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Abstract

We investigate pattern avoidance in alternating permutations and generaliza-
tions thereof. First, we study pattern avoidance in an alternating analogue of Young
diagrams. In particular, we extend Babson-West’s notion of shape-Wilf equivalence
to apply to alternating permutations and so generalize results of Backelin-West-Xin
and Ouchterlony to alternating permutations. Second, we study pattern avoidance
in the more general context of permutations with restricted ascents and descents.
We consider a question of Lewis regarding permutations that are the reading words
of thickened staircase Young tableaux, that is, permutations that have k−1 ascents
followed by a descent, followed by k − 1 ascents, et cetera. We determine the rela-
tive sizes of the sets of pattern-avoiding (k− 1)-ascent permutations in terms of the
forbidden pattern. Furthermore, inequalities in the sizes of sets of pattern-avoiding
permutations in this context arise from further extensions of shape-equivalence type
enumerations. This paper is the first of a two-paper series presenting the work of Be-
yond alternating permutations: Pattern avoidance in Young diagrams and tableaux
(arXiv:1301.6796v1). The second in the series is Ascent-descent Young diagrams
and pattern avoidance in alternating permutations (by the second author, submit-
ted).

Keywords: pattern avoidance; alternating permutations; descent type permuta-
tions; Wilf equivalence; shape-Wilf equivalence

1 Introduction

For a nonnegative integer n, let [n] denote the set {1, 2, 3, . . . , n}, and let Sn denote the
set of permutations of [n]. We treat a permutation w ∈ Sn as a sequence w1w2w3 · · ·wn

that contains every element of [n] exactly once. A permutation w is said to contain a
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permutation q if there is a subsequence of w that is order-isomorphic to q. For example,
the subsequence 246 of 214536 shows that 214536 contains 123, and the only permutations
that avoid 21 are the identity permutations. If w does not contain q, then w is said to
avoid q.

The theory of pattern avoidance in permutations has connections to computer science,
algebraic combinatorics, algebraic geometry, and representation theory. The fundamen-
tal question is to determine the size of the set Sn(q) of permutations of length n that
avoid q. The theory first arose in the study of stack-sortable permutations; for exam-
ple, Knuth [8] showed that stack-sortable permutations are exactly those that avoid the
pattern 231. Additionally, generalized stack-sortable permutations are characterized by
the avoidance of longer patterns; for an exposition, see [4, Chapter 8]. MacDonald [12]
demonstrated that vexillary permutations are characterized by 2143-avoidance. Further-
more, Lakshmibai and Sandhya [9] proved that permutations that simultaneously avoid
3412 and 4231 index smooth Schubert varieties. Billey and Warrington [3] showed that
an interesting class of Kazhdan-Lusztig polynomials are indexed by permutations that
simultaneously avoid 321 and four longer patterns. Tenner [18] maintains a database of
situations in which pattern avoidance arises. These applications motivate the study of
permutations that avoid patterns of arbitrary length.

Herb Wilf asked the question of when two patterns are equally difficult to avoid. If
patterns p and q are such that |Sn(p)| = |Sn(q)| for all n, we say that p and q are Wilf-
equivalent. The first non-trivial result of this type is the remarkable fact that all patterns
of length 3 are Wilf-equivalent. Simion and Schmidt [15] gave a particularly elegant
bijective proof. The bijections in Section 2 can be viewed as generalizations of [15].

A permutation w ∈ Sn is called alternating if w1 < w2 > w3 < · · · and reverse
alternating if w1 > w2 < w3 > · · · . Reverse alternating permutations can be transformed
into alternating permutations (and vice versa) by the complementation map that sends
a permutation w = w1w2 · · ·wn to wc = (n + 1 − w1)(n + 1 − w2) · · · (n + 1 − wn).
Pattern-avoiding alternating permutations were first studied by Mansour [13] and by
Deutsch and Reifegerste (documented in [17, Problem h7]), who proved that the number
of alternating permutations of a given length that avoid a pattern of length 3 is a Catalan
number. The enumeration is particularly interesting in that the number of permutations
of a given length that avoid a pattern of length 3 is also a Catalan number. This suggests
that pattern-avoiding alternating permutations have interesting enumerative properties
both independently and in relation to ordinary pattern avoidance. In this paper, we
develop further connections between the pattern avoidance of ordinary and alternating
permutations while also generalizing beyond alternating permutations.

Given a pattern q, let An(q) (resp. A′n(q)) denote the set of alternating (resp. reverse
alternating) permutations of length n that avoid q. If p and q are such that |An(p)| =
|An(q)| (resp. |A′n(p)| = |A′n(q)|) for all even n, we say that p and q are equivalent for
even-length alternating (resp. reverse alternating) permutations and we write p ∼

even
q

(resp. p ∼r

even
q). We make similar definitions for odd-length permutations. Furthermore,

because |An(q)| = |A′n(qc)| for all n, q, the equivalence p ∼
even

q holds if and only if pc ∼r

even
qc,
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Figure 1: The permutation 24537816, which has descent type 3, is obtained by reading
the entries of a skew standard Young tableau of shape (6, 5, 3)/(4, 2) from left to right
and bottom to top. Because the final (top) row has only 2 entries, it is incomplete.

and similarly for the odd length equivalence.
We build on the work of Backelin, West, and Xin; their result is the following theorem.

Theorem 1.1 ([2], Theorem 2.1). For all t > k and permutations q of {k+1, k+2, · · · , t},
the patterns (k − 1)(k − 2)(k − 3) · · · 1kq and k(k − 1)(k − 2) · · · 1q are Wilf-equivalent.

Bóna [5] proved a variant of Theorem 1.1 for alternating permutations in the case
of k = 2 and q = 345 · · · t, while Ouchterlony [14] proved a similar result for doubly
alternating permutations (alternating permutations whose inverse is alternating) in the
case of k = 2. In Section 2, we generalize the method of [1, 2] to apply to permutations
with restricted ascents and descents, using objects that we call AD-Young diagrams.
This provides a framework of alternating shape-equivalence that attempts to fully extend
Theorem 1.1 to alternating permutations. In Section 3, we use AD-Young diagrams to
prove our main result Theorems 3.4, which is a variant of Theorem 1.1 for alternating
permutations in the cases of k = 2. We also consider patterns of short length.

A permutation w is said to have descent type k if

w1 < w2 < · · · < wk > wk+1 < wk+2 < · · · < w2k > w2k+1 < w2k+2 < · · · .

Such a permutation may be thought of as a series of rows of length k with values in strictly
increasing order, with a possibly incomplete final row, as shown in Figure 1. Given pattern
q, let Dk

n(q) denote the set of permutations of descent type k that avoid q. For example,
alternating permutations have descent type 2.

In [10], Lewis derived basic enumerations of pattern-avoiding descent type k permuta-
tions. He computed the number of such permutations that avoid certain identity patterns.
Lewis asked questions about descent type k permutations and further generalizations of
alternating permutation pattern avoidance in [11]. In Section 4, we study the relative
sizes of Dk

n(q) and Dk
n+1(q) for fixed k, q. In Section 5, we apply the AD-Young diagram

framework to generalizations of alternating permutations, and in Section 6 by posing
open questions. In Section 7, we give the enumerative data that forms the basis for our
conjectures.

This paper is the first of a two-paper series presenting the work of [6]; the second
paper is [7] (by the second author, submitted).

the electronic journal of combinatorics 20(4) (2013), #P17 3



Figure 2: If Y = (42, 22), A = ∅, and D = {3}, then (Y,A,D) is an AD-Young diagram.

2 The AD-Young diagram framework

Given a permutation p, let M(p) denote its permutation matrix, and given matrices A and

B, let A⊕B =

[
A 0
0 B

]
. We assume that the reader is familiar with the basic terminology

of Young diagrams and tableaux; see, for example, [4, Chapters 2 and 6]. We draw Young
diagrams in English notation and use matrix coordinates, and for example (1, 2) is the
second square in the first row of a Young diagram. Furthermore, we require all Young
diagrams to have the same number of rows and columns.

In [1, 2], the notion of pattern avoidance is extended to transversals of a Young dia-
gram, and analogue of the Wilf-equivalence of permutations is the shape-Wilf equivalence
of permutation matrices. The critical theorem of [1] is that if M and N are shape-Wilf
equivalent permutation matrices and C is any permutation matrix, then the matrices
M ⊕C and N ⊕C are shape-Wilf equivalent. We generalize the idea of a transversal of a
Young diagram and refine shape-Wilf equivalence to apply to alternating permutations.

Definition 2.1. Let Y be a Young diagram with k rows. If A and D are disjoint subsets
of [k − 1] such that if i ∈ A ∪ D, then the ith and (i + 1)st rows of Y have the same
length, then we call the triple Y = (Y,A,D) an AD-Young diagram. We call Y the Young
diagram of Y , A the required ascent set of Y , and D the required descent set of Y . Figure 2
gives an example of an AD-Young diagram.

As in [1, 2, 16], a transversal of Young diagram Y is a set of squares T = {(i, ti)} such
that every row and every column of Y contains exactly one member of T .

