On the Resilience of Long Cycles in Random Graphs

Domingos Dellamonica Jr, Yoshiharu Kohayakawa, Martin Marciniszyn, Angelika Steger

Abstract


In this paper we determine the local and global resilience of random graphs $G_{n, p}$ ($p \gg n^{-1}$) with respect to the property of containing a cycle of length at least $(1-\alpha)n$. Roughly speaking, given $\alpha > 0$, we determine the smallest $r_g(G, \alpha)$ with the property that almost surely every subgraph of $G = G_{n, p}$ having more than $r_g(G, \alpha) |E(G)|$ edges contains a cycle of length at least $(1 - \alpha) n$ (global resilience). We also obtain, for $\alpha < 1/2$, the smallest $r_l(G, \alpha)$ such that any $H \subseteq G$ having $\deg_H(v)$ larger than $r_l(G, \alpha) \deg_G(v)$ for all $v \in V(G)$ contains a cycle of length at least $(1 - \alpha) n$ (local resilience). The results above are in fact proved in the more general setting of pseudorandom graphs.


Full Text: PDF