A Combinatorial Derivation of the PASEP Stationary State

Richard Brak, Sylvie Corteel, John Essam, Robert Parviainen, Andrew Rechnitzer

Abstract


We give a combinatorial derivation and interpretation of the weights associated with the stationary distribution of the partially asymmetric exclusion process. We define a set of weight equations, which the stationary distribution satisfies. These allow us to find explicit expressions for the stationary distribution and normalisation using both recurrences and path models. To show that the stationary distribution satisfies the weight equations, we construct a Markov chain on a larger set of generalised configurations. A bijection on this new set of configurations allows us to find the stationary distribution of the new chain. We then show that a subset of the generalised configurations is equivalent to the original process and that the stationary distribution on this subset is simply related to that of the original chain. We also provide a direct proof of the validity of the weight equations.


Full Text: PDF