Definition 2.2. Given a transversal T = {(i, ti)}, let Asc(T ) = {i ∈ [k − 1] | ti < ti+1}
and Des(T ) = {i ∈ [k− 1] | ti > ti+1}. We call Asc(T ) the ascent set of T and Des(T ) the
descent set of T . If A ⊆ A′ and D ⊆ D′, then we say that T a valid transversal of Y .

Example 2.3. If T is a transversal of a Young diagram Y , then T is a valid transversal of
the AD-Young diagram (Y, ∅, ∅).

Except for a brief digression in Section 5, we restrict ourselves to the AD-Young
analogues of alternating and reverse alternating permutations.

Definition 2.4. Given positive integers x, y and an AD-Young diagram (Y,A,D) such
that Y has k rows, we say that (Y,A,D) is x, y-alternating if A,D satisfy the property
that if x− 1 6 i 6 k − y, then i ∈ A if and only if i+ 1 ∈ D.
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Figure 3: The transversal T = {(1, 3), (2, 4), (3, 6), (4, 5), (5, 2), (6, 1)} of Y = (64, 5, 4)
contains M(231) because the restriction of T to the yellow columns and the pink rows
rows is a copy of M(231) in T ; we require that X ∈ Y . However, T does not contain
M(4321); for example, the restriction of T to rows 3, 4, 5, 6 and columns 1, 2, 5, 6 is not a
copy of M(4321) in T because (6, 6) /∈ Y .

If Y is x, y-alternating, then Y is a, b-alternating for all a, b with a > x and b > y.

Definition 2.5. If Y is 1, y-alternating, then we say that Y is y-alternating, while if Y is
2, y-alternating, then we say that Y is y-semialternating.

Alternating AD-Young diagrams are the counterpart of alternating permutations,
while semialternating AD-Young diagrams allow reverse alternating permutations.

Example 2.6. Let Y = (44). Then, (Y, {1}, {2}) is 1-alternating, while (Y, {1, 3}, {2}) is
2-alternating but not 1-alternating. Furthermore, (Y, {2, 4}, {1, 3}) is 1-semialternating
but not y-alternating for y 6 4.

The notion of pattern avoidance is exactly as in [1, 2, 16]; a transversal T = {(i, ti)}
of a Young diagram Y contains a r× r permutation matrix M if there are rows a1 < a2 <
· · · < ar and columns b1 < b2 < · · · < br of Y such that (ar, br) ∈ Y and the restriction of
T to the rows ai and the columns bi has contains exactly the squares where M has ones.
If T does not contain M , then T avoids M (see Figure 3). Given an AD-Young diagram
Y and a permutation matrix M , let SY(M) denote the set of valid transversals of Y that
avoid M .

Definition 2.7. If M and N are permutation matrices such that |SY(M)| = |SY(N)| for
all x-alternating AD-Young diagrams Y , we say that M and N are shape-equivalent for
x-alternating AD-Young diagrams ; we write M ∼

x−ASE
N . If we have |SY(M)| = |SY(N)|

for all x-semialternating AD-Young diagrams Y , then we say that M and N are shape-
equivalent for x-semialternating AD-Young diagrams ; we write M ∼

x−SASE
N .

If M ∼
y−ASE

N , then M ∼
x−ASE

N for all positive integers x 6 y, while if M ∼
y−SASE

N ,

then M ∼
x−ASE

N and M ∼
x−SASE

N for all positive integers x 6 y. Because (Y, ∅, ∅) is an al-

ternating AD-Young diagram for every Young diagram Y , ifM andN are shape-equivalent
for 1-alternating AD-Young diagrams, then M and N are shape-Wilf equivalent; that is,
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for all Young diagrams Y , the number of transversals of Y that avoid M is the same
as the number of transversals of Y that avoid N . We explicitly connect alternating and
semialternating AD-Young diagrams to alternating and reverse alternating permutations,
respectively.

Proposition 2.8. Let p and q be permutations.

(a) If M(p) ∼
1−ASE

M(q), then p ∼
odd

q.

(b) If M(p) ∼
1−SASE

M(q), then p ∼r

even
q.

(c) If M(p) ∼
2−ASE

M(q), then p ∼
even

q.

(d) If M(p) ∼
2−SASE

M(q), then p ∼r

odd
q.

Proof. We prove the first part; the remaining parts are similar. Fix a nonnegative integer
n, and we will show that |A2n+1(p)| = |A2n+1(q)|. Consider the AD-Young diagram Y =
(Y,A,D) given by Y = (2n+ 12n+1), A = {1, 3, 5, · · · , 2n− 1}, and D = {2, 4, 6, · · · , 2n}.
It is clear that Y is 1-alternating. Furthermore, a set T = {(i, bi)} is a valid transversal
of Y if and only if b = b1b2 · · · b2n+1 ∈ A2n+1, and T avoids M(p) if and only if b avoids p.
Hence, we have

|A2n+1(p)| = |SY(M(p))| = |SY(M(q))| = |A2n+1(q)|,

as desired.

2.1 Generalization of Babson-West

The extension of shape-equivalences from M ∼ N to M ⊕ C ∼ N ⊕ C is the analogue
of [1, Theorems 1.6 and 1.9]. It is critical in generating infinite sets of nontrivial shape-
equivalences. We have two variants, one for alternating AD-Young diagrams and one for
semialternating AD-Young diagrams.

Theorem 2.9 (Extension Theorem). If permutation matrices M and M ′ are shape-
equivalent for x-alternating (resp. x-semialternating) AD-Young diagrams and C is an
r × r permutation matrix, then we have M ⊕ C ∼

(x+r)−ASE
M ′ ⊕ C (resp. ∼

(x+r)−SASE
).

The remainder of this section will be devoted to the proof of Theorem 2.9. The first
idea in the proof is to pass avoidance of M ⊕ C by a transversal of a large parent AD-
Young diagram Y to avoidance of M by a transversal of a smaller successor AD-Young
diagram; this idea stems from the proof of [1, Theorems 1.6 and 1.9]. The successor
map preserves the alternating property of AD-Young diagrams in the sense that if the
parent is (x+ r)-alternating and C is an r× r matrix, then the successor is x-alternating.
Furthermore, it sends valid transversals to valid transversals.
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The successor AD-Young diagram depends on the choice of transversal of Y . However,
similar to [1], we give an injection of the set of M -avoiding transversals of the successor
diagram into the set of M ⊕C-avoiding transversals of Y ; the ascent set and the descent
set of the successor diagram are chosen to facilitate this reinsertion procedure. We can
then completely reduce the proof that |SY(M ⊕C)| = |SY(N ⊕C)| to a statement about
M -avoiding transversals of x-alternating AD-Young diagrams.

Fix an r× r permutation matrix C and an AD-Young diagram Y = (Y,A,D) (Y need
not be alternating). Let T be a valid transversal of Y . In the language of [1], call a square
(a, b) ∈ Y dominant with respect to T if the restriction of T to the region of squares
(x, y) ∈ Y with x > a and y > b contains C. Let NC(T ) denote the set of elements of T
that are not dominant with respect to T , and let DC denote the family of sets NC(T ) as
T ranges over the valid transversals of Y .

Lemma 2.10. The set of dominant squares of Y form a Young diagram. Furthermore,
given the set NC(T ) and the permutation matrix C, one can recover the Young diagram
of dominant squares.

Proof. See the proof of [1, Theorems 1.6 and 1.9].

Given a set N = NC(T ), let dC(N) denote the set of squares of Y that are dominant
with respect to T ; the fact that d is well-defined follows from Lemma 2.10. For a set N of
squares of Y and a permutation matrix P , let SN,C

Y (P ) denote the set of valid transversals

T of Y that avoid the matrix

[
P 0
0 C

]
such that NC(T ) = N . It is clear that we have

∣∣∣∣SY ([P 0
0 C

])∣∣∣∣ =
∑
N∈DC

∣∣SN
Y (P )

∣∣ . (1)

We will define a function fC on DC with the following key properties, to be proven
after defining fC . The value f(N) is the successor diagram.

Lemma 2.11. For all N ∈ DC, fC(N) is an AD-Young diagram.

Lemma 2.12. If Y is (x+ r)-alternating, then fC(N) is x-alternating.

Lemma 2.13. For all NC ∈ DC and all permutation matrices P , we have∣∣SN
Y (P )

∣∣ =
∣∣SfC(N)(P )

∣∣ .
From the Young diagram of dominant squares d(NC(T )), delete every row or column

that contains a non-dominant square of T , and call the resulting Young diagram Y ′. Each
row and column of Y ′ contains exactly 1 dominant member of T , and thus Y ′ has the same
number of rows and columns. Suppose that Y ′ has k rows, and that for all 1 6 i 6 k the
ith column of Y ′ was the cith column of Y before the row and column deletion; similarly,
suppose that for all 1 6 i 6 k, the ith row of Y ′ was the rith row of Y . Let

A′ = {i ∈ [k − 1] | ri ∈ A and ri+1 = ri + 1},
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· · · X Y · · ·
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... · · ·

Figure 4: If the bullet point is an element of T , then there are no elements of T among
the light gray squares. Thus, if square X is dominant, there must be a copy of C among
the dark gray squares, which implies that Y is dominant.

and let
D′ = {i ∈ [k − 1] | ri ∈ D and ri+1 = ri + 1}.

