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Abstract

A team of n players plays the following game. After a strategy session, each
player is randomly fitted with a blue or red hat. Then, without further communi-
cation, everybody can try to guess simultaneously his own hat color by looking at
the hat colors of the other players. Visibility is defined by a directed graph; that
is, vertices correspond to players, and a player can see each player to whom he is
connected by an arc. The team wins if at least one player guesses his hat color
correctly, and no one guesses his hat color wrong; otherwise the team loses. The
team aims to maximize the probability of a win, and this maximum is called the
hat number of the graph.

Previous works focused on the hat problem on complete graphs and on undi-
rected graphs. Some cases were solved, e.g., complete graphs of certain orders,
trees, cycles, and bipartite graphs. These led Uriel Feige to conjecture that the hat
number of any graph is equal to the hat number of its maximum clique.

We show that the conjecture does not hold for directed graphs. Moreover, for
every value of the maximum clique size, we provide a tight characterization of the
range of possible values of the hat number. We construct families of directed graphs
with a fixed clique number the hat number of which is asymptotically optimal. We
also determine the hat number of tournaments to be one half.
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1 Introduction

In the hat problem, a team of n players enters a room and a blue or red hat is randomly
and independently placed on the head of each player. Each player can see the hats of all
of the other players but not his own. No communication of any sort is allowed, except for
an initial strategy session before the game begins. Once they have had a chance to look
at the other hats, each player must simultaneously guess the color of his own hat or pass.
The team wins if at least one player guesses his hat color correctly and no one guesses
his hat color wrong; otherwise the team loses. The aim is to maximize the probability of
a win.

The hat problem with seven players, called the “seven prisoners puzzle”, was formu-
lated by Todd Ebert in his Ph.D. Thesis [6]. It is often posed as a puzzle (e.g., in the
Berkeley Riddles [2]) and was also the subject of articles in popular media [3, 20, 21].

The hat problem with q ≥ 2 possible colors was investigated in [19]. Noga Alon [1]
proved that the q-ary hat number of the complete graph tends to one as the graph grows.

Many other variations of the problem exist (for a comprehensive list, see [15]), among
them a random but non-uniform hat color distribution [10], an adversarial allocation of
hat from a pool known by the players [9], a variation in which passing is not allowed [4],
a variation in which players do not have to guess their hat colors simultaneously [11],
and many more.

The hat problem can be considered on a graph, where vertices correspond to players,
and a player can see each player to whom he is connected by an edge. We seek to determine
the hat number of the graph, that is, the maximum chance of success for the hat problem
on it. This variation of the hat problem was first considered in [12], and further studied
for example in [8, 13, 14, 16–18].

Note that the hat problem on the complete graph is equivalent to the original hat
problem. This case was solved for 2k − 1 players in [7] and for 2k players in [5]. In [19] it
was shown that a strategy for n players in the complete graph is equivalent to a covering
code of radius 1 in the Hamming cube.

The hat problem was solved for trees [12], cycles [8, 13, 14, 18], bipartite graphs [8],
perfect graphs [8], and planar graphs containing a triangle [8]. Feige [8] conjectured that
for any graph the hat number is equal to the hat number of its maximum clique. He
proved this for graphs with clique number 2k − 1. Thus triangle-free graphs are the
simplest remaining open case.

We consider the hat problem on directed graphs. Under an appropriate definition of
the clique number for directed graphs, we provide a tight characterization of the range
of possible values of the hat number, for every size of the maximum clique. We con-
struct families of directed graphs with a fixed clique number the hat number of which
is asymptotically optimal. We also determine the hat number of tournaments to be one
half.
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2 Preliminaries

For a graph G, the set of vertices and the set of edges we denote by V (G) and E(G),
respectively. If H is a subgraph of G, then we write H ⊆ G. The degree of vertex v,
that is, the number of its neighbors, we denote by dG(v).

Let f : X → Y be a function. If for every x ∈ X we have f(x) = y, then we write
f ≡ y.

Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors, where 1
corresponds to blue and 2 corresponds to red.

By a case for a graph G we mean a function c : V (G) → {1, 2}, where c(vi) means
color of vertex vi. The set of all cases for the graph G we denote by C(G), of course
|C(G)| = 2|V (G)|.

