### A Schröder Generalization of Haglund's Statistic on Catalan Paths

#### Abstract

Garsia and Haiman (*J. Algebraic. Combin.* $\bf5$ $(1996)$, $191-244$) conjectured that a certain sum $C_n(q,t)$ of rational functions in $q,t$ reduces to a polynomial in $q,t$ with nonnegative integral coefficients. Haglund later discovered (*Adv. Math.*, in press), and with Garsia proved (*Proc. Nat. Acad. Sci.* ${\bf98}$ $(2001)$, $4313-4316$) the refined conjecture $C_n(q,t) = \sum q^{{\rm area}}t^{{\rm bounce}}$. Here the sum is over all Catalan lattice paths and ${\rm area}$ and ${\rm bounce}$ have simple descriptions in terms of the path. In this article we give an extension of $({\rm area},{\rm bounce})$ to Schröder lattice paths, and introduce polynomials defined by summing $q^{{\rm area}}t^{{\rm bounce}}$ over certain sets of Schröder paths. We derive recurrences and special values for these polynomials, and conjecture they are symmetric in $q,t$. We also describe a much stronger conjecture involving rational functions in $q,t$ and the $\nabla$ operator from the theory of Macdonald symmetric functions.