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Abstract

We study permutations that avoid two distinct patterns of length three and any
additional set of patterns. We begin by showing how to enumerate these permuta-
tions using generating trees, generalizing the work of Mansour [13]. We then find
sufficient conditions for when the number of such permutations is given by a poly-
nomial and answer a question of Egge [6]. Afterwards, we show how to use these
computations to count permutations that avoid two distinct patterns of length three
and contain other patterns a prescribed number of times.

1 Introduction

Let q = q1q2 . . . qk be a permutation in the symmetric group Sk. We call k the length of q
and write |q| = k. The reduction of a word w of distinct integers of length k, red(w), is the
k-permutation obtained by replacing the smallest number element of w by 1, the second
smallest element by 2, and so on. We say that the permutation p = p1p2 . . . pn ∈ Sn

contains a q pattern if there is a subsequence pi1pi2 . . . pik of p that reduces to q, that is,
red(pi1pi2 . . . pik) = q. Otherwise we say that p is q-avoiding. For example, 3142 contains
a 132 pattern because red(142) = 132, whereas 3124 is 132-avoiding.

Let the set Sn(q) consist of all n-permutations that avoid q. If Q is a set of permuta-
tions, we define

Sn(Q) =
⋂
q∈Q

Sn(q),
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so Sn(Q) consists of all n-permutations that avoid every member of Q. We also define

S(Q) =
⋃
n≥1

Sn(Q),

and set
sn(Q) = |Sn(Q)|.

Note that if q1, q2 ∈ Q and q2 contains q1, then the q2 restriction is superfluous, since
every q1-avoiding permutation is also q2-avoiding. Hence we may assume that Q is an
antichain with respect to the pattern containment ordering.

The problem of finding the cardinality of Sn(q) for various patterns q has received
much attention. The first two calculations were sn(123) and sn(132), by MacMahon [12]
and Knuth [10] respectively. Both cardinalities turn out to be the nth Catalan number.
Later, Simion and Schmidt [18] found sn(Q) for all Q ⊆ S3. This was followed by several
articles that found sn({q1, q2}) for various pairs of permutations: Billey, Jockusch, and
Stanley [4], Guibert [9], and West [19] solved the problem for q1 ∈ S3, q2 ∈ S4, and
Kremer and Shiu [11] did several cases with q1, q2 ∈ S4.

Two recent articles articles have dealt with counting permutations that avoid at least
two patterns of length three subject to other constraints. Mansour [13] found the gener-
ating functions for sn(Q ∪ {q}) explicitly (in the form of a determinant) for all patterns
q and sets Q ⊂ S3 with |Q| ≥ 2. Later, Mansour [14] computed generating functions for
the number of permutations that avoid at least two patterns of length three and contain
another pattern (of any length) exactly once. We generalize and combine these results in
this paper.

We will start by showing how to routinely find sn(Q) for all sets of permutations Q
with |Q ∩ S3| ≥ 2. Using ideas from Atkinson [1], we go on to show that this gives us an
algorithm to find the number of n-permutations that avoid two patterns of length three
and contain a finite set of other patterns a prescribed number of times. Along the way,
we answer a question of Egge [6] and see when the level sums of a generating tree agree
with a polynomial.

We begin with definitions. If q is a permutation and q−1 is its group-theoretic inverse,
then by elementary arguments (see, for example, Simion and Schmidt [18]), sn(q) =
sn(q−1) for all n. The same holds between q and its reverse, qrev, where qrev(i) = q(|q| +
1 − i). These two operations generate the dihedral group of order 8. If Q2 is a set of
permutations that can be obtained from Q1 by an element of this group, then sn(Q1) =
sn(Q2) and we say that Q1 and Q2 are in the same symmetry class.

If Q1 and Q2 are sets of patterns with sn(Q1) = sn(Q2) for all n then we say that Q1

and Q2 are Wilf-equivalent , or that they belong to the same Wilf class. As is the case
with 123 and 132, it can happen that two patterns are Wilf-equivalent even though they
are not in the same symmetry class. One of the advantages of our approach is that is
makes Wilf-equivalence particularly easy to notice (see Corollaries 3.4, 3.7, and 3.9).
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There are only six symmetry classes of two element subsets of S3, listed below.

symmetry class members

A {132, 231}, {213, 312}, {132, 312}, {213, 231}

B {132, 213}, {231, 312}

C {123, 132}, {123, 213}, {231, 321}, {312, 321}

D {132, 321}, {123, 231}, {123, 312}, {213, 321}

E {123, 321}

Simion and Schmidt [18] found that these sets form only three Wilf classes. In par-
ticular, they showed that sn(Q) = 2n−1 if Q belongs to any of the symmetry classes A,
B, or C, sn(Q) = 1 +

(
n
2

)
if Q belongs to class D, and for n ≥ 5, sn(Q) = 0 if Q is the

set in class E. For the remainder of this article we ignore the degenerate {123, 321} case.
We rederive the other results in the next section because we will need to know more than
just the cardinality of Sn(Q).

2 Generating trees

Our results will make use of what are known as generating trees. The introduction of
generating trees is due to Chung et al. [5], who used them to count Baxter permutations
and recommended their use in other problems involving permutations. Recently many
authors have followed this advice. The reader is referred to West’s papers [19] and [20] for
numerous examples and references. More generally, several authors have begun to study
the algebraic properties of generating trees, see Banderier et al. [3], Ferrari et al. [7], and
the references therein.

Precisely, a generating tree is a rooted, labeled tree such that the labels of the children
of a node are determined by the label of that node. Therefore we specify a generating
tree by providing the label of the root and a set of succession rules. For example, the
complete binary tree is given by

Root: (2)
Rule: (2) ; (2)(2)

If T is a tree, we will let T≤x denote the subtree of T containing x and all of its
descendants. Also, because it agrees with our applications to permutations, we will say
that the root of T is on level 1, and for any level n, we will refer to the number of nodes
on level n as the nth level sum of T .

