Sequences containing no 3-term arithmetic progressions

Janusz Dybizbański

Institute of Informatics University of Gdańsk, Poland

jdybiz@inf.ug.edu.pl

Submitted: Feb 22, 2012; Accepted: Apr 12, 2012; Published: Apr 27, 2012 Mathematics Subject Classifications: 11B25

Abstract

A subsequence of the sequence (1, 2, ..., n) is called a 3-*AP*-free sequence if it does not contain any three term arithmetic progression. By r(n) we denote the length of the longest such 3-*AP*-free sequence. The exact values of the function r(n) were known, for $n \leq 27$ and $41 \leq n \leq 43$. In the present paper we determine, with a use of computer, the exact values, for all $n \leq 123$. The value r(122) = 32 shows that the Szekeres' conjecture holds for k = 5.

1 Introduction

Let $\langle n \rangle$ denote the sequence (1, 2, ..., n). A subsequence (a_1, \ldots, a_k) of $\langle n \rangle$ is called a 3-*AP*free sequence if it does not contain any three elements a_p , a_q , a_r such that $a_q - a_p = a_r - a_q$, or in other words if it does not contain any three term arithmetic progression. By r(n)we denote the length of the longest 3-*AP*-free sequences in $\langle n \rangle$. Sometimes (see [1]) the problem is equivalently presented in the set version. A subset $S \subset \{1, 2, ..., n\}$ is called a 3-*AP*-free if $a + c \neq 2b$, for every distinct terms $a, b, c \in S$. The cardinality of the largest such subset S is equal to r(n).

The study of the function r(n) was initiated by Erdős and Turán [2]. They determined the values r(n), for $n \leq 23$ and n = 41 (see Table 1), proved that $r(2N) \leq N$, for $n \geq 8$, and conjectured that $\lim_{n\to\infty} r(n)/n = 0$. This conjecture was proved in 1975 by Szemeredi [6]. Erdős and Turán also conjectured that $r(n) < n^{1-c}$, which was shown to be false by Salem and Spencer [4] who proved $r(n) > n^{1-c/\log \log n}$. The later result was improved by Behrend [1], who showed that $r(n) > n^{1-c/\sqrt{\log n}}$. The first non trivial upper bound was due by Roth [3] who proved $r(n) < \frac{cn}{\log \log n}$.

Recently Sharma [5] showed that Erdős and Turán gave the wrong value of r(20) and determined the values of r(n), for $n \leq 27$ and $41 \leq n \leq 43$ (see Tables 1 and 2). Erdős and Turán [2] noted that there is no three term arithmetic progression in the sequence of all numbers $n, 0 \leq n \leq \frac{1}{2}(3^k - 1)$, which do not contain the digit 2 in the ternary scale.

Hence, if we add 1 to each of these numbers, we obtain the 3-AP-free sequence of length 2^k in $\langle \frac{1}{2}(3^k+1) \rangle$. Thus, we have

Lemma 1. $r(\frac{1}{2}(3^k+1)) \ge 2^k$, for every $k \ge 1$.

The Szekeres' conjecture (see [2]) says that $r(\frac{1}{2}(3^k + 1)) = 2^k$. The values given in [2, 5] (see Tables 1 and 2) show that the conjecture is true for $k \leq 4$. The Szekeres' conjecture has several interesting implications described in [2, 6]. In the sequel we shall need the following lemmas from [2, 5].

Lemma 2. If $(a_1, ..., a_k)$ is a 3-AP=free sequence in $\langle n \rangle$ and $j < a_1$, then also $(a_1 - j, ..., a_k - j)$ is a 3-AP-free sequence in $\langle n \rangle$.

Lemma 3. $r(n+m) \leq r(n) + r(m)$.

Lemma 4. $r(n) \leq r(n+1) \leq r(n) + 1$.

If r(n-1) < r(n) then we call n a jump node. Whenever r(n-2) < r(n-1) < r(n) we call n a double jump.

Lemma 5. Three consecutive numbers cannot be jump nodes.

In this paper we determine, using computer, exact values of r(n), for all $n \leq 123$. The value r(122) = 32 shows that the Szekeres' conjecture holds for k = 5. We also determined, for each jump node $n \leq 123$, b(n) — the number of the longest 3-AP-free sequences in $\langle n \rangle$, and an example of the longest 3-AP-free sequence (see Tables 2 and 3).

