Evaluating the Numbers of some Skew Standard Young Tableaux of Truncated Shapes

Ping Sun


In this paper the number of standard Young tableaux (SYT) is evaluated by the methods of multiple integrals and combinatorial summations. We obtain the product formulas of the numbers of skew SYT of certain truncated shapes, including the skew SYT $((n+k)^{r+1},n^{m-1}) / (n-1)^r $ truncated by a rectangle or nearly a rectangle, the skew SYT of truncated shape $((n+1)^3,n^{m-2}) / (n-2) \backslash \; (2^2)$, and the SYT of truncated shape $((n+1)^2,n^{m-2}) \backslash \; (2)$.


Truncated shapes; Standard Young tableaux; Order statistics; Selberg integral

Full Text: PDF