To use generating trees to calculate sn(Q) for a set of patterns Q, we first build the
tree T (Q) (which we will call a pattern-avoidance tree) with nodes S(Q) where p ∈ Sn(Q)
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is a child of p′ ∈ Sn−1(Q) if p is formed by inserting n somewhere in p′. Then, we find a
generating tree that is isomorphic to T (Q). Four easy examples are contained in the next
two propositions. Certainly these results are not original, but it seems that the derivation
of T ({132, 231}) is the only one that has appeared in the literature (in West [19]).

Proposition 2.1 The pattern avoidance trees T ({312, 321}), T ({132, 213}), and
T ({132, 231}) are all isomorphic to the complete binary tree, so if Q belongs to class A,
B, or C, then sn(Q) = 2n−1.

Proof: We will need a separate ad hoc argument for each tree. First, if n ≥ 3 and
p ∈ Sn−1({312, 321}), then clearly we cannot insert n anywhere before the second-to-last
element of p, since the last two elements of p either form a 12 pattern or a 21 pattern.
Furthermore, the insertion of n into either the next-to-last or last position in p must
produce a permutation in S({312, 321}) because there will not be enough elements after
n to create a new 312 or 321 pattern. Therefore each node of T ({312, 321}) has precisely
two children, as desired.

Now assume p ∈ Sn−1({132, 213}). We cannot insert n anywhere to the left of n − 1,
unless we insert n at the very beginning, because otherwise we create a 132 pattern. Also,
to avoid creating a 213 pattern, we cannot insert n anywhere after n− 1 unless we insert
n immediately after n − 1. It is easily checked that both of these insertions are fine, so
again every node of T ({132, 213}) has precisely two children.

For the last case, let p ∈ Sn−1({132, 231}). We can insert n at the beginning or end
of p, and nowhere in between, completing the proof. 3

Proposition 2.2 The pattern avoidance tree T ({132, 321}) is isomorphic to the generat-
ing tree given by

Root: (2)
Rules: (2) ; (2)(2)

(2) ; (2)(1)
(1) ; (1)

so if Q is a member of class D, sn(Q) =
(

n
2

)
+ 1.

Proof: Let p ∈ Sn−1(132, 321). If p = 12 . . . (n−1), then we may insert n at the beginning
or end of p, but nowhere in between; these permutations correspond to nodes labeled (2).
If p 6= 12 . . . (n − 1), we cannot insert n at the very beginning of p because that would
create a 321 pattern, and we cannot insert n anywhere else before n − 1 because that
would create a 132 pattern. We can insert n right after n− 1 or at the end of p (in some
cases these two positions are the same, and this is when p corresponds to a node labeled
(1)). Furthermore, we cannot insert n elsewhere after n− 1, because that would create a
132 pattern (since n − 1 was not involved in a 321 pattern). 3
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3 Tree pruning and Wilf-equivalence

When Q contains at least two patterns of length three, T (Q) is a subtree of T (Q ∩ S3).
Of course, not every subtree is possible. For example, T (Q) cannot be isomorphic to
T ({132, 312}) with just the branch rooted at 12 cut off, because that would imply that
12 ∈ Q, and thus other branches would need to be pruned as well. Our goal is to discover
a set of “pruning rules” that will tell us in what ways these trees can be pruned. These
pruning rules will reduce the problem of enumerating permutations that avoid a set of
patterns to the much easier problem of enumerating words that avoid (in a few different
senses) a set of subwords. Although T ({132, 231}) ∼= T ({132, 213}) ∼= T ({312, 321}),
we will see that each tree prunes differently. We start with the easiest tree to prune,
T ({132, 231}).

Given an alphabet A, let An stand for the set of all words of length n with letters
from A and let A∗ = ∪nAn denote the set of all finite words over A. If w ∈ An, we let
|w| = n. We denote the empty word by ε. If u and w = `1`2 . . . `n are both words, where
`i ∈ A for all 1 ≤ i ≤ n, we write u � w if and only if w contains u as a (not necessarily
contiguous) subword, i.e., if and only if there is a set of indices i1 < i2 < . . . < ik such
that `i1`i2 . . . `ik = u.

We associate with each permutation p ∈ Sn({132, 231}) a word wA(p) ∈ {L, R}n−1 in
the following recursive manner. First, we set wA(1) = ε. For n > 1, assume that p is
formed by inserting n into p′. Let wA(p) = wA(p′)L if p(1) = n and wA(p) = wA(p′)R if
p(n) = n (by Proposition 2.1 these are the only two possibilities).

Theorem 3.1 Let p, q ∈ S({132, 231}). Then p contains a q pattern if and only if
wA(q) � wA(p).

Proof: Let n = |p| and k = |q|. We induct on n. If n = 1 then p = 1 and the theorem is
easily verified. Similarly, we may assume that k > 1, so there are (possibly empty) words
w and w′ and letters `, `′ ∈ {L, R} so that wA(q) = w` and wA(p) = w′`′. Hence q is
formed by inserting k into w−1

A (w) and p is formed by inserting n into w−1
A (w′).

First, assume that p contains a q pattern. Then w−1
A (w′) contains a w−1

A (w) pattern,
so by induction, w � w′. If wA(q) � w′ � wA(p) then we are done, so we may assume
that wA(q) 6� w′. Then by induction every q pattern in p uses the element n, so since this
element must play the role of k in any q pattern it participates in, ` = `′ as desired.