2 Algorithm

In order to determine values of the function r(n) we have designed a simple decision algorithm. This algorithm answers the question whether there is a 3-AP-free sequence of length k in $\langle n \rangle$. The algorithm uses the values r(m), for m < n.

```
Algorithm 6. INPUT : 2 \le k \le n — natural numbers
OUTPUT : YES if there exists 3-AP-free sequence of length k in \langle n \rangle; NO otherwise.
```

```
a_1:=1; a_2:=2; 1:=2;
1 :
2 :
     APseq := (a_1, a_2)
3 :
     repeat
         if APseq contains no 3-term arithmetic progression then
4 :
5 :
            APseq := (a_1, a_2, ..., a_l, a_l + 1)
6 :
            1 := 1 + 1
7 :
         else
            while (l>1) and (r(n-a_l) < k-l+1)
8 :
                1 := 1 - 1;
9 :
            APseq := (a_1, a_2, ..., a_{l-1}, a_l + 1)
10:
     until (a_1 \neq 1) or 3-AP-free sequence of length k is found
11:
     if 3-AP-free sequence of length k is found, then return YES
12:
     if (a_1 \neq 1), then return NO
13:
```

The algorithm looks for a 3-AP-free sequence of length k in $\langle n \rangle$. It starts (lines 1–2) with the sequence (1,2) of length l = 2. At the beginning of each round of the "repeat — until" loop (lines 3–11) the algorithm considers the sequence $APseq = (a_1, \ldots, a_{l-1}, a_l)$ of length $l \ge 2$. First, it checks if the sequence contains a 3-term arithmetic progression. If not, then it adds the element $a_l + 1$ at the end of the sequence (lines 5–6). If APseq contains an arithmetic progression, then it looks for the next sequence to consider (lines 8–10). The first candidate is the sequence $(a_1, \ldots, a_{l-1}, a_l+1)$, but if $r(n-a_l) < k-l+1$, it is not possible to find remaining k - l + 1 elements in the sequence $(a_l + 1, \ldots, n)$ without arithmetic progression. In this case the algorithm sets l := l - 1 and checks if the sequence $(a_1, \ldots, a_{l-1} + 1)$ will be good, and so on. The algorithm exits the main loop if it finds a 3-AP-free sequence of the length k, or if $a_1 > 1$. In the later case it returns the answer NO, because, by Lemma 2, it suffices to consider sequences which start with 1.

3 Results

We have used Algorithm 6 to determine the values of the function r(n), for all $n \leq 120$. Observe that if we know the value r(n), then we can obtain r(n+1) after one application of the algorithm with the input n+1 and k = r(n) + 1. All computations took about 30h on personal computer. We have got the value r(120) = 30. By Lemma 1, $r(122) \geq 32$, thus by Lemma 4, r(121) = 31 and r(122) = 32. Finally, by Lemma 5, r(123) = 32.

Tables 1, 2 and 3 present: the value of r(n), the value of b(n) — the number of the longest 3-AP-free sequences, and an example of the longest 3-AP-free sequence in $\langle n \rangle$, for each jump node $n \leq 123$. Table 1 contains the results obtained by Erdős and Turán [2] and by Sharma [5]. The values for n < 20 were given by Erdős and Turán. They also gave

n	r(n)	b(n)	example of the longest 3 - AP -free sequence
1	1	1	1
2	2	1	1 2
4	3	2	124
5	4	1	1 2 4 5
9	5	4	$1\ 2\ 4\ 8\ 9$
11	6	7	1 2 4 5 10 11
13	7	6	1 2 4 5 10 11 13
14	8	1	1 2 4 5 10 11 13 14
20	9	2	$1\ 2\ 6\ 7\ 9\ 14\ 15\ 18\ 20$
24	10	2	$1\ 2\ 5\ 7\ 11\ 16\ 18\ 19\ 23\ 24$
26	11	2	1 2 5 7 11 16 18 19 23 24 26

Table 1: Values of r(n), b(n), and examples of the longest 3-AP-free sequences, for jump nodes $n \leq 26$, obtained in [2, 5]. b(n) denotes the number of the longest 3-AP-free sequences in $\langle n \rangle$

the wrong value r(20) = 8 and based on this value proved r(41) = 16. Sharma gave the correct value of r(20) = 9 and a new proof of r(41) = 16. Our calculations confirm the values given by Erdos and Turan, for n < 20, and those given by Sharma, for $20 \le n \le 27$ and $41 \le n \le 43$ (including the correction of the value r(20) = 9). Tables 2 and 3 contain the results for $n \ge 30$. As we have mentioned above, the value r(41)=16 was given in [2,5], the others are new.

n	r(n)	b(n)	example of the longest 3 - AP -free sequence
30	12	1	1 3 4 8 9 11 20 22 23 27 28 30
32	13	2	1 2 4 8 9 11 19 22 23 26 28 31 32
36	14	2	1 2 4 8 9 13 21 23 26 27 30 32 35 36
40	15	20	$1\ 2\ 4\ 5\ 10\ 11\ 13\ 14\ 28\ 29\ 31\ 32\ 37\ 38\ 40$
41	16	1	$1\ 2\ 4\ 5\ 10\ 11\ 13\ 14\ 28\ 29\ 31\ 32\ 37\ 38\ 40\ 41$
51	17	14	$1\ 2\ 4\ 5\ 10\ 13\ 14\ 17\ 31\ 35\ 37\ 38\ 40\ 46\ 47\ 50\ 51$
54	18	2	1 2 5 6 12 14 15 17 21 31 38 39 42 43 49 51 52 54
58	19	2	1 2 5 6 12 14 15 17 21 31 38 39 42 43 49 51 52 54 58
63	20	2	$1\ 2\ 5\ 7\ 11\ 16\ 18\ 19\ 24\ 26\ 38\ 39\ 42\ 44\ 48\ 53\ 55\ 56\ 61\ 63$
71	21	4	1 2 5 7 10 17 20 22 26 31 41 46 48 49 53 54 63 64 68 69 71
74	22	1	1 2 7 9 10 14 20 22 23 25 29 46 50 52 53 55 61 65 66 68 73 74
82	23	10	1 2 4 8 9 11 19 22 23 26 28 31 49 57 59 62 63 66 68 71 78 81 82

