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Abstract

We count invertible Schrödinger operators (perturbations by diagonal matrices of
the adjacency matrix) over finite fields for trees, cycles and complete graphs. This
is achieved for trees through the definition and use of local invariants (algebraic
constructions of perhaps independent interest). Cycles and complete graphs are
treated by ad hoc methods.
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1 Introduction

A Schrödinger operator (or perhaps more accurately, an opposite of a Schrödinger opera-
tor) on a graph G (always finite with unoriented edges and no loops or multiple edges) is
a matrix obtained by adding an arbitrary diagonal matrix to the adjacency matrix of G.

Our first result counts invertible Schrödinger operators over finite fields for trees
(graphs without closed non-trivial paths):

Theorem 1. The number of invertible Schrödinger operators of a finite tree T with n
vertices over the finite field Fq is given by

(−
√
−q)n χT (

√
−q + 1/

√
−q) (1)

where χT = det(xIn − A) ∈ Z[x] is the characteristic polynomial of the adjacency matrix
A of T .

∗Partially supported by the LabEx PERSYVAL-Lab (ANR–11-LABX-0025). The author is a member
of the project-team GALOIS supported by this LabEx.
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Theorem 1 is wrong for arbitrary graphs: It fails to yield integral evaluations at
prime-powers for non-bipartite graphs. It is also wrong for bipartite graphs: Formula (1)
amounts to q4−2q2 +1 for the the 4-cycle C4 which has (q−1)(q3−q−1) = q4−q3−q2 +1
invertible Schrödinger operators over Fq by Theorem 2.

The key-ingredient for proving Theorem 1 is the notion of local invariants, a general
framework for computing invariants of finite (plane) trees.

Our next result enumerates invertible Schrödinger operators for the n-cycle Cn defined
as the unique connected graph consisting of n > 3 vertices of degree 2:

Theorem 2. The number SCn of invertible Schrödinger operators for the n-cycle Cn over
Fq is given by

SC2n+1 = q2n+1 − 1− q2n+2

1− q2
,

SC4n = q4n − q2n +
(1− q2n)(1− q2n+1)

1− q2
,

SC4n+2 = q4n+2 +
(1− q2n+1)(1− q2n+2)

1− q2
.

if q is odd and by

SC2n+1 = q2n+1 − 1− q2n+2

1− q2
,

SC2n = q2n − qn +
(1− qn)(1− qn+1)

1− q2
,

if q is even.

Observe that SCn is polynomial in q, except if n ≡ 2 (mod 4) where it is given by two
polynomials, depending on the parity of q.

The proof of Theorem 2 is essentially an identity in Z[SL2(Fq)], see Theorem 18. This
identity is of independent interest: It yields for example Bose-Mesner algebras and a good
generator of random elements in SL2(Fq).

Invertible Schrödinger operators for the complete graph Kn on n vertices are invert-
ible matrices of size n × n with arbitrary diagonal coefficients and with all off-diagonal
coefficients equal to 1. The following result gives their number over finite fields:

Theorem 3. The number of invertible Schrödinger operators over Fq associated to the
complete graph on n vertices is given by

(q − 1)n+1 + (−1)n

q
+ n(q − 1)n−1.

The content of the paper is organized as follows:
Section 2 introduces and gives examples of local invariants, the main tool for proving

Theorem 1, established in Section 3.
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Section 4 describes a few additional properties of the polynomial ST (q) enumerating
invertible Schrödinger operators over Fq of a finite tree T .

Section 5 extends local invariants to trees having coloured vertices.
Section 6 studies the behaviour of the polynomial ST (q) (defined by Theorem 1) under

edge-subdivisions.
Section 7 refines ST in order to count invertible Schrödinger operators (of trees) over

finite fields according to multiplicities of values of the Jacobi symbol on the diagonal.
In Section 8 we give formulae for the coefficients of∑

µ∈M

∑
x∈Fq

[(
x µ
−1/µ 0

)]n

∈ Z[SL2(Fq)] (2)

where M is a subgroup of the multiplicative group F∗q of units in Fq. Theorem 2 is a
rather straightforward consequence of these formulae, as shown in Section 9.