Now assume that wA(q) � wA(p), so w � w′. If wA(q) � w′, then we are done by
induction. Hence we may assume that ` = `′. By induction w−1

A (w′) contains a w−1
A (w)

pattern, and since ` = `′, either q(1) = k and p(1) = n or q(k) = k and p(n) = n. In both
cases we find a q pattern in p, completing the proof. 3

The previous theorem allows us to easily construct generating trees isomorphic to
T (Q) for all Q containing both 132 and 231. If u, w ∈ {L, R}∗ and u = `1`2 . . . `k where
each `i is a letter, let

mu(w) = max{i : `1`2 . . . `i � w},
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so mu(w) tells us how much of u we have in w. Now set

Q′ = Q \ {132, 231} = {q1, q2, . . . , qr}.
For convenience, let wi = wA(qi) = `i,1`i,2 . . . `i,|qi|−1 where `i,j ∈ {L, R}. By Theorem 3.1,
we can associate with each p ∈ S(Q) a vector

~vQ′(p) = (mw1(wA(p)) + 1, mw2(wA(p)) + 1, . . . , mwr(wA(p)) + 1)

∈ [|q1| − 1] × [|q2| − 1] × . . . × [|qm| − 1],

because if mwi
(wA(p)) = |qi| − 1 = |wi|, then wi � wA(p) and thus p /∈ S(Q). If ~a is any

such vector and ` ∈ {L, R}, let d`(~a) = (b1, b2, . . . , br) where

bi :=

{
ai + 1 if `i,ai+1 = `,
ai otherwise,

Then by Theorem 3.1, T (Q) is isomorphic to the generating tree with labels [|q1| − 1] ×
[|q2| − 1] × . . . × [|qm| − 1] and root ~1 = (1, 1, . . . , 1) in which for each ` ∈ {L, R}, any
node labeled ~a produces a child labeled d`(~a) if and only if d`(~a) ∈ [|q1| − 1]× [|q2| − 1]×
. . . × [|qm| − 1].

Note that if Q is a finite set of patterns, then the generating tree given above has only
finitely many labels, and thus it is well-known that the generating function for sn(Q) is
rational (and easily computed). In fact, since we have assumed that Q is an antichain the
following result of Atkinson et al. implies that Q is finite. Recall that a partially ordered
set is called partially well ordered if it contains neither an infinite strictly decreasing
sequence nor an infinite antichain.

Theorem 3.2 [2] For all sets of patterns Q with |Q ∩ S3| ≥ 2, S(Q) is partially well
ordered.

Furthermore, in Section 5, we will show that if Q contains 132, 231, and at least
one pattern from S({132, 231}), then sn(Q) is essentially a polynomial (we postpone the
definition of “essentially” until Corollary 5.3).

Now we move on to the case of avoiding 132 and 213. As in the last case, for each
p ∈ Sn({132, 213}) we recursively define a word wB(p) of length n−1. First set wB(1) = ε.
For n > 1, assume that p is formed by inserting n into p′. By Proposition 2.1, we know
that there are only two ways in which this insertion can be performed. If p(1) = n,
set wB(p) = wB(p′)L. Otherwise, n was inserted right after n − 1, and we set wB(p) =
wB(p′)R.

If u, w ∈ {L, R}∗, we say that w contains u as a factor if u occurs as a contiguous
subword in w, that is, if there are (possibly empty) words w1, w2 ∈ {L, R}∗ such that
w = w1uw2. We will also use this notion for permutations, and say that p contains
a1a2 . . . am as a factor if there is some i such that p(i + j) = aj for all j ∈ [m].

If u = La1Ra2La3Ra4 . . . La2m−1Ra2m and w are both words in {L, R}∗ with
a2, a3, . . . , a2m−1 > 0, we write u �R w if and only if there exist words w1, w2, . . . , w2m

such that w = w1w2 . . . w2m and for all i ∈ [m],
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(i) w2i−1 contains La2i−1 as a subword, and

(ii) w2i contains Ra2i as a factor.

For example, LLRR 6�R LLRLR (despite the fact that LLRR � LLRLR), but LLRR �R

LRLRR. Note that like �, �R is a partial ordering on {L, R}∗. In fact, � is a refinement
of �R, that is, u � w whenever u �R w.

Theorem 3.3 Let p, q ∈ S({132, 213}). Then p contains a q pattern if and only if
wB(q) �R wB(p).

Proof: Let n = |p| and k = |q|. We induct on n. For n ≤ 2 or k ≤ 2 the theorem is
easily checked, so we may assume that

wB(q) = w`k−2`k−1,

and
wB(p) = w′`′n−2`

′
n−1,

for some w, w′ ∈ {L, R}∗ and `k−2, `k−1, `
′
n−2, `

′
n−1 ∈ {L, R}. Hence q is formed by insert-

ing k into w−1
B (w`k−2) and p is formed by inserting n into w−1

B (w′`′n−2).
First assume that p contains a q pattern. Then w−1

B (w′`′n−2) contains a w−1
B (w`k−2)

pattern, so w`k−2 �R w′`′n−2. If w−1
B (w′`′n−2) contains a q pattern, then by induction

wB(q) �R w′`′n−2 �R wB(p) and we are done. So, we may assume that n plays a role in
all q patterns in p. If p(1) = n, then `′n−1 = L, and we must have q(1) = k (since n must
play a role in all q patterns and we are assuming that there is at least one q pattern in
p). Hence `k−1 = L and wB(q) �R wB(p), as desired.

Otherwise `′n−1 = R. It wB(p) does not contain the letter L, then p = 12 . . . n, and
the theorem is clearly true. So we may assume that wB(p) = u′LRj , and thus

p = (n − j)(n − j + 1) . . . npj+2pj+3 . . . pn.

