### A Note on the Glauber Dynamics for Sampling Independent Sets

#### Abstract

This note considers the problem of sampling from the set of weighted independent sets of a graph with maximum degree $\Delta$. For a positive fugacity $\lambda$, the weight of an independent set $\sigma$ is $\lambda^{|\sigma|}$. Luby and Vigoda proved that the Glauber dynamics, which only changes the configuration at a randomly chosen vertex in each step, has mixing time $O(n\log{n})$ when $\lambda < {{2}\over {\Delta-2}}$ for triangle-free graphs. We extend their approach to general graphs.