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Abstract

In this paper, we prove that the full automorphism group of the derangement
graph Γn (n ≥ 3) is equal to (R(Sn) ⋊ Inn(Sn)) ⋊ Z2, where R(Sn) and Inn(Sn)
are the right regular representation and the inner automorphism group of Sn

respectively, and Z2 = 〈ϕ〉 with the mapping ϕ : σϕ = σ−1, ∀σ ∈ Sn. Moreover, all
orbits on the edge set of Γn (n ≥ 3) are determined.
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1 Introduction

For a finite, simple and undirected graph Γ, we use V (Γ), E(Γ) and Aut(Γ) to denote its
vertex set, edge set and full automorphism group, respectively. Let G be a finite group and
S a subset of G not containing the identity element 1. The Cayley graph Γ := Cay(G, S)
on G with respect to S is defined by

V (Γ)=G, E(Γ)={(g, sg) | g∈G, s∈S}.

If S = S−1, then Cay(G, S) can be viewed as an undirected graph by identifying an
undirected edge {g, h} with two directed edges (g, h) and (h, g). It is easy to see from the
definition that there are two obvious facts: (1) Γ is regular of vertex degree |S|; (2) Γ is
connected if and only if G = 〈S〉.
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A bijection of a finite set Ω to itself is a permutation of Ω. Let Sn be the symmetric
group of permutations of X = {1, 2, · · · , n}, and let Dn := {σ ∈ Sn | xσ 6= x, ∀x ∈ X}
denote the derangements on X , namely the set of fixed point free permutations of Sn.
The graph Γn := Cay(Sn,Dn) is called the derangement graph on X . Moreover, denote
|Dn| by Dn for the convenience of writing.

There are many nice structures and properties on the derangement graph Γn which
are discovered by researchers. For example, Renteln [17] proved that it is connected for
n ≥ 4, the clique number ω(Γn) = n, and the chromatic number χ(Γn) = n. Imrich [13] and
Hamidoune [11] independently proved that the vertex connectivity κ(Γn) = Dn. Eggleton
and Wallis [4], and Rasmussen and Savage [16] observed that Γn is Hamiltonian. Deza and
Frankl [3] proved that the maximum independent number α(Γn) = (n−1)!. Moreover, the
structure of maximum independent set of Γn, namely a coset of the stabilizer of a point,
has been determined by several authors ([1, 10, 15, 19]). Ku and Wong [14] conjectured
that −Dn

n−1
is the smallest eigenvalue of Γn, which has been confirmed by Renteln [17]. Deng

and Zhang [2] proved that n−3
n−1

Dn−2 is the second largest eigenvalue of Γn.
On the other hand, it is interesting and difficult to determine the full automorphism

group of a graph. However, there are some known results on the automorphism groups of
Cayley graphs with small degree. For example, Godsil [9] gave the automorphism groups
of some cubic Cayley graphs. Feng and Xu [7] determined the automorphism groups of
tetravalent Cayley graphs on regular p-groups. Recently, Zhang et al. [22] determined
the automorphism groups of cubic Cayley graphs of order 2pq. For other results on the
automorphism groups of Cayley graphs, we refer the readers to [5, 6, 11, 12, 18, 20, 21].
Motivated by the known results and nice structures of the derangement graph, in this
paper, we characterize the full automorphism group of the derangement graph. The main
result can be stated as follows:

Theorem 1.1. For n ≥ 3,

Aut(Γn) = (R(Sn) ⋊ Inn(Sn)) ⋊ Z2,

where R(Sn) and Inn(Sn) are the right regular representation and the inner automorphism
group of Sn respectively, and Z2 = 〈ϕ〉 with the mapping ϕ : σϕ = σ−1, ∀σ ∈ Sn.

The rest of this paper is organized as follows. In Section 2, we gather some definitions
and known results needed later. In Section 3, we present the proof of Theorem 1.1, i.e.,
characterize the full automorphism group of the derangement graph Γn (n ≥ 3). In Section
4, we determine all the edge-orbits of Γn, which implies that Γn is not edge-transitive.

