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Abstract

We demonstrate an infinite family of pseudoline arrangements, in which an ar-
rangement of n pseudolines has no member incident to more than 4n/9 points of
intersection. This shows the “Strong Dirac” conjecture to be false for pseudolines.

We also raise a number of open problems relating to possible differences between
the structure of incidences between points and lines versus the structure of incidences
between points and pseudolines.

1 Introduction

A central problem of discrete geometry is to elucidate the structure of incidences between
points and lines. Until the recent explosion of applications of polynomial methods to
problems in incidence geometry ([7, 16, 19]), the tools most successfully applied to ques-
tions about incidences between points and lines could be immediately applied to prove
equivalent results for incidences between points and pseudolines. By an arrangement of
pseudolines, we mean a set of simple closed curves in the real projective plane, any pair
of which meet at a single crossing point [10, p. 79].

Given an arrangement L of lines in the real projective plane, P2, let r(L) be the
maximum number of vertices on any line of L (a vertex of L is a point incident to at least
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2 lines of L). In 1951, G. Dirac (working in the dual context of point sets) conjectured a
lower bound on r(L) [6].

Conjecture 1 (Strong Dirac). Let L be an arrangement of n lines in P2 that do not all
pass through a single point. There exists a constant c such that

r(L) > n/2− c.

In this paper, we show that the old and widely believed “Strong Dirac” conjecture
is false when generalized from arrangements of lines to arrangements of pseudolines. We
give an explicit example of an infinite family of pseudoline arrangements L for which
r(L) 6 4n/9 for any L ∈ L

In 1961, Erdős proposed a weaker version of the Strong Dirac conjecture [9]. It was
proved independently in 1983 both by Beck[2] and by Szemerédi and Trotter[18], and
holds for arrangements of pseudolines.

Theorem 2 (Weak Dirac). Let L be an arrangement of n pseudolines in P2 that do not
all pass through a single point. Then

r(L) = Ω(n).

For straight lines, the constant in Theorem 2 can be taken to be 1/37, as shown in
[17]. The proof in [17] relies on Hirzebruch’s inequality [14], an algebraic result not known
to hold for pseudolines.

Traditionally, the Strong Dirac conjecture has been studied from the perspective of
point sets. In that setting, the conjecture is that any set of n points includes a point
incident to n/2−c lines spanned by the point set. However, there are symmetries inherent
in known extremal examples that are easier to see in the context of line arrangements.
We briefly review these examples in Section 2.

In Section 2.1, we describe a technique of visualizing line and pseudoline arrange-
ments with dihedral symmetry by presenting only a single wedge, which can be used
to reconstruct the entire arrangement. This method was introduced by Eppstein on his
blog [8], and further developed by Berman in an investigation of simplicial pseudoline
arrangements [3].

In Section 2.2, we present an infinite family of arrangements of pseudolines, such that
an arrangement of n pseudolines from this family has no member incident to more than
4n/9 − 10/9 vertices of the arrangement. The family of pseudolines presented here was
previously studied by Berman [3], in the context of simplicial arrangements. This is the
first time an infinite family of pseudolines has been demonstrated to violate the conclusion
of the Strong Dirac conjecture.

In Section 3, we ask a number of questions relating to the central question of what
differences exist between the structure of incidences between points and lines versus the
structure of incidences between points and pseudolines.
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2 Strong Dirac conjecture

In 1951, Dirac conjectured that among any set of n non-collinear points, P , there must
exist a point incident to at least dn

2
e lines spanned by P [6]. This bound can be attained for

odd n when the points lie on two intersecting lines. Typically, Dirac’s original conjecture
is stated in a slightly weaker form (i.e., the “Strong Dirac”).

In [1], Akiyama et al. show that the bn
2
c bound (i.e., the Strong Dirac conjecture

with c = 0) can be attained for all sufficiently large n except those of the form 12k + 11
(which they left as an open problem). However, there exists a family of point sets, with
an arbitrarily large number of points, for which the conjecture is false for c = 0. This
infinite family of counterexamples is due to Felsner and contains 6k+ 7 points with none
incident to more than 3k+ 2 spanned lines when k is even, and 3k+ 3 when k is odd. [4,
p. 313] The dual form for this family is demonstrated in Figure 1.

∞

Figure 1: The dual of Felsner’s arrangement with 6k + 7 = 31 lines (including the line at
infinity) and no line incident to more than 3k + 2 = 14 points of intersection.

No infinite family of arrangements of n lines is known such that each member has fewer
than n/2−3/2 intersection points, but Grünbaum found several small arrangements with
that property [12, 13]. The line arrangement A[25,5] in [13] is the smallest member of the
infinite family of pseudoline arrangements presented below.

