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Abstract

In this paper we characterise the structural transition in random mappings with
in-degree restrictions. Specifically, for integers 0 6 r 6 n, we consider a random
mapping model T̂ rn from [n] = {1, 2, . . . , n} into [n] such that Ĝr

n, the directed
graph on n labelled vertices which represents the mapping T̂ rn , has r vertices that
are constrained to have in-degree at most 1 and the remaining vertices have in-
degree at most 2. When r = n, T̂ rn is a uniform random permutation and when
r < n, we can view T̂ rn as a ‘corrupted’ permutation. We investigate structural
transition in Ĝr

n as we vary the integer parameter r relative to the total number of
vertices n. We obtain exact and asymptotic distributions for the number of cyclic
vertices, the number of components, and the size of the typical component in Ĝr

n,
and we characterise the dependence of the limiting distributions of these variables
on the relationship between the parameters n and r as n → ∞. We show that
the number of cyclic vertices in Ĝr

n is Θ( n√
a
) and the number of components is

Θ(log( n√
a
)) where a = n − r. In contrast, provided only that a = n − r → ∞,

we show that the asymptotic distribution of the order statistics of the normalised
component sizes of Ĝr

n is always the Poisson-Dirichlet(1/2) distribution as in the
case of uniform random mappings with no in-degree restrictions.
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1 Introduction

The motivation for the results in this paper comes from earlier work on the component
structure of random mapping models. Random mapping models have been studied since
the 1950’s and have applications in modelling epidemic processes, the analysis of crypto-
graphic systems (e.g. DES) and of Pollard’s algorithm, and random number generation
(see, for example, [3, 9, 10, 24, 25, 26] and the references therein). The most extensively
studied model is the uniform random mapping Tn from [n] = {1, 2, . . . , n} into [n], with

Pr{Tn = f} =
1

nn

for any f ∈ Mn, where Mn denotes the set of all mappings from [n] into [n]. Since any
mapping f ∈Mn can be represented by a directed graph G(f) on n labelled vertices such
that there is a directed edge from i to j if and only if f(i) = j, it is natural to consider
the structure of the random digraph Gn ≡ G(Tn) which represents Tn. Much is known
about the structure of Gn (see, for example, [9, 20]). In particular, Aldous [1] has shown
that the joint distribution of the normalized order statistics for the component sizes in Gn

converges to the Poisson−Dirichlet(1/2) distribution, denoted PD(1/2), on the simplex
∇ = {{xi} :

∑
xi 6 1, xi > xi+1 for every i > 1}. The component structure of other

natural variants of the uniform model have also been studied. For example, a key property
of Tn is that the ‘vertex image’ variables Tn(1), Tn(2), . . . , Tn(n) are independent and
uniformly distributed on [n]. So it is natural to consider how the structure of the random
mapping digraph changes if we assume that the vertex-image variables are independent
but not necessarily either uniform or identically distributed (see [2, 18]). In this case, it is
known (see, for example, [5, 23, 28]) that even ‘small’ perturbations of the distributions of
the vertex-image variables can result in a very different asymptotic component structure
for the corresponding random mapping digraph.

In another direction, other authors have considered random mappings with struc-
tural constraints. This approach is based on the observation that since for any mapping
f ∈Mn, each vertex in G(f) has out-degree 1, the components of G(f) consist of directed
cycles with directed trees attached to the cycles. In the uniform case, the number of cyclic
vertices in Gn is Θ(

√
n) and there are no constraints on the in-degrees of vertices in Gn.

However, in applications such as the analysis of shift register data, it is natural to con-
sider random mapping digraphs where the in-degree of each vertex is at most m, where
m > 2 is a fixed integer. Such models were considered by Arney and Bender [3] and, more
recently, by the authors in [15]. This later work shows that even in the case m = 2, the
‘macroscopic’ structure of the constrained random mapping digraph remains similar to
the structure of Gn, e.g. there are still Θ(

√
n) cyclic vertices in the constrained digraph

and the joint distribution of the normalised order statistics of the component sizes still
converges to the PD(1/2) distribution on ∇ as the number of vertices tends to infinity.
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In contrast, the asymptotic component structure of random mappings with a constrained
number of cyclic vertices, but no in-degree restrictions, can be quite different from the
structure of Gn (see [16]). Loosely speaking, such mappings are constructed as follows:
First, select a uniform random set of `(n) vertices from a set of vertices labelled 1, 2, . . . , n.
Next, construct a uniform random forest on the n vertices which is rooted at the `(n)
selected vertices and direct the edges in the forest so that any path from a vertex to the
root is directed towards the root. Lastly, complete the construction by constructing a
uniform random permutation on the `(n) selected vertices. It turns out that the asymp-
totic structure of random mappings with `(n) cyclic vertices (but with no constraints on
vertex in-degrees) depends on whether

√
n = o(`(n)), `(n) = Θ(

√
n), or `(n) = o(

√
n).

In particular, if
√
n = o(`(n)), then as n → ∞, the joint distribution of the normalised

order statistics of the component sizes converges to the PD(1) distribution rather than
the PD(1/2) distribution. We note that the PD(1) distribution arises as the limiting
distribution of the order statistics for the normalised cycle lengths in a uniform random
permutation (see [29]). So the results described above indicate that when the number of
cyclic vertices, `(n), is much greater than

√
n, then the asymptotic cycle structure of the

underlying permutation on the `(n) cyclic vertices also determines the relative sizes of the
components in the entire random mapping.

In this paper we investigate random mappings with stricter in-degree constraints than
those considered by Arney and Bender in [3] and by the authors in [15]. Specifically, we
consider random mapping digraphs on n vertices where r(n) vertices are constrained to
have in-degree at most 1 and the remaining n − r(n) vertices have in-degree at most 2.
These mappings can be viewed as ‘corrupted’ permutation with n − r(n) ‘corrupted’
vertices that may have in-degree 2. Note that for such mappings the number of vertices
of in-degree 0 is equal to the number of vertices of in-degree 2 and therefore the number
of vertices of in-degree 1 is always at least 2r(n) − n = n − 2(n − r(n)). So, in some
sense, the smaller n − r(n) relative to n, the more vertices in the mapping are forced to
have in-degree 1 and the ‘closer’ the mapping is to a one-to-one permutation. In this
paper, we are interested in characterising how these in-degree constraints influence the
graphical structure of the random mapping. For this model we determine (precisely) how
the exact and asymptotic cycle and component structure of the digraph depends on the
parameter r(n). In particular, we show that as n → ∞, the number of cyclic vertices
in the digraph is Θ( n√

n−r(n)
). In light of this and the results for random mappings with

`(n) cyclic vertices described above, one might expect that when n − r(n) = o(n), then
the limiting distribution for the normalised order statistics of the component sizes would
also converge to the PD(1) distribution, but this is not the case. In fact, we show that
provided n − r(n) → ∞, then no matter how slowly n − r(n) grows relative to n, the
limiting distribution of the order statistics of the normalised component sizes converges to
the PD(1/2) distribution. In other words, in this case, the structure of the permutation on
the cyclic vertices of the mapping does not determine the relative sizes of the components
of the mapping.

The rest of this paper is organised as follows. In Section 2 we give a careful description
of our model for random mappings with in-degree constraints and discuss its connection
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with models for random mappings with anti-preferential attachment. In Section 3 we ob-
tain the exact distributions of the number of cyclic vertices, the number of components,
and the size of a typical component in the digraph which represents the model. In Sec-
tion 4 we investigate the limiting distributions of the variables considered in Section 3 and
we identify how these limiting distributions depend on the relationship between n and r
as n→∞. We also determine the limiting distribution of the normalised order statistics
of the component sizes of Ĝr

n as n → ∞. Throughout this paper we adopt the following

notational conventions. We write (X1, X2, . . . , Xk)
d∼ (Y1, Y2, . . . , Yk) when random vec-

tors (X1, X2, . . . , Xk) and (Y1, Y2, . . . , Yk) have the same joint distribution. Many of the
summations in this paper involve products of binomial coefficients and have complicated
limits of summation. For such summations, we write

∑
y

to denote that the sum is over all

values of y such that the binomial coefficients in the sum are defined, and we assume that(
0
0

)
= 1. Finally, we denote the falling factorial by (n)k = n(n− 1)(n− 2) . . . (n− k + 1).