Since we are assuming that n must play a role in all q patterns in p, we must have

q = (k − j)(k − j + 1) . . . kqj+2qj+3 . . . qk,

so wB(q) = uLRj for some word u. Furthermore, the (n − j)-permutation
(n−j)pj+2pj+3 . . . pn must contain a (k−j)qj+2qj+3 . . . qk pattern, so by induction, uL �R

u′L, and thus wB(q) �R wB(p), as desired.
Now assume that wB(q) �R wB(p). If wB(q) �R w′`′n−2, then we are done by induction,

so we may assume that wB(q) 6�R w′`′n−2, and thus `′n−1 = `k−1. Also note that we must
have w`k−2 �R w′`′n−2, so by induction, w−1

B (w′`′n−2) contains a w−1
B (w`k−2) pattern. If

`k−1 = `′n−1 = L, then q(1) = k and p(1) = n, so p contains a q pattern. Otherwise
`k−1 = `′n−1 = R, p contains a (n − 1)n factor, and q contains a (k − 1)k factor. By
assumption,

wB(q) = w`k−2R �R w′`′n−2R = wB(p),
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but
wB(q) 6�R w′`′n−2,

and thus any q pattern in p must use (n − 1) since otherwise we could form a q pattern
in w−1

B (w′`′n−2) and get wB(q) �R w′`′n−2. Therefore, since all wB(w`k−2) patterns in
w−1

B (w′`′n−2) use (n−1), and there is at least one of these patterns, p contains a q pattern
(which uses both n − 1 and n). 3

Almost immediately we get the following result about the relation between sn(Q) for
sets containing {132, 231} and sets containing {132, 213}.

Corollary 3.4 Let Q ⊂ S({132, 213}). Then for all n,

sn({132, 231} ∪ w−1
A (wB(Q))) ≤ sn({132, 213} ∪ Q),

with equality if Q ⊂ S({132, 213, 123})

Proof: Since �R is a refinement of �, if wB(q) �R wB(p) then wB(q) � wB(p). There-
fore by Theorems 3.1 and 3.3, if p, q ∈ S({132, 213}) and p contains a q pattern, then
w−1

A (wB(p)) contains a w−1
A (wB(q)) pattern, proving the inequality.

Now suppose that Q ⊂ S({132, 213, 123}). Because wB(123) = RR, wB(q) does not
contain an RR factor for any q ∈ Q. Hence, for all words w ∈ {L, R}∗, wB(q) �R w if
and only if wB(q) � w. 3

Theorem 3.3 also allows us to construct a generating tree isomorphic to T (Q) for any
Q containing both 132 and 213 just as we did in the case where Q contains both 132
and 231 (although in this case the generating tree is slightly more complicated). We
omit the explicit construction but remark that if Q is an antichain (and we may always
assume this) then the generating tree constructed has only finitely many labels, so again
the generating function for sn(Q) is rational.

Next we consider sets of patterns containing 312 and 321. This is the most complicated
case, but after some work we will see (Corollary 3.7) that these sets behave like sets
containing 132 and 213; precisely, we will see that if Q contains 312 and 321, then there
is a set of patterns Q′ containing 132 and 213 so that T (Q) ∼= T (Q′).

As usual, we start by defining a correspondence between permutations in S({312, 321})
and words on the symbols L and R, wC(p), and a partial ordering of these words, �L.
Let wC(1) = ε, and for n > 1, assume that p ∈ Sn({312, 321}) is formed by inserting n
into p′. Proposition 2.1 shows us that there are only two possibilities for this insertion:
the next-to-last or the last position. In the former case let wC(p) = wC(p′)L, and in the
latter, wC(p) = wC(p′)R.

We define the complement of the word w = `1`2 . . . `n ∈ {L, R}n, c(w), to be the
word whose ith letter is L if `i = R and is R if `i = L. For two words u, w ∈ {L, R}∗,
we write u �L w if and only if c(u) �R c(w). If u = La1Ra2La3Ra4 . . . La2m−1Ra2m

with a2, a3, . . . , a2m−1 > 0, this means that u �R w if and only if there exist words
w1, w2, . . . , w2m such that w = w1w2 . . . w2m and for all i ∈ [m],
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(i) w2i−1 contains La2i−1 as a factor, and

(ii) w2i contains Ra2i as a subword.

Unfortunately, wC and �L do not fully capture the notion of pattern avoidance in this case.
In addition, we will need the rewriting system in which any of the following operations
are allowed:

(i) for j ≥ 3, rewriting an Rj factor with RLj−1R,

(ii) for j ≥ 2, rewriting an Rj factor that occurs at the beginning of a word with LjR,

(iii) for j ≥ 2, rewriting an Rj factor that occurs at the end of a word with RLj , or

(iv) for j ≥ 1, rewriting the word Rj with Lj+1.

We write w =⇒ u if u can be derived from w by performing one of the operations (i)-(iv),

and w
∗

=⇒ u if u can be derived from w by any number of operations, that is, if there are
words w1, w2, . . . , wm−1 such that

w = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wm = u.

For any word w ∈ {L, R}∗, define

∆C(w) = {u : w
∗

=⇒ u}.

Note that since each of the operations (i)-(iv) decreases the number of occurrences of the
letter R, this system is Noetherian, i.e., there is no infinite sequence of words w0, w1, w2 . . .
such that

w0
∗

=⇒ w1
∗

=⇒ w2
∗

=⇒ . . . ,

so ∆C(w) is finite for all w. The next lemma describes another important property of
this rewriting system.

Lemma 3.5 Let w ∈ {L, R}∗ and u ∈ ∆C(w). Then for all j ≥ 0, wRLj ∗
=⇒ uRLj, so

uRLj ∈ ∆C(wRLj).

Proof: Choose m minimal so that there are words w1, w2, . . . , wm−1 so that

w = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wm = u.