2 Preliminaries

Let G be a finite group and Ω a finite set. Suppose that, for each α ∈ Ω and g ∈ G, there
corresponds a member of Ω, denoted by αg. We say that this correspondence defines an
action of G on Ω, or G acts on Ω, if the following conditions hold: (i) ∀ α ∈ Ω, α1 = α,
where 1 is the identity element of G; (ii) ∀ α ∈ Ω, ∀ g, h ∈G , (αg)h = αgh. Furthermore,
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if {g ∈ G : αg = α, ∀α ∈ Ω} = 1, we say the action of G on Ω is faithful, or G acts
faithfully on Ω.

The action of G on Ω induces naturally an equivalence relation ∼G which is defined as
follows: α ∼G β if and only if αg = β for some g ∈ G. The equivalence classes of ∼G are
said to be G-orbits on Ω. If there is only one G-orbit on Ω, then G is said to be transitive
on Ω, or G acts transitively on Ω. In particular, a graph Γ is said to be vertex-transitive
or edge-transitive if Aut(Γ) acts transitively on V (Γ) or E(Γ) respectively.

For a group G, let Aut(G), Inn(G) and R(G) be the automorphism group, the inner
automorphism group and the right regular representation of G, respectively. We need the
following known results.

Proposition 2.1. [18, III, Theorem2.18–2.20] If n ≥ 2 and n 6= 6, then Aut(Sn) =
Inn(Sn). If n = 6, then |Aut(S6) : Inn(S6)| = 2, and for each α ∈ Aut(S6)\Inn(S6), α
maps a transposition to a product of three disjoint transpositions.

Proposition 2.2. [8] Let NAut(Cay(G,S)(R(G)) be the normalizer of R(G) in
Aut(Cay(G, S)). Then

NAut(Cay(G,S)(R(G)) = R(G) ⋊ Aut(G, S) ≤ Aut(Cay(G, S)),

where Aut(G, S) = {φ ∈ Aut(G) | Sφ = S}.

Proposition 2.3. [1] All the maximum-size independent sets of the derangement graph
Γn (n ≥ 2) are Bi,j = {σ ∈ Sn | iσ = j}, i, j = 1, 2, · · · , n.

3 Proof of Theorem 1.1

In this section, we completely determine the full automorphism group of the derangement
graph.

Lemma 3.1. Let B = {Bi,j | i, j = 1, 2, · · · , n} with Bi,j = {σ ∈ Sn | iσ = j}. Then
Aut(Γn) induces an action on B and this action is faithful. In particular, any φ ∈ Aut(Γn)
is a permutation on B.

Proof. Obviously, any φ ∈ Aut(Γn) maps a maximum-size independent set of Γn to a
maximum-size independent set of Γn. So by Proposition 2.3, for any Bi,j ∈ B and φ ∈

Aut(Γn), we have B φ
i,j ∈ B.

Next if φ ∈ Aut(Γn) satisfies B φ
i,j = Bi,j for each Bi,j ∈ B, then φ is the identity map.

In fact,
∀σ ∈ Sn, {σ} = B1,1σ ∩ B2,2σ ∩ · · · ∩ Bn,nσ .

So

{σ φ} = (B1,1σ ∩ B2,2σ ∩ · · · ∩ Bn,nσ)φ

⊆ B φ
1,1σ ∩ B φ

2,2σ ∩ · · · ∩ B φ
n,nσ

= B1,1σ ∩ B2,2σ ∩ · · · ∩ Bn,nσ

= {σ}.
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Thus φ is the identity map, that is, Aut(Γn) acts faithfully on B. This implies that each
φ ∈ Aut(Γn) is a permutation on B. �

Lemma 3.2. Let Rk = {Bk,1, Bk,2, · · · , Bk,n} and Cl = {B1,l, B2,l, · · · , Bn,l}. For any
x1, x2, · · · , xn ∈ B, if x1 ∪x2 ∪ · · · ∪ xn = Sn, then there exists some k or l ∈ {1, 2, · · · , n}
such that {x1, x2, · · · , xn} = Rk or Cl.

