83928 1.92756 1.96594 1.98358 1.99901

Let A be a finite alphabet equipped with a weight function w : A → N. The weight
w(u) of a word u = u1u2 . . . um ∈ A∗ is the sum w(u1) + w(u2) + · · ·+ w(um). We set

p(w, n) = #{u ∈ A∗ : w(u) = n}.

Lemma 3.6 Let k ≥ 1 be fixed.

(1) If A = {a1, a2, . . . , ak} and w(ai) = i for i = 1, . . . , k, then p(w, n) = Fn,k for every
n ≥ 1.

(2) If A = {a1, a2, . . . , ak+1} and w(ai) = i for i = 1, . . . , k and w(ak+1) = k, then
p(w, n) ≥ 2n−1 for every n ≥ 1.

Proof. In the general situation we have the identity

∞∑
n=0

p(w, n)xn =
1

1 −∑
a∈A xw(a)

.
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Now (1) is clear since then
∑

a∈A xw(a) = xk + xk−1 + · · ·+ x.
In (2), we have

∞∑
n=0

p(w, n)xn =
1

1 − (2xk + xk−1 + · · · + x)

and the inequality p(w, n) ≥ 2n−1 follows by induction from the recurrence

p(w, n) = p(w, n − 1) + · · ·+ p(w, n − k + 1) + 2p(w, n − k) (n > 0)

starting from p(w, n) = 0 for n < 0 and p(w, 0) = 1. 2

In (2), one might be interested in a more precise bound. Since 1−(2xk+xk−1+· · ·+x) =
(1 − 2x)(xk−1 + xk−2 + · · · + 1), the decomposition into partial fractions gives

p(w, n) = [xn]

(
α

1 − 2x
+

β1

1 − x/ζ1

+ · · · + βk−1

1 − x/ζk−1

)

where α, β1, . . . βk−1 ∈ C are suitable constants and ζi are the k-th roots of unity distinct
from 1. Thus α = 1/

∑k−1
i=0 (1

2
)i and, for n → ∞, we obtain the asymptotics

p(w, n) =
(

1

2
+

1

2k+1 − 2

)
· 2n + O(1).

An upward splitting of a permutation π, |π| = n, is a partition [n] = [1, r]∪ [r + 1, n],
where 1 ≤ r < n, such that π([1, r]) < π([r + 1, n]). If π has no upward splitting, we
say that π is upward indecomposable. The set Ind+ consists of all upward indecomposable
permutations and Ind+

n = {π ∈ Ind+ : |π| = n}. Every permutation π of [n] has
a unique decomposition π|I1, . . . , π|Im, called the upward decomposition of π, in which
I1 < I2 < . . . < Im are intervals partitioning [n] such that π(I1) < π(I2) < . . . < π(Im)
and every restriction π|Ii is upward indecomposable. (This decomposition can be obtained
by iterating the upward splittings.) We call the permutations π|Ii the upward blocks of
π. Notions symmetric to these are obtained in the obvious way, replacing the appropriate
signs < by the opposite signs >. Thus we get the definitions of downward splittings,
downward indecomposability , downward decompositions, downward blocks, and the sets
Ind− and Ind−

n .
We prove that one can delete an entry from any upward indecomposable permutation

in such a way that the result is upward indecomposable. Needless to say, the same holds
for downward indecomposable permutations.

Lemma 3.7 For every π ∈ Ind+
n , n > 1, there is some i ∈ [n] such that π|([n]\{i}) is in

Ind+
n−1.

Proof. For a permutation π of [n] and i ∈ [n] we say that i is a record of π if π(j) < π(i)
for every j < i. Let 1 = r1 < r2 < . . . < rm ≤ n be the records of π. It is easy to see
that π is upward indecomposable if and only if for every i = 1, 2, . . . , m − 1 there is a j,
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ri+1 < j ≤ n, with π(j) < π(ri). Suppose that π, |π| = n ≥ 2, is upward indecomposable
and consider the set A = {i ∈ [n] : rm < i ≤ n & π(i) > π(rm−1)}; if m = 1, we
set A = [2, n]. If A 6= ∅, the deletion of any i ∈ A leaves an upward indecomposable
permutation. If A = ∅, we delete i = rm. 2

We remark that it is easy to find examples of permutations of arbitrary length such that
the statement of Lemma 3.7 is satisfied with only two indices i.

