On Sets with Few Intersection Numbers in Finite Projective and Affine Spaces

Nicola Durante

Abstract


In this paper we study sets $X$ of points of both affine and projective spaces over the Galois field $\mathop{\rm{GF}}(q)$ such that every line of the geometry that is neither contained in $X$ nor disjoint from $X$ meets the set $X$ in a constant number of points and we determine all such sets. This study has its main motivation in connection with a recent study of neighbour transitive codes in Johnson graphs by Liebler and Praeger [Designs, Codes and Crypt., 2014]. We prove that, up to complements, in $\mathop{\rm{PG}}(n,q)$ such a set $X$ is either a subspace or $n=2,q$ is even and $X$ is a maximal arc of degree $m$. In $\mathop{\rm{AG}}(n,q)$ we show that $X$ is either the union of parallel hyperplanes or a cylinder with base a maximal arc of degree $m$ (or the complement of a maximal arc) or a cylinder with base the projection of a quadric. Finally we show that in the affine case there are examples (different from subspaces or their complements) in $\mathop{\rm{AG}}(n,4)$ and in $\mathop{\rm{AG}}(n,16)$ giving new neighbour transitive codes in Johnson graphs.


Keywords


Maximal arcs; ovals; conics; quadrics.

Full Text: PDF