Table 2: Values of r(n), b(n), and examples of the longest 3-AP-free sequences, for jump nodes $27 \le n \le 82$. The value r(41)=16 was given in [2, 5].

4 Discussion and open problems

Sharma [5] asks if every $T_k = \frac{1}{2}(3^k + 1)$ is a jump node. Our calculations and previous results show that, for $k \leq 5$, every T_k is a double jump and there is only one longest 3-*AP*-free sequence in $\langle T_k \rangle$, just the one described before Lemma 1. We wonder if this is true for other k?

Using the values from Table 2 and 3 and a simple induction argument similar to the one described in [2] we can prove that $r(3n) \leq n$, for every $n \geq 16$. Indeed, we know that $r(3n) \leq n$, for every $16 \leq n \leq 31$, and r(48) = 16. For $n \geq 32$, we have $r(3n) = r(3(n-16) + 48) \leq r(3(n-16)) + r(48) \leq n - 16 + 16 = n$.

n	r(n)	b(n)	example of the longest 3 - AP -free sequence
84	24	1	$1\ 3\ 4\ 8\ 9\ 16\ 18\ 21\ 22\ 25\ 30\ 37\ 48\ 55\ 60\ 63\ 64\ 67\ 69\ 76$
			77 81 82 84
92	25	14	1 2 6 8 9 13 19 21 22 27 28 39 58 62 64 67 68 71 73 81
			83 86 87 90 92
95	26	8	$1\ 2\ 4\ 5\ 10\ 11\ 22\ 23\ 25\ 26\ 31\ 32\ 55\ 56\ 64\ 65\ 67\ 68\ 76\ 77$
			82 83 91 92 94 95
100	27	2	1 3 6 7 10 12 20 22 25 26 29 31 35 62 66 68 71 72 75 77
			85 87 90 91 94 96 100
104	28	1	1 5 7 10 11 14 16 24 26 29 30 33 35 39 66 70 72 75 76 79
			81 89 91 94 95 98 100 104
111	29	6	$1\ 2\ 5\ 6\ 13\ 15\ 19\ 26\ 27\ 30\ 31\ 38\ 42\ 44\ 66\ 68\ 72\ 77\ 80\ 81$
			84 89 93 95 99 104 107 108 111
114	30	1	$1\ 2\ 4\ 9\ 12\ 13\ 18\ 19\ 28\ 30\ 31\ 33\ 40\ 45\ 46\ 69\ 70\ 75\ 82\ 84$
			85 87 96 97 102 103 106 111 113 114
121	31	70	$1\ 2\ 4\ 5\ 10\ 11\ 13\ 14\ 28\ 29\ 31\ 32\ 37\ 38\ 40\ 41\ 82\ 83\ 85\ 86$
			91 92 94 95 109 110 112 113 118 119 121
122	32	1	$1\ 2\ 4\ 5\ 10\ 11\ 13\ 14\ 28\ 29\ 31\ 32\ 37\ 38\ 40\ 41\ 82\ 83\ 85\ 86$
			91 92 94 95 109 110 112 113 118 119 121 122

Table 3: Values of r(n), b(n), and examples of the longest 3-AP-free sequences, for jump nodes $83 \le n \le 123$

References

- Behrend F.A. On Sets of Integers Which Contain No Three Terms in Arithmetic Progression. Proc. Nat. Acad. Sci. USA, 32:331–332, 1946.
- [2] Erdős P., Turán P. On some sequences of integer. J. London Math. Soc., 11:261–264, 1936.
- [3] Roth K. F. On certain set of integers. J. London Math. Soc., 28:104–109, 1953.
- [4] Salem R., Spencer D. C. On Sets of Integers Which Contain No Three Terms in Arithmetic Progression. *Proc. Nat. Acad. Sci. USA*, 28:561–563, 1942.
- [5] Sharma A. Sequences of Integers Avoiding 3-term Arithmetic Progressions. *Elec. J.* of Comb., 19:#P27, 2012.
- [6] Szemeredi E. On sets of integers containing no k elements in arithmetic progression. Acta Arithmetica, 27:199–245, 1975.