By a situation of a vertex vi we mean a function si : V (G) → Sc ∪ {0} = {0, 1, 2},
where si(vj) ∈ Sc if vi and vj are adjacent, and 0 otherwise. The set of all possible
situations of vi in the graph G we denote by Sti(G), of course |Sti(G)| = 2dG(vi).

By a guessing instruction of a vertex vi ∈ V (G) we mean a function gi : Sti(G) → Sc
∪{0} = {0, 1, 2}, which for a given situation gives the color vi guesses it is, or 0 if vi
passes. Thus a guessing instruction is a rule determining the behavior of a vertex in every
situation. We say that vi never guesses its color if vi passes in every situation, that is,
gi ≡ 0. We say that vi always guesses its color if vi guesses its color in every situation,
that is, for every si ∈ Sti(G) we have gi(si) ∈ {1, 2} (gi(si) 6= 0, equivalently).

Let c be a case, and let si be the situation (of vertex vi) corresponding to that case. The
guess of vi in the case c is correct (wrong, respectively) if gi(si) = c(vi) (0 6= gi(si) 6= c(vi),
respectively). By result of the case c we mean a win if at least one vertex guesses its color
correctly, and no vertex guesses its color wrong, that is, gi(si) = c(vi) (for some i) and
there is no j such that 0 6= gj(sj) 6= c(vj). Otherwise the result of the case c is a loss.

By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where gi is the
guessing instruction of vertex vi. The family of all strategies for a graph G we denote by
F(G).

If S ∈ F(G), then the set of cases for the graph G for which the team wins (loses,
respectively) using the strategy S we denote by W (S) (L(S), respectively). The set of
cases for which the team loses, and some vertex guesses its color we denote by Ls(S). By
the chance of success of the strategy S we mean the number p(S) = |W (S)|/|C(G)|. By
the hat number of the graph G we mean the number h(G) = max{p(S) : S ∈ F(G)}. We
say that a strategy S is optimal for the graph G if p(S) = h(G). The family of all optimal
strategies for the graph G we denote by F0(G).

By solving the hat problem on a graph G we mean finding the number h(G).
For a directed graph (digraph) D, the set of vertices and the set of arcs we denote by

V (D) and A(D), respectively.
By the skeleton of a digraph D, denoted by skel(D), we mean the undirected graph

on the vertex set V in which x and y are adjacent if both arcs between them belong to
the set A, that is, if they form a directed 2-cycle in D.

By the clique number of a digraph D we mean the clique number of its skeleton;
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that is, ω(D) = ω(skel(D)).
The transpose of a digraph D = (V,A) is the digraph Dt = (V,At), where At

= {(x, y) : (y, x) ∈ A}.
Slightly abusing notation, we identify a digraph D with its (undirected) skeleton in

the case that D = Dt, that is, if all arcs of D have anti-parallel counterparts.
We can also consider the hat problem on directed graphs. If there is an arc from u

to v, then the vertex u can see the vertex v. All concepts we define similarly as when
considering the hat problem on undirected graphs treated for example in [8, 12]. We now
cite four propositions that generalize to digraphs with little or no change.

Proposition 1 For every two digraphs D and E such that E ⊆ D we have h(E) ≤ h(D).

Proposition 2 For every digraph D we have h(D) ≥ 1/2.

Proposition 3 Let D be a digraph and let v be a vertex of D. If S ∈ F0(D) is a strategy
such that v always guesses its color, then h(D) = 1/2.

Proposition 4 Let D be a digraph and let v be a vertex of D. If S ∈ F0(D) is a strategy
such that v never guesses its color, then h(D) = h(D − v).

We have the following corollary from Propositions 2, 3, and 4.

Proposition 5 Let D be a digraph and let v be a vertex of D. If v has no outgoing arcs,
then h(D) = h(D − v).

3 Constructions

For an undirected graph G, it is known that if G contains a triangle, then h(G) ≥ 3/4,
and in [8] it is conjectured that if G is triangle-free, then h(G) = 1/2. Do directed graphs
introduce anything in between? The answer is yes.

Let us consider the hat problem on the digraph D1 given in Figure 1.

x

��

u

��

>>

y

OO

Figure 1: The digraph D1

Fact 6 h(D1) = 5/8.
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We omit the proof of this fact in favor of extending D1 to a construction of a family
{Dn}∞n=0 of semi-complete digraphs that asymptotically achieve the hat number 2/3, with
the property that ω(Dn) = 2. The skeleton of Dn is a matching of size n plus an isolated
vertex. For short, we write skel(Dn) = nK2 ∪K1.

