### On the Linearity of Higher-Dimensional Blocking Sets

#### Abstract

A small minimal $k$-blocking set $B$ in $\mathrm{PG}(n,q)$, $q=p^t$, $p$ prime, is a set of less than $3(q^k+1)/2$ points in $\mathrm{PG}(n,q)$, such that every $(n-k)$-dimensional space contains at least one point of $B$ and such that no proper subset of $B$ satisfies this property. The *linearity conjecture* states that all small minimal $k$-blocking sets in $\mathrm{PG}(n,q)$ are linear over a subfield $\mathbb{F}_{p^e}$ of $\mathbb{F}_q$. Apart from a few cases, this conjecture is still open. In this paper, we show that to prove the linearity conjecture for $k$-blocking sets in $\mathrm{PG}(n,p^t)$, with exponent $e$ and $p^e\geq 7$, it is sufficient to prove it for one value of $n$ that is at least $2k$. Furthermore, we show that the linearity of small minimal blocking sets in $\mathrm{PG}(2,q)$ implies the linearity of small minimal $k$-blocking sets in $\mathrm{PG}(n,p^t)$, with exponent $e$, with $p^e\geq t/e+11$.