If π is a permutation, |π| = n, and I1 < I2 < . . . < Im is a partition of [n] into m
nonempty intervals, we associate with π (as in the sketched proof of Theorem 3.4) the
word u(π) = u1, u2, . . . , un over the alphabet [m] by setting ui = j if π−1(i) ∈ Ij. Note
that π is uniquely determined by u(π) and the m restrictions π|Ii.

Also, we associate with π the word v+(π) over the alphabet Ind+ describing the upward
decomposition of π. By h+(π) ∈ N we denote the maximum size of an upward block
of π appearing in the upward decomposition of π. Thus if h+(π) = k then v+(π) ∈
(Ind+

1 ∪ . . . ∪ Ind+
k )∗. In the analogous way we define v−(π) and h−(π).

Theorem 3.8 Let Π be any closed class of permutations. Then either Π is finite, or
exactly one of the following possibilities holds.

(1) There is a unique k ≥ 1 and a constant c > 0 such that Fn,k ≤ |Πn| ≤ Fn,k · nc for
all n ≥ 1.

(2) |Πn| ≥ 2n−1 for all n ≥ 1.

Proof. The k-decomposition, where k ≥ 2 is an integer, of a permutation π, |π| = n,
is the unique partition of [n] into the intervals U1 < U2 < . . . < Um such that U1 is
the longest initial interval of [n] with h+(π|U1) < k or h−(π|U1) < k, U2 is the longest
following interval with the same property, etc. We call the intervals Ui the k-segments of
π. The number m of k-segments of π is denoted by sk(π).

Let Π be an infinite closed permutation class. Let sk(Π) = max{sk(π) : π ∈ Π}. We
set s1(Π) = ∞. For every fixed k ≥ 1 we prove the following claims.

Claim A. If sk(Π) = ∞ then |Πn| ≥ Fn,k for every n ≥ 1.

Claim B. If sk(Π) < ∞ then either |Πn| ≥ 2n−1 for every n ≥ 1 or |Πn| ≤ Fn,k−1 · c1n
c2

for every n ≥ 1 and some constants c1, c2 > 0.

This will prove the theorem. To see this, note that either sk(Π) = ∞ for every k ≥ 1
or there is a k ≥ 1 such that sk(Π) = ∞ but sk+1(Π) < ∞. In the former case, claim
A implies that |Πn| ≥ Fn,n = 2n−1 for every n ≥ 1 (by (4) of Lemma 3.5). In the latter
case, we apply claim A with k and claim B with k + 1 and conclude that either again
|Πn| ≥ 2n−1 for every n ≥ 1 or that Fn,k ≤ |Πn| ≤ Fn,k · nc for every n ≥ 1 (c1 was
absorbed in the enlarged c2).

Proof of Claim A. For a π ∈ Π with the k-segments U1 < U2 < . . . < Usk(π), we set
Tπ,i = [min(π(UiUi+1)), max(π(UiUi+1))]. Note that, by the definition of k-segments and
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Lemma 3.7, every restriction π|UiUi+1 contains a member of Ind+
k and a member of Ind−

k .
We consider the system of intervals

S(π) = {Tπ,1, Tπ,3, Tπ,5, . . . , Tπ,r}, where r = 2d(sk(π) − 1)/2e − 1.

By the Ramsey theorem, either for every m ≥ 1 there is a π ∈ Π such that S(π) contains
m mutually intersecting intervals or for every m ≥ 1 the same holds with mutually disjoint
intervals. In the former case, it is easy to see that π must have at least m/2 alternations,
since all members of a system of mutually intersecting intervals must have a point in
common. By Lemma 3.2 and (4) of Lemma 3.5, |Πn| ≥ 2n−1 ≥ Fn,k for every n ≥ 1.

In the latter case, for every m ≥ 1 there is a π ∈ Π for which [|π|] can be partitioned
into m intervals I1 < I2 < . . . < Im such that every restriction π|Ii contains a member of
Ind+

k and a member of Ind−
k , and for every i 6= j we have π(Ii) > π(Ij) or π(Ii) < π(Ij).

