### Shape Tiling

#### Abstract

Given a list $1\times 1, 1\times a, 1\times b, \dots, 1\times c$ of rectangles, with $a,b,\dots,c$ non-negative, when can $1\times{t}$ be tiled by positive and negative copies of rectangles which are similar (uniform scaling) to those in the list? We prove that such a tiling exists iff $t$ is in the field $Q(a,b,\dots,c)$.