By construction, the triple (Y ′, A′, D′) depends only on NC(T ), and the set of dominant
squares dC(NC(T )). Given a set N = dC(NC(T ) ∈ D, let fC(N) denote the corre-
sponding triple (Y ′, A′, D′). We prove that fC has the desired properties. Lemmata 2.11
and 2.12 will be immediate from the following lemma and proposition.

Lemma 2.14. Let T = {(i, bi)} be a valid transversal of Y. If the square (j, y) is dominant
with respect to T and bj+1 6 j, then the square (j + 1, y) is dominant with respect to T .

Proof. See Figure 4. By the definition of dominant squares and because (j, y) is dominant,
there are rows j < e1 < e2 < · · · < er and columns y < f1 < f2 < · · · < fr such that the
restriction of Y to the rows ei and the columns fk has members of T exactly where C has
ones. If j + 1 < e1, then the rows ei and the columns fk demonstrate that (j + 1, y) is
dominant. Otherwise, we have j+1 > e1, which implies that e1 = j+1. The only element
of T in row j + 1 is (j + 1, bj+1), and it follows that bj+1 = fk for some k. Regardless of
k, we have bj+1 > f1 > y, which implies that (j + 1, y) is dominant by Lemma 2.10.

Proposition 2.15. Let N ∈ DC and let fC(N) = (Y ′, A′, D′). If i ∈ A′ satisfies ri + 1 ∈
D, then ri + 1 ∈ D′. If i ∈ D′ satisfies ri − 1 ∈ A, then ri − 1 ∈ A′.

Proof. Let T = {i, bi} be a valid transversal of Y with NC(T ) = N . If i ∈ A′ satisfies
ri ∈ D, then (ri, bri) is dominant and bri+1 < bri . By Lemma 2.14, (ri + 1, bri+1) is
dominant, and it follows that ri+1 = ri + 1 and i+ 1 ∈ D′.

To prove the second part, we first prove that (bri−1, ri − 1) is dominant. Because
ri− 1 ∈ A, we have bri−1 < bri . Lemma 2.10 implies that (ri− 1, bri−1) is dominant. This
yields that ri−1 = ri − 1, and the fact that i− 1 ∈ A′ follows by the definition of A′.

Proof of Lemma 2.11. Let fC(N) = (Y ′, A′, D′). By construction and Lemma 2.10, Y ′

is a Young diagram. Because A and D are disjoint, the sets A′ and D′ are disjoint. Let
T = {(i, bi)} be a valid transversal of Y with NC(T ) = N , and suppose that j ∈ A′ ∪D′.
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j j + 1
...

...

aj · · · • · · ·
...

...

aj+1· · · • · · ·
...

...

j j + 1
...

...

a′j · · · × · · ·
...

...

a′j+1· · · × · · ·
...

...

Figure 5: In the proof of Lemma 2.13, we show that if j ∈ A, then j ∈ Asc (h2(T )). In all
cases, the gray squares are dominant with respect to T , bulleted squares are elements of
h2(T ), and squares marked with a cross are elements of T ′. The left figure depicts Case
2: by Lemma 2.14, if the left bulleted square is dominant, then the right bulleted square
must be as well. The right figure depicts Case 3: if the right crossed square is dominant,
then the left crossed square must be as well by Lemma 2.10.

Let y be the length of the rjth row of d(N). By Lemma 2.10 and because (rj + 1, brj+1)
is dominant, we have that y > brj+1. Lemma 2.14 yields that (rj + 1, y) is dominant, and
thus the rjth and (rj + 1)st rows of dC(N) have the same length. It follows that the jth
and (j + 1)st rows of Y ′ have the same length, as desired.

Proof of Lemma 2.12. Let fC(N) = (Y ′, A′, D′) and suppose that Y ′ has k rows. Let
i ∈ D′ with i 6 k−x, and we prove that i−1 ∈ A′. We have ri 6 rk−x 6 rk−x 6 n−r−x.
Because Y is x+ r-alternating, this implies that that ri − 1 ∈ A. Proposition 2.15 yields
that i − 1 ∈ A′, as desired. The proof that i ∈ A′ with i 6 k − x implies i + 1 ∈ D′ is
similar.

Proof of Lemma 2.13. We prove the equality by establishing a bijection. Define the func-
tion h : SN,C

Y (P ) → SfC(N)(P ) by mapping a transversal T ∈ SN,C
Y (P ) to the image of

T after deleting any row or column that contains a non-dominant member of T . By
definition of N , it is clear that h(T ) is a valid transversal of fC(N). Furthermore, if
h(T ) contains P , then the set of dominant squares of T contain P , which implies that T

contains

[
P 0
0 C

]
. Hence, we can conclude that if T ∈ SN,C

Y (P ), then h(T ) ∈ SfC(N)(P ).

To show that h is a bijection, we will show that it has an inverse. Consider the function
h2 : SfC(N)(P )→ SN,C

Y (P ) given by mapping a valid transversal T = {(i, bi)} ∈ SfC(N)(P )
to the transversal T ′ = N ∪ {(ri, cbi) | (i, bi) ∈ T} of Y (à priori, h2(T ) is not necessarily
an element of SN,C

Y (P )).
We claim that if T ∈ SfC(N)(P ), then h2(T ) is a valid transversal of Y . Let T1 be a

valid transversal of Y such that NC(T1) = N ; we introduce T1 in order to exploit the fact
that N ∈ DC . Let h2(T ) = {(i, ai)}, and let T1 = {(i, a′i)}. Suppose that j ∈ A and we
will do casework on which of j, j+1 are among the rows ri to prove that j is in the ascent
set of h2(T ). Figure 5 shows the casework geometrically.
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Case 1. Neither j nor j + 1 are among the indices ri. Then, we have aj = a′j < a′j+1 =
aj+1, as desired.

Case 2. j is among the indices ri but j+1 is not. Assume for sake of contradiction that
aj > aj+1 = a′j+1. Because (j, aj) is dominant with respect to T1, by Lemma 2.14
the square (j+1, aj) is dominant with respect to T1, which implies that (j+1, a′j+1)
is dominant with respect to T1 by Lemma 2.10. This contradicts the fact that j + 1
is not among the rows ri.

Case 3. j + 1 is among the indices ri but j is not. We claim that this is impossible.
Because a′j < a′j+1 and j + 1 is among the rows ri, the square (j, a′j) is dominant,
which implies that j is among the rows ri.

Case 4. Both j and j + 1 are among the indices ri. Suppose that rx = j; then x ∈ A′,
which implies that bx < bx+1. Therefore, we have aj = cbx < cbx+1 = aj+1, as desired.

The casework proves that j is in the ascent set of h′(T ). Suppose that j ∈ D, and we
will prove that j is in the descent set of h2(T ) by dividing into the same cases.

Case 1. Neither j nor j + 1 are among the indices ri. Then, we have aj = a′j > a′j+1 =
aj+1, as desired.

Case 2. j is among the indices ri but j + 1 is not. Because a′j > a′j+1, by Lemma 2.14
the square (j + 1, a′j) is dominant with respect to T1. This implies that (j + 1, a′j+1)
by Lemma 2.10, which implies that j + 1 is among the rows ri.

Case 3. j + 1 is among the indices ri but j is not. By Lemma 2.10 and because (j, a′j)
is not dominant with respect to T1, we have aj = a′j > aj+1, as desired.

Case 4. Both j and j+1 are among the indices ri. Suppose that rx = j; then, we have
x ∈ D′, which implies that bx > bx+1. Therefore, we have aj = cbx > cbx+1 = aj+1,
as desired.

The casework establishes that every element of D is in the descent set of h′(T ), and it
follows that h2(T ) is a valid transversal of Y . Because T avoids P and by the definition

of dominant squares, h2(T ) avoids

[
P 0
0 C

]
. It is clear that NC(h′(T )) = N , and this

implies that h2(T ) ∈ SN,C
Y (P ) for all T ∈ SfC(N)(P ). Hence, h and h2 are inverses, and

thus h is a bijection. The lemma follows.

The following proposition is immediate from Lemma 2.13 and Equation 1, and we use
it to prove Theorem 2.9 in the alternating case.

Proposition 2.16. For all permutation matrices P,C, we have∣∣∣∣SY ([P 0
0 C

])∣∣∣∣ =
∑

N∈DC

∣∣SfC(N)(P )
∣∣ .
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Proof of Theorem 2.9 in the alternating case. Let Y be an (x+ r)-alternating AD-Young
diagram. By Lemma 2.12 and because M ∼

x−ASE
M ′, we have |SfC(N)(M)| = |SfC(N)(M

′)|
for all N ∈ DC . Proposition 2.16 applied to P = M and P = M ′ then yields that∣∣∣∣SY ([M 0

0 C

])∣∣∣∣ =
∑

N∈DC

∣∣SfC(N)(M)
∣∣ =

∑
N∈DC

∣∣SfC(N)(M
′)
∣∣ =

∣∣∣∣SY ([M ′ 0
0 C

])∣∣∣∣ ,
as desired.