By Theorem 3.1, we may assume that π(I1) < π(I2) < . . . < π(Im) or π(I1) > π(I2) >
. . . > π(Im). Let π(I1) < π(I2) < . . . < π(Im); the other case is similar. Since m may be
arbitrarily large and |Ind+

k | ≤ k!, we may use the pigeon-hole principle and assume that
there is one fixed σ ∈ Ind+

k that is contained, for every m ≥ 1, in every π|Ii, 1 ≤ i ≤ m.
By Lemma 3.7, there is a set of permutations Σ = {σ1, σ2, . . . , σk} such that σi ∈ Ind+

i ,
σi ⊂ σi+1, and σk = σ. Since Π is closed, for every word u over the alphabet Σ there is a
τ ∈ Π (contained in π) such that v+(τ) = u. Clearly, different words u determine different
permutations τ . Using (1) of Lemma 3.6 (where the weight function is w(σi) = |σi| = i),
we conclude that |Πn| ≥ Fn,k for every n ≥ 1. This finishes the proof of Claim A.

Proof of Claim B. We have k ≥ 2 and there is a constant K such that sk(π) ≤ K
for every π ∈ Π. If π ∈ Πn and U1 < U2 < . . . < Usk(π) is the partition of [n] into the
k-segments of π, we consider the word u(π) over [K] as defined above the theorem.

For 1 ≤ i ≤ sk(π) and 1 ≤ j ≤ k − 1 we define v+
i,j(π) as the subword of v+(π|Ui)

consisting of the occurrences of the letters from the subalphabet Ind+
j . The word v−

i,j(π)
is defined in the obvious symmetric manner. Recall that `(u) is the length of the longest
alternating subsequence of u. Let `(u(Π)) = max{`(u(π)) : π ∈ Π} and, for 1 ≤ i ≤ K
and 1 ≤ j ≤ k − 1, `(v+

i,j(Π)) = max{`(v+
i,j(π)) : π ∈ Π}. The quantity `(v−

i,j(Π)) is
defined analogously. (For i > sk(π) we set `(v+

i,j(π)) = `(v−
i,j(π)) = 0.) We distinguish two

complementary cases.

Case B1. One of the 2K(k − 1) + 1 quantities `(u(Π)), `(v+
i,j(Π)), and `(v−

i,j(Π))
equals ∞.

We prove that then always

|Πn| ≥ 2n−1 for all n ≥ 1.

For unbounded `(u(π)) we can find a π ∈ Π with as many alternations in π−1 as we
wish and thus |Πn| ≥ 2n−1 for every n ≥ 1 by Lemma 3.2. For unbounded `(v+

i,j(π)) (the
argument for v−

i,j(π) is the same) there is a j ∈ [k − 1] (in fact, necessarily j ∈ [3, k − 1])
and two distinct permutations τ, σ ∈ Ind+

j such that for every alternating word v over
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{σ, τ} there is a π ∈ Π with v+(π) = v. Using Lemma 3.7 again, we can take a set of
permutations Σ = {σ1, σ2, . . . , σj} such that σi ∈ Ind+

i , σi ⊂ σi+1, and σj = σ. Since Π is
closed, for every word v over the alphabet Σ ∪ {τ} there is a π ∈ Π with v+(π) = v. By
(2) of Lemma 3.6, |Πn| ≥ 2n−1 for every n ≥ 1. This finishes the proof of case B1.

Case B2. There is a constant L > 0 such that `(u(Π)) ≤ L and `(v+
i,j(Π)) ≤ L,

`(v−
i,j(Π)) ≤ L for every 1 ≤ i ≤ K, 1 ≤ j ≤ k − 1.

We prove the upper bound

|Πn| ≤ Fn,k−1 · c1n
c2 for all n ≥ 1.