2 The Model

The model considered in this paper is a natural extension of a model for random mappings
with anti-preferential attachment which was first introduced in [15]. Random mappings
with anti-preferential attachment can be defined in terms of an urn model as follows:
Suppose that m and n are positive integers and suppose that we have an urn such that
for each 1 6 k 6 n, the urn contains m balls numbered k. We select a sequence of n balls,
one at a time, uniformly at random, and without replacement, from the urn and define
the random mapping Tmn : [n]→ [n] by

Tmn (i) = j

for 1 6 i, j 6 n, if the ball selected on the ith draw is numbered j. This sequential
construction of Tmn can be viewed as a process of anti-preferential attachment in a directed
graph on n labelled vertices. Starting with n vertices (and no edges), we add directed
edges to the graph as balls are removed from the urn according to the rule that if the ball
selected on the ith draw is numbered j, then a directed edge from i to j is added to the
graph and we set Tmn (i) = j. After n selections from the urn, we obtain the directed graph
Gm
n and the corresponding random mapping Tmn : [n] → [n]. It is the parameter m that

determines the strength of the anti-preferential effect in the construction of Tmn . More
precisely, the smaller the value of m, the stronger the anti-preferential effect. For values
of m much larger than n, the anti-preferential effect is negligible and Tmn is essentially
equivalent to the uniform random mapping model, whereas when m = 1, T 1

n is a uniform
permutation on [n].

It is clear from the construction of Tmn that the in-degree of each vertex in Gm
n is at

most m, so random mappings with anti-preferential attachment also provide a natural
model for random mappings with constrained in-degrees. In particular, we can mod-
ify the construction described above to construct random mappings with even stronger
constraints on the vertex in-degrees. We refer to this model as the interpolation model
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because, in some sense, it is sandwiched ‘between’ the anti-preferential models T 2
n and

T 1
n . The model is defined as follows: Suppose that n > 0 and 0 6 r 6 n are integers, and

suppose that we have an urn which contains n red balls numbered 1 to n and n blue balls
numbered 1 to n. The interpolation random mapping T̂ rn is constructed in two stages:

1. Select a subset of r red balls, uniformly and at random, from the set of red balls
and remove these balls from the urn.

2. Select sequence of n balls, one at a time and without replacement, from the urn and
define the random mapping T̂ rn by

T̂ rn(i) = j

for 1 6 i, j 6 n, if the ball selected on the ith draw is numbered j.

It is clear from the definition of T̂ rn that if r = 0 (i.e. no balls are removed from the urn
in the first stage), then T̂ 0

n = T 2
n , whereas if r = n (i.e. n balls are removed from the urn

in the first stage) then T̂ nn = T 1
n . If 0 < r < n, then the model T̂ rn is ‘between’ the models

T 2
n and T 1

n , i.e. there are r vertices in the digraph Ĝr
n ≡ G(T̂ rn) that are constrained to

have in-degree at most 1 and the other vertices have in-degree at most 2. So, the larger
the value of r relative to n, the greater the number of vertices in Ĝr

n with in-degree 1,
and, in some sense, the closer the random mapping T̂ rn is to a random permutation.

Our main goal in this paper is to identify how the component structure of the ran-
dom digraph Ĝr

n depends on the parameter r and how its structure changes as T̂ rn gets
‘closer’ to the random permutation T 1

n . The main tool in this investigation is a calcu-
lus first developed in [15] for random mappings with exchangeable in-degrees. Random
mappings with exchangeable in-degrees can be viewed as an analogue of the well-studied
configuration model from random graph theory which was first introduced by Bollobás
[6] (see also [21]). Loosely speaking, such mappings are constructed by first specifying
the vertex in-degree sequence D̂1, D̂2, . . . , D̂n, where D̂1, D̂2, . . . , D̂n is a sequence of ex-
changeable, non-negative integer-valued random variables such that

∑n
i=1 D̂i ≡ n, and

then selecting a mapping T D̂n uniformly from all mappings with the given in-degree se-
quence D̂1, D̂2, . . . , D̂n. This is a natural model for random mappings where no vertex
or set of vertices is considered to be distinguished in some way from the other vertices
(i.e. the labelling of the vertices does not matter). One of the most useful and attractive
properties of random mappings with exchangeable in-degrees is that many distributions
that are related to the structure of the random mapping digraph can be expressed in
terms of expected values of functions of the in-degree variables D̂1, D̂2, . . . , D̂n, which in
turn allows us to investigate how the in-degree sequence D̂1, D̂2, . . . , D̂n determines the
structure of the digraph.

A natural class of random mappings with exchangeable in-degrees can be constructed
as follows: Suppose that D1, D2, . . . , Dn are i.i.d. non-negative integer-valued random
variables with Pr{D1 +D2 + . . .+Dn = n} > 0 and let D̂1, D̂2, . . . , D̂n be a sequence of
random variables with joint distribution is given by

Pr
{
D̂i = di, 1 6 i 6 n

}
= Pr

{
Di = di, 1 6 i 6 n

∣∣∣ n∑
i=1

Di = n
}
.
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Clearly, the variables D̂1, D̂2, . . . , D̂n are exchangeable with
∑n

i=1 D̂i = n, and can be

used to construct T D̂n . It is easy to check, for example, that if D1, D2, . . . , Dn are i.i.d.

Poisson variables, then T D̂n is the usual uniform random mapping Tn. In the case where the

variables D1, D2, . . . , Dn have a binomial distribution Bin(m, p), the random mapping T D̂n
corresponds to the anti-preferential model Tmn described above (for more details, see [15]).
In this paper we exploit the fact that the interpolation model T̂ rn can also be represented
as a random mapping with exchangeable in-degrees. However, it is not so easy to extract
information about the structure of Ĝr

n because, in this case, the joint distribution of the
in-degree sequence for T̂ rn cannot be represented in terms of a sequence of i.i.d. random
variables conditioned on the sum equalling n. As a consequence, the exact distribution
results obtained in Section 3 for the interpolation model T̂ rn are more complicated than
the analogous results for the anti-preferential model Tmn and this also complicates the
asymptotic analysis in Section 4.

3 Exact distributions for Ĝr
n

We begin this section with some definitions and additional notation. First, for n > 1 and
f ∈ Mn, we say the vertex labelled i is a cyclic vertex of f if there is some 1 6 k 6 n
such that f (k)(i) = i where f (k) denotes the kth iterate of the mapping f . Next, for
1 6 i 6 n, let di(f) denote the in-degree of vertex i in the digraph G(f), and let
~d(f) ≡ (d1(f), . . . , dn(f)). For any vector ~d ≡ (d1, d2, . . . , dn) of non-negative integers
such that

∑n
i=1 di = n, we also define

Mn(~d) ≡ {f ∈Mn : ~d(f) = ~d}.

Finally, for 0 6 r 6 n and for 1 6 i 6 n, let D̂r
i,n = di(T̂

r
n) denote the in-degree of vertex i

in the random digraph Ĝr
n which represents T̂ rn . It follows from the definition of T̂ rn that

the variables D̂r
1,n, D̂

r
2,n, . . . , D̂

r
n,n are exchangeable and, for 1 6 j 6 n, D̂r

j,n equals the
number of balls labelled j that are selected from the urn during Stage 2 of the construction
of T̂ rn . It is also straightforward to verify that for any event {D̂r

i,n = di,∀i ∈ [n]} such

that Pr{D̂r
i,n = di,∀i ∈ [n]} > 0, we have

Pr{T̂ rn = f | D̂r
i,n = di, ∀i ∈ [n]} =

{∏n
i=1 di!

n!
if di(f) = di,∀i ∈ [n]

0 otherwise.
(1)

In other words, given (D̂r
1,n, D̂

r
2,n, . . . , D̂

r
n,n) = (d1, d2, . . . , dn) = ~d, T̂ rn is uniformly dis-

tributed over Mn(~d). It follows from (1) that for any f ∈Mn,

Pr{T̂ rn = f} =

∏n
i=1(di(f))!

n!
Pr
{
D̂r
i,n = di(f), ∀i ∈ [n]

}
.

We exploit the representation of T̂ rn as a random mapping with exchangeable in-degrees
to prove Theorem 1, which is the main result of this section. This result gives the ex-
act distribution of the number of cyclic vertices, X̂r

n, in Ĝr
n, and from this result, it is
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straightforward to determine the distributions of the number of components and of the
size of a typical component in Ĝr

n. These results are given as corollaries of Theorem 1.
We also note here that the formula for the distribution of X̂r

n given in Theorem 1 and the
alternative representation of the distribution which is given in Proposition 3 below, may
be of independent combinatorial interest.

