A Note on Forbidding Clique Immersions

Matt DeVos, Jessica McDonald, Bojan Mohar, Diego Scheide

Abstract


Robertson and Seymour proved that the relation of graph immersion is well-quasi-ordered for finite graphs. Their proof uses the results of graph minors theory. Surprisingly, there is a very short proof of the corresponding rough structure theorem for graphs without $K_t$-immersions; it is based on the Gomory-Hu theorem. The same proof also works to establish a rough structure theorem for Eulerian digraphs without $\vec{K}_t$-immersions, where $\vec{K}_t$ denotes the bidirected complete digraph of order $t$.

Keywords


Graph theory; Immersion

Full Text: PDF