Every π ∈ Πn is uniquely determined by the word u(π) ∈ [K]∗ together with the sk(π) ≤
K restrictions π|Ui. For sk(π) < i ≤ K we set Ui = ∅. Let R(m) be the number of
possible restrictions π|Ui with |Ui| = m. If we prove that R(m) ≤ Fm,k−1 · c3m

c4 for all
m ≥ 1 and constants c3, c4 > 0 (depending only on K and L), we are done since (3) of
Lemma 3.5 and (2) of Lemma 3.3 imply that

|Πn| ≤ ∑
u∈WK,L,n

R(|U1|)R(|U2|) . . .R(|UK |) (note that |U1| + · · · + |UK | = n)

≤ ∑
u∈WK,L,n

Fn,k−1 · cK
3 nc4K

≤ Fn,k−1 · cK
3 nc4K · (K + 1)c5nc5 (where c5 =

(
K

2

)
(L − 1) + 1)

≤ Fn,k−1 · c1n
c2.

It remains to show that R(m) ≤ Fm,k−1 · c3m
c4. Let σ be a generic restriction π|Ui

with |Ui| = m and π ranging over Πn. We have that h+(σ) < k or h−(σ) < k; we may
assume the former. For 1 ≤ j ≤ k − 1 we write v+

j (σ) for v+
i,j(π). By the hypothesis of

case B2, `(v+
j (σ)) ≤ L for every 1 ≤ j ≤ k − 1. Since v+(σ) ∈ (Ind+

1 ∪ . . . ∪ Ind+
k−1)

∗, we
apply (3) of Lemma 3.3 and conclude that there is a partition into intervals

v+(σ) = J1J2 . . . JM with M ≤ 2

(
1! + · · ·+ (k − 1)!

2

)
(L − 1) + 2 = N

such that every Ji uses at most one letter from any subalphabet Ind+
j . Let Q(m) be the

number of τ ∈ Πm such that h+(τ) < k and v+(τ) uses at most one letter from every
Ind+

j . Then, by (1) of Lemma 3.6,

Q(m) ≤ 1! · 2! · . . . · (k − 1)! · Fm,k−1 = c6 · Fm,k−1

because v+(τ) ∈ Σ∗ for a transversal Σ of the k − 1 sets Ind+
1 , . . . , Ind+

k−1, and there are
at most c6 such transversals.

So, by the bound on Q(m), (3) of Lemma 3.5, and the bound M ≤ N , the number of
σ’s satisfies

R(m) ≤ ∑
m1+···+mN=m

Q(m1)Q(m2) . . .Q(mN ) (summing over mi ≥ 0)
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≤ ∑
m1+···+mN=m

Fm,k−1 · cN
6 ≤ Fm,k−1 · cN

6 (m + 1)N

≤ Fm,k−1 · c3m
c4.

This finishes the proof of case B2, of claim B, and of the whole theorem. 2

Every growth rate n 7→ Fn,k is attained by a closed class of permutations (take, for
example, the permutations π whose upward blocks are decreasing sequences of length at
most k). This result was proved also by Egge in [16]. See [16] and Egge and Mansour [17]
for many enumerative results on closed permutation classes involving the numbers Fn,k.

4 Constant and polynomial growths

We look in more detail at the slow growths and begin with the constant growth. Let π
be a permutation of [n]. For r ∈ N, we say that π has the r-intrusion property if there
are subsets X, Y ⊂ [n] and an element x ∈ [n] such that X < x < Y , |X|, |Y | ≥ r, and
π|(X∪Y ) is monotone but π|(X∪Y ∪{x}) is not. We say that π has the r-union property
if there are subset X, Y ⊂ [n] such that X < Y , |X|, |Y | ≥ r, and both restrictions π|X
and π|Y are monotone but π|(X ∪ Y ) is not.

Lemma 4.1 Let Π be any closed class of permutations.

(1) If for every r ≥ 1 there is a π ∈ Π such that π or π−1 has the r-intrusion property,
then |Πn| ≥ n for all n ≥ 1.

(2) If for every r ≥ 1 there is a π ∈ Π with the r-union property, then |Πn| ≥ n for all
n ≥ 1.

(3) Suppose π 6= τ are two permutations of [n] and I ⊂ [n] is such that all three sets
I, π(I), and τ(I) are intervals in [n] and both restrictions π|I and τ |I are monotone.
Then for every subset J ⊂ I such that |I| − |J | ≥ 2 we have π|([n]\J) 6= τ |([n]\J).