Theorem 1. Suppose that n > 1 and 0 6 r 6 n− 1. Then for 1 6 k 6 n,

Pr{X̂r
n = k} =

k(n− r)
(2n− r)k+1

∑
y

2k−y
(
k − 1

y

)
(r)y(n− 1− r)k−1−y. (2)

Proof. The representation of the interpolation model T̂ rn as a random mapping with ex-
changeable in-degrees allows us to use the calculus developed in [15] to investigate the
structure of Ĝr

n. In particular (see [15]), we have that

Pr{X̂r
n = k} =

k

n− k
E
(

(D̂r
1,n − 1)D̂r

1,nD̂
r
2,n · · · D̂r

k,n

)
(3)

for 1 6 k 6 n− 1, and

Pr{X̂r
n = n} = Pr{D̂r

i,n = 1, 1 6 i 6 n}. (4)

The calculation of the right-hand side of (3) and (4) is complicated by the fact that we
cannot represent the joint distribution of (D̂r

1,n, D̂
r
2.n, . . . , D̂

r
n,n) in terms of n i.i.d. random

variables conditioned on their sum equalling n. Instead, to proceed with the proof, it is
easier to work with a related sequence of random variables which are defined as follows:
Let n > 1, 0 6 r 6 n, and 0 6 w 6 2n− r be integers, and suppose that we have an urn
with n red balls and n blue balls.

• Step 1: Remove r red balls at random from the urn.

• Step 2: Select a random (unordered) sample of size w from the urn.

Let S(r, n, w) denote the random sample selected in Step 2 above. Then, for 1 6 j 6 n,
we define Dj(r, n, w) to be the number of balls labelled j in S(r, n, w). In the special case
when w = n, we will write S(r, n) ≡ S(r, n, n) and Dj(r, n) ≡ Dj(r, n, n). We also note
that in both the sampling scheme described above and in the urn scheme construction of
the random mapping T̂ rn , the first step is to remove r balls from the urn. So, conditioned
on the number of red balls r that are removed from the urn in the first step, the sequence
(D̂r

1,n, D̂
r
2,n, . . . , D̂

r
n,n), which is obtained from an ordered sample of size n without replace-

ment from the urn, and the sequence (D1(r, n), . . . , Dn(r, n)), which is obtained from an
unordered sample of size n without replacement from the urn, have the same conditional
distribution. So it follows from the Total Probability Theorem that

(D̂r
1,n, . . . , D̂

r
n,n)

d∼ (D1(r, n), . . . , Dn(r, n)) . (5)
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It follows from (4) and (5), that

Pr{X̂r
n = n} = Pr{Di(r, n) = 1, 1 6 i 6 n} =

2n−r(
2n−r
n

)
and this agrees with (2). Next, for 1 6 k 6 n− 1, by (5) we have

E
(

(D̂r
1,n − 1)D̂r

1,nD̂
r
2,n · · · D̂r

k,n

)
= E ((D1(r, n)− 1)D1(r, n)D2(r, n) · · ·Dk(r, n)) . (6)

We compute the right-hand side of (6) by using a conditioning argument. The events on
which we condition are defined as follows. We say that a blue ball labelled j is lonely if
the red ball labelled j is removed from the urn during Step 1 described above. We note
that if the blue ball numbered 1 is lonely, then we must have D1(r, n) 6 1 and

(D1(r, n)− 1)D1(r, n)D2(r, n) · · ·Dk(r, n) = 0.

Now, suppose that 1 6 k 6 n− 1, 0 ∨ (r − n + k) 6 y 6 (k − 1) ∧ r and 0 6 x 6 r − y.
Let Ak,y,x denote the event that

• In Step 1 above, y red balls are removed from those numbered 2, 3, . . . , k and r− y
red balls are removed from those numbered k + 1, . . . , n.

• In Step 2 above, all the lonely balls with labels in {2, . . . , k} are in S(r, n) and
exactly x of the lonely balls with labels in {k + 1, . . . , n} are not in S(r, n).

Straightforward counting yields

Pr{Ak,y,x} =

(
k−1
y

)(
n−k
r−y

)(
n
r

) (
r−y
x

)(
2n−2r
n−r+x

)(
2n−r
n

) =

(
k−1
y

)(
n−k
r−y

)(
n
r

) (
r−y
x

)
(n)r−x(n− r)x
(2n− r)r

. (7)

Now consider a triple of sets (V1, V2, V3) such that
(i) V1 ⊆ {2, . . . , k} and |V1| = y, and
(ii) V2, V3 ⊆ {k + 1, . . . , n} such that V2 ∩ V3 = ∅, |V2 ∪ V3| = r − y, |V3| = x.
Given the triple (V1, V2, V3), we define E(V1, V2, V3) to be the event that the set of lonely
blue balls corresponds to the set V1∪V2∪V3 and the set of lonely balls in S(r, n) corresponds
to V1 ∪ V2 (and the lonely blue balls which correspond to the set V3 are not in S(r, n)).
It is clear from the definition of Ak,y,x that we can partition Ak,y,x by events E(V1, V2, V3)
where (V1, V2, V3) satisfy conditions (i) and (ii) above.

Now suppose that (V1, V2, V3) satisfy conditions (i) and (ii) above, then for every j ∈ V1

we must have Dj(r, n) = 1. It follows that

E ((D1(r, n)− 1)D1(r, n)D2(r, n) · · ·Dk(r, n) | E(V1, V2, V3))

= E
(
(D1(r, n)− 1)D1(r, n)Di1(r, n) · · ·Dik−1−y(r, n) | E(V1, V2, V3)

)
where {1, i1, i2, . . . , ik−1−y} = {1, 2, . . . , k} \ V1. It is straightforward, by re-labelling the
indices in {1, 2, . . . , n} \ (V1 ∪ V2 ∪ V3), to verify that the conditional joint distribution
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of (D1(r, n), Di1(r, n), . . . , Dik−1−y(r, n)) given the event E(V1, V2, V3)) is equal to the joint
distribution of (D1(0, t, t+ x), D2(0, t, t+ x), . . . , Dk−y(0, t, t+ x)) where t = n− r. Thus

E ((D1(r, n)− 1)D1(r, n)D2(r, n) · · ·Dk(r, n) | E(V1, V2, V3))

= E((D1(0, t, t+ x)− 1)D1(0, t, t+ x)D2(0, t, t+ x) · · ·Dk−y(0, t, t+ x)). (8)

We note that both sides of (8) are equal to 0 when x > t = n− r. To evaluate the right
side of (8) in the non-trivial cases, we prove:

Lemma 2. For 1 6 ` 6 t and 0 6 x 6 t

E((D1(0, t, t+ x)− 1)D1(0, t, t+ x)D2(0, t, t+ x) · · ·D`(0, t, t+ x)) =
2`
(

2t−`−1
t+x−`−1

)(
2t
t+x

) (9)

provided the binomial coefficients in (9) are defined. Otherwise, the expected value in (9)
is 0.

Proof. We begin by noting that if ` = t and x = 0 then we must have

(D1(0, t, t)− 1)D1(0, t, t)D2(0, t, t) · · ·D`(0, t, t) = 0

since either D1(0, t, t) 6 1 and the product is 0 or D1(0, t, t) = 2 and there is some
1 < j 6 t such that Dj(0, t, t) = 0. So, in this case the expected value in (9) is 0 and the
result holds.

Now suppose that 1 6 ` < t or 0 < x 6 t. For ` + 1 6 s 6 min(t + x, 2`), define
∆(`, s) = {(d1, d2, . . . , d`) :

∑
di = s, 1 6 di 6 2, d1 = 2}, then

E ((D1(0, t, t+ x)− 1)D1(0, t, t+ x)D2(0, t, t+ x) · · ·D`(0, t, t+ x))

=

min(t+x,2`)∑
s=`+1

∑
~d∈∆(`,s)

(d1 − 1)d1d2 · · · d` ×
(

2
d1

)
· · ·
(

2
d`

)(
2t−2`
t+x−s

)(
2t
t+x

)
= 2`

min(t+x,2`)∑
s=`+1

∑
~d∈∆(`,s)

(
2t−2`
t+x−s

)(
2t
t+x

)
= 2`

min(t+x,2`)∑
s=`+1

(
`−1
s−`−1

)(
2t−2`
t+x−s

)(
2t
t+x

) = 2`
(

2t−`−1
t+x−`−1

)(
2t
t+x

)
as required.