Proof. First we claim that Bi,j ∩ Bi′,j′ = ∅ if and only if exactly one of i = i′ and j = j′

holds. In fact, If exactly one of i = i′ and j = j′ holds, then Bi,j ∩Bi′,j′ = ∅. If i 6= i′ and
j 6= j′, then Bi,j ∩ Bi′,j′ = {σ ∈ Sn | iσ = j and i′σ = j′} 6= ∅. If i = i′ and j = j′, then
Bi,j = Bi′,j′, so Bi,j ∩ Bi′,j′ 6= ∅.

Note that ∀ i, |xi| = (n − 1)! and |Sn| = n!. Hence

x1 ∪ x2 ∪ · · · ∪ xn = Sn ⇒ xi ∩ xj = ∅, ∀i, j, i 6= j.

Applying the above claim, we obtain {x1, x2, · · · , xn} = Rk or Cl. �

Lemma 3.3. Let Ω = {R1, R2, · · · , Rn, C1, C2, · · · , Cn}. Then Aut(Γn) induces an action
on Ω and this action is faithful. In particular, any φ ∈ Aut(Γn) is a permutation on Ω.

Proof. First for any Rk ∈ Ω and φ ∈ Aut(Γn),

Rk = {Bk,1, Bk,2, · · · , Bk,n} ⇒ Rφ
k = {Bφ

k,1, B
φ
k,2, · · · , B

φ
k,n},

Bφ
k,1 ∪ Bφ

k,2 ∪ · · · ∪ Bφ
k,n = (Bk,1 ∪ Bk,2 ∪ · · · ∪ Bk,n)

φ = Sφ
n = Sn.

By Lemma 3.2, we have Rφ
k ∈ Ω.

Similarly, for any Cl ∈ Ω and φ ∈ Aut(Γn), Cφ
l ∈ Ω.

Next suppose that φ ∈ Aut(Γn) satisfies Rφ
k = Rk and Cφ

l = Cl for any k, l ∈
{1, 2, · · · , n}. To prove the Lemma, it suffices to show that φ is the identity map.

Note that
∀Bi,j ∈ B, {Bi,j} = Ri ∩ Cj.

So
{B φ

i,j} = (Ri ∩ Cj)
φ ⊆ R φ

i ∩ C φ
j = Ri ∩ Cj = {Bi,j}.

By Lemma 3.1, φ is the identity map, that is, Aut(Γn) acts faithfully on Ω. This implies
that each φ ∈ Aut(Γn) is a permutation on Ω. �

Lemma 3.4. Let R = {R1, R2, · · · , Rn} and C = {C1, C2, · · · , Cn}. For any φ ∈ Aut(Γn),
the following (i)-(ii) hold:

(i) There exists some i such that Rφ
i ∈ R if and only if Rφ

i ∈ R for any i;
(ii) There exists some j such that Cφ

j ∈ C if and only if Cφ
j ∈ C for any j.

Proof. (i) Suppose that there exist i, j ( 6= i) ∈ {1, 2, · · · , n} such that Rφ
i ∈ R and Rφ

j ∈ C.
Note that

Ri ∩ Rj = ∅ if i 6= j and |Rk ∩ Cl| = 1 for any k, l.
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So
|Ri ∪ Rj| = 2n ⇒ |Rφ

i ∪ Rφ
j | = |(Ri ∪ Rj)

φ| = 2n.

On the other hand,

Rφ
i ∈ R, Rφ

j ∈ C ⇒ |Rφ
i ∩ Rφ

j | = 1 ⇒ |Rφ
i ∪ Rφ

j | = 2n − 1,

which is a contradiction. Thus the assertion holds.
(ii) is similar to the proof of (i). �

Lemma 3.5.

|Aut(Γn)| ≤ 2(n!)2.