Proof. (1) We may assume that for every r ≥ 1 there is a π ∈ Π2r+1 such that π|([2r +
1]\{r + 1}) is increasing but π(r) > π(r + 1); the other possible cases are very similar.
Thus for every n and m, 1 ≤ m ≤ n− 1, there is a πm ∈ Πn such that π|[m] is increasing
but π(m) > π(m + 1). The permutations πm are mutually distinct and together with
(1, 2, . . . , n) ∈ Πn they show that |Πn| ≥ n.

(2) If π, |π| = 2n, is such that π|[n] and π|[n + 1, 2n] are monotone but π is not, then
π(n − 1), π(n), π(n + 1) or π(n), π(n + 1), π(n + 2) is non-monotone. From this it easily
follows, as in (1), that there are n distinct permutations σ, |σ| = n, such that σ ⊂ π.
Thus |Πn| ≥ n for all n ≥ 1.

(3) The restrictions of π and τ on [n]\J must be different because at least 2 terms
remained from the monotone sequences π|I and τ |I and thus π and τ can be completely
reconstructed from the restrictions. 2
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Theorem 4.2 Let Π be any closed class of permutations. Then exactly one of the follow-
ing possibilities holds.

(1) |Πn| is constant for n ≥ n0.

(2) |Πn| ≥ n for all n ≥ 1.

Proof. We may assume that Π is a closed permutation class such that, for some r ≥ 1, for
every π ∈ Π neither π nor π−1 has the r-intrusion property and π does not have the r-union
property. If r does not exist, we are done because (1) and (2) of Lemma 4.1 then imply that
(2) holds. Now let π ∈ Πn be arbitrary and let n ≥ 9r2. Consider the longest monotone
subsequence of π, determined by X ⊂ [n]. Thus π|X is monotone, |X| is maximum,
and, by Theorem 3.1, |X| ≥ 3r. We partition X into the sets X1 < Y < X2 where
|X1| = |X2| = r. So |Y | ≥ r. Since neither π nor π−1 has the r-intrusion property and
|X| is maximum, both Y and π(Y ) must form an interval in [n]. Let A = [min Y − 1]\X1

and B = [max Y + 1, n]\X2. Using the assumption that π does not have the r-union
property and invoking Theorem 3.1, we see that |A|, |B| ≤ r2. We conclude that for every
π ∈ Πn, n ≥ 9r2, there is a subset Y ⊂ [n] such that π|Y is monotone, both Y and π(Y )
form an interval in [n], and n − |Y | ≤ 2(r2 + r) = R. If R is enlarged to R = 9r2, the
conclusion holds for every n ≥ 1.

For all n ≥ 1, |Πn| ≤ 2(R + 1)2R! because we have two possibilities for π|Y , at most
R+1 ways to place Y , the same number of ways to place π(Y ), and at most R! possibilities
for π|([n]\Y ). Let

k = lim sup
n→∞

|Πn|
and n0 ∈ N be such that n0 ≥ 2R + 2 and |Πn| ≤ k for n ≥ n0. We show that in fact,
|Πn| = k for n ≥ n0. Let n ≥ n0 be arbitrary, m ≥ n be such that |Πm| = k, and let
Πm = {π1, π2, . . . , πk}. These k permutations satisfy the hypothesis of (3) of Lemma 4.1
with I = [R + 1, m − R]. For J = [n − R + 1, m − R] we have J ⊂ I, |I| − |J | ≥ 2, and
σi = πi|([m]\J) ∈ Πn for 1 ≤ i ≤ k. By (3) of Lemma 4.1, all σi are distinct. Hence
|Πn| ≥ k and |Πn| = k. 2

All possible constant growths are attained. The growth n 7→ 0 is attained by Π = ∅ and
n 7→ k, n ≥ k, is attained by {π ⊂ (1, 2, . . . , n, n + k, n + k − 1, . . . , n + 1) : n ∈ N}.
Similarly, n 7→ n is attained by {π ⊂ (1, 2, . . . , n, 2n, 2n−1, . . . , n+1) : n ∈ N}. We were
informed by M. Atkinson that the structure of closed classes with bounded growth, given
in the previous proof, was also determined in Atkinson and Beals [6].