In fact, the alternating AD-Young diagrams arose as an attempt to provide a neat
description for a superset of the closure of the set of AD-Young diagrams of the form
(Y,A,D) with Y an n × n square, A = [n − 1] ∩ (2Z + 1), and D = [n − 1] ∩ 2Z
under such a successor map. The need to account for required ascents and descents
significantly complicates both the definition of the successor map and the resulting proof
of the Extension Theorem 2.9.

The proof of Theorem 2.9 in the semialternating case is almost identical. We simply
replace Lemma 2.12 by the following lemma.

Lemma 2.17. If Y is (x + r)-semialternating and N ∈ D, then the AD-Young diagram
fC(N) is x-semialternating.

Proof. Let fC(N) = (Y ′, A′, D′) and suppose that Y ′ has k rows. Let i ∈ D′ with
1 < i 6 k−x, and we prove that i− 1 ∈ A′. We have 1 < ri 6 rk−x 6 rk−x 6 n− r−x.
Because Y is x+ r-alternating, this implies that that ri − 1 ∈ A. Proposition 2.15 yields
that i− 1 ∈ A′, as desired. The proof that i ∈ A′ with 1 6 i 6 k − x implies i + 1 ∈ D′
is similar.

3 Shape-equivalences for AD-Young diagrams

We now prove two shape-equivalences. For all positive integers r, let Ir = M(123 · · · r)
and let Jr = M(r(r − 1)(r − 2) · · · 1). We will prove that I2 ∼

1−ASE
J2 and J3 ∼

1−SASE
F3.

Using the Extension Theorem 2.9, we will obtain infinitely many pairs of patterns that are
equivalent for alternating and reverse alternating permutations in Theorems 3.4 and 3.6.

3.1 The matrices M(12) and M(21) are shape-equivalent

We will prove that I2 ∼
1−ASE

J2; this will be the analogue of [1, Lemma 1.11], which proves

that I2 an J2 are shape-Wilf equivalent. First, we prove an explicit enumeration of SY(I2)
and SY(J2).

Proposition 3.1. For all AD-Young diagrams Y = (Y,A,D) such that Y has n rows, we
have

|SY(I2)| =

{
1 if Y ⊇ (n, n− 1, n− 2, . . . , 1) and A = ∅
0 otherwise
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•
•

Figure 6: Suppose that Y = (42, 22). In the fourth column, we select (2, 4) for T ; then,
we select (1, 3), (4, 2), (3, 1) in that order.

and

|SY(J2)| =

{
1 if Y ⊇ (n, n− 1, n− 2, . . . , 1) and D = ∅
0 otherwise.

The analogous result for ordinary Young diagrams is in the proof of [1, Lemma 1.11].

Proof. It is shown in the proof of [1, Lemma 1.11], that if Y 6⊇ (n, n − 1, n − 2, . . . , 1),
then Y has no valid transversals, which implies that |SY(I2)| = |SY(J2)| = 0.

To prove the first part, suppose that x ∈ A, and suppose that T = {(i, ti)} is a valid
transversal of Y . Then, we have tx < tx+1 and the xth and x + 1st rows of Y have the
same length. The restriction of T to the xth and (x+ 1)st rows and the bxth and bx+1th
columns of Y demonstrates that T contains I2. Let Y have k rows. If A = ∅, then as
in the proof of [1, Lemma 1.11], T = {(1, n), (2, n− 1), . . . , (n, 1)} is the only element of
SY(I2).

To prove the second part, suppose that x ∈ D, and suppose that T = {(i, ti)} is a
valid transversal of Y . Because the xth and (x+ 1)st rows of Y have the same length, T
contains J2. Suppose that D = ∅, and as in the proof of [1, Lemma 1.11], let T = {(i, bi)}
be the transversal obtained by moving from the right column to the left column; for
column y, select for T a square in the lowest unoccupied row with at least y squares. See
Figure 6 for an example. Babson-West, in the proof of [1, Lemma 1.11], prove that this
process returns the unique transversal of Y that avoids J2. We prove that it is a valid
transversal of Y . If x ∈ A, then the xth and (x+1)st rows of Y have the same length, and
let m = max{bx, bx+1}. When we selected a square for the mth column of Y , the x+ 1st
row of Y was unoccupied, and by definition it has at least m squares. Thus, we have
bx+1 = m and x is an ascent of T . The fact that T is a valid transversal of Y follows.

The following lemma is immediate from Proposition 3.1, and the subsequent theorem
follows easily from Proposition 2.8, the Extension Theorem 2.9, and Lemma 3.2.

Lemma 3.2. We have that I2 ∼
1−ASE

J2.

Remark 3.3. In Definition 2.1, we require that if i ∈ D, then the ith and (i + 1)st rows
of Y to have the same length in order for (Y,A,D) to be an AD-Young diagram. For
the necessity of this condition, consider the AD-Young diagram Y ′ given by Y ′ = (32, 1),
A = {1}, D = {2}. We have |SY ′(M(12))| = 0 but |SY ′(M(21))| = 1.
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Theorem 3.4. For all t > 2 and all permutations q of [t] \ [2], the patterns 12q and 21q
are equivalent for even- and odd-length alternating permutations.

Remark 3.5. An alternate proof of Theorem 3.4 via an isomorphism of generating trees is
possible; see [11, 19] for an exposition of generating trees. However, such an isomorphism
does not exist in the case of Theorem 3.6, even in the alternating case.

3.2 The matrices M(213) and M(321) are shape-equivalent

For a positive integer r, let Fr denote the permutation matrix M((r− 1)(r− 2) · · · 1r). In
our recent paper [7], we prove that F3 ∼

1−SASE
J3. Then, Proposition 2.8 and the Extension

Theorem 2.9 imply the following theorem.

Theorem 3.6 ([7], Theorem 4.2). For all t > 3 and all permutations q of [t] \ [3],
the patterns 213q, and 321q are equivalent for even- and odd-length reverse alternating
permutations. The patterns 123q, 213q, and 321q are equivalent for even- and odd-length
alternating permutations.

Taking complements in the statement of Theorem 3.6 for reverse alternating permu-
tations yields the following corollary.

Corollary 3.7 ([7], Corollary 4.3). For all t > 3 and all permutations q of [t], the patterns
(t − 1)t(t − 2)q and (t − 2)(t − 1)tq are equivalent for even- and odd-length alternating
permutations.

3.3 Applications of shape-equivalence to equivalences of short
patterns

The reverse of a permutation w = w1w2 · · ·wn is the permutation wr = wnwn−1 · · ·w1.
Because reversal is an involution on odd-length alternating permutations, we have that
w ∼

odd
wr for all w and likewise w ∼

even
wrc. Such equivalences are called trivial equivalences.

We consider non-trivial equivalences among patterns of length 4 and 5.
By Theorem 3.6, we have 1234 ∼

odd
2134 ∼

odd
3214. By Theorem 3.4, we have 2143 ∼

odd

1243, which by reversal is equivalent to 3421, which is in turn equivalent to 2341 by Corol-
lary 3.7. These equivalences constitute all possible equivalences for odd-length alternating
permutations among patterns of length 4 due to the data of [11], thereby rederiving results
of [11, 20]. Similar logic yields that 1234 ∼

even
3214 ∼

even
2134 ∼

even
2143 and 2341 ∼

even
3421,

which recovers results of [5, 11, 20].
For patterns of length 5, we settled all possible equivalences except for 23451 ∼

odd

34521, 43215 ∼
odd

32145, and 32145 ∼
even

43215 ∼
even

23451 ∼
even

34521; this is 9 out of 11

possible equivalences for odd-length alternating permutations and 9 out of 12 possible
equivalences for even-length alternating permutations. Except for 12345 ∼

odd
21345 and

12345 ∼
even

21345, which are proven in [5], the equivalences among patterns of length 5 are
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new. Brute-force enumerations that describe all possible nontrivial equivalences among
length 5 patterns are given in [11].

For patterns of length 6, we described all possible nontrivial equivalences for both odd-
length and even-length alternating permutations by brute-force enumeration. We present
the list of possible equivalences in Section 7. Theorems 3.4 and 3.6 imply 35 out of 39
possible nontrivial equivalences for odd-length alternating permutations among patterns
of length 6, and 35 out of 45 possible nontrivial equivalences for even-length alternating
permutations. Combinatorial blowup precludes the thorough examination of equivalences
between patterns of length 7.

4 Generalized alternating permutations

Throughout this section let p = p1p2 · · · pn be a permutation of length n. Similarly, let
q = q1q2q3 · · · qb be a pattern of length b. In [11], an operation called extension was
used to recursively generate pattern-avoiding permutations of length n + 1 from such
permutations of length n. The procedure itself involved appending a new value to the
end of a permutation. However, in the context of permutation of descent type k, this
procedure restricts us to only extending values v > pn. We require more flexibility in
choosing which values to add, so we define a new method to add a value.