Proof. By Lemma 3.3, any φ ∈ Aut(Γn) is a permutation of Ω. Using Lemma 3.4, we
obtain the following disjoint alternatives:

(i) Rφ = R and Cφ = C;
(ii) Rφ = C and Cφ = R.

So we have

Aut(Γn) = {φ ∈ Aut(Γn) | Rφ = R, Cφ = C} ∪ {φ ∈ Aut(Γn) | Rφ = C, Cφ = R}.

Hence

|Aut(Γn)| ≤ |{φ ∈ Aut(Γn) | Rφ = R, Cφ = C}| + |{φ ∈ Aut(Γn) | Rφ = C, Cφ = R}|

≤ (n!)2 + (n!)2

= 2(n!)2.

Thus the assertion holds. �

Now we are ready to prove the main result.

Proof of Theorem 1.1. First we show that the mapping ϕ : Sn → Sn defined as σϕ = σ−1

is an automorphism of Γn. In fact, obviously, ϕ is a bijection between Sn and Sn. Moreover,

(σ, τ) ∈ E(Γn) ⇔ ∀ i ∈ {1, 2, · · · , n}, iσ 6= iτ

⇔ ∀ i ∈ {1, 2, · · · , n}, (iσ
−1

)σ 6= (iσ
−1

)τ

⇔ ∀ i ∈ {1, 2, · · · , n}, i 6= iσ
−1τ

⇔ ∀ i ∈ {1, 2, · · · , n}, iτ
−1

6= (iσ
−1τ )τ−1

⇔ ∀ i ∈ {1, 2, · · · , n}, iτ
−1

6= iσ
−1

⇔ (σϕ, τϕ) = (σ−1, τ−1) ∈ E(Γn).

This implies that ϕ is an automorphism of Γn.
Next we claim that R(Sn) ⋊ Inn(Sn) ≤ Aut(Γn). In fact, by Proposition 2.1, we have

Aut(Sn,Dn) = {φ ∈ Aut(Sn) | D φ
n = Dn} = Inn(Sn),
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where Dn = {σ ∈ Sn | xσ 6= x, ∀x ∈ {1, 2, · · · , n}}. Then by Proposition 2.2, R(Sn) ⋊

Inn(Sn) ≤ Aut(Γn).
Note that Sn (n ≥ 3) is a centerless group. So Inn(Sn) ∼= Sn/Z(Sn) = Sn, where

Z(Sn) is the center of Sn. Thus (n!)2 = |R(Sn) ⋊ Inn(Sn)| ≤ |Aut(Γn)| ≤ 2(n!)2 (by
Lemma 3.5), that is, the index of R(Sn) ⋊ Inn(Sn) in Aut(Γn) is at most 2, which implies
that R(Sn) ⋊ Inn(Sn) is a normal subgroup of Aut(Γn). In addition, it is easy to see that
ϕ 6∈ R(Sn) and ϕ 6∈ Inn(Sn) for n ≥ 3. Hence (R(Sn) ⋊ Inn(Sn)) ⋊ Z2 ≤ Aut(Γn) (where
Z2 = 〈ϕ〉 is a cyclic group of order 2) and 2(n!)2 = |(R(Sn)⋊Inn(Sn))⋊Z2| ≤ |Aut(Γn)| ≤
2(n!)2, which shows that Aut(Γn) = (R(Sn) ⋊ Inn(Sn)) ⋊ Z2. The assertion holds. �

4 Edge-orbits of the derangement graph

It is well known that any permutation can be decomposed as a product of disjoint per-
mutation cycles. For any σ ∈ Sn, write

σ = (a1 1 a1 2 · · · a1 n1
)(a2 1 · · · a2 n2

) · · · (as 1 · · · as ns
),

a product of disjoint cycles (including 1-cycles), with n1 ≥ n2 ≥ · · · ≥ ns and n1 + n2 +
· · ·+ ns = n, and we call (n1, n2, · · · , ns) the cycle−shape of σ.