We proceed to the polynomial growth and partially characterize polynomially growing
counting functions of closed permutation classes. For this, we need to look first at the
partial order (Nm,≤), where m ∈ N and a = (a1, . . . , am) ≤ (b1, . . . , bm) = b means that
ai ≤ bi for every i = 1, . . . , m. We say that a subset S ⊂ Nm is closed if a ≤ b ∈ S always
implies a ∈ S. For a ∈ Nm we define ‖a‖ = a1 + a2 + · · · + am. For a (closed) subset
S ⊂ Nm and n ∈ N we set

Sn = {a ∈ S : ‖a‖ = n}.

the electronic journal of combinatorics 9(2) (2003), #R10 15



The elements of Sn can be represented by partitions of [n] into m nonempty intervals,
and therefore the next lemma is a particular case of Theorem 3.1 in [19]. However, the
direct proof is not too difficult; and for the sake of completeness, we give it here.

Lemma 4.3 For every closed set S ⊂ Nm there is a number M ∈ N and (M + 1)2

integers ai,j, 0 ≤ i, j ≤ M , so that for every n ≥ n0 we have

|Sn| =
M∑

i,j=0

ai,j

(
n − i

j

)
.

Proof. We say that S ⊂ Nm is canonical if there is an m-tuple b ∈ (N ∪ {∞})m so that

S = {a ∈ Nm : ai < bi for every i = 1, . . . , m},
where ai < ∞ means that the i-th coordinate of a is unrestricted. Canonical sets are
closed and for a canonical S determined by b we have

|Sn| = [xn]
(

x

1 − x

)#(bi=∞) ∏
bi<∞

bi−1∑
j=1

xj for n ≥ 1,

where the empty sum equals 0. If bi = ∞ for no i, then |Sn| = 0 for n ≥ n0 = ‖b‖ −
m + 1, and the formula is true with all ai,j zero. Otherwise, the formula follows by the
binomial theorem. Thus the lemma holds in the case when S is a canonical set, even with
nonnegative ai,j. It is clear that every intersection of canonical sets is again a canonical
set. Therefore, by the inclusion-exclusion principle, the lemma holds more generally for
every finite union of canonical sets (now we may get negative ai,j).

Let S ⊂ Nm be any closed set. It suffices to show that S is a finite union of canonical
sets. S is determined by the set B of minimal elements in (Nm\S,≤). The set B is an
antichain. It is known, and not too difficult to prove, that every antichain in (Nm,≤)
is finite, see (for example) Nash-Williams [25, Lemma 1] for a more general result. So
B = {b1, b2, . . . , br} and

S = {a ∈ Nm : a 6≥ bi for every i = 1, . . . , r}.
Thus

a ∈ S ⇐⇒
r∧

i=1

m∨
j=1

(aj < bi
j).

The right hand side of the equivalence is equivalent to

∨
j1,...,jr

r∧
i=1

(aji
< bi

ji
)

where in the disjunction the ji’s range over all r-tuples from [m]. Since every conjuction∧r
i=1(aji

< bi
ji
) defines a canonical set, S is indeed a union of mr canonical sets and the

lemma follows. 2
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A canonical form of a word u is the form u = ua1
1 ua2

2 . . . uam
m . where ai ∈ N, ui 6= ui+1

for i = 1, 2, . . . , m − 1, and uai
i abbreviates ai repetitions of the letter ui. Let u(π) =

u1u2 . . . un be the word over [m] determined by the 2-decomposition U1 < U2 < . . . < Um

of a permutation π of length n; ui = j ⇔ π−1(i) ∈ Uj and every π|Ui is monotone (see
the proofs of Theorems 3.4 and 3.8). Recall that π is uniquely determined by u(π) and
the m-tuple s(π) ∈ {+,−}m whose i-th component records whether π|Ui is increasing or
decreasing. Every i < m appears in u(π) at least twice and i = m may appear only once.
Let u(π) = wa1

1 wa2
2 . . . war

r be the canonical form of u(π). The reduced form of u(π) is the
word

u(π)∗ = w = wb1
1 wb2

2 . . . wbr
r ,

where bi = 1 if wi = m or if wj = wi for some j 6= i, else bi = 2. We define E(w) = {i ∈
[r] : bi = 2} and e(π) ∈ Nr by ei = ai if i 6∈ E(w) and ei = ai − 1 if i ∈ E(w).