We induct on m. If m = 0 then u = w and the lemma is true trivially. If m = 1, then
w =⇒ u and we handle each operation separately. If u is obtained from w by either (i) or
(ii) then the lemma is clearly true. If u is obtained from w by (iii), suppose that w = w′Ri

where i ≥ 2. Then we have

wRLj = w′Ri+1Lj =⇒ w′RLiRLj = uRLj
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by using (i). If u is obtained from w by (iv), then w = Ri for some i ≥ 1, so

wRLj = Ri+1Lj =⇒ Li+1RLj = uRLj

by using (ii), finishing the m = 1 case.

If m > 1, then by induction wRLj ∗
=⇒ wm−1RLj and wm−1RLj ∗

=⇒ uRLj so
wRLj ∗

=⇒ uRLj, completing the proof of the lemma. 3

We are now ready to establish the pruning rule in this case.

Theorem 3.6 Let p, q ∈ S({312, 321}). Then p contains a q pattern if and only if
u �L wC(p) for some u ∈ ∆C(wC(q)).

Proof: Let n = |p| and k = |q|. We induct on n. If n ≤ 2 or k ≤ 2, the theorem is easily
checked, so we may assume that

wC(q) = w`k−2`k−1,

and
wC(p) = w′`′n−2`

′
n−1,

where w, w′ ∈ {L, R}∗ and `k−2, `k−1, `
′
n−2, `

′
n−1 ∈ {L, R}.

First assume that p contains a q pattern. If w−1
C (w′`′n−2) contains a q pattern then we

are done by induction, so we will assume that w−1
C (w′`′n−2) is q-avoiding, and thus n must

play a role in every q pattern in p. Note that w−1
C (w′`′n−2) must contain a w−1

C (w`k−2)
pattern, so by induction, there is at least one word u ∈ ∆C(w`k−2) with u �L w′`′n−2.

If p(n) = n (so `′n−1 = R), then since there is at least one q pattern in p and all such
patterns must involve the element n we have q(k) = k (so `k−1 = R). Hence uR �L wC(p)
and since u ∈ ∆C(w`k−2), by Lemma 3.5, uR ∈ ∆C(w`k−2R) = ∆C(wC(q)).

Otherwise p(n − 1) = n and thus `′n−1 = L. There are two possibilities: either
p(n − 2) = n − 1 (so `′n−2 = L), or p(n) = n − 1 (so `′n−2 = R). In either case, because
n−1 and n are adjacent in p and w−1

C (w′`′n−2) is q-avoiding, every q pattern in p must use
(n − 1) as well as n. In the latter case, this implies that q(k) = k − 1 and q(k − 1) = k,
and thus wC(q) = wRL, and again using Lemma 3.5 we are done.

The former case, where p(n − 1) = n, p(n − 2) = n − 1, and thus wC(p) = w′LL
is slightly more difficult. First, if wC(p) = Ln−1 then p = 23 . . . n1, so p only contains
patterns of the form 12 . . . (j + 1) (with j < n − 1) and 23 . . . (j + 1)1 (with j ≤ n − 1).
If q = 12 . . . (j + 1) for some 1 ≤ j < n − 1, then wC(q) = Rj and by applying operation
(iv) we see that Lj+1 ∈ ∆C(wC(q)). We are now done because Lj+1 �L wC(p). In the
other case, q = 23 . . . (j + 1)1 for some 1 ≤ j ≤ n − 1, so wC(q) = Lj �L wC(p).
Therefore we may now assume that w′ contains the letter R, so let wC(p) = v′RLj , where
v ∈ {L, R}n−j−2. Then

p = p1p2 . . . pn−j−1(n − j + 1)(n − j + 2) . . . n(n − j).
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If there is a q pattern in p that uses the element (n − j), then we must have

q = q1q2 . . . qk−j−1(k − j + 1)(k − j + 2) . . . k(k − j),

so w−1
C (v′) = p1p2 . . . pn−j−1 contains a q1q2 . . . qk−j−1 pattern. Hence by induction there

is some v ∈ ∆C(wC(q1q2 . . . qk−j−1)) with v �L v′ and by Lemma 3.5,

vRLj ∈ ∆C(wC(q1q2 . . . qk−j−1)RLj) = ∆C(wC(q)),

and thus we are done because vRLj �L v′RLj .
Otherwise none of the q patterns in p use the element (n − j), so

w−1
C (v′Rj) = red(p1p2 . . . pn−j−1(n − j + 1)(n − j + 2) . . . n)

contains a q pattern. By induction this means that there is some u ∈ ∆C(wC(q)) with
u �L v′Rj. Hence u = u′Rj , and thus

wC(q)
∗

=⇒ u = u′Rj =⇒ u′RLj �L v′RLj = wC(p),

by applying operation (iii). Therefore we are finished with this direction of the proof.
Now assume that there is some u ∈ ∆C(wC(q)) with u �L wC(p). We will show that p

contains a q pattern by first showing that p contains a w−1
C (u) pattern and then showing

that w−1
C (u) contains a q pattern.

Note that since each of the operations (i)-(iv) is length increasing, m ≥ k ≥ 2. Let

u = w′′`′′m−2`
′′
m−1,

where w′′ ∈ {L, R}∗ and `′′m−2, `
′′
m−1 ∈ {L, R}. As usual we may assume by induction

that u 6�L w′`′n−2, so `′n−1 = `′m−1. Since we must have w′′`′′m−2 �L w′`′n−2, by induction
we see that w−1

C (w′`′n−2) contains a w−1
C (w′′`′′m−2) pattern. Hence if `′n−1 = `′′m−1 = R, so

p(n) = n and w−1
C (u)(m) = m, then p contains a w−1

C (u) pattern as desired.
This leaves us with the case where `′n−1 = `′′m−1 = L. If `′′m−2 = R then w−1

C (u) ends
with an n(n − 1) factor. There must be at least one occurrence of the letter R in wC(p),
and thus we may write

wC(p) = v′RLj .

