On Graphs Having no Flow Roots in the Interval $(1,2)$

F.M. Dong


For any graph $G$, let $W(G)$ be the set of vertices in $G$ of degrees larger than 3. We show that for any bridgeless graph $G$, if $W(G)$ is dominated by some component of $G - W(G)$, then $F(G,\lambda)$ has no roots in the interval (1,2), where $F(G,\lambda)$ is the flow polynomial of $G$. This result generalizes the known result that $F(G,\lambda)$ has no roots in (1,2) whenever $|W(G)| \leq 2$. We also give some constructions to generate graphs whose flow polynomials have no roots in $(1,2)$.


chromatic polynomial; flow polynomial;

Full Text: PDF