### Aperiodic Non-Isomorphic Lattices with Equivalent Percolation and Random-Cluster Models

#### Abstract

We explicitly construct an uncountable class of infinite aperiodic plane graphs which have equal, and explicitly computable, bond percolation thresholds. Furthermore for both bond percolation and the random-cluster model all large scale properties, such as the values of the percolation threshold and the critical exponents, of the graphs are equal. This equivalence holds for all values of $p$ and all $q\in[0,\infty]$ for the random-cluster model.

The graphs are constructed by placing a copy of a rotor gadget graph or its reflection in each hyperedge of a connected self-dual 3-uniform plane hypergraph lattice. The exact bond percolation threshold may be explicitly determined as the root of a polynomial by using a generalised star-triangle transformation. Related randomly oriented models share the same bond percolation threshold value.