Definition 4.1. Let p ∈ Sn be a permutation of descent type k and let v ∈ [n + 1].
Define v 7→ p, the injection of v into p as follows: we first increment all values of p that
are greater than or equal to v and then append v to get a permutation p′. Then if p had
an incomplete final row, we rearrange the elements of the final row of p′ to be in increasing
order. If p had a complete final row and v 6 pn, we simply define v 7→ p as p′. However,
if v > pn, we swap the last two entries of p′. If w = v 7→ p for some v, then we say that
w is a child of v and v is a parent of w.

Remark 4.2. Permutations need not have a unique parent.

Example 4.3. Consider the permutation 35624718 of descent type k = 3. We have 4 7→
35624718 = 367258149, because p′ = 36725819, and appending 4 to p′ gives 367258194.
Rearranging the final row then yields 367258149.

We omit the proof that if p has descent type k, then every child of p also descent type
k. It is clear, however, that every child of p contains p, and therefore if a child of p avoids
a pattern q, then so does p.

In Section 4.1, the primary nontrivial result is that |Dk
n(q)| 6 |Dk

n+1(q)| for all patterns
q except for the trivial counterexample of the identity permutation when k > b. Addition-
ally, in Section 4.3, we investigate repetitive patterns, patterns which are characterized by
pattern avoidance of a particular triplet of patterns. What is especially interesting about
these patterns, as we show in Section 4.3, is that |Dk

n(q)| = |Dk
n+1(q)| for particular values

of n and repetitive patterns q. In conjunction with this, for all non-repetitive patterns,
in Section 4.2 we show that |Dk

n(q)| < |Dk
n+1(q)|. Since Dk

n(q) is trivial to understand
when n < k, as |Dk

n(q)| = 1 (or 0 for short identity permutations), it shall be assumed

the electronic journal of combinatorics 20(4) (2013), #P17 14



throughout this section n > k. For similar reasons, since q = 12, 21 are trivial cases as
well, we shall assume that b > 3.

4.1 Nonstrict Case: |Dk
n(q)| 6 |Dk

n+1(q)|
We shall show that |Dk

n(q)| 6 |Dk
n+1(q)|; this is fairly intuitive for as we consider longer

length permutations, we would expect more permutations to avoid the fixed pattern. We
prove the following theorem.

Theorem 4.4. Let k 6 n be positive integers and let q /∈ {21, 1, 12, 123, . . . , 123 · · · k}.
Then, there is an injection f : Dk

n(q) ↪→ Dk
n+1(q) such that for all p, f(p) is a child of p.

In particular, we have |Dk
n(q)| 6 |Dk

n+1(q)|.

In other words, for each parent, we are choosing a different child. In the case where
q = 123 · · · b with b 6 k, k is so large that any sufficiently long permutation with descent
type k contains q when n > b, since the first k values of the permutation are in strictly
increasing order.

Proof. Fix q satisfying the theorem conditions.
Let p ∈ Dk

n(q). Define a consecutive block to be a subset of consecutive cells that are
consecutive in value as well; i. e. ai < ai+1 < · · · < aj for i < i + 1 < · · · < j, and
as − as−1 = 1 when i < s 6 j. We call the value aj the anchor of the consecutive block.
We define the block function B(q) to return the length of the consecutive block anchored
at qb. (Note that this function is only defined for patterns with qb = b. ) Note that if
the pattern is the identity pattern, then the function returns b. The following algorithm
defines f(p).

• If qb = b:

– If n = km+ s, 0 6 s < B(q), inject 1.

– If n = km+ s, B(q) 6 s < k, inject pn−B(q)+1.

• If qb 6= b:

– If n = km+ s, 0 < s < k, inject n+ 1.

– If n = km:

∗ If qb = 1:

· If qb−1 = 2, inject n+ 1.

· If qb−1 6= 2, inject pkm.

∗ If qb 6= 1, inject 1.

Example 4.5. Let q = 2134. Then B(q) = B(2134) = 2. Consider permutation p = 23514
with k = 3. Then, by the algorithm, the child permutation p′ = f(p) = 346125 since
we inject the value p4 = 1. Similarly by the algorithm, f(p′) = 4572361 as we inject the
value 1 into p′.
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We now prove f is injective via casework.

Case 1. We have qb = b.

Subcase 1.1. We have n = km + s with 0 6 s < B(q). We claim that the
injection of the value 1 into the final row will result in a p′ ∈ Dk

n+1(q). Since 1
is the smallest value in the permutation, it must be the first value in the final
row. Since n < km+B(q), there exist at most B(q)− 1 values to the right of
1 in p′. However, by definition of B(q), there are at least B(q) values to the
right of 1 in q. Thus, p′ avoids q as desired.

Subcase 1.2. We have n = km + s with B(q) 6 s < k. Let pn−B(q)+1 = f . We
claim that in this subcase, the injection of the value f into the final row will
result in a valid p′ ∈ Dk

n+1(q). Assume, for the sake of contradiction, p′ contains
q. As a result of the injection, pn−B(q)+2 = f + 1. If only pn−B(q)+1 is part of
the subsequence, this is a contradiction because then the same subsequence is
in p, indicating that p contains q. Similarly, if only pn−B(q)+2 is part of the
subsequence, since pn−B(q)+1 and pn−B(q)+2 are consecutive integers, we can
simply swap the corresponding position of pn−B(q)+2 for pn−B(q)+1, resulting in
another contradiction. Therefore, both of pn−B(q)+1 or pn−B(q)+2 must be in the
subsequence that is order-isomorphic to q. There remain two nontrivial cases
to consider: if both pn−B(q)+1 and pn−B(q)+2 are isomorphic to values part of
the consecutive block, and if both pn−B(q)+1 and pn−B(q)+2 are isomorphic to
values not part of the consecutive block. If the former case were possible, then
B(q) > 1, implying that pn−B(q)+3 exists. However since qb = b, pn−B(q)+2 is the
largest value in the subsequence. But, then, we could substitute the pn−B(q)+3

term for the pn−B(q)+2, which is a contradiction since this then implies that the
original p contained q. The latter case leads to contradiction similarly.

Case 2. We have qb 6= b.

Subcase 2.1. k does not divide m. Suppose that n = km + s with 0 < s < k.
In this subcase, the final row has at least one cell, but must still be incomplete
(since s < k). Thus, there are no restrictions on what can be appended to the
row. So, the algorithm is simply to inject n + 1 (in this case, this is simply
appending n + 1 to the end). Clearly, since this must be the largest value in
the permutation, and the value is in the last row, pn+1 = n + 1. Thus, the p′

that results must avoid q, since clearly pn+1 cannot be part of a subsequence
order-isomorphic to q since qb 6= b and since the original permutation p avoids
q.

Subcase 2.2. k divides n. Suppose that n = km. This subcase is slightly more
complicated. Here, we have an added restriction; by definition, pkm > pkm+1.
We will proceed with further casework.

If qb = 1 and qb−1 = 2, the algorithm is to simply inject n + 1. As a result,
pkm = n + 1, and then the old value of pkm is bumped up into the next row.
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This swapping is essential because pkm > pkm+1. Clearly, pkm cannot be part
of any subsequence order-isomorphic to q, because the value of n + 1 cannot
correspond to the 1 nor 2 in q. Thus, since the original p avoids q, and the
relative positions of the values in p′ are invariant from p, p′ avoids q as well,
and so, p′ ∈ Dk

n+1(q).

If qb = 1 and qb−1 6= 2, the algorithm is to inject f into the new row. Let pkm
= f . So, upon the injection, pkm = f + 1 and pkm = pkm+1 + 1. We claim that
the resulting p′ avoids q. Assume, for the sake of contradiction, p′ contains q
and so there exists some subsequence of p′ that is order-isomorphic to q. Since
p avoids q, the only situations to consider are if only one of pkm and pkm+1 are
part of the subsequence, or if both pkm and pkm+1 are in the subsequence. These
situations are easily tractable, yielding contradictions in a manner similar to
the proofs above. Thus, p′ avoids q as well, and so, p′ ∈ Dk

n+1(q).

If qb 6= 1, we simply inject 1 into the final row (i.e. pkm+1 = 1). Clearly, then,
since 1 is the smallest value in the permutation, pkm+1 cannot be part of a
subsequence that is order-isomorphic to q since qb 6= 1. Thus, since the original
permutation p avoided q, p′ avoids q as well, and so, p′ ∈ Dk

n+1(q).

The above procedures are all reversible as we can easily undo the injection. The
casework shows that the algorithm is indeed injective and that the children f(p) are
pairwise distinct.

4.2 Strict Case: |Dk
n(q)| < |Dk

n+1(q)|
Call a pattern repetitive if it avoids 321, 132, 231. Similarly, a pattern is non-repetitive if
it contains at least one of 321, 132, 231. We prove the following theorem.

Theorem 4.6. For all non-repetitive patterns q with q /∈ {21, 1, 12, . . . , 123 · · · } and all
k, n, we have |Dk

n(q)| < |Dk
n+1(q)|. If q is repetitive and k | n, then |Dk

n(q)| < |Dk
n+1(q)|

as well.