Then w′′R �L v′R so by induction w−1
C (v′R) contains a w−1

C (w′′R) pattern, and from here
it is clear that p contains a w−1

C (u) pattern.
If `′′m−2 = L, then

u = w′′LL �L w′`′n−2L = wC(p),

so since we have assumed that u 6�L w′`′n−2, we must have `′n−2 = L. Therefore p ends
with an (n − 1)nx′ pattern for some x′ ∈ [n − 2] and w−1

C (u) ends with an (m − 1)mx′′

pattern for some x′′ ∈ [m − 2]. If there is a w−1
C (w′′L) pattern in w−1

C (w′), then we are
done by induction, so we may assume that all the w−1

C (w′′L) patterns in w−1
C (w′L) (we

have remarked earlier that there must be at least one of these) use the element n − 1.
This shows that p contains a w−1

C (u) pattern, completing this part of the proof.
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It remains only to show that w−1
C (u) contains a q pattern for all u ∈ P (wC(q)). Choose

m minimal so that there are words w1, w2, . . . , wm−1 so that

wC(q) = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wm = u.

We induct on m. If m = 0 then w−1
C (u) = q and the claim is true. If m = 1, then

wC(q) =⇒ u and we examine each operation separately.
Suppose that u is obtained from wC(q) by (iv). Then

q = 12 . . . k,

w−1
C (u) = 23 . . . (k + 1)1,

and we get q from w−1
C (u) by removing 1 and reducing.

If u is obtained from wC(q) by (iii), then

wC(q) = w1R
j =⇒ w1RLj = u,

so

q = w−1
C (w1)(k − j + 1)(k − j + 2) . . . k,

w−1
C (u) = w−1

C (w1)(k − j + 2)(k − j + 3) . . . (k + 1)(k − j + 1),

and to get q from w−1
C (u) we just remove k − j + 1 and reduce.

If u is obtained from wC(q) by (ii), then

wC(q) = Rjw1 =⇒ w1L
jRw1 = u,

and q is equal to the reduction of the permutation obtained from w−1
C (u) by removing the

element 1.
Finally, if u is obtained from wC(q) by (i), then

wC(q) = w1R
jw2 =⇒ w1RLj−1Rw2 = u.

and q is equal to the reduction of the permutation obtained by removing the element
|w1| + 1 from w−1

C (u), so w−1
C (u) contains a q pattern.

If m > 1, then by induction w−1
C (wm−1) contains a q pattern and w−1

C (u) contains a
w−1

C (wm−1) pattern, so w−1
C (u) contains a q pattern, completing the proof. 3

Immediately from Theorems 3.3 and 3.6, we get the following result about Wilf-
equivalence.

Corollary 3.7 Let Q ⊂ S({312, 321}). Then for all n,

sn({312, 321} ∪ Q) = sn({132, 213} ∪ w−1
B (c(∆C(wC(Q))))).
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Therefore for any set of patterns Q containing both 312 and 321, sn(Q) has a rational
generating function, and we can find this generating function by using Corollary 3.7 and
then constructing the generating tree alluded to after Theorem 3.3.

We have only one more symmetry class to consider, sets containing 132 and 321. From
Theorem 3.1 we see that

T ({132, 321}) ∼= T ({132, 231, 4213})

because wA(4213) = LRL. In fact, we will see that T ({132, 321}) prunes much like
T ({132, 231, 4213}).

As usual, let wD(1) = ε, and for n > 1 assume that p ∈ Sn({132, 321}) is formed
by inserting n into p′. We define wD(p) by wD(p) = wD(p′)R if p(n) = n, and wD(p) =
wD(p′)L otherwise (in this case, either p = n1 . . . (n − 1) or n was inserted right after
n−1). By Proposition 2.2 the image of wD is precisely the set {w ∈ {L, R}∗ : LRL 6� w}.

We will not need a new partial order for this case, but we do need to define another
rewriting system. In this system only one operation is allowed: rewriting the word Ri+j

as LiRj . Let
∆D(w) = {u : w

∗
=⇒ u},

so

∆D(w) =

{ {w} if L � w,
{LiR|w|−i : 0 ≤ i ≤ |w|} if L 6� w.

Theorem 3.8 Let p, q ∈ S({132, 321}). Then p contains a q pattern if and only if
u � wD(p) for some u ∈ ∆D(wD(q)).

Proof: As we remarked above, because p, q ∈ S({132, 321}), LRL 6� wD(p), wD(q).
This means that wD(p) = Ra1La2Ra3 and wD(q) = Rb1Lb2Rb3 for some integers a1, a2, a3,
b1, b2, b3 ≥ 0. Furthermore, we have that

w−1
D (RiLjRk) =

(i + 2)(i + 3) . . . (i + j + 1)12 . . . (i + 1)(i + j + 2)(i + j + 3) . . . (i + j + k + 1).

So w−1
D (RiLjRk) consists of three (possibly empty) increasing factors of respective lengths

b, a + 1, and c such that every element in the first increasing factor is greater than all
elements in the second, but less than all elements in the third.

First, if q is not 12 . . . k, then L � wD(q) and clearly p has a q pattern if and only if
bi ≤ ai for all i ∈ [3]. Since ∆D(wD(q)) = {wD(q)} in this case, we are done.