We now complete the proof of Theorem 1. It follows from (8) and Lemma 2 that

E ((D1(r, n)− 1)D1(r, n)D2(r, n) · · ·Dk(r, n) | E(V1, V2, V3)) =
2k−y

(
2n−2r−k+y−1
n−r+x−k+y−1

)(
2n−2r
n−r+x

)
=

2k−y(n− r + x)k−y+1

(2n− 2r)k−y+1
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for any event E(V1, V2, V3) ⊆ Ak,y,x where V1, V2, V3 satisfy conditions (i) and (ii) above.
Since such events form a partition of Ak,y,x, it follows that

E
(
(D1(r, n)− 1)D1(r, n)D2(r, n) · · ·Dk(r, n)

∣∣ Ak,y,x) =
2k−y(n− r + x)k−y+1

(2n− 2r)k−y+1

. (10)

So, from (3), (6), (7), and (10), we obtain for 1 6 k < n

Pr{X̂r
n = k}

=
k

n− k

(k−1)∧r∑
y=0∨(r−n+k)

r−y∑
x=0

E
(
(D1(r, n)− 1)

k∏
i=1

Di(r, n)
∣∣ Ak,y,x)Pr{Ak,y,x}

=
k

n− k
∑
y

r−y∑
x=0

2k−y
(n− r + x)k−y+1

(2n− 2r)k−y+1

(
k−1
y

)(
n−k
r−y

)(
n
r

) (
r−y
x

)
(n)r−x(n− r)x
(2n− r)r

=
k

n− k
∑
y

2k−y

(
k−1
y

)(
n−k
r−y

)
(n)k+1(

n
r

)
(2n− r)r+k−y+1

r−y∑
x=0

(
r − y
x

)
(n− r)x(n− k − 1)r−y−x

=
k

n− k
∑
y

2k−y

(
k−1
y

)(
n−k
r−y

)
(n)k+1(r − y)!(

n
r

)
(2n− r)r+k−y+1

(
2n− r − k − 1

r − y

)
=

k(n− r)
(2n− r)k+1

∑
y

2k−y
(
k − 1

y

)
(r)y(n− 1− r)k−1−y .

This completes the proof of Theorem 1.

The following alternative formula for the distribution of X̂r
n will also be useful.

Proposition 3. For 0 < r < n and 1 6 k 6 n,

Pr{X̂r
n = k} =

2k(n− r)
(2n− r)k+1

∑
t

(
k − 1

t

)
(n− r − 1)t(n− t− 1)k−1−t . (11)

Proof. The proof is combinatorial and is based on the following urn scheme: We start
with an urn which contains r white balls, say, w1, w2, . . . , wr and 2n−2r black balls which
are matched into n− r pairs: b1, b

∗
1, b2, b

∗
2, . . . , bn−r, b

∗
n−r (i.e. there are 2n− r balls in the

urn). Let Uk denote the event that in a successive sampling without replacements (i.e.
we remove balls one by one) we obtain for the first time on the k + 1st draw a black ball
which matches a black ball which has already been chosen from the urn. Let Wy denote
the event that in the first k + 1 draws from the urn we obtain exactly y white balls and
let Bj be the event that we obtain a pair of matched black balls on the jth and k + 1st

draws. Then for k = 1, 2, . . . , n

Pr{Uk}=
k∑
j=1

∑
y

Pr{Uk ∩Wy ∩ Bj}

=
k∑
j=1

∑
y

(
k − 1

y

)
(r)y(n− r)2(n− r − 1)k−1−y2

k−1−y

(2n− r)k+1

.
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It follows from (2) that
Pr{Uk} = Pr{X̂r

n = k} , (12)

and this also confirms that the formula obtained in Theorem 1 describes a proper proba-
bility distribution for the number of cyclic vertices.

Now let B∗t be the event that in the first k+ 1 successive draws from the urn we select
exactly t+1 black balls from those marked by ∗. It is again straightforward to verify that
for k = 1, 2, . . . , n

Pr{Uk}=
k∑
j=1

∑
t

Pr{Uk ∩ Bj ∩ B∗t }

=
k∑
j=1

∑
t

2(n− r)
(
k − 1

t

)
(n− r − 1)t(n− t− 1)k−1−t

(2n− r)k+1

=
2(n− r)k

(2n− r)k+1

∑
t

(
k − 1

t

)
(n− r − 1)t(n− t− 1)k−1−t . (13)

Equations (12) and (13) establish (11). We note that these equations also give us a general
version of the Karl Goldberg identity as stated in Gould [11] (see (3.21)).

The next three results are stated as corollaries of Theorem 1 because they all depend
on the distribution of X̂r

n, the number of cyclic vertices. We begin by noting that the
distribution of N̂ r

n, the number of connected components in Ĝr
n, is easily determined from

the distribution of X̂r
n. This is because each component of Ĝr

n consists of a cycle with trees
attached and the restriction of T̂ rn to the cyclic vertices of Ĝr

n is a uniformly distributed
random permutation on the cyclic vertices of Ĝr

n. So we obtain:

Corollary 4. Let σ(k) is a uniform permutation on k element set and let Nσ(k) denote
the number of cycles in σ(k). Then for 0 < r < n and 1 6 ` 6 n

Pr{N̂ r
n = `} =

n∑
k=`

Pr{Nσ(k) = `}Pr{X̂r
n = k} =

n∑
k=`

|s(k, `)|
k!

Pr{X̂r
n = k}

where s(· , ·) are the Stirling numbers of the first kind.

Proof. The proof is based on conditioning on X̂r
n, the number of cyclic vertices in Ĝr

n,
and uses the well-known fact that there are |s(k, l)| permutations of k-element set with
exactly l cycles, i.e.,

Pr{Nσ(k) = `} =
|s(k, l)|
k!

.

See [15] for further details.

Next, for 0 < r < n, let Brn denote the event that Ĝr
n is connected. Then since Pr{Brn} =

Pr{N̂ r
n = 1}, we obtain from Corollary 4:
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Corollary 5. For 0 < r < n,

Pr{Brn} =
n∑
k=1

Pr{Nσ(k) = 1}Pr{X̂r
n = k} =

n∑
k=1

1

k
Pr{X̂r

n = k}. (14)

Finally, we consider the distribution of the size of a ‘typical’ component of Ĝr
n. For n > 1

and f ∈ Mn, let C1(f) denote the set of vertices in the connected component in G(f)
which contains the vertex 1 and let C1(f) = |C1(f)| denote the size of the connected
component in G(f) that contains vertex 1. Then for 1 6 r < n, we define Cr1(n) ≡ C1(T̂ rn)
and Cr

1(n) ≡ C1(T̂ rn). The distribution of Cr
1(n) is given by the following result:

Corollary 6. Suppose that 0 < r < n and 1 6 k 6 n, then

Pr{Cr
1(n) = k} =

k

n

∑
t

Pr{Btk}
(

2k−t
k

)(
2n−2k−r+t

n−k

)(
k
t

)(
n−k
r−t

)(
2n−r
n

)(
n
r

) . (15)

Proof. For 1 6 k 6 n, let Zr
n(k) denote the number of balls removed from the red balls

labelled 1 to k in the first step of the construction of T̂ rn . Then we have

Pr{Cr
1(n) = k} =

(
n− 1

k − 1

)
Pr{Cr1(n) = [k]}

=

(
n− 1

k − 1

)∑
t

Pr
{
Cr1(n) = [k]

∣∣ Zr
n(k) = t

} (k
t

)(
n−k
r−t

)(
n
r

) (16)

where the sum above is over all values of t for which the binomial coefficients in the sum
are defined. Now it follows from the two-step construction of T̂ rn that

Pr
{
Cr1(n) = [k]

∣∣ Zr
n(k) = t

}
= Pr{Btk}

(2k − t)k(2n− 2k − r + t)n−k
(2n− r)n

.

Substituting the above formula into (16), we obtain (15).

4 Asymptotic structure of Ĝr
n

In this section we investigate the limiting distributions of the variables considered in
Section 3 and identify how these limiting distributions depend on the relationship between
n and r as n → ∞. The results are stated as local limit theorems with error bounds.
Keeping track of the errors in the asymptotic calculations is a little tedious, but the
bounds are needed in the proofs of results later in this section. We begin by obtaining
the asymptotic distribution of X̂r

n, the number of cyclic vertices. There are two distinct
cases which correspond to the following regimes: (i) a = n− r →∞ as n→∞, and (ii)
a = n− r is fixed as n→∞.
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Theorem 7. (i) Suppose that a = n−r and that a→∞ as n→∞. Then for k = bn+a√
a
xc

where a−1/32 < x < a1/32,

Pr{X̂r
n = k} =

√
a

n+ a
2x exp

(
−x2

)
(1 + ε(k, a, n)) + δ(k, a, n)

where ε(k, a, n)| 6 20a−1/10 and |δ(k, a, n)| < 2a−3/5.
(ii) Suppose that 0 < x < 1 (and x is fixed). If r = n − a where a ∈ Z+ is fixed and
k = bxnc, then

Pr{X̂r
n = k} ∼ 1

n
2ax

(
1− x2

)a−1
.