For any σ ∈ Sn and φ ∈ Inn(Sn) × Z2 (where Z2 = 〈ϕ〉 is same as Theorem 1.1),
obviously σ and σφ have the same cycle-shape. Note that ϕ commutes with each element
in Inn(Sn). Thus, Inn(Sn) ⋊ Z2 = Inn(Sn) × Z2.

Lemma 4.1. Let Aut(Γn) (n ≥ 3) act naturally on E(Γn). For any (1, τ), (1, σ) ∈ E(Γn),
(1, τ) and (1, σ) belong to the same Aut(Γn)-orbit if and only if τ and σ have the same
cycle-shape.

Proof. (⇒) If (1, τ) and (1, σ) belong to the same Aut(Γn)-orbit, then we have the fol-
lowing disjoint alternatives:

(i) There exists φ ∈ Aut(Γn) such that 1φ = 1 and τφ = σ;
(ii) There exists φ ∈ Aut(Γn) such that τφ = 1 and 1φ = σ.
By Theorem 1.1, we can always assume that φ = R(g) · φ′, where φ′ ∈ Inn(Sn) × Z2.
If the case (i) happens, then

1φ = 1 ⇒ 1R(g)·φ′

= 1 ⇒ gφ′

= 1 ⇒ g = 1.

τφ = σ ⇒ τR(g)·φ′

= σ ⇒ (τg)φ′

= σ ⇒ τφ′

= σ.

So τ and σ have the same cycle-shape.
If the case (ii) happens, then

τφ = 1 ⇒ τR(g)·φ′

= 1 ⇒ (τg)φ′

= 1 ⇒ τg = 1 ⇒ g = τ−1.

1φ = σ ⇒ 1R(g)·φ′

= σ ⇒ gφ′

= σ ⇒ (τ−1)φ′

= σ.

So τ−1 and σ have the same cycle-shape, that is, τ and σ have the same cycle-shape.
(⇐) If τ and σ have the same cycle-shape, then there exists some φ ∈ Inn(Sn) ≤

Aut(Γn) such that τφ = σ. Hence (1, τ)φ = (1φ, τφ) = (1, σ), that is, (1, τ) and (1, σ)
belong to the same Aut(Γn)-orbit. �
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Using Lemma 4.1, we have the following result:

Corollary 4.2. Let Aut(Γn) (n ≥ 3) act naturally on E(Γn). For any (σ1, τ1), (σ2, τ2) ∈
E(Γn), (σ1, τ1) and (σ2, τ2) belong to the same Aut(Γn)-orbit if and only if τ1σ

−1
1 and

τ2σ
−1
2 have the same cycle-shape.

Proof. (σ1, τ1) and (σ2, τ2) belong to the same Aut(Γn)-orbit ⇔ there exists some φ ∈

Aut(Γn) such that (σ1, τ1)
φ = (σ2, τ2) ⇔ (1, τ1σ

−1
1 )R(σ1) φ R(σ−1

2
) = (1, τ2σ

−1
2 ) ⇔ (1, τ1σ

−1
1 )

and (1, τ2σ
−1
2 ) belong to the same Aut(Γn)-orbit. By Lemma 4.1, the assertion holds. �

By the definition of the derangement graph Γn, we have (σ, τ) ∈ E(Γn) if and only
if τσ−1 ∈ Dn. Therefore, applying Corollary 4.2, the Aut(Γn)-orbits on E(Γn) are in
bijective correspondence with the set of all possible cycle-shapes of permutations in Dn.
So we obtain the main result in this section as follows:

Theorem 4.3. Let Aut(Γn) (n ≥ 3) act naturally on E(Γn). All Aut(Γn)-orbits are
O(n1,n2,···,ns) = {(σ, τ) ∈ E(Γn) | τσ−1 has cycle-shape (n1, n2, · · · , ns), ns ≥ 2}. In par-
ticular, the number of edge-orbits of Γn (n ≥ 3) equals to the cardinality of the set
{{n1, n2, · · · , ns} | n = n1 + n2 + · · ·+ ns, ni ≥ 2, 1 ≤ i ≤ s}.
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