Otherwise q = 12 . . . k (so wD(q) = Rk−1) and we need to consider several different
kinds of q patterns in p. First, p could have a q pattern in the 12 . . . (a1 + 1) factor. This
occurs if and only if k − 1 ≤ a1, i.e., if and only if Rk−1 � Ra1 . Secondly, we could have
a q pattern in the (a1 + a2 + 2)(a1 + a2 + 3) . . . (a1 + a2 + a3 + 1) factor. This occurs
if and only if k − 1 ≤ a3, which is if and only if Rk−1 � Ra3 . We could also have a
q pattern formed using elements from both of these factors, which occurs if and only if
Rk−1 � Ra1Ra3 . All other q patterns must use the (a1 + 2)(a1 + 3) . . . (a1 + a2 + 1) factor.
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Hence these patterns cannot use the 12 . . . (a1 +1) factor, so we have such patterns if and
only if LiRk−1−i � La2Ra3 for some i ≥ 0. Putting this together with our expression for
∆D(wD(q)), the theorem is proved. 3

Theorem 3.8 gives us our last result about Wilf-equivalence.

Corollary 3.9 Let Q ⊂ S({132, 321}). Then for all n,

sn({132, 321} ∪ Q) = sn({132, 231, 4213} ∪ w−1
A (∆D(wD(Q)))).

We conclude this section by collecting our various results about rational generating
functions.

Theorem 3.10 Let Q be any set of patterns that contains two elements of S3. Then T (Q)
is isomorphic to a generating tree with only finitely many labels, and thus the generating
function for sn(Q) is rational.

4 Interesting sets of restrictions

Simion and Schmidt [18] showed that sn({123, 132, 213}) = Fn+1, the n + 1st Fibonacci
number. Egge [6] generalized this to show that for all n ≥ 0 and k ≥ 2,

sn({123, 132, (k − 1)(k − 2) . . . 1k}) = sn({132, 213, 12 . . . k}) = F
(k−1)
n+1 ,

where F
(k)
n denotes the nth k-generalized Fibonacci number defined by F

(k)
n = 0 for

n ≤ 0, F
(k)
1 = 1, and F

(k)
n =

∑k
i=1 F

(k)
n−i for n ≥ 2. This follows easily from our work in the

previous section. First, note that {123, 132, (k− 1)(k− 2) . . . 1k} and {312, 321, 23 . . . k1}
are in the same symmetry class. Also, wB(12 . . . k) = Rk−1, wC(23 . . . k1) = Lk−1, and
∆C(Lk−1) = {Lk−1}, so {123, 132, (k − 1)(k − 2) . . . 1k} and {132, 213, 12 . . . k} are Wilf-
equivalent by Corollary 3.7.

Hence we need only compute sn({132, 213, 12 . . . k}). Because wB(12 . . . k) = Rk−1,
Theorem 3.3 tells us that there is a bijection between Sn({132, 213, 12 . . . k}) and the set
of words in {L, R}n−1 that do not contain an Rk−1 factor. It is well-known that the

number of such words is F
(k−1)
n+1 .

Egge [6] performs another calculation that follows easily from our previous work. It is

sn({132, 213, 23 . . . k1}) =
n∑

i=1

F
(k−2)
i . (1)

Since wB(23 . . . k1) = LRk−2, we get

sn({132, 213, 23 . . . k1}) = sn−1({132, 213, w−1
B (LRk−2)}) + sn−1({132, 213, w−1

B (Rk−2)}),
= sn−1({132, 213, 23 . . . k1}) + sn−1({132, 213, 12 . . . (k − 1)}),
= sn−1({132, 213, 23 . . . k1}) + F (k−2)

n ,
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by our previous calculation, and now (1) follows. Notice that the differences of
sn({132, 213, 23 . . . k1}) satisfy the (k − 2)-generalized Fibonacci recurrence. Inspired by
this and a calculation that is not aided by our work (that the (k − 3)rd differences of
sn({132, 2341, k(k − 1) . . . 4213}) satisfy the Fibonacci recurrence), Egge asked: for all
i ≥ 0 and k ≥ 1, is there a set of patterns Qi,k such that the ith differences of sn(Qi,k)
satisfy the k-generalized Fibonacci recurrence? We answer this in the affirmative, with

Qi,k = {132, 213, (i + 1)(i + 2) . . . (i + k + 1)i(i − 1) . . . 1}.

The desired result follows easily from induction on i and the fact that

wB((i + 1)(i + 2) . . . (i + k + 1)i(i − 1) . . . 1) = LiRk,

so
sn(Qi,k) = sn−1(Qi,k) + sn−1(Qi−1,k),

for i, n ≥ 1 (we have already settled the i = 0 case above).
We can also get a sum of a bounded number of generalized Fibonacci numbers by

adding another pattern to sets we have already considered:

sn({132, 213, 23 . . . k1, 12 . . . (j + 1)}) =

j∑
i=1

F
(k−2)
i .

Furthermore, we can find sets that (for n large enough) give us any constant function
we would like:

sn({132, 213, 231, 12 . . . (k + 1)}) = min{n, k},
for all n.

5 When sn(Q) is (essentially) a polynomial

Theorem 3.10 tells us that there is a finitely-labeled generating tree isomorphic to T (Q)
whenever |Q∩S3| ≥ 2. In addition to giving rise to rational generating functions, finitely-
labeled generating trees are nice because they are equivalent to deterministic information-
less Lindenmayer systems, or D0L-systems for short (see Ferrari et al. [7] for details). The
reader is referred to Rozenberg and Salomaa [16] for more information on D0L-systems.
We will make use only of the following result of Salomaa, which we have translated into
generating tree terminology.

Theorem 5.1 [17] Let T be a finitely-labeled generating tree. If there is a node, say
x ∈ T , such that T≤x contains two nodes on the same level with the same label as x, then
the level sums of T are (clearly) exponential. Otherwise the level sums of T are bounded
by a polynomial.
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It is relatively easy to see that if ∅ 6= Q ⊂ S({132, 231}), then the generating tree
isomorphic to T ({132, 231}∪Q) that we constructed in Section 3 satisfies the hypotheses
of Theorem 5.1: the ith component of d`(~a) is at least the ith component of ~a, and since
Q 6= ∅, for some i ∈ |Q| the ith component of either dL(~a) or dR(~a) is strictly greater than
the ith component of ~a.