2.1 Wedge presentation of symmetric pseudoline arrangements

A beautiful feature of Figure 1 is its symmetry. This drawing has the symmetry of
a regular hexagon (i.e., the dihedral group D6). While studying simplicial pseudoline
arrangements (ones in which each planar face has three sides), Eppstein observed that
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arrangements with dihedral symmetry can be generated, similar to a kaleidoscope, from
the contents of a single “wedge” [8]. Figure 2 shows a single wedge from Felsner’s ar-
rangement.

Figure 2: A single wedge from Felsner’s arrangement.

He noted that the entire path of a line through an arrangement can be traced by
considering that line to be “bouncing”, like a laser beam bouncing off mirrors, from one
side of the wedge to the other. (Notice that in Figure 2 the beams must “retrace” their
path after the third bounce.) In fact for straight-line arrangements, this bouncing must
follow the law of reflection: the angle of incidence equals the angle of reflection. By
applying basic trigonometry, one may deduce for straight-line arrangements the number
and locations of the bounces as a function of the wedge angle and the beam’s initial angle
of incidence.

To generate an arrangement from a wedge, the wedge must have an angle of π/k for
some positive integer k > 2. The arrangement is produced by alternately rotating and
duplicating the wedge or its mirror image, k times each, so that they fill the plane.

For pseudoline arrangements, the “bouncing” beams need not obey the law of reflec-
tion.

As with Felsner’s arrangement a beam might retrace its path after the dk
2
eth bounce.

Berman, in [3], further develops Eppstein’s “kaleidoscope” method to construct and clas-
sify many types of symmetric simplicial pseudoline arrangements (including the one pre-
sented in Section 2.2).

2.2 Pseudoline counterexample to Strong Dirac conjecture

Theorem 3. For any j ∈ N+, there exists an arrangement of n = 18j + 7 pseudolines
such that no pseudoline is incident to more than 8j + 2 vertices.

We will describe the construction of a wedge for a pseudoline arrangement for arbitrary
j, and show that it has the claimed number of pseudolines and intersection property. We
refer to Berman [3, Fig.11] for a proof that the described wedge actually represents a
pseudoline arrangement.
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For an arbitrary j, the wedge angle will be π/(6j+2). There are four distinct symmetry
classes of pseudolines, plus the line at infinity. Two of these will be represented by the
sides of the wedge; we will call these the top and bottom edges. Two will be represented
by beams; we will call these the red and blue beams. See Figure 3.

Let r
(j)
i be the point at which the ith bounce of the red beam occurs along one of the

two edges, counting from infinity. Likewise, let b
(j)
i be the point at which the ith bounce

of the blue beam occurs. When the implied value of j is obvious, we simply refer to these
points as ri and bi.

After the beams reach the points r3j+1 or b3j+1, respectively, the beams “retrace” their
paths. More specifically for any k > 3j + 1, rk = r6j+2−k and bk = b6j+2−k.

We call r3j+1 and b3j+1 the “terminating points” for their respective beams. Prior
to reaching its terminating point, every third bounce of the blue beam coincides with a
bounce of the red beam. For all j, ri = b3i when i 6 j. The two beams are parallel to
the bottom edge before the first bounce, and both b1 and r1 are on the top edge.

Proof. We proceed by induction. For j = 1, the theorem holds; the arrangement generated
from this wedge contains 3(6j + 2) + 1 = 25 pseudolines, each of which incident to at
most 8j + 2 = 10 vertices. See Figure 3 for the wedge, and Figure 4 for the associated
arrangement.

b1

b2

b3 = r1

b4r2

r3

r4

Figure 3: The wedge for j = 1, the base case for our induction.

Assume that the theorem holds for j− 1. We start with the wedge produced from the
(j − 1)th case, and adjust its angle to be π/(6j + 2). Let r

(j−1)
i and b

(j−1)
i be the points

of the ith bounce of the red and blue beams, respectively, from the preceding case. We
define the r

(j)
i and b

(j)
i as follows:

• For i < 3j − 1, let r
(j)
i = r

(j−1)
i and b

(j)
i = b

(j−1)
i .

• For i > 3j + 3, let r
(j)
i = r

(j−1)
i−6 and b

(j)
i = b

(j−1)
i−6 .

We must specify for the jth case how to construct the triples {r3j−1, r3j, r3j+1} and
{b3j−1, b3j, b3j+1} for their respective beams. Note that r3j+2 = r3j and r3j+3 = r3j−1, and
likewise for the bi.
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Figure 4: The arrangement for j = 1, containing 3(6j + 2) + 1 = 25 pseudolines. Each
pseudoline is incident to at most 10 vertices.

We begin with the simpler case of extending the red beam. We place r3j−1 on the side
opposite of the wedge from r3j−2, and continue to alternate sides when placing r3j and
r3j+1, each slightly closer to the corner of the wedge than the previous.