Our approach will be an inductive one. Lemma 4.7 captures the overall nature of
induction from |Dk

n(q)| to |Dk
n+1(q)|, while the rest of the section more specifically details

our algorithm through casework based on the value of n.
The following lemma provides the framework for our inductive argument.

Lemma 4.7. Let q and q′ be two patterns such that q contains q′. If |Dk
n(q′)| < |Dk

n+1(q
′)|,

it must also be true that |Dk
n(q)| < |Dk

n+1(q)|.

Proof. The key idea is that any parent of a permutation that avoids q′ also avoids q′.
Therefore, under the theorem conditions, the assignment of children of Theorem 4.4 must
miss a permutation in Dk

n+1(q
′). Let f : Dk

n(q) ↪→ Dk
n+1(q) be defined from Theorem 4.4.

If f(p) ∈ Dk
n+1(q), then a child of p does not contain q, and therefore p does contain

q and p ∈ Dk
n(q). Because |Dk

n(q′)| < |Dk
n+1(q

′)|, there is an element of Dk
n+1(q

′) that
is outside f(Dk

n(q′)) ⊇ Dk
n+1(q

′) ∩ f(Dk
n(q)). Hence, f is not surjective, and therefore

|Dk
n(q)| < |Dk

n+1(q)|.
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Proof of Theorem 4.6. We now shall proceed with casework based on the value of n. We
apply Lemma 4.7 for the desired result. We divide into cases based on the residue of n
on division by k. We first consider permutations that avoid at least one of 213, 312; then,
we do casework to finish the argument.

Case 1. k does not divide n. Suppose that n = km+ s with 0 < s < k.

We consider non-repetitive patterns, and we revisit repetitive patterns in Case 2.
Let q be a non-repetitive pattern, and we do casework on which of 132, 231, 321
that q contains.

Subcase 1.1. q contains 132 or 231. Much of this case has already been shown by
Lewis in [10]. Recall that permutations of descent type k are obtaining from
reading skew Young tableaux of a particular shape (see Figure 1). Suppose
that permutations of length n of descent type k are identified with tableaux of
shape λ/µ and such permutations of length n+ 1 are identified with tableaux
of shape λ′/µ′. Let r = dn

k
e; then λ and λ′ have r rows. By [10, Corollary

7.3], there is a bijection between Dk
n(132) and the set of Young diagrams Y ⊆

(λ1−λr, λ2−λr, · · · , λr−1−λr), and similarly for Dk
n+1(q) and λ′. However, we

have λ′1 = λ1+1 and λi = λ′i for all i > 1. Therefore, (λ1−λr, λ2−λr, · · · , λr−1−
λr) ( (λ′1 − λ′r, λ′2 − λ′r, · · · , λ′r−1 − λ′r) and the fact that |Dk

n(q) < |Dk
n+1(q)|

follows. A similar argument using [10, Corollary 7.6] settles the 231 case.

Subcase 1.2. q contains 321. Consider a permutation p in |Dk
n(321)|. Clearly,

we may simply append the value n+ 1 to p to obtain an element of Dk
n+1(321).

However, we can also replace pkm with the value n + 1, and inject the pkm
value into the final row. Since the sets of permutations derived from the two
procedures are disjoint due to different locations of n+1, we have |Dk

n+1(321)| >
2|Dk

n(321)|.

Lemma 4.7 implies that, for all k - n and q non-repetitive, we have |Dk
n(q)| <

|Dk
n+1(q)|.

Case 2. k divides n. Suppose that n = km. This case is slightly more complicated
than the previous case. When k = 2 (alternating permutations), we firstly consider
patterns that contain at least one of 123, 213, and 312. However, when k > 2, we
instead consider patterns that contain at least one of 321, 213, and 312. For both of
these triples of patterns, there are patterns that avoid all three, which we address at
the end of the casework by considering all such patterns of length 4. It is important
to note that unlike the previous subsection, this case includes repetitive patterns as
well.

Subcase 2.1. q contains 123.

Since we are only considering the k = 2 case, we may simply inject the values 1
and 2 while preserving 123-avoidance. Since these injections result in distinct
permutations, we have |D2

2m(123)| < |D2
2m+1(123)|.
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1 7 8 9

3 4 5 6

⇐⇒
1 2

3 4 5 6

Figure 7: Removing the largest consecutive block (7,8,9) from 345617892 and collapsing
the final row into the row beneath it results in another valid permutation avoiding 321.
Reversing the deletion of a consecutive block is clear as well, for inserting (7,8,9) into
345612 bumps up the final value 2 into a new row and the consecutive block fills the prior
final row.

Subcase 2.2. q contains 213 or 312. The idea here is very similar to the preceding
one. Since the permutation p has descent type k, we may clearly inject any
value v 6 k into p. One may verify that this operation is reversible. Therefore,
we have |Dk

km+1(q)| > k|Dk
km(q)| > |Dk

km(q)| for q = 213, 312.

Subcase 2.3. q contains 321. In this case we prove the following more interesting
result.

Proposition 4.8. For all k,m > 1, we have

|Dk
km+1(321)| =

km∑
i=k(m−1)+2

|Dk
i (321)|.

Proof Idea. The idea of this proof is to reintroduce the notion of the consecutive
block. First, it is important to note that for p ∈ Dk

km+1(321), pkm = km + 1.
Thus, a bijection is achieved by simply inserting a consecutive block into a
permutation and in the other direction, removing the largest such block from
a permutation. Structurally, a consecutive block is a group of consecutive cells
of a permutation that are in the same row and also consecutively ascending
in value. A graphical example of this bijection is depicted in Figure 7. The
proposition follows from this bijection.

Note that |Dk
km+1(321)| = |Dk

km(321)| when k = 2; however, when k > 2, we
have |Dk

km+1(321)| > |Dk
km(321)|.

Subcase 2.4. q avoids 123, 213, and 312. Consider the length-4 patterns that
avoid 123, 213, and 312; they are 4321, 1432, 2431, and 3421. Note that every
pattern that avoids 123, 213, and 312 must contain at least one of these 4
patterns. We prove that for each of these patterns there exists a second valid
injection, distinct from the one provided in Section 4.1, for every p ∈ Dk

km(q).

• 4321 and 3421: Inject n if pkm 6= n. Inject n− 1 if pkm = n.

• 1432 and 2431: Inject n+ 1.

The verification that this algorithm proves that
∣∣Dk

km(q)
∣∣ < ∣∣Dk

km+1(q)
∣∣ is

straightforward.
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Subcase 2.5. q avoids 321, 213, and 312. Consider the length-4 patterns that
avoid 321, 213, and 312; they are 1234, 1243, 1342, and 2341. Note that every
pattern that avoids 321, 213, and 312 must contain at least one of these 4
patterns. As before, we simply provide the algorithm.

• 1234 and 1243: Inject 2.

• 1342: Inject pkm.

• 2341: Inject n− 1 if pkm = n. Inject pkm + 2 if pkm 6= n.

Combining all the cases and applying Lemma 4.7 yields that |Dk
n(q)| < |Dk

n+1(q)| for
all q and k | n.

4.3 Equality Case: |Dk
n(q)| = |Dk

n+1(q)| (Repetitive Patterns)

In the previous section, we defined repetitive patterns to be those that avoided 321, 132
and 231 simultaneously. Now, we determine the structure of such patterns. Fix the
location of the 1. Since the pattern simultaneouly avoids 231 and 321, there can be at
most one value to the left of the 1. Additionally, since the pattern avoids 132, all values
to the right of the 1 must be in strictly increasing order. Thus, the pattern q must be an
identity pattern, or must be of the form t123 · · · (t− 1)(t+ 1) · · · b, where q1 = t and b is
the length of the pattern.

We consider the case when q is a non-identity, repetitive pattern. The sequence{
Dk

n(q)
}

has predictable repetitions among consecutive terms. We prove the following
theorem.

Theorem 4.9. For all k > b− 1 and all non-identity repetitive patterns q of length b,

|Dk
km+(b−2)(q)| = |Dk

km+(b−1)(q)| = |Dk
km+b(q)| = · · · = |Dk

km+k(q)|.

We divide the proof into two separate cases. Lemmata 4.10 and 4.11 tackle the case
when q1 = b. Similarly, Lemmata 4.12 and 4.13 deal with the general case.

Lemma 4.10. For q with q1 = b and b − 1 6 x 6 k, and for all p ∈ Dk
km+x(q), we have

pkm+x = km+ x.

Proof. Assume for the sake of contradiction that km + x is not part of the final row in
p. Then there exists an index i < km + 1 such that pi = km + x. Because x > t − 1,
we have pkm+1 < pkm+2 < · · · < pkm+(t−1). However, because i < km + 1 and pi >
pkm+1, the pattern pipkm+1pkm+2 · · · pkm+(b−1) is order-isomorphic to q. Thus, p contains
q, contradiction. Consequently, km + x must be part of the final row in p. However, by
definition, since each block is strictly ordered from least to greatest, and because km+ x
is the largest value in the block, we have pkm+x = km+ x, as desired.