Proof. Part (i) Let T denote a hypergeometric random variable as defined in [19] with

parameters N = n− 2 + a, n = k − 1 and p = a−1
n−2+a

. Recall that E(T ) = (k−1)(a−1)
n+a−2

and

V ar(T ) = (k−1)(a−1)(n−1)(n+a−k−1)
(n+a−2)2(n+a−3)

. By Proposition 3 we have

Pr{X̂r
n = k}=

2ka

(n+ a)2

∑
t

(
k − 1

t

)
(a− 1)t(n− 1− t)k−1−t

(n− 2 + a)k−1

=
2ka

(n+ a)2

∑
t

(n− 1− t)k−1−t

(n− 1)k−1−t

(
a−1
t

)(
n−1
k−1−t

)(
n−2+a
k−1

) . (17)

Let γ(x, a) = x2/3a1/3, then it follows from Chebyshev’s inequality that

2ka

(n+ a)2

∑
t s.t.

|t−E(T )|>γ(x,a)

(n− 1− t)k−1−t

(n− 1)k−1−t

(
a−1
t

)(
n−1
k−1−t

)(
n−2+a
k−1

)
6

2ka

(n+ a)2

Pr
{
|T − E(T )| > γ(x, a)

}
6

2x2/3a1/3

n
6 2a−3/5. (18)

Next, suppose that |t− E(T )| 6 γ(x, a), then routine calculations yield

(n− 1− t)k−1−t

(n− 1)k−1−t
= exp

(
k−1−t∑
j=1

log

(
1− t

n− j

))

= exp

(
−t(k − 1− t)

n− 1
+ ε1(t, k, a, n)

)
= exp

(
−x2 + ε2(t, k, a, n)

)
where |ε1(t, k, a, n)| < 15/a3/8 and |ε2(t, k, a, n)| < 10/a1/10 for sufficiently large a. It
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follows that

2ka

(n+ a)2

∑
t s.t.

|t−E(T )|6γ(x,a)

(n− 1− t)k−1−t

(n− 1)k−1−t

(
a−1
t

)(
n−1
k−1−t

)(
n−2+a
k−1

)
=

2ka exp(−x2)

(n+ a)2

∑
t s.t.

|t−E(T )|6γ(x,a)

exp(ε2(t, k, a, n))

(
a−1
t

)(
n−1
k−1−t

)(
n−2+a
k−1

)
=

2x exp(−x2)
√
a

n+ a
(1 + ε(k, a, n)) (19)

where |ε(k, a, n)| < 20a−1/10 for a sufficiently large. The result now follows from (18) and
(19).

Part (ii) If k = bxnc and a = n− r is fixed as n tends to infinity, we can re-write (2) to
obtain

Pr{X̂r
n = k} =

2ka

(n+ a)k+1

a−1∑
j=0

(k − 1)j(n− a)k−1−j

(
a− 1

j

)
2j

=
2ka

(n+ a)2

a−1∑
j=0

(
a− 1

j

)
2j

(n+ a− k − 1)2a−2−j(k − 1)j
(n+ a− 2)2a−2

∼ 1

n
2ax

a−1∑
j=0

(
a− 1

j

)
(2x)j(1− x)2a−2−j

=
1

n
2ax(1− x)a−1(1 + x)a−1

=
1

n
2ax(1− x2)a−1.

A central limit theorem for N̂ r
n, the number of components in Ĝr

n, follows immediately
by standard arguments (see [27]) from Theorem 7 and Corollary 4. Specifically, since
the number of components in Ĝr

n equals the number of cycles in the uniform random
permutation that is obtained by restricting the mapping T̂ rn to its cyclic vertices, we can
condition on the number of cyclic vertices in Ĝr

n and appeal to the central limit theorem
for the number of cycles in a uniform random permutation to obtain:

Corollary 8. Suppose that n− r = a > 0 as n→∞, then

N̂ r
n − log(n/

√
a)√

log(n/
√
a)

d→ N(0, 1)

as n→∞.
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Next, we consider Pr{Brn}, the probability that Ĝr
n is connected. We note that (14)

and (17) give us the following crude upper bound:

Pr{Brn} 6
2na

(n+ a)2

(20)

where a = n − r. The following proposition gives more precise information about the
asymptotic behaviour of the probability of connectedness under the two regimes consid-
ered in Theorem 7.

Proposition 9. (i) Suppose that r = n− a and that a→∞ as n→∞, then

Pr{Brn} =

√
aπ

(n+ a)
(1 + δ(a, n))

where |δ(a, n) 6 6a−1/32 for all a sufficiently large.
(ii) If r = n− a, where a > 0 is a fixed integer, then

lim
n→∞

(n+ a) Pr{Brn} =
22a(
2a
a

) .
Proof. Part (i) We compute the right-hand side of (14) by dividing the sum into three
parts. First we note that it follows from (17) that

∑
k<(n+a)a−17/32

k−1 Pr{X̂r
n = k} =

∑
k<(n+a)a−17/32

2a

(n+ a)2

∑
t

(n− 1− t)k−1−t

(n− 1)k−1−t

(
a−1
t

)(
n−1
k−1−t

)(
n−2+a
k−1

)
6 (n+ a)a−17/32 2a

(n+ a)2

=
2a15/32

(n+ a− 1)
. (21)

We also have ∑
k>(n+a)a−15/32

k−1 Pr{X̂r
n = k} 6 a15/32

(n+ a)
Pr

{
X̂r
n >

a15/32

n+ a

}
6

a15/32

(n+ a)
. (22)

Finally, for (n+ a)a−17/32 6 k 6 (n+ a)a−15/32, we can write k = x(n + a)/
√
a where

a−1/32 6 x 6 a1/32, and we obtain from the proof of Theorem 7 part (i)

k−1 Pr{X̂r
n = k} =

2a

(n+ a)2

(
exp(−x2)(1 + ε(k, a, n)) + δ′(k, a, n)

)
where |ε(k, a, n)| < 20a−1/10 and |δ′(k, a, n)| 6 x−1/3a−1/6 6 a−1/10 for all a sufficiently
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large. It follows that∑
(n+a)

a17/32
6k6 (n+a)

a15/32

k−1 Pr{X̂r
n = k}

=

√
aπ

(n+ a)

∑
(n+a)

a17/32
6k6 (n+a)

a15/32

2 exp(− ak2

(n+a)2 )
√
π

(1 + ε(k, a, n))

√
a

(n+ a)

+
2
√
a

(n+ a)

∑
(n+a)

a17/32
6k6 (n+a)

a15/32

δ′(k, a, n)

√
a

(n+ a)

=

√
aπ

(n+ a)
(1 + δ̂(a, n)) (23)

where δ̂(a, n) < 3a−1/32. The result now follows from (21), (22), and (23).
Part (ii) For each n > 0, we define the function fn(x) on the interval [0, 1] by

fn(x) =

{
0 if 0 6 x < 1

n
(n+a)nPr{X̂r

n=bxnc}
bxnc if 1

n
6 x 6 1

It follows from the definition of fn and from Theorem 7(ii) and (14) that∫ 1

0

fn(x)dx = (n+ a) Pr{Brn}

and for any 0 < x < 1
lim
n→∞

fn(x) = 2a(1− x2)a−1.

Next, suppose that 1
n
6 x 6 1 and that bxnc = k, then it follows from Theorem 1 that

fn(x) =
n(n+ a) Pr{X̂r

n = k}
k

=
n(k − 1)!a

(n+ a− 1)k

∑
y

(
n− a
y

)(
a− 1

k − 1− y

)
2k−y

=
n
(
n−1
k−1

)
(k − 1)!a

(n+ a− 1)k

∑
y

(
n−a
y

)(
a−1

k−1−y

)(
n−1
k−1

) 2k−y

6
(n)k

(n+ a− 1)k
a2a 6 a2a.

It follows by dominated convergence that

lim
n→∞

(n+ a) Pr{Brn} = lim
n→∞

∫ 1

0

fn(x)dx =

∫ 1

0

2a(1− x2)a−1dx =
22a(
2a
a

) .
The last equality follows by integration by parts.
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The next result gives the asymptotic distribution of Ĉr
1(n), the size of a ‘typical’

component of Ĝr
n. As in Theorem 7, the form of the asymptotic distribution will depend

on whether (i) a = n− r →∞ or (ii) a = n− r is constant as n→∞. We note that in
case (i), particular care must be taken to keep track of the error terms in all stages of the
calculation because no assumption is made about how fast a = n− r grows relative to n.

Theorem 10. Suppose that 0 < u < v < 1 are fixed.
(i) If a = n − r → ∞ as n → ∞, then for sufficiently large n and k > 1 such that
k = bxnc for some u < x < v,

Pr{Cr
1(n) = k} =

1

2n
√

1− k/n
(1 + ξ(r, k, n))

where |ξ(r, k, n)| 6 c(u, v)a−1/32 for all large a and c(u, v) is a constant that depends only
on u and v.
(ii) Suppose that a = n − r is constant as n → ∞ and suppose that 0 < x < 1 is fixed,
then

Pr{Cr
1(n) = bxnc} ∼ 1

n

a∑
b=0

(
2b

b

)−1(
a

b

)2

(2x)2b(1− x)2a−2b

as n→∞ .