To extend the blue beam we must cross the red beam once, placing b3j−1 on the
opposite side of the wedge from b3j−2. The subsequent point, b3j, coincides with rj. As
stated previously, b3i = ri when i 6 j. Lastly, place b3j+1 at an appropriate location on the
opposite side of the edge (farther from the corner than rj+1). With this, the construction
is complete.

We must now consider the additional vertices (relative to the (j − 1)th case) formed
on the lines, resulting from this construction. For the blue lines, a total of eight vertices
were added, and likewise, eight more were added for the red lines. The edges of the wedge
correspond to the lines of the arrangement forming axes of symmetry. For one class of
axes, we added eight vertices each. To the other, we added only six each. (Whether the
lines getting an additional six vertices correspond to the “top” or “bottom” of the wedge
depends on the parity of j.) See Figure 5 for the j = 2 case, i.e., the first complete
extension from the base case.

In the resulting arrangement, there will be 18j+ 7 = (18(j− 1) + 7) + (6 · 3) lines with
none incident to more than 8j + 2 = (8(j − 1) + 2) + 8 vertices, completing the inductive
proof.

the electronic journal of combinatorics 21(2) (2014), #P2.31 6



b1

b2

b3=r1

b4

b5

b6=r2

b7r3

r4

r5
r6

r7

Figure 5: The wedge for j = 2.

3 Open problems

The main interest of the pseudoline arrangement presented here is that it shows that a
natural conjecture that is widely believed to be true for straight lines is definitely false for
pseudolines. This is relevant to a more general question: how do the structural constraints
on the incidences between straight lines and points differ from those on incidences between
pseudolines and points? In this section, we raise a number of specific open problems on
this general theme.

3.1 Variations on the Strong Dirac

There is no reason to expect that 4/9 is the best possible constant in the Weak Dirac
theorem for pseudolines, and the gap between 4/9 and the best known lower bound is
quite large.

Problem 1. What is the supremum of values c for which

r(L) > cn+ o(n)

for all pseudoline arrangements L?

The next question is whether (and by how much) the bound on r(L) for line arrange-
ments differs from that for pseudoline arrangements.

Problem 2. Is it possible to prove a lower bound on r(L) that holds for line arrangements
and not for pseudoline arrangements?

One feature of the family of pseudoline arrangements presented in Section 2.2 is that
(n− 1)/3 lines are all incident to a single vertex. A natural question is whether this is an
essential feature of any pseudoline counterexample to the Strong Dirac conjecture.

Problem 3. Is there an infinite family of arrangements of n pseudolines, such that

• no vertex of any arrangement in the family is incident to Ω(n) pseudolines, and

• no member of any arrangement is incident to more than n/(2 + ε) vertices for some
ε > 0?
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The authors are not even aware of an infinite family of pseudoline arrangements such
that no vertex is incident to Ω(n) pseudolines and no pseudoline is incident to more than
cn vertices for some c < 1.

Both Felsner’s example, and the example presented in Section 2.2 have dihedral sym-
metry. Assuming that the Strong Dirac conjecture holds for line arrangements, it may be
easier to prove for the special case of dihedrally symmetric line arrangements.

Problem 4. Does the Strong Dirac conjecture hold for line arrangements with dihedral
symmetry?

The example presented here shows that any method used to give an affirmative an-
swer to Problem 4 would need to be able to distinguish between line arrangements and
pseudoline arrangements.

3.2 Dirac-Motzkin for Pseudolines

Another classic question from incidence geometry concerns the minimum number of or-
dinary vertices in an arrangement of lines. An ordinary vertex is one that is incident to
exactly 2 lines of the arrangement. The famous conjecture on this question was known,
until its recent proof by Green and Tao [11], as the Dirac-Motzkin conjecture.

Theorem 4. Let L be an arrangement of n lines in the plane, not all through one point.
Suppose that n > n0 for a sufficiently large constant n0. Then, L determines at least n/2
ordinary vertices.

The best result on the Dirac-Motzkin problem prior to Green and Tao’s proof of
Theorem 4 was by Csima and Sawyer [5]. They showed that, if L is an arrangement of
n > 7 lines in the plane, not all through one point, then L determines at least 6n/13
ordinary vertices.

A key difference between the proof of Csima and Sawyer and that of Green and Tao
is that the result of Csima and Sawyer can be generalized to apply to arrangements
of pseudolines in a straightforward manner [15], but the result of Green and Tao relies
on algebraic statements, including the Cayley-Bacharach theorem, that do not apply to
pseudolines.

This raises the question: is the generalization of Theorem 4 for arrangements of pseu-
dolines true?

Problem 5. Is there an arrangement of n > 13 pseudolines, not all through one point,
that determines fewer than n/2 ordinary vertices?
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