Section 10 gives an easy proof of Theorem 3.
A short last Section 11 contains a few final remarks.

2 Local invariants

2.1 Local construction of trees

We denote by T the set of all finite trees and by R the set of all finite rooted trees.
Every element of R can be constructed (generally not uniquely) in a finite number of

steps involving the following operations:

(V ) Creating a trivial rooted tree consisting of a unique root-vertex.

(E) Extending a rooted tree by gluing one end of an additional edge to the root-vertex
and by moving the root vertex to the other end of the newly attached edge.

(M) Merging two rooted trees by gluing their root-vertices into the root-vertex of the
resulting tree.

The operation E increases the number of edges and vertices by 1. The operation M ,
applied to two rooted trees having respectively a and b vertices produces a rooted tree
with a+ b− 1 vertices and a+ b− 2 edges.

V is constant (independent of any arguments), E operates on elements of R. The
map M defines a commutative and associative product which turns R into a commutative
monoid with identity V representing the trivial rooted tree reduced to the root vertex.
The monoid (R,M) is N-graded: The degree of a rooted tree R is the number of non-
root vertices in R. The sum over all possible contractions of an edge starting at the
root vertex defines a derivation of degree −1 on the graded monoid-ring K[R] (over
a commutative ring or field K). The map E can thus be thought of as an “integral
operator”on R. Algebraically, K[R] is the free commutative algebra with generators
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{E(R)}R∈R. Its Hilbert series
∑∞

n=0 αnx
n encoding the dimension αn of homogeneous

polynomials of degree n in K[R] satisfies the identity

∞∑
n=0

αnx
n =

∞∏
n=0

(
1

1− xn+1

)αn

,

appearing already in [1], and starts as 1, 1, 2, 4, 9, 20, 48, 115, 286, see sequence A81 of [3].
Finally, the “forget” operator,

(F ) Forgetting the root-structure by turning the root of a rooted tree into an ordinary
vertex,

induces a surjection from R onto T . We have the identity

F (M(A,E(B))) = F (M(E(A), B)) (3)

(for all A,B in R) mirroring the fact that an ordinary tree with n vertices can be rooted
at n different vertices. Identity (3) amounts to requiring (A,B) 7−→ F (M(A,E(B))) to
be symmetric in its arguments A and B.

Figure 1: An example of a tree, rooted at the largest dot.

Figure 1 shows the rooted tree encoded (for example) by

M{E(M{E(M{E(V ), E(V )}), E(E(V ))}), E(V )}

with curly brackets enclosing arguments of M .

2.2 Digression: plane trees

A plane tree is a tree embedded in the oriented plane, up to orientation-preserving homeo-
morphisms. Plane trees are abstract trees together with cyclic orders on sets of edges
sharing a common vertex.

A rooted plane tree is a plane tree having a root together with a refinement into a
linear order of the cyclic order on root-edges containing the root-vertex.
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Rooted plane trees can be constructed using the operators V,E,M already considered,
except that the associative product M is no longer commutative. The operator F turning
the root-vertex into an ordinary vertex satisfies (3) and the “trace-identity”

F (M(A,B)) = F (M(B,A)). (4)

The set Π of all finite rooted plane trees is a non-commutative monoid. It is again
graded (by the number of non-root vertices) and K[Π] is a non-commutative differen-
tial algebra. Algebraically, K[Π] is the free non-commutative algebra with generators
{E(R)}R∈Π. Its Hilbert series is the algebraic function C =

∑∞
n=0 cnx

n = 1
1−xC whose

coefficients define the famous sequence 1, 1, 2, 5, 14, . . . , cn =
(

2n
n

)
1

n+1
of Catalan numbers,

see sequence A108 of [3].

2.3 Local invariants of (rooted) trees

A local invariant of rooted trees with values in a commutative monoid E is a map i :
R −→ E which can be computed by replacing the construction operators V,E,M by
v, e,m where v = 1 is the multiplicative identity of E, where e : E −→ E is an arbitrary
map and where m : E× E −→ E is the product of the monoid E.