If T is a generating tree and x and y are nodes in T , then x and y can not share a label
if T≤x 6∼= T≤y, but they can share a label if T≤x

∼= T≤y. Let λ(T ) denote the cardinality
of the largest set of nodes X ⊂ T such that T≤x 6∼= T≤y whenever x, y ∈ X with x 6= y.
In other words, λ(T ) is the minimum number of labels needed for T . Note that if y is a
descendant of x in T , then λ(T≤y) ≤ λ(T≤x).

Theorem 5.2 Suppose that the generating tree T has polynomially bounded level sums
and the additional property that if y is a child of x then λ(T≤y) = λ(T≤x) only if T≤y

∼= T≤x.
Then there is a polynomial p(n) of degree at most λ(T ) such that T has precisely p(n)
nodes on level n for all n ≥ λ(T ).

Proof: Let pT (n) denote the number of nodes on level n of T . We induct on λ(T ). If
λ(T ) = 1, then since the level sums of T are bounded by a polynomial, we must have
pT (n) = 1 for all n ≥ 1. Now assume that λ(T ) ≥ 2 and that the children of the root
node are x1, x2, . . . , xk. Hence for all n ≥ 2,

pT (n) =
k∑

i=1

pT≤xi
(n − 1).

If λ(T≤x1) < λ(T ) for all i ∈ [k], then the theorem follows by induction. Otherwise,
without loss assume that T≤x1

∼= T . Note that since T has polynomially bounded level
sums, this is the only such child. Therefore we get that

pT (n) − pT (n − 1) =
k∑

i=2

pT≤xi
(n − 1),

and we are again done by induction. 3

Applying this to our situation gives the following result.

Corollary 5.3 Let ∅ 6= {q1, q2, . . . , qm} ⊂ S({132, 231}). Then there is a polynomial of
degree at most (|q1|−1)(|q2|−1) . . . (|qm|−1) that agrees with sn({132, 231, q1, q2, . . . , qm})
for all n ≥ (|q1| − 1)(|q2| − 1) . . . (|qm| − 1).

Note that by our previous work on Wilf-equivalence, similar results hold in two other
cases:

(1) By Corollary 3.4, if ∅ 6= {q1, q2, . . . , qm} ⊂ S({132, 213, 123}) then there is a
polynomial of degree at most (|q1| − 1)(|q2| − 1) . . . (|qm| − 1) that agrees with
sn({132, 213, q1, q2, . . . , qm}) for all n ≥ (|q1| − 1)(|q2| − 1) . . . (|qm| − 1).

(2) By Corollary 3.9, if 132, 321 ∈ Q then there is a polynomial that agrees with sn(Q)
for all large n.

the electronic journal of combinatorics 9(2) (2003), #R6 16



6 Conclusion

In [15], Noonan and Zeilberger studied permutations that contain patterns a prescribed
(possibly non-zero) number of times. In particular they conjectured that the number of n-
permutations with exactly r1, r2, . . . , rj copies of the patterns q1, q2, . . . , qj is P-recursive
in n. Atkinson [1] showed using Inclusion-Exclusion and some simple counting argu-
ments that there are finite sets of patterns Q1, Q2, . . . , Qk so that the number of the afor-
mentioned permutations is an integral linear combination of sn(Q1), sn(Q2), . . . , sn(Qk).
Hence the Noonan-Zeilberger Conjecture is equivalent to the seemingly weaker conjecture
of Gessel [8] that sn(Q) is P-recursive for all finite sets of patterns Q. If r1 = r2 = 0, then
Atkinson’s argument shows that the number of these permutations is equal to an integral
linear combination of sn({q1, q2}∪Q1), sn({q1, q2}∪Q2), . . . , sn({q1, q2}∪Qk) for some sets
of patterns Q1, Q2, . . . Qk. Hence by Theorem 3.10, the Noonan-Zeilberger Conjecture is
true whenever r1 = r2 = 0 and q1, q2 ∈ S3 with q1 6= q2. Moreover, Atkinson gives an
upper bound on the lengths of the permutations in Q1, Q2, . . . , Qk, so together with our
results from Section 3, we get an algorithm to compute the number of these permutations
in the case where r1 = r2 = 0, q1, q2 ∈ S3, and q1 6= q2. This is similar to the work
of Mansour [14], who computed generating functions for the number of n-permutations
that avoid two distinct patterns of length three and contain exactly one copy of another
pattern of any length.

It is natural to wonder what other pattern avoidance trees T (Q) have nice pruning
rules. If the pruning rules are to look like the rules presented here then the tree must have
bounded degrees, i.e., there must be a constant d such that every permutation p ∈ S(Q)
has at most d children in T (Q). This forces us to have, for some j, k ≥ 0, both a child
of 12 . . . j and a child of k . . . 21 in Q because otherwise for all n either 12 . . . n or n . . . 21
will have n + 1 children and thus the tree will not have bounded degrees. In fact, Kremer
and Shiu [11] showed that this condition is sufficient.

Theorem 6.1 [11] The pattern-avoidance tree T (Q) has bounded degrees if and only if
for some j, k ≥ 0, Q contains a child of 12 . . . j and a child of k . . . 21.

For a start, it would be nice to know if all the pattern-avoidance trees with bounded
degrees are isomorphic to finitely labeled generating trees. We have seen in Section 3 that
this is true if |Q∩S3| ≥ 2, and Kremer and Shiu [11] found it to be true when Q contains
precisely two distinct elements of S4.

Acknowledgment. I am grateful to Doron Zeilberger for his helpful comments.
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