Tetravalent Non-Normal Cayley Graphs of Order $4p$

Jin-Xin Zhou

Abstract


A Cayley graph ${\rm Cay}(G,S)$ on a group $G$ is said to be normal if the right regular representation $R(G)$ of $G$ is normal in the full automorphism group of ${\rm Cay}(G,S)$. In this paper, all connected tetravalent non-normal Cayley graphs of order $4p$ are constructed explicitly for each prime $p$. As a result, there are fifteen sporadic and eleven infinite families of tetravalent non-normal Cayley graphs of order $4p$.


Full Text: PDF