Preserving log-convexity for generalized Pascal triangles

Moussa Ahmia *
Department of Mathematics, Univ. Ferhat Abbas
Elmaâbouda, 19000, Sétif, Algeria
ahmiamoussa@gmail.com
Hacène Belbachir ${ }^{\dagger}$
USTHB, Faculty of Mathematics
P.B. 32, El Alia, 16111, Bab Ezzouar, Algeria
hbelbachir@usthb.dz or hacenebelbachir@gmail.com

Submitted: Mar 31, 2011; Accepted: Apr 26, 2012; Published: May 4, 2012
Mathematics Subject Classifications: 15A04, 11B65, 05A19, 52A37.

Abstract

We establish the preserving log-convexity property for the generalized Pascal triangles. It is an extension of a result of H. Davenport and G. Pólya "On the product of two power series", who proved that the binomial convolution of two log-convex sequences is log-convex.

1 Introduction

A sequence of nonnegative numbers $\left\{x_{k}\right\}_{k}$ is log-convex (LX for short) if $x_{i-1} x_{i+1} \geqslant x_{i}^{2}$ for all $i>0$, which is equivalent to (see for instance [4])

$$
\begin{equation*}
x_{i-1} x_{j+1} \geqslant x_{i} x_{j} \quad(j \geqslant i \geqslant 1) . \tag{1}
\end{equation*}
$$

It is well known that the convolution of sequences plays an important role in mathematics, especially in combinatorics. For the situation of log-convex sequences there is a relevant and interesting result due to Davenport and Pólya, on the product of two power series, it concerns the binomial convolution:

[^0]Theorem 1 (Davenport and Pólya). If the sequences of nonnegative numbers $\left\{u_{n}\right\}_{n}$ and $\left\{v_{n}\right\}_{n}$ are log-convex sequences, then so is the binomial convolution

$$
w_{n}=\sum_{k=0}^{n}\binom{n}{k} u_{k} v_{n-k}, \quad(n \geqslant 0) .
$$

Our aim is to extend the result of H. Davenport and G. Pólya to "bis nomial convolution".

2 The s-Pascal triangle

The s-Pascal triangle is the triangle given by the ordinary multinomials (see for instance $[2,3])$: let $s \geqslant 1$ and $n \geqslant 0$ be two integers, and $k=0,1, \ldots, s n$, the ordinary multinomial number $\binom{n}{k}_{s}$ is defined as the $k^{t h}$ coefficient in the development

$$
\begin{equation*}
\left(1+x+x^{2}+\cdots+x^{s}\right)^{n}=\sum_{k \in \mathbb{Z}}\binom{n}{k}_{s} x^{k} \tag{2}
\end{equation*}
$$

with $\binom{n}{k}_{s}=0$ for $k>s n$ or $k<0$.
Using the classical binomial coefficient, one has

$$
\begin{equation*}
\binom{n}{k}_{s}=\sum_{j_{1}+j_{2}+\cdots+j_{s}=k}\binom{n}{j_{1}}\binom{j_{1}}{j_{2}} \cdots\binom{j_{s-1}}{j_{s}} . \tag{3}
\end{equation*}
$$

Some readily well known established properties are

- the symmetry relation

$$
\begin{equation*}
\binom{n}{k}_{s}=\binom{n}{s n-k}_{s}, \tag{4}
\end{equation*}
$$

- the longitudinal recurrence relation

$$
\begin{equation*}
\binom{n}{k}_{s}=\sum_{j=0}^{s}\binom{n-1}{k-j}_{s} \tag{5}
\end{equation*}
$$

- the diagonal recurrence relation

$$
\begin{equation*}
\binom{n}{k}_{s}=\sum_{j=0}^{n}\binom{n}{j}\binom{j}{k-j}_{s-1} . \tag{6}
\end{equation*}
$$

These coefficients, as for usual binomial coefficients, are built as for the Pascal triangle, known as " s-Pascal triangle". One can find the first values of the s-Pascal triangle in SLOANE [8] as A027907 for $s=2$, as A008287 for $s=3$ and as A035343 for $s=4$.

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1													
1	1	1	1	1	1									
2	1	2	3	4	5	4	3	2	1					
3	1	3	6	10	15	18	19	18	15	10	6	3	1	
4	1	4	10	20	35	52	68	80	85	80	68	52	35	\ldots
5	1	5	15	35	70	121	185	255	320	365	379	365	320	\ldots

Triangle of quintinomial coefficients: $s=4$

3 Preserving log-convexity for the s-Pascal triangle

Given two sequences $\left\{x_{n}\right\}_{n}$ and $\left\{y_{n}\right\}_{n}$, let us consider the following two linear transformations of sequences

$$
\begin{equation*}
z_{n}:=\sum_{k=0}^{n s}\binom{n}{k}_{s} x_{k}, \quad(n \geqslant 0) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{n}:=\sum_{k=0}^{n s}\binom{n}{k}_{s} x_{k} y_{n s-k}, \quad(n \geqslant 0) \tag{8}
\end{equation*}
$$

respectively.
Definition 1. Preserving the log-convexity property.