Definition 7 Given two disjoint digraphs C and D, we define the directed union of C
and D, denoted by C → D, to be the union of these two digraphs with the additional arcs
from all vertices of C to all vertices of D. Note that this operator is associative, that is,
C → (D → E) = (C → D)→ E, for any three digraphs C, D and E. Thus the notation
C → D → E is unambiguous. The directed union of n disjoint copies of a digraph D,
that is D → D → . . .→ D︸ ︷︷ ︸

n

, we denote by D→n.

Expressed in the terms of the directed union, D1 = K1 → K2. We extend this to
a family of digraphs by defining Dn = K1 → K→n

2 . Note that the family {Dn}∞n=0

satisfies the recurrence relation Dn+1 = Dn → K2.
In Figure 2 we give examples of Dn for n = 2, n = 3, and a general n.
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Figure 2: The directed, semi-complete graphs D2, D3, and Dn. All vertical arcs have
anti-parallel counterparts. The remaining arcs are rightwards

We proceed to compute the hat number of the digraphs of the family {Dn}∞n=0. First
we prove an upper bound.

Lemma 8 For every digraph D we have h(D → K2) ≤ max{h(D), 1/2 + h(D)/4}.

Proof. Let S be an optimal strategy for D → K2. The vertices of the K2 we denote by x
and y. If one of them, say x, never guesses its color, then using Propositions 4 and 5 we get
h(D → K2) = h(D → K2 − x) = h(D → K1) = h(D). Now assume that each one of the
vertices x and y guesses its color. If x or y always guesses its color, then by Proposition 3
we have h(D → K2) = 1/2. Now assume that neither x nor y always guesses its color.
This implies that each one of them guesses its color in one of the two situations as every
one of them has just one outgoing arc. Hence, with probability at least 1/4 at least one of
the vertices x and y is wrong. The chance of the success of the strategy S benefits from
the behavior of the vertices of D only when both x and y pass, and this happens exactly
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with probability 1/4 since they see different vertices (that is, each other). This implies
that p(S) = 1/2 + h(D)/4. Now we get h(D → K2) = p(S) ≤ max{h(D), 1/2 + h(D)/4}.

Now we prove a lower bound.

Lemma 9 For every digraph D we have h(D → K2) ≥ 1/2 + h(D)/4.

Proof. Let S be an optimal strategy for the digraph D. The vertices of the K2 we denote
by x and y. Let S ′ be a strategy for D → K2 as follows. If y is blue, then x guesses it is
also blue; otherwise it passes. If x is red, then y guesses it is also red; otherwise it passes.
If x is blue and y is red, then the vertices of D behave as in the strategy S, otherwise
they pass. Let us observe that if x and y have the same color, then the team wins. If x
is red and y is blue, then the team loses. If x is blue and y is red, then the team wins
with probability p(S). Therefore p(S ′) = 1/2 + p(S)/4 = 1/2 + h(D)/4. Consequently,
h(D → K2) ≥ p(S ′) = 1/2 + h(D)/4.

Now we prove a lower bound for a more general setting.

Lemma 10 For every positive integer m there exists c ≥ 1/2 such that for any digraph
D we have h(D → Km) ≥ cm/(m+ 1) + (1− c) · h(D). Moreover, if m = 2, then c = 3/4
satisfies the inequality.

Proof. Let S be an optimal strategy for the digraph D. The vertices of Km we denote
by x1, x2, . . . , xm. Let C ⊂ {blue, red}m be a code of distance 3, and consider the packing
of stars K1,m in the hypercube graph Hm formed by selecting balls of radius one around
each codeword. Let A mean the event that the case of x1, x2, . . . , xm is covered by the
packing. Now let S ′ be a strategy for D → Km as follows. All vertices of D pass if A
occurred, otherwise they behave according to S. The vertices of Km behave as follows. If
xi is in a situation consistent with some codeword, then it guesses the color that disagrees
with it; otherwise it passes. When A occurs, either m vertices guess their colors wrong,
or exactly one vertex guesses its color and the guess is correct; then the team wins with
probability m/(m+1). Let c = p(A). We get p(S ′) = p(A) ·m/(m+1)+(1−p(A)) ·p(S)
= cm/(m + 1) + (1 − c) · h(D). Now, the existence of codes of distance 3, length m,
and size d2m−1/(m + 1)e implies that c ≥ 1/2.