Proof. Part (i) Throughout this proof we adopt the convention that for any integer i > 0,
ci(u, v) denotes a constant that depends only on u and v. Now suppose that n is large
and that k = bxnc for some u < x < v. In addition, suppose that r 6 n1/4. Then for
0 6 t 6 r, Proposition 9(i) yields

Pr{Btk} =

√
(k − t)π
2k − t

(1 + δ(k − t, k)) (24)

where δ(k − t, k) 6 c1(u, v)n−1/32 6 c1(u, v)a−1/32, and Stirling’s formula yields(
2k−t
k

)(
2n−2k−r+t

n−k

)(
2n−r
n

) =
1√
π

√
n

(k − t)(n− k)
(1 + γ(t, r, k, n)) (25)

where |γ(t, r, k, n)| 6 c2(u, v)r2/n 6 c2(u, v)/
√
a. Substituting (24) and (25) into (15)

and summing over t, we obtain

Pr{Cr
1(n) = k} =

1

2n
√

1− k/n
(1 + ξ(r, k, n))

where |ξ(r, k, n)| 6 c3(u, v)a−1/32.
Now suppose that r > n1/4. It is convenient to write a = αn, r = (1 − α)n and we

note that

α(1− α)n >
a1/4

2
, (26)
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whenever n1/4 < r < n. Next, we re-write the right side of (15) in terms of a = αn to
obtain

Pr{Cr
1(n) = k} =

k

n

∑
`

Pr{Bk−`k }
(
k+`
`

)(
n−k+αn−`

αn−`

)(
k
`

)(
n−k
αn−`

)(
n+αn
αn

)(
n
αn

)
where the sum is over all ` such that the binomial coefficients in the sum are defined. Now
recall that n > 1 and k = bxnc for some u < x < v, and let m = bαxnc, and for 0 6 ` 6 a,
let ∆(`) = `−m. Then for any ` such that |∆(`)| < (αxn(1− x)(1− α))7/12 ≡ ρ(α, x, n)
we have (

k
`

)(
n−k
αn−`

)(
n
αn

) =

(
xn
m

)(
n−xn
αn−m

)(
n
αn

) ×

(
xn

m+∆(`)

)(
xn
m

) ×

(
n−xn

αn−m−∆(`)

)(
n−xn
αn−m

) (27)

=
1√

2πα(1− α)x(1− x)n
exp

(
−∆2(`)

2α(1− α)x(1− x)n

)
(1 + ε(α, `, k, n))

where |ε(α, `, k, n)| 6 c4(u, v)(α(1− α)n)−1/4 6 2c4(u, v)a−1/16. The last equality in (27)
is obtained by a careful application of Stirling’s formula to evaluate each term in the
product on the right side of (27). Next, for any ` such that |∆(`)| < ρ(α, x, n), define
m(`) = bαn k+`

n+a
c and ∆̃(`) = `−m(`). Then similar calculations yield(

k+`
`

)(
n+αn−k−`

αn−`

)(
n+αn
αn

) =

(
k+`
m(`)

)(
n+αn−k−`
αn−m(`)

)(
n+αn
αn

) ×

(
k+`

m(`)+∆̃(`)

)(
k+`
m(`)

) ×

(
n+αn−k−`

αn−m(`)−∆̃(`)

)(
n+αn−k−`
αn−m(`)

)
=

√
1 + α

2παx(1− x)n
exp

(
−∆2(`)

2αx(1− x)(1 + α)n

)
(1 + ε̃(α, `, k, n)) (28)

where |ε̃(α, `, k, n)| 6 c5(u, v)(α(1−α)n)−1/4 6 2c5(u, v)a−1/16. To obtain the last equality
in (28), we have also used the fact that

∆̃(`) =
∆(`)

1 + α
+ φ(α, `, k, n)

where |φ(α, `, k, n)| < 2. Finally, for any ` such that |∆(`)| < ρ(α, x, n), Proposition 9(i)
yields

Pr{Bk−`k } =

√
(m+ ∆(`))π

k + `
(1 + δ(`, k)) =

√
(αxn)π

(1 + α)xn
(1 + δ̂(`, k)) (29)

where |δ̂(`, k)| 6 c6(u, v)(αn)−1/32 = c6(u, v)a−1/32. It follows now from (27), (28), and
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(29) that

k

n

∑
` s.t.

|∆(`)|<ρ(α,x,n)

Pr{Bk−`k }
(
k+`
`

)(
n−k+a−`

a−`

)(
k
`

)(
n−k
a−`

)(
n+a
a

)(
n
a

)
=

1

2n
√

1− x
1√

πα(1− α2)x(1− x)n
×

∑
` s.t.

|∆(`)|<ρ(α,x,n)

exp

(
−∆2(`)

α(1− α2)x(1− x)n

)
(1 + ε̂(α, `, k, n))

=
1

2n
√

1− k/n
(1 + γ(α, k, n)) (30)

where |ε̂(α, `, k, n)| 6 c7(u, v)a−1/32 and |γ(α, k, n)| 6 c8(u, v)a−1/32. Lastly, it follows
from (20) that for sufficiently large a

∑
` s.t.

|∆(`)|>ρ(α,x,n)

k Pr{Bk−`k }
n

(
k+`
`

)(
n−k+αn−`

αn−`

)(
k
`

)(
n−k
αn−`

)(
n+αn
αn

)(
n
αn

)
6

∑
` s.t.

|∆(`)|>ρ(α,x,n)

2k2`

n(k + `)2

(
k
`

)(
n−k
αn−`

)(
n
αn

) 6
∑
` s.t.

|∆(`)|>ρ(α,x,n)

2`

n

(
k
`

)(
n−k
αn−`

)(
n
αn

)
6

(αn)2

n

exp(−(α(1− α)x(1− x)n)1/6/2)√
α(1− α)x(1− x)n

. (31)

The last inequality above follows from (27) and the unimodality of the hypergeometric
distribution. Finally, it follows from the lower bound (26) that

(αn)2

n

exp(−(α(1− α)x(1− x)n)1/6/2)√
α(1− α)x(1− x)n

6
c9(u, v)a15/8

2n
√

1− k/n
exp(−c10(u, v)a1/24). (32)

Part (i), in the case n1/4 < r < n, now follows from (30) – (32).
Part (ii) Now suppose that 0 < x < 1 and a = n−r is fixed as n→∞. In the calculation
below, let k′ denote bxnc. Then for all sufficiently large n, (15) and Proposition 9(ii) yield

Pr{Cr
1(n) = k′} =

k′

n

∑
k′−a6t6k′

Pr{Btk′}
(

2k′−t
k′

)(
2n−2k′−r+t

n−k′
)(
k′

t

)(
n−k′
r−t

)(
2n−r
n

)(
n
r

)
=

k′

n

a∑
b=0

Pr{Bk′−bk′ }
(
k′+b
b

)(
n−k′−a−b

a−b

)(
k′

b

)(
n−k′
a−b

)(
n+a
a

)(
n
a

)
∼ 1

n

a∑
b=0

22b

(
2b

b

)−1(
a

b

)2

(x)2b(1− x)2a−2b.
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We note that∫ 1

0

a∑
b=0

22b

(
2b

b

)−1(
a

b

)2

(x)2b(1− x)2a−2bdx =
a∑
b=0

2b(a)b
(2a+ 1)(2a− 1) · · · (2a− 2b+ 1)

=
a∑
b=0

22b (a)b(a)b
(2a+ 1)(2a)2b

=
1

(2a+ 1)
(

2a
a

) a∑
b=0

22b

(
2a− 2b

a− b

)
=

22a

(2a+ 1)
(

2a
a

) a∑
j=0

2−2j

(
2j

j

)
= 1,

where the last identity (see e.g. (1.109) in [11]) can be easily proved by induction.

It follows from Theorem 10 that if a → ∞ as n → ∞, then
Cr1 (n)

n
converges in distri-

bution to a Beta(1, 1/2) random variable with density given by f(u) = 1
2
(1 − u)−1/2 on

the interval (0, 1). On the other hand, if a = n − r is fixed as n → ∞, then
Cr1 (n)

n

converges in distribution to a non-degenerate random variable with density given by

fa(u) =
∑a

b=0

(
2b
b

)−1(a
b

)2
(2u)2b(1 − u)2a−2b on the interval (0, 1). Theorem 10 is also key

to the next result which identifies the limiting distribution of the order statistics of the
normalised component sizes of Ĝr

n. To state the result, we define, for 0 6 r < n and i > 1,
Ŷ r
i (n) to be the size of the ith largest connected component in Ĝr

n, where Ŷ r
i (n) = 0 if

the number of components in Ĝr
n is less than i, and we let Qr

i (n) = Ŷ r
i (n)/n denote the

ith normalised order statistic of the component sizes of Ĝr
n. With this notation, we can

state:

Theorem 11. Suppose that a = n − r → ∞ as n → ∞, then the joint distribution of
(Qr

1(n), Qr
2(n), Qr

3(n), . . .), the normalised order statistics for the component sizes of Ĝr
n,

converges in distribution to the PD(1/2) distribution on the simplex

∇ = {(x1, x2, . . .) :
∑

xi 6 1, xi > xi+1 > 0}

as n→∞.