1. We say that the linear transformation (7) has the PLX property if it preserves the log-convexity of sequences, i.e. the log-convexity of $\left\{x_{n}\right\}$ implies that of $\left\{z_{n}\right\}$.
2. We say that the linear transformation (8) has the double PLX property if it preserves the log-convexity of sequences, i.e. the log-convexity of $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ implies that of $\left\{t_{n}\right\}$.

Now, we establish the log-convexity of the s-Pascal triangle. We start by the following proposition (see for instance [7]).

Proposition 1. If both $\left\{x_{n}\right\}_{n}$ and $\left\{y_{n}\right\}_{n}$ are log-convex, then so is the sequence $\left\{x_{n}+y_{n}\right\}_{n}$.
We can extend this result as follows.
Proposition 2. If l sequences $\left\{x_{n}^{1}\right\}_{n},\left\{x_{n}^{2}\right\}_{n}, \ldots,\left\{x_{n}^{l}\right\}_{n}$ are log-convex, then so is the sequence $\left\{x_{n}^{1}+x_{n}^{2}+\cdots+x_{n}^{l}\right\}_{n}$.

Proof. It suffices to proceed by induction over n.
Now, we give our main result.
Theorem 2. If the sequences of nonnegative numbers $\left\{x_{n}\right\}_{n}$ and $\left\{y_{n}\right\}_{n}$ are log-convex, then so is the " ${ }^{i} i^{\text {s }}$ nomial convolution"

$$
t_{n}=\sum_{k=0}^{n s}\binom{n}{k}_{s} x_{k} y_{n s-k}, \quad(n \geqslant 0)
$$

Proof. Taking $n=2$ and $s=2$, we have

$$
\begin{aligned}
t_{0} t_{2}= & x_{0} y_{0} \sum_{k=0}^{4}\binom{2}{k}_{2} x_{k} y_{4-k} \\
= & x_{0} y_{0}\left(x_{0} y_{4}+2 x_{1} y_{3}+3 x_{2} y_{2}+2 x_{3} y_{1}+x_{4} y_{0}\right) \\
= & x_{0}^{2} y_{0} y_{4}+2 x_{0} x_{1} y_{0} y_{3}+3 x_{0} x_{2} y_{0} y_{2}+2 x_{0} x_{3} y_{0} y_{1}+x_{0} x_{4} y_{0}^{2} \\
= & x_{0}^{2} y_{0} y_{4}+2 x_{0} x_{1} y_{0} y_{3}+2 x_{0} x_{2} y_{0} y_{2}+2 x_{0} x_{3} y_{0} y_{1}+x_{0} x_{4} y_{0}^{2}+x_{0} x_{2} y_{0} y_{2} \\
\geqslant & x_{0}^{2} y_{2}^{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{0}^{2}+2 x_{0} x_{1} y_{1} y_{2}+2 x_{0} x_{2} y_{0} y_{2}+2 x_{1} x_{2} y_{0} y_{1} \\
& \left.\quad \quad \quad \quad \text { by the log-convexity of }\left\{x_{k}\right\}_{k} \text { and }\left\{y_{k}\right\}_{k}\right) \\
= & \left(x_{0} y_{2}+x_{1} y_{1}+x_{2} y_{0}\right)^{2}=t_{1}^{2} .
\end{aligned}
$$

Suppose that this hypothesis is true for $s=q$. We show that it remains true for $s=q+1$. For $s=q$, we have

$$
\begin{equation*}
t_{0} t_{2}=x_{0} y_{0} \sum_{k=0}^{2 q}\binom{2}{k}_{q} x_{k} y_{2 q-k} \geqslant\left\{\sum_{k=0}^{q} x_{k} y_{q-k}\right\}^{2}=t_{1}^{2} \tag{9}
\end{equation*}
$$

So, for $s=q+1$, it follows that

$$
\begin{aligned}
t_{0} t_{2} & =x_{0} y_{0} \sum_{k=0}^{2(q+1)}\binom{2}{k}_{q+1} x_{k} y_{2(q+1)-k} \\
& =\sum_{k=0}^{2(q+1)} \sum_{m=0}^{2}\binom{2}{m}\binom{m}{k-m}_{q} x_{0} x_{k} y_{0} y_{2(q+1)-k} \quad \text { by relation (6) } \\
& =\sum_{k=0}^{2(q+1)}\left[\binom{0}{k}_{q}+2\binom{1}{k-1}_{q}+\binom{2}{k-2}_{q}\right] x_{0} x_{k} y_{0} y_{2(q+1)-k} \\
& \left.=x_{0}^{2} y_{0} y_{2(q+1)}+2 \sum_{k=1}^{q+1} x_{0} x_{k} y_{0} y_{2(q+1)-k}^{2(q+1)}+\sum_{k=2}^{2} \begin{array}{c}
2 \\
k-2
\end{array}\right)_{q} x_{0} x_{k} y_{0} y_{2(q+1)-k}
\end{aligned}
$$