We use Lemmas 8 and 9 to calculate the hat number of Dn.

Proposition 11 For every non-negative integer n we have

h (Dn) =
2

3
− 1

6
· 1

4n
.
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Proof. The result we prove by induction on the number n. For n = 0 the result is
obviously true as D0 is a single vertex and h(D0) = 1/2 = 2/3− 1/6. Let n be a positive
integer, and assume that h(Dn−1) = 2/3− 41−n/6. Since h(Dn−1) < 2/3, using Lemma 8
we get h(Dn) ≤ max{h(Dn−1), 1/2 + h(Dn−1)/4} = 1/2 + h(Dn−1)/4. The lower bound
is matched by Lemma 9.

Corollary 12 For every ε > 0 there exists a digraph D satisfying ω(D) = 2 such that
h(D) > 2/3− ε.

The previous result can be generalized to an arbitrary clique number m.

Theorem 13 For every ε > 0 there exists a digraph D satisfying ω(D) = m such that
h(D) > m/(m + 1)− ε.

Proof. Let us consider D = K→n
m , where n =

⌈
log1−c(ε)

⌉
and c is the appropriate

constant from Lemma 10. By repeatedly applying the lemma we get h(D) ≥ (1−(1 −c)n)
·m/(m + 1) ≥ (1− ε) ·m/(m + 1) > m/(m + 1)− ε.

A natural question is whether m/(m + 1) is the best possible hat number of such
digraphs. In the following section we show that indeed this is the best possible, i.e.,
the chance of success m/(m + 1) is asymptotically optimal for digraphs with the clique
number m.

4 The upper bound

Feige [8] proved that for every undirected graph G we have h(G) ≤ ω(G)/(ω(G) + 1). We
repeat his proof, refining it a bit to show that the same holds for digraphs.

Proposition 14 For every digraph D we have h(D) ≤ ω(D)/(ω(D) + 1).

Proof. Let S be an optimal strategy for D. We define a bipartite graph B whose left-
hand side is Ls(S), and the right-hand side is W (S). A losing case l ∈ Ls(S) is adjacent
to a winning case w ∈ W (S) if they differ only by one coordinate, which is the color of
a vertex v ∈ V (D) that guesses its color in these cases. Since v cannot see its own hat
color, it acts the same in both hat cases l and w. Now let us examine the right and left
degrees in B.

Right degree. Let w ∈ W (S), and let v ∈ V (D) be a vertex that guesses its color
correctly in w. Let l be a case which differs from w only in the color of the vertex v. Since
v does not distinguish between the cases w and l, it makes the same guess in l, but now
it is incorrect. Therefore l ∈ Ls(S) is a neighbor of w in B, and d(w) ≥ 1.
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Left degree. Let l ∈ Ls(S), and let w1, w2, . . . , wdG(l) ∈ W (S) mean the neighbors of l
in B. Let vi ∈ V (D) be the vertex whose color differs in the cases l and wi, for every
i ∈ {1, 2, . . . , d}. Suppose that some arc vi → vj is not present in D. By the definition
of vi, it makes a correct guess at the case wi. It cannot tell wi apart from l, and thus
it makes the same, now wrong, guess at the case l. But then it must make the same
incorrect guess at the case wj, which only differs from l by the color of vj, unseen by vi.
This contradicts the fact that wj is a winning case. Therefore {vi}di=1 is a clique in skel(D)
and d = d(l) ≤ ω(skel(D)) = ω(D).

We have shown that the right degree in B is at least one and the left degree in B
is at most ω(D). This implies that |W (S)| ≤ |E(B)| ≤ ω(D)|Ls(S)|, and consequently,
h(D) = p(S) = |W (S)|/2|V (D)| ≤ |W (S)|/(|W (S)|+ |Ls(S)|) ≤ ω(D)/(ω(D) + 1).

Observe that for a digraph D, the hat number h(D) is always a rational number whose
denominator is a power of two. Therefore h(D) < ω(D)/(ω(D) + 1) unless ω(D) + 1 is
a power of two. When ω(D) + 1 = 2k is a power of two, the upper bound is met by
a complete graph K2k−1 as h(K2k−1) = (2k − 1)/2k.

Corollary 15 For every tournament T we have h(T ) = 1/2.

Proof. Apply Proposition 14 with ω(T ) = 1. The lower bound is by Proposition 2.
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