A local invariant of trees is a map f ◦ i from T to a set of values F where i is a local
invariant of rooted trees given by maps v, e,m : E∗ −→ E as above (with E∗ denoting
respectively ∅,E and E2) and where f : E −→ F satisfies the identity

f(m(A, e(B))) = f(m(e(A), B)) (5)

corresponding to (3) for all A,B in E.
A trivial example with E = F = N is given by v = 0, e(x) = x + 1, m(x, y) = x + y

and f(x) = x. It counts the number of edges (given by n − 1 for a tree with n vertices)
of a tree. Replacing f with f1(x) = x+ 1 we count vertices instead of edges.

Remark 4. The definition of local invariants for (rooted) trees is tautological: Every map
A : T −→ F is a local invariant on the set T of all finite trees by taking E = R and
v = V, e = E,m = M, f = A◦F . We are of course interested in local invariants where the
maps v, e,m and f are simple, e.g. given by algebraic operations over some commutative
monoid E with a rich algebraic structure.

The terminology “local” alludes to the fact that local invariants can be computed al-
gorithmically using “local” operations which modify only neighbourhoods of root-vertices.

2.4 Examples of local invariants

2.4.1 Enumeration of (maximal) independent sets

A subset I of vertices in a graph G is independent if two distinct elements of I are never
adjacent. The polynomial

∑
j αjx

j encoding the number αj of independent sets with j
vertices in a finite tree can be computed as a local invariant using

v = (1, x),
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e(a, b) = (a+ b, xa),

m((a, b), (α, β)) = (aα,
1

x
bβ),

f(a, b) = a+ b.

We leave the easy details to the reader. (Hint: The first coefficient a of (a, b) counts inde-
pendent sets without the root of rooted trees, the second coefficient b counts independent
sets containing the root-vertex.)

For the tree underlying Figure 1 we get

1 + 8x+ 21x2 + 22x3 + 8x4 + x5.

An independent set I of a graph G is maximal if every vertex of G is at most at
distance 1 to I (i.e. a vertex v is either in I or adjacent to an element of I).

The polynomial
∑

j βjx
j encoding the number βj of maximal independent sets with j

vertices in a finite tree can be computed as a local invariant using

v = (1, 0, x),

e(a, b, c) = (b, c, x(a+ b)),

m((a, b, c), (α, β, γ)) = (aα, aβ + bα + bβ,
1

x
cγ),

f(a, b, c) = b+ c.

(a encodes non-maximal independent sets I not containing the root r of a rooted tree
R such that I ∪ {r} is maximal independent in R and I is maximal independent in the
forest R \ {r}, the coefficient b encodes maximal independent sets I of R such that r 6∈ I
and c encodes maximal independent sets of R containing the root vertex r).

For the tree underlying Figure 1 we get

4x3 + 3x4 + x5.

2.4.2 Enumeration of (maximal) matchings

A matching of a graph is a set of disjoint edges. The polynomial
∑

j αjx
j with αj counting

matchings involving j edges can be computed as the local invariant

v = (1, 0),

e(a, b) = (a+ b, xa),

m((a, b), (α, β)) = (aα, aβ + bα),

f(a, b) = a+ b.

We leave the easy details to the reader. (Hint: The first coefficient a of (a, b) counts
matchings of a rooted tree not involving the root, the second coefficient b counts matchings
involving the root.)
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For the tree underlying Figure 1 we get

1 + 7x+ 13x2 + 7x3.

A matching of a graph G is maximal if it intersects every edge of G. The polynomial∑
j βjx

j with βj counting maximal matchings involving j edges can be computed as the
local invariant

v = (0, 1, 0),

e(a, b, c) = (b, c, x(a+ b)),

m((a, b, c), (α, β, γ)) = (aα + aβ + bα, bβ, (a+ b)γ + c(α + β)),

f(a, b, c) = b+ c

(a counts not maximal matchings of a rooted tree R inducing maximal matchings on the
forest R \ {r} obtained by removing the root r from R, the coefficient b counts maximal
matchings of R not involving the root and c counts maximal matchings of R involving
the root r).