Sketch of the proof. The proof of this result depends on a well-known connection between
size-biased sampling of components in a random combinatorial structure and the Poisson-
Dirichlet(θ) distribution, denoted PD(θ), on ∇. To describe how we use this connection
to prove the result above, we must introduce some additional notation. First, recall that
Cr1(n) = C1(T̂ rn) denotes the component in Ĝr

n that contains the vertex labelled 1 and that
Cr

1(n) = |C1(T̂ rn)|. If Cr1(n) 6= Ĝr
n, let Cr2(n) denote the component in Ĝr

n \ Cr1(n) which
contains the vertex with smallest label; otherwise, set Cr2(n) = ∅. For i > 2, we define
Cri (n) iteratively: If Ĝr

n \ (Cr1(n) ∪ . . . ∪ Cri−1(n)) 6= ∅, let Cri (n) denote the component in

Ĝr
n \ (Cr1(n) ∪ . . . ∪ Cri−1(n)) which contains the vertex with smallest label; otherwise, set
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Cri (n) = ∅. So we obtain the sequence of components Cr1(n), Cr2(n), . . . by removing, at the
ith step, a ‘typical’ component of the remaining graph Ĝr

n \ (Cr1(n)∪ . . .∪Cri−1(n)) and this
selection process is size-biased. For 1 6 r < n and i > 0, we define Cr

i (n) = |Cr1(n)|, and
we define a sequence of normalised component sizes (U r

1 (n), U r
2 (n), . . .) as follows: Let

U r
1 (n) =

Cr1 (n)

n
, and for i > 1, let U r

i (n) = 0 if n− Cr
1(n)− · · · − Cr

i−1(n) = 0; otherwise
let

U r
i (n) =

Cr
i (n)

n− Cr
1(n)− · · · − Cr

i−1(n)
.

So, for i > 1, U r
i (n) equals the relative size of the size-biased component Cri (n) in the

digraph Ĝr
n \ (Cr1(n) ∪ . . . ∪ Cri−1(n)).

Now the convergence principle for the PD(θ) distribution (see, for example [13] and the
references therein) says that to show that the joint distribution of (Qr

1(n), Qr
2(n), . . .) con-

verges to the PD(1/2) distribution on ∇, it is enough to show that the joint distribution
of (U r

1 (n), U r
2 (n), . . .) converges to the joint distribution of (U1, U2, . . .) where U1, U2, . . .

are i.i.d. Beta(1, 1/2) random variables with density given by f(u) = 1
2
(1− u)−1/2 on the

interval (0, 1). Thus it is enough to prove:

Proposition 12. Let a = n− r and suppose that a→∞ as n→∞, then for any integer
j > 1 and constants 0 < ui < vi < 1, where 1 6 i 6 j,

lim
n→∞

Pr {ui < U r
i (n) < vi, 1 6 i 6 j} =

j∏
i=1

∫ vi

ui

1

2
√

1− x
dx.

Proof. Throughout the proof we adopt the convention that for any integer i > 0 and any
vectors ~w and ~z, ci(~w, ~z) is a constant which depends only on ~w and ~z. Now for any j > 1,
and for any ~u = (u1, . . . , uj) and ~v = (v1, . . . , vj) such that 0 < ui < vi < 1 for 1 6 i 6 j,
we define, for 0 < r < n, the event

Arn(j, ~u,~v) ≡
{
ui <

Cr
i (n)

n− Cr
1(n)− · · · − Cr

i−1(n)
< vi, 1 6 i 6 j

}
.

We show by induction on j, that for ~u = (u1, u2, . . . , uj) and ~v = (v1, v2, . . . , vj) such that
0 < ui < vi < 1 for 1 6 i 6 j, and 0 < r < n,

Pr{Arn(j, ~u,~v)} =

(
j∏
i=1

∫ vi

ui

1

2
√

1− x
dx

)(
1 + η(~u,~v, r, n)

)
(33)

where |η(~u,~v, r, n)| 6 c1(~u,~v)a−ζ(j) for some constant ζ(j) > 0 and all sufficiently large
a. First, it is clear from Theorem 10, that the result holds for j = 1. Next, suppose that
j > 2 and the result holds for j − 1, and suppose that 0 < ui < vi < 1, for 1 6 i 6 j.
Then we have

Pr{Arn(j, ~u,~v)} =

v1n∑
k>u1n

Pr

{
Cr

1(n) = k, ui <
Cr
i (n)

n− k − · · · − Cr
i−1(n)

< vi, 2 6 i 6 j

}
. (34)
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Now for any u1n < k < v1n, we have

Pr

{
Cr

1(n) = k, ui <
Cr
i (n)

n− k − · · · − Cr
i−1(n)

< vi, 2 6 i 6 j

}
=

(
n− 1

k − 1

)
Pr

{
Cr1(n) = [k], ui <

Cr
i (n)

n− k − · · · − Cr
i−1(n)

< vi, 2 6 i 6 j

}
by the invariance of the distribution of Ĝr

n under the re-labelling of its vertices. Next, for
u1n < k < v1n, we define

Fn(k, û, v̂) =
{
f ∈Mn : C1(f) = [k], ui <

Ci(f)

n− k − · · · − Ci−1(f)
< vi, 2 6 i 6 j

}
;

M̃k =
{
g ∈Mk : C1(g) = [k]

}
;

Hn−k(û, v̂) =
{
h ∈Mn−k : ui <

Ci−1(h)

n− k − · · · − Ci−2(h)
< vi, 2 6 i 6 j

}
where û = (u2, . . . , uj) and v̂ = (v2, . . . , vj). We note that any f ∈ Fn(k, û, v̂) can be
identified with a pair of functions g ∈ M̃k and h ∈ Hn−k(û, v̂), such that for 1 6 ` 6 k,
f(`) = g(`) and for k + 1 6 ` 6 n, f(`) = h(` − k) + k. This is a 1-to-1 correspondence
and we denote this correspondence by f ≡ (g, h). Using this notation, we have(

n− 1

k − 1

)
Pr

{
Cr1(n) = [k], ui <

Cr
i (n)

n− k − · · · − Cr
i−1(n)

< vi, 2 6 i 6 j

}
=

(
n− 1

k − 1

) ∑
f∈Fn(k,û,v̂)

Pr{T̂ rn = f}

=

(
n− 1

k − 1

)∑
t

∑
f∈Fn(k,û,v̂)

Pr{T̂ rn = f | Zr
n(k) = t}

(
k
t

)(
n−k
r−t

)(
n
r

) (35)

where the last sum above is over all t for which the binomial coefficients are defined and
Zr
n(k) denotes the number of balls removed from the red balls labelled 1 to k in the first

step of the construction of T̂ rn . Next we note that for any f ∈ F(k, û, v̂)

Pr{T̂ rn = f | Zr
n(k) = t} = Pr{T̂ tk = g}Pr{T̂ r−tn−k = h}(2k − t)k(2(n− k)− r + t)n−k

(2n− r)n

=

(
n

k

)−1

Pr{T̂ tk = g}Pr{T̂ r−tn−k = h}
(

2k−t
k

)(
2(n−k)−r+t

n−k

)(
2n−r
n

) (36)

where f ≡ (g, h) for some g ∈ M̃k and h ∈ Hn−k(û, v̂). We also note that∑
g∈M̃k

Pr{T̂ tk = g} = Pr{Btk} (37)
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and ∑
h∈Hn−k(û,v̂)

Pr{T̂ r−tn−k = h} = Pr{Ar−tn−k(j − 1, û, v̂)}. (38)

Finally by the induction hypothesis, we have

Pr{Ar−tn−k(j − 1, û, v̂)} =

(
j∏
i=2

∫ vi

ui

1

2
√

1− x
dx

)(
1 + η(û, v̂, r − t, n− k)

)
(39)

for 0 6 t 6 r, where |η(û, v̂, r − t, n− k)| 6 c2(û, v̂)(n− k − r + t)−ζ(j−1).
Now suppose that r < n1/4. Then for 0 6 t 6 r, we have the uniform bound

c2(û, v̂)(n − k − r + t)−ζ(j−1) 6 c3(~u,~v)a−ζ(j−1), and it follows from (15) and (34) – (39)
that

Pr{Arn(j, ~u,~v)} =

v1n∑
k>u1n

k

n

∑
t

Pr{Btk}Pr{Ar−tn−k(j − 1, û, v̂)}
(

2k−t
k

)(
2(n−k)−r+t

n−k

)(
2n−r
n

) (
k
t

)(
n−k
r−t

)(
n
r

)
= Pr {u1n < Cr

1(n) < v1n}

(
j∏
i=2

∫ vi

ui

dx

2
√

1− x

)
(1 + ξ(~u,~v, r, n)) (40)

where |ξ(~u,~v, r, n)| 6 c4(~u,~v)a−ζ(j−1). Equation (33) now follows from (40) and Theo-
rem 10.