$$
\begin{aligned}
& =x_{0}^{2} y_{0} y_{2(q+1)}+2 \sum_{k=1}^{q+1} x_{0} x_{k} y_{0} y_{2(q+1)-k}+\sum_{k=0}^{2 q}\binom{2}{k}_{q} x_{0} x_{k+2} y_{0} y_{2 q-k} \\
& \geqslant x_{0}^{2} y_{0} y_{2(q+1)}+2 \sum_{k=1}^{q+1} x_{0} x_{k} y_{0} y_{2(q+1)-k}+\sum_{k=0}^{2 q}\binom{2}{k}_{q} x_{1} x_{k+1} y_{0} y_{2 q-k} \quad\left(\left\{x_{k}\right\}\right. \text { is LX) } \\
& \geqslant x_{0}^{2} y_{0} y_{2(q+1)}+2 \sum_{k=1}^{q+1} x_{0} x_{k} y_{0} y_{2(q+1)-k}+\left\{\sum_{k=0}^{q} x_{k+1} y_{q-k}\right\}^{2} \quad(\text { by relation }(9)) \\
& \geqslant x_{0}^{2} y_{q+1}^{2}+2 \sum_{k=1}^{q+1} x_{0} x_{k} y_{q+1} y_{(q+1)-k}+\left\{\sum_{k=0}^{q} x_{k+1} y_{q-k}\right\}^{2}\left(\left\{x_{k}\right\} \text { and }\left\{y_{k}\right\}\right. \text { are LX) } \\
& =\left\{\sum_{k=0}^{q+1} x_{k} y_{(q+1)-k}\right\}^{2}=t_{1}^{2} .
\end{aligned}
$$

We proceed by induction over n. Notice that

$$
\begin{align*}
t_{n}= & \sum_{k=0}^{n s}\binom{n}{k}_{s} x_{k} y_{n s-k} \\
= & \sum_{k=0}^{n s} \sum_{j=0}^{s}\binom{n-1}{k-j}_{s} x_{k} y_{n s-k} \quad \text { using the longitudinal recurrence relation } \\
= & \sum_{k=0}^{n s}\binom{n-1}{k}_{s} x_{k} y_{n s-k}+\sum_{k=0}^{n s}\binom{n-1}{k-1}_{s} x_{k} y_{n s-k}+\cdots+\sum_{k=0}^{n s}\binom{n-1}{k-s}_{s} x_{k} y_{n s-k} \\
= & \sum_{k=0}^{(n-1) s}\binom{n-1}{k}_{s} x_{k} y_{n s-k}+\sum_{k=0}^{(n-1) s}\binom{n-1}{k}_{s} x_{k+1} y_{n s-k-1}+\cdots \\
& \cdots+\sum_{k=0}^{(n-1) s}\binom{n-1}{k}_{s} x_{k+s} y_{(n-1) s-k} . \tag{10}
\end{align*}
$$

Hence, by the induction hypothesis, the n sums in the right hand side of relation (10) are log-convex. Thus, by Proposition 2, the sequence $\left\{t_{n}\right\}_{n}$ is log-convex.

Taking $y_{k}=1$ for $0 \leqslant k \leqslant n s$, we have the following corollary.
Corollary 1. If the sequence of nonnegative numbers $\left\{x_{n}\right\}_{n}$ is log-convex, then so is the sequence $\left\{z_{n}\right\}_{n}$,

$$
z_{n}=\sum_{k=0}^{n s}\binom{n}{k}_{s} x_{k}, \quad(n \geqslant 0)
$$

Acknowledgments

The authors thank the referee for the detailed instructive comments and suggestions.

References

[1] M. Ahmia, H. Belbachir, "Preserving log-concavity and generalized triangles", K. Takao (ed.), Diophantine analysis and related fields 2010. NY: American Institute of Physics (AIP). AIP Conference Proceedings 1264, 81-89 (2010).
[2] H. Belbachir, "Determining the mode for convolution powers for discrete uniform distribution", Probab. Engrg. Inform. Sci. 25 (2011), no. 4, 469-475.
[3] H. Belbachir, S. Bouroubi, A. Khelladi, "Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution", Annales Mathematicae et Informaticae, 35, 21-30 (2008).
[4] F. Brenti, "Unimodal, log-concave and Pólya frequency sequences in combinatorics", Mem. Amer. Math. Soc. no. 413 (1989).
[5] B. A. Brondarenko, "Generalized Pascal triangles and pyramids, their fractals, graphs and applications", The Fibonacci Association, Santa Clara, Translated from Russian by R. C. Bollinger (1993).
[6] H. Davenport, G. Pólya, "On the product of two power series", Canadian J. Math. 1, 1-5 (1949).
[7] L. L. Liu, Y. Wang, "On the log-convexity of combinatorial sequences", Advances in Applied Mathematics vol.39, Issue.4, 453-476 (2007).
[8] N. J. A. Sloane, "The online Encyclopedia of Integer sequences", Published electronically at http://www.research.att.com/~njas/sequences.

[^0]: *The research is partially supported by IFORCE Laboratory of USTHB University.
 ${ }^{\dagger}$ The research is partially supported by IFORCE Laboratory of USTHB and Algerian-French bilateral CMEP project 09 MDU 765.

