Maximal Partial Spreads of Polar Spaces

Antonio Cossidente, Francesco Pavese

Abstract


Some constructions of maximal partial spreads of finite classical polar spaces are provided. In particular we show that, for $n \ge 1$, $\mathcal{H}(4n-1,q^2)$ has a maximal partial spread of size $q^{2n}+1$, $\mathcal{H}(4n+1,q^2)$ has a maximal partial spread of size $q^{2n+1}+1$ and, for $n \ge 2$, $\mathcal{Q}^+(4n-1,q)$, $\mathcal{Q}(4n-2,q)$, $\mathcal{W}(4n-1,q)$, $q$ even, $\mathcal{W}(4n-3,q)$, $q$ even, have a maximal partial spread of size $q^n+1$.

Keywords


Finite classical polar space; Maximal partial spread; Singer cycle; Segre variety

Full Text: PDF