Let Π be any closed permutation class. We split Π into (non-closed) subclasses by the
equivalence ∼: π ∼ σ iff u(π)∗ = u(σ)∗ = w = wb1

1 wb2
2 . . . wbr

r and s(π) = s(σ). In one
equivalence subclass X, the permutations are fully determined by the r-tuples

e(X) = {e(π) : π ∈ X} ⊂ Nr.

Note that e(X) is closed (in the sense of the previous lemma) and that, for π ∈ X,
|π| = ‖e(π)‖ + |E(w)|. By Lemma 4.3, there are (M + 1)2 integers ai,j such that

|Xn| = #{π ∈ X : |π| = n} =
M∑

i,j=0

ai,j

(
n − i

j

)

for all n ≥ n0.

Theorem 4.4 If Π is a closed class of permutations such that |Πn| ≤ nc for all n ≥ 1 and
a constant c > 0, then there is a number M ∈ N and (M +1)2 integers ai,j, 0 ≤ i, j ≤ M ,
such that for all n ≥ n0 we have

|Πn| =
M∑

i,j=0

ai,j

(
n − i

j

)
.

Proof. The proof of Theorem 3.8 (case B2, k = 2) shows that if |Πn| ≤ nc for all n ≥ 1,
then for all π ∈ Π we have m = s2(π) ≤ K and `(u(π)) ≤ L for some constants K, L > 0.
Thus by (1) of Lemma 3.3, the length of the reduced form of u(π) is bounded by some
d > 0, and we have at most (K + 1)d possible reduced forms u(π)∗, π ∈ Π. Hence the
equivalence ∼ on Π has at most 2K(K + 1)d subclasses. We select n0 large enough so
that for every of the subclasses X the above argument applies and for n ≥ n0 the number
|Xn| has the form

∑M
i,j=0 ai,j

(
n−i
j

)
, with integral ai,j (M and ai,j depend on X). Then for

n ≥ n0 also the finite sum
|Πn| =

∑
X

|Xn|

has the form
∑M

i,j=0 ai,j

(
n−i
j

)
. 2
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It is an interesting question to fully characterize those polynomials that can be realized
(for n ≥ n0) as n 7→ |Πn|. For example, it follows from Theorem 4.2 that no polynomial(

n−i
1

)
= n − i, i ∈ N, can be realized as a counting function. Note that a part of

Theorem 4.2, the fact that every bounded counting function must be eventually constant,
is an immediate corollary of the last theorem.

5 Concluding remarks

The fact that the containment order of permutations admits an infinite antichain has
been known for a long time. The earliest references are Laver [23, p. 9], Pratt [26], and
Tarjan [32]. Kruskal [22, p. 304] mentions Laver’s (counter)example four years earlier
and Laver himself “[uses] a construction of Jenkyns and Nash-Williams” [18]. Thus the
idea seems to go back to the late 1960s. The recent reference is Spielman and Bóna [29].
See Atkinson, Murphy and Ruškuc [7] for further results on permutation antichains.

Closed classes of permutations and their counting functions have been investigated
before by Atkinson [5] who, together with West [34], gives the counting function n 7→ |Πn|
for every closed Π of the form Π = Forb({α, β}) where |α| = 3, |β| = 4, and α 6⊂ β. Our
approach is much inspired by the works of Scheinerman and Zito [28] and Balogh, Bollobás
and Weinreich [8, 9, 10] on the hereditary classes and monotone classes of graphs. (For
graphs, hereditarity means that the class is ‘closed’ with respect to induced subgraphs,
while monotonicity means that it is ‘closed’ with respect to all subgraphs.) As far as we
know, graphs are the only combinatorial structures for which the counting functions of
hereditary (closed) classes have been systematically investigated from a ‘global’ viewpoint.
One global result (although cast in the ‘local’ Forb(X) language) on hereditary classes of
set partitions is in Klazar [19, Theorem 3.1]. The counting functions of the hereditary
classes of set partitions are further investigated in [21].

The question posed after Theorem 2.1, whether there are 2ℵ0 closed permutation
classes with counting functions mutually incomparable by the eventual dominance, has
a positive answer for graph hereditary classes, see [9, Theorem 11]. Note also that if we
restrict our attention to polynomially growing permutation classes, then by Theorem 4.4,
the eventual dominance is a linear order.
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