Next, suppose that r > n1/4, then as is the proof of Theorem 10, we write a = αn and
r = (1− α)n and we re-write the sum on the right-hand side of the first equality in (40)
in terms of α to obtain:

Pr{Arn(j, ~u,~v)}

=

v1n∑
k>u1n

k

n

∑
`

Pr{Bk−`k }Pr{Ar−k+`
n−k (j − 1, û, v̂)}

(
k+`
`

)(
n−k+αn−`

αn−`

)(
k
`

)(
n−k
αn−`

)(
n+αn
αn

)(
n
αn

)
= Pr {u1n < Cr

1(n) < v1n}

(
j∏
i=2

∫ vi

ui

dx

2
√

1− x

)

+

v1n∑
k>u1n

k

n

∑
`

Pr{Bk−`k }Φ(`, k, α, n, û, v̂)

(
k+`
`

)(
n−k+αn−`

αn−`

)(
k
`

)(
n−k
αn−`

)(
n+αn
αn

)(
n
αn

) (41)

where the sums above are over those values of ` for which the binomial coefficients are
defined and where

Φ(`, k, α, n, û, v̂) ≡ Pr{Ar−k+`
n−k (j − 1, û, v̂)} −

(
j∏
i=2

∫ vi

ui

dx

2
√

1− x

)
.

Now for any k = xn where u1 < x < v1 and for any 0 6 ` 6 a = αn, we define
∆(`, α, k, n) = ` − bαxnc. Then by the induction hypothesis, we have for 0 6 ` 6 αn
such that |∆(`, α, x, n)| < (αxn(1− x)(1− α))7/12 ≡ ρ(α, x, n)

|Φ(`, k, α, n, û, v̂)| 6 c5(û, v̂)(n− r − `)−ζ(j−1) 6 c6(~u,~v)a−ζ(j−1), (42)
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for all sufficiently large a, and in all cases |Φ(`, k, α, n, û, v̂)| 6 2. It follows from (42) and
the bounds (31) and (32) obtained in the proof of Theorem 10 that∣∣∣∣∣

v1n∑
k>u1n

k

n

∑
`

Pr{Bk−`k }Φ(`, k, α, n, û, v̂)

(
k+`
`

)(
n−k+αn−`

αn−`

)(
k
`

)(
n−k
αn−`

)(
n+αn
αn

)(
n
αn

) ∣∣∣∣∣
6 c6(~u,~v)a−ζ(j−1) Pr{u1n 6 Cr

1(n) 6 v1n}

+2

v1n∑
k>u1n

k

n

∑
`s.t.

∆(`,xα,n)|>ρ(α,x,n)

Pr{Bk−`k }
(
k+`
`

)(
n−k+αn−`

αn−`

)(
k
`

)(
n−k
αn−`

)(
n+αn
αn

)(
n
αn

)
6 c6(~u,~v)a−ζ(j−1) Pr{u1n 6 Cr

1(n) 6 v1n}

+2c7(u1, v1)a−1/32

v1n∑
k>u1n

1

2n
√

1− k/n
(43)

for all sufficiently large a. It follows from (41), (43) and the induction hypothesis that
(33) holds for all sufficiently large a. This completes proof of (33) and the proposition
now follows for j by taking the limit of (33) as a = n− r tends to infinity.

Given Proposition 12, Theorem 11 now follows, by the convergence principle described
above.

5 Final Remarks

In this paper we have investigated graphical structure of random mappings under stronger
in-degree constraints (when r > 0) than those considered by Arney and Bender in [3] or
by the authors in [15] and have determined the distributions for the number of cyclic
vertices, the number of components, and the size of a typical component when r vertices
are constrained to have in-degree at most 1 and the remaining n−r vertices are constrained
to have in-degree at most 2. We have also determined the asymptotic distributions for
these variables under the regimes: (i) a = n − r → ∞ and (ii) a = n − r constant as
n → ∞, and we have shown that in regime (i) the limiting distribution for the order
statistics of the normalised component sizes of Ĝr

n is always PD(1/2). The persistence
of the PD(1/2) distribution as a limiting distribution is surprising because, provided
a = n − r → ∞, it does not depend on the number of cyclic vertices in Ĝr

n or on the
structure of the underlying uniform permutation of the cyclic vertices of Ĝr

n. In particular,
when a = o(n), the number of cyclic vertices is of order n√

a
, but the limiting distribution

of the normalised order statistics of the component sizes is still the PD(1/2) distribution
rather than the PD(1) distribution which was obtained as the limiting distribution in [16]
when the order of the cyclic vertices in the random mapping model is greater than

√
n.

This persistence of the PD(1/2) distribution no matter how slowly a grows, suggests that
there is a delicate and interesting interplay between the cycle structure of Ĝr

n and the
structure of the forest obtained by deleting the cyclic edges in Ĝr

n which warrants further
investigation.
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It is also instructive to compare the asymptotic structure Ĝr
n to that of logarithmic

combinatorial structures with parameter θ. Examples of such structures include random
permutations with Ewens cycle structure, prime factorisation of integers ([8]), factori-
sation of the characteristic polynomial for a random matrix over a finite field ([17]),
and uniform mapping patterns ([22]) (for other examples, see [4, 14]). In a logarithmic
combinatorial structure with parameter θ, the distribution of the order statistics for the
normalised ‘component’ sizes converges to the PD(θ) distribution as the size of the struc-
ture n → ∞. In addition, the expected number of ‘components’ of size k is asymptotic
to θ

k
as k → ∞ and the total number of components is of order θ log n as n → ∞. In

contrast, it follows from the Corollary 8, that the number of components, N̂ r
n, in Ĝr

n is
of order log( n√

a
). So when a = o(n) and a → ∞, the asymptotic structure of Ĝr

n is
qualitatively different from that of a logarithmic combinatorial structure with parameter
θ = 1/2 since 1

2
log n = o(N̂ r

n). We note that we cannot ‘see’ this difference if we only look

at the large components of Ĝr
n because the limiting distribution of the order statistics of

the normalised component sizes of Ĝr
n is the same as that of a logarithmic combinatorial

structure with parameter θ = 1/2. It would be interesting to determine the distribution
of the number of components of size k in Ĝr

n for k = o(n), and to use such results to
extend the central limit theorem for N̂ r

n obtained in this paper to a functional central
limit theorem for the component sizes in Ĝr

n, analogous to the functional central limit
theorems that have been obtained for uniform permutations (see [7]), uniform random
mappings (see [12]) and other logarithmic combinatorial structures.

Finally, we mention an alternative, but related, model, T̃ βn , for random mappings with
in-degree constraints. The construction of T̃ βn is similar in spirit to the configuration
model from random graph theory and is defined as follows: Suppose that 0 6 β 6 1 and
let Dβ

1 , D
β
2 , . . . be a sequence of i.i.d. random variables such that for i > 1,

Pr{Dβ
i = 0} = Pr{Dβ

i = 2} =
1− β

(2− β)2
and Pr{Dβ

i = 1} =
1 + (1− β)2

(2− β)2

and let D(β, n) = (Dβ
1,n, D

β
2,n, . . . , D

β
n,n) be a collection of exchangeable random variables

with joint distribution given by

Pr
{
Dβ
i,n = di, 1 6 i 6 n

}
= Pr

{
Dβ
i = di, 1 6 i 6 n

∣∣∣ n∑
i=1

Dβ
i = n

}
.

Then we define T̃ βn so that, given the event {D(β, n) = (d1, d2, . . . , dn)}, T̃ βn is uniformly
distributed over Mn(d1, d2, . . . , dn). It is clear from the definition of T̃ βn that the ver-
tices in G̃β

n ≡ G(T̃ βn ) have in-degree at most 2. Furthermore, the larger the value of β,
the greater the expected number of vertices with in-degree 1, and when β = 1, T̃ 1

n is a
uniform random permutation. Since the variables (Dβ

1,n, D
β
2,n, . . . , D

β
n,n) are exchangeable,

one can use the calculus for random mappings with exchangeable in-degrees to investigate
the structure of G̃β

n, but in this case the distributions that are obtained are more compli-
cated and cumbersome than those presented here for Ĝr

n. Nevertheless, some preliminary
calculations indicate that for 0 < β(n) < 1 such that β(n)n→∞ and (1− β(n))n→∞
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as n → ∞, the models Ĝr
n and G̃

β(n)
n are asymptotically related. In particular, it should

be possible to translate the results obtained in this paper into results for G̃β
n.
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