Lemma 4.11. For q with q1 = b, all b − 2 6 x 6 k − 1, we have
∣∣Dk

km+x(q)
∣∣ =∣∣∣Dk

km+(x+1)(q)
∣∣∣.
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pkm+1 pkm+2 · · · pu pu+1 · · · pkm+x

pi · · · pkm

Figure 8: The proof of Lemma 4.12 is shown, where u = km + x + t− b. If pkm+x+t−b <
pi < pkm+x+t−b+1, then p contains q, contradiction.

Proof. We exhibit a bijection to prove the lemma. First we describe a function from
Dk

km+x(q) to Dk
km+(x+1)(q). For p ∈ Dkkm+ x(q), the injection of pkm+x+1 = km+ x+ 1

results in a p′ ∈ Dk,l=0
km+(x+1)(q), since this injection clearly maintains all original relations

prior to the injection and is valid because then pkm+(x+1) holds the largest value in the
permutation.

We now describe the inverse function from Dk
km+(x+1)(q) to Dk

km+x(q). By Lemma 4.10,

for s ∈ Dk
km+(x+1)(q), skm+(x+1) = km + (x + 1). Thus, we may simply remove skm+(x+1)

from s to get a permutation s′ ∈ Dk
km+x(q).

The two functions are clearly inverse. Therefore, they are bijective, and the lemma
follows.

Now we tackle the more general case.

Lemma 4.12. For q with q1 = t 6= b, all b− 1 6 x 6 k, and all p in Dk
km+x(q), we have

pkm+(x+t−b+1) = pkm+(x+t−b) + 1.

Proof. Assume for the sake of contradiction that pkm+(x+t−b) and pkm+(x+t−b+1) are not
consecutive values. There exists an index i such that pkm+(x+t−b) < pi < pkm+(x+t−b+1).
Clearly, pi is not in the final block of p (it it was, its “cell” would be in between those
of pkm+(x+t−b) and pkm+(x+t−b+1), which is impossible since pkm+(x+t−b) and pkm+(x+t−b+1)

are adjacent cells) and therefore, pi is in an earlier block of p. Hence, i < km + 1 and
pi > pkm+(x−b+2) (since pkm+(x−b+2) is in the final block, yet pkm+(x−b+2) 6 pkm+(x+t−b)).
Figure 8 shows the argument geometrically.

However, since

pkm+(x−b+2) < pkm+(x−b+3) < · · · < pkm+(x+t−b) < pkm+(x+t−b+1) < · · · < pkm+k,

and x > t− 1, the pattern

pipkm+(x−b+2)pkm+(x−b+3) · · · pkm+(x+t−b)pkm+(x+t−b+1) · · · pkm+x

is order-isomorphic to q (since pkm+(x+t−b) < pi < pkm+(x+t−b+1)). Indeed, the subsequence

pkm+(x−b+2)pkm+(x−b+3) · · · pkm+(x+t−b)

is order-isomorphic to 123 · · · (t− 1), pi comprises the t term, while the subsequence

pkm+(x+t−b+1)pkm+(x+t−b+2) · · · pkm+(x−1)pkm+x
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is order-isomorphic to t+ 1, t+ 2, t+ 3, · · · , b.
Thus, p contains q, contradiction.

Lemma 4.13. For q with q1 = t, t 6= b and b − 2 6 x 6 k − 1, we have
∣∣Dk

km+x(q)
∣∣ =∣∣∣Dk

km+(x+1)(q)
∣∣∣.

Proof. We exhibit a bijection to prove the lemma. First we describe a function from
Dk

km+x(q) to Dk
km+(x+1)(q). From Section 4.1, for p ∈ Dk

km+x(q), the injection of

pkm+(x+t−b+2) = pkm+(x+t−b+1) + 1

results in a p′ ∈ Dk
km+(x+1)(q). We now describe the inverse function from Dk

km+(x+1)(q) to

Dk
km+x(q). This direction is more straightforward. From Lemma 4.12, ∀s ∈ Dk

km+(x+1)(q),
it follows that pkm+(x+t−b+2) = pkm+(x+t−b+1) + 1. Thus, we may simply remove the value
pkm+(x+t−b+2) from s to get an s′ ∈ Dk

km+x(q). It is clear that the functions are inverse,
and therefore bijective.

Combining Lemmata 4.11 and 4.13 yields Theorem 4.9.

The Identity Permutation

The identity permutation merits mention. When k = b − 1, the identity pattern has
repetitions for the exact same values of n as other repetitive patterns (the argument for
this case is identical to the one above). For n > k > b however, we have |Dk

n(q)| = 0.
Thus, only short identity patterns behave like other repetitive patterns.

5 Implications of shape-equivalence for generalized

alternating permutations

Proposition 3.1 yields inequalities for 12q and 21q-avoiding generalized alternating per-
mutations. The following two theorems exploit the generality of the AD-Young diagram
structure. Their proofs involve considering non-alternating AD-Young diagrams and ap-
plying the key lemmata used in the proof of Theorem 2.9.

Proposition 5.1. Let C be an r × r permutation matrix. If Y = (Y,A,D) is an AD-
Young diagram such that Y has n rows (columns) and A ⊇ (D ∩ [n− 1− r]) + 1, then we
have ∣∣∣∣SY ([I2 0

0 C

])∣∣∣∣ 6 ∣∣∣∣SY ([J2 0
0 C

])∣∣∣∣ .
The constraint on A,D is that every required descent, except possibly those involving

the last r rows, must be immediately preceded by a required ascent.
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Proof. We use the notation of Section 2.1. Suppose that N ∈ D, and let f(N) =
(Y ′, A′, D′). We claim that if A′ = ∅, then D′ = ∅.

We prove the contrapositive; suppose that j ∈ D′. Let f(N) have k rows and, for
1 6 i 6 k, suppose that the ith row of Y ′ was the rthi row of Y before row and column
deletion. It is clear that we have rj < rj+1 6 n − x, and hence we have rj 6 n − x − 1.
This yields that rj − 1 ∈ A, and by Proposition 2.15, we have that j − 1 ∈ A′. Taking
contrapositives, we have that if A′ = ∅, then D′ = ∅. By Proposition 3.1, it follows that∣∣Sf(N)(I2)

∣∣ 6 ∣∣Sf(N)(J2)
∣∣ for all N ∈ D.

Adding these inequalities as N ranges over D and applying Proposition 2.16 yields
that ∣∣∣∣SY ([I2 0

0 C

])∣∣∣∣ =
∑
N∈T

∣∣Sf(N)(I2)
∣∣ 6 ∑

N∈T

∣∣Sf(N)(J2)
∣∣ =

∣∣∣∣SY ([J2 0
0 C

])∣∣∣∣ ,
as desired.

Theorem 5.2. Suppose that n, t are positive integers with t > 2, and D ⊆ [n − 1] such
that 1 /∈ D and D ∩ [n + 1 − t] does not contain any two consecutive integers. If q is a
permutation of [t] \ [2], then the number of permutations of length n with descent set D
that avoid 12q is at most the number of permutations of length n with descent set D that
avoid 21q.

Proof. Apply Proposition 5.1 to Y = (Y,A,D) with Y = (nn) and A = [n − 1] \D, and
let C = M(q).

Exchanging the roles 12 and 21 reverses the inequality sign and yields similar results.

Proposition 5.3. Let C be an r×r permutation matrix. If Y = (Y,A,D) is an AD-Young
diagram such that Y has n columns and D ⊇ (A ∩ [n− r])− 1, then we have∣∣∣∣SY ([I2 0

0 C

])∣∣∣∣ > ∣∣∣∣SY ([J2 0
0 C

])∣∣∣∣ .
Theorem 5.4. Suppose that n, t are positive integers with t > 2, and A ⊆ [n − 1] such
that A ∩ [n + 2− t] does not contain any two consecutive integers. If q is a permutation
of [t] \ [2], then the number of permutations of length n with ascent set A that avoid 12q
is at least the number of permutations of length n with ascent set A that avoid 21q.

In particular, substituting D =
{
k, 2k, . . . , k

⌊
n
k

⌋}
into Theorem 5.2 yields the in-

equality |Dk
n(12q)| 6 |Dk

n(21q)|. Similarly, substituting A =
{
k, 2k, . . . , k

⌊
n
k

⌋}
into The-

orem 5.4 and complementing yields that |Dk
n((t+ 2)(t+ 1)w)| > |Dk

n((t+ 1)(t+ 2)w)| for
all w ∈ St. It is interesting that the method that yields equalities for the k = 2 case of
alternating permutations can be generalized to yield inequalities for larger k.
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6 Future directions and open problems

The equivalence Fk ∼
1−SASE

Jk, conjectured in [6, Conjecture 8.1], was recently proven by

Yan [21] for k > 3, thereby fully extending Backelin-West-Xin’s Theorem 1.1 to alternating
permutations.

One can consider an analogue of AD-Young diagrams related to doubly alternating
permutations by also restricting the ascent and descent sets of the transpose of a transver-
sal. Specifically, we make the following definition.

