Monotone Paths in Random Hypergraphs
Abstract
We determine the probability thresholds for the existence of monotone paths, of finite and infinite length, in random oriented graphs with vertex set $\mathbb N^{[k]}$, the set of all increasing $k$-tuples in $\mathbb N$. These graphs appear as line graph of uniform hypergraphs with vertex set $\mathbb N$.
Keywords
Random graphs; Extremal measures; Percolation