Definition 6.1. Let Y be a Young diagram with n rows and columns, and suppose that
A,D,A2, D2 ⊆ [n − 1]. We call Y = (Y,A,D,A2, D2) a double AD-Young diagram if
(Y,A,D) and (Y t, A2, D2) are AD-Young diagrams, where Y t denotes the transpose of Y .

One may then attempt to extend Yan’s result that Fk ∼
1−SASE

Jk to the context of

double AD-Young diagrams.
Furthermore, empirical data, which we provide in Section 7, suggests that most equiv-

alences for alternating permutations are generated by the equivalence Fk ∼
1−SASE

Jk and

trivial equivalences. In particular, all possible equivalences for odd-length alternating
permutations among patterns of length 5 and 6 are generated in this manner, as well as
all but 5 equivalences for even-length alternating permutations among patterns of length
6. This occurrence mimics a similar phenomenon for ordinary permutations documented
in [16], and “sporadic” equivalences occur between patterns of length 4.

Brute-force enumerations suggest the following conjecture, which would give Wilf-type
equivalences over all descent types.

Conjecture 6.2. For all k > 0 and n > 3, we have |Dk
n(2134 · · ·n)| = |Dk

n(n123 · · · (n−
1))| as well as |Dk

n(123 · · ·n(n− 1))| = |Dk
n(23 · · ·n1)|.

Equally interesting are permutations that do not seem to be Wilf-equivalent to any
other pattern for any descent type. For length four patterns, we have the following
conjecture.

Conjecture 6.3. For all p = 1324, 1342, 3124, 3412 and p 6= q ∈ S4, |Dk
n(p)| 6= |Dk

n(q)|.

Question 6.4. Does a similar phenomenon arise for higher length patterns?

7 Brute-Force Enumerations

We computed |An(q)| for small n and short-length q by brute-force computer enumeration.
This data, shown in Tables 1 and 2, formed the basis of our results and conjectures.

We also computed |Dk
n(q)| for small n, k and short-length q by similar enumerations.

This data, shown in Table 3, forms the basis for our theorems of Section 4.
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Patterns 2 4 6 8 10 12
(634521, 652341), (534621, 651342) 1 5 61 1385 47860 2202236
(564321, 654312), 645321, 653421, 1 5 61 1385 47860 2201540
(456321, 654123), (345621, 651234),
(234561, 612345), (165432, 543216),
(216543, 432165), (126543, 432156),
321654, (213654, 321465), 123456
(123654, 321456), (213465, 213465),
(123465, 213456)
(312654, 321564), (213564, 312465) 1 5 61 1385 47860 2198859
(123564, 312456)
(215643, 431265), (125643, 431256) 1 5 61 1385 47860 2197690
(214563, 412365), (124563, 412356) 1 5 61 1385 47860 2197299
(214653, 421365), (124653, 421356) 1 5 61 1385 47860 2195798
(143265, 215436), (125436, 143256) 1 5 61 1344 44386 1954114
(132654, 321546), (124365, 214356), 1 5 61 1344 44377 1951843
(132465, 213546), (123546, 132456)
(124356, 124356), 214365
(564231, 645312), (456231, 645123) 1 5 61 1344 44377 1951757
(564312, 564312), (456312, 564123), 1 5 61 1344 44377 1951429
(345612, 561234), 456123
(465312, 564213), (456213, 465123) 1 5 61 1344 44342 1943735
(215634, 341265), (125634, 341256) 1 5 61 1344 44333 1940841
(216534, 342165), (126534, 342156) 1 5 61 1344 44333 1940623
(546312, 564132), (456132, 546123) 1 5 61 1344 44324 1940209
(231654, 321645), (213645, 231465), 1 5 61 1344 44306 1937196
(123645, 231456)
(216453, 423165), (126453, 423156) 1 5 61 1344 44306 1936673
(216345, 234165), (126345, 234156) 1 5 61 1344 44306 1935009
(142365, 214536), (124536, 142356) 1 5 61 1344 44289 1935152
(134265, 215346), (125346, 134256) 1 5 61 1344 44289 1934933
(214635, 241365), (124635, 241356) 1 5 61 1344 44280 1932468
(216435, 243165), (126435, 243156) 1 5 61 1344 44280 1931424
(215364, 314265), (125364, 314256) 1 5 61 1344 44271 1930657
(215463, 413265), (125463, 413256) 1 5 61 1344 44271 1929874
(216354, 324165), (126354, 324156) 1 5 61 1344 44253 1926893

Table 1: The size of A2n(q) is given for all patterns q ∈ S6 that participate in a non-
trivial equivalence for even-length alternating permutations. Parentheses indicate trivial
equivalences.

the electronic journal of combinatorics 20(4) (2013), #P17 25



Patterns 1 3 5 7 9 11 13
(654321, 123456), (654312, 213456), 1 2 16 272 7936 329098 17316208
(654123, 321456), (651234, 432156),
(612345, 543216)
(634521, 125436), (634512, 215436) 1 2 16 272 7622 300499 15125692
(653421, 124356), (653412, 214356) 1 2 16 272 7622 300430 15106854
(645321, 123546), (645312, 213546), 1 2 16 272 7622 300430 15106113
(645123, 321546)
(564321, 123465), (456321, 123654), 1 2 16 272 7622 300430 15102362
(345621, 126543), (234561, 165432),
(564312, 213465), (456312, 213654),
(345612, 216543), (564123, 321465),
(456123, 321654), (561234, 432165)
(564213, 312465), (456213, 312654) 1 2 16 272 7622 300172 15038858
(435621, 126534), (435612, 216534) 1 2 16 272 7622 300103 15012608
(465321, 123564), (465312, 213564), 1 2 16 272 7622 300094 15023874
(465123, 321564)
(346521, 125643), (346512, 215643) 1 2 16 272 7622 300025 15004212
(436521, 125634), (436512, 215634) 1 2 16 272 7622 300025 14998611
(546321, 123645), (546312, 213645), 1 2 16 272 7622 299916 14987084
(546123, 321645)
(365421, 124563), (365412, 214563) 1 2 16 272 7622 299897
(543621, 126345), (543612, 216345) 1 2 16 272 7622 299768
(635421, 124536), (635412, 214536) 1 2 16 272 7622 299708
(356421, 124653), (356412, 214653) 1 2 16 272 7622 299698
(643521, 125346), (643512, 215346) 1 2 16 272 7622 299668
(534621, 126435), (534612, 216435) 1 2 16 272 7622 299658
(536421, 124635), (536412, 214635) 1 2 16 272 7622 299639
(563421, 124365), (563412, 214365) 1 2 16 266 7164 270463 13077672
(564231, 132465), (456231, 132654) 1 2 16 266 7164 270463 13077275
(564132, 231465), (456132, 231654) 1 2 16 266 7156 268940 12868164
(354621, 126453), (354612, 216453) 1 2 16 266 7156 268876
(463521, 125364), (463512, 215364) 1 2 16 266 7148 267642
(453621, 126354), (453612, 216354) 1 2 16 266 7148 267590
(364521, 125463), (364512, 215463) 1 2 16 266 7148 267539

Table 2: The size of A2n+1(q) is given for all patterns q ∈ S6 that participate in a non-
trivial equivalence for odd-length alternating permutations. Parentheses indicate trivial
equivalences.
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Patterns 1 2 3 4 5 6 7 8 9
1342 1 1 1 2 5 9 20 64 143
1243 1 1 1 2 5 9 21 68 153
1423 1 1 1 3 6 9 42 93 143
3124 1 1 1 3 9 9 44 143 143
2134 1 1 1 3 9 9 44 153 153
4123

Table 3: This table shows |D3
n(q)| for selected q ∈ S4. Note in particular the repeated

values of |D3
n(q)| for q = 2134, 4123.
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Mathematics, 146:247–262, 1995.

[20] Yuexiao Xu and Sherry H. F. Yan. Alternating permutations with restrictions and
standard Young tableaux. Electronic J. Combinatorics, 19(2):#P49, 2012.

[21] Sherry H. F. Yan. On Wilf equivalence for alternating permutations. Electronic
Journal of Combinatorics, 20(3):#P58, 2013.

the electronic journal of combinatorics 20(4) (2013), #P17 28

http://arxiv. org/abs/0908.0255v1
http://www-math.mit.edu/~rstan/ec/catadd.pdf
http://www-math.mit.edu/~rstan/ec/catadd.pdf
http://math.depaul.edu/bridget/patterns.html
http://math.depaul.edu/bridget/patterns.html

	Introduction
	The AD-Young diagram framework
	Generalization of Babson-West

	Shape-equivalences for AD-Young diagrams
	The matrices M(12) and M(21) are shape-equivalent
	The matrices M(213) and M(321) are shape-equivalent
	Applications of shape-equivalence to equivalences of short patterns

	Generalized alternating permutations
	Nonstrict Case
	Strict Case
	Equality Case (Repetitive Patterns)

	Implications of shape-equivalence for generalized alternating permutations
	Future directions and open problems
	Brute-Force Enumerations