For the tree underlying Figure 1 we get 7x3.

2.4.3 The characteristic polynomial of the adjacency matrix

We write (a, b) ∈ Z[x] if the characteristic polynomial of a rooted tree is given by ax− b
with ax corresponding to the contribution of the diagonal entry associated to the root.
Elementary matrix-transformations show that the characteristic polynomial det(x Id−A)
of the adjacency matrix A is a local invariant defined by

v = (1, 0),

e(a, b) = (xa− b, a),

m((a, b), (α, β)) = (aα, aβ + bα),

f(a, b) = xa− b.

For the tree underlying Figure 1 we get

x8 − 7x6 + 13x4 − 7x2.

Similarly,

v = (1, 0, 0),

e(a, b, c) = (−(x+ c+ 1)a+ b,−a, 1),

m((a, b, c), (α, β, γ)) = (aα, aβ + bα, c+ γ),

f(a, b, c) = −(x+ c)a+ b

computes the characteristic polynomial of the combinatorial Laplacian (given by Ddeg−A
where A is the adjacency matrix andDdeg is the diagonal matrix defined by vertex-degrees)
of a tree.

For the tree underlying Figure 1 we get

x8 + 14x7 + 76x6 + 204x5 + 286x4 + 204x3 + 67x2 + 8x.
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2.5 An example with values in N[z0, z1, . . . ]

Given a formal power series Z =
∑∞

i=0 zit
i ∈ A[[t]] and a polynomial B =

∑N
i=0 bit

i ∈ A[t]
with coefficients in a commutative ring A, we denote by

〈Z,B〉 =
N∑
i=0

zibi

the scalar product of the “coefficient-vectors”(z0, z1, . . . ) and (b0, . . . , bN , 0, . . . ).

Proposition 5. We denote by Z =
∑∞

i=0 zit
i a formal power series in t with coefficients

zi. The formulae

v = 1,

e(A) = 〈Z,A〉+ tA,

m(A,B) = AB,

f(A) = 〈Z,A〉

define a local invariant of trees with values in N[z0, z1, z2, . . . ], respectively of rooted trees
with values in N[z0, z1, z2, . . . ][t].

For the tree underlying Figure 1 we get

z8
0 + 7z6

0z1 + 8z5
0z2 + z4

0(13z2
1 + 10z3) + z3

0(18z1z2 + 11z4)

+z2
0(7z3

1 + 12z1z3 + 3z2
2 + 8z5) + z0(9z2

1z2 + 8z1z4 + 2z2z3 + 4z6)

+z2
1z3 + 2z1z

2
2 + 2z1z5 + z2z4 + z7.

The specialization z2 = z3 = · · · = 0 of Proposition 5 is particularly interesting in the sense
that it gives an invariant in N[z0, z1]([t]) of (rooted) trees which behaves naturally with
respect to the differential structure of N[R]. Given a rooted tree R with invariant cR(0)+
cR(1)t+. . . , the constant coefficient cR(0) corresponds to R and the linear coefficient cR(1)
corresponds to the derivative (as in Section 2.1) of R. The result (with Z = z0 + z1t) for
the tree underlying Figure 1 is

z2
0(z2

0 + z1)(z4
0 + 6z2

0z1 + 7z2
1).

Proof of Proposition 5. The set N[z0, z1, z2, . . . ][t] of all polynomials is a multiplicative
monoid with product m(A,B) = AB and identity 1. The operator e defines a map from
N[z0, z1, z2, . . . ][t] into itself. This shows that the formulae of Proposition 5 define a local
invariant of rooted trees.

Symmetry in A,B of

f(m(A, e(B))) = f(A(〈Z,B〉+ tB))

= 〈Z,A〉〈Z,B〉+ 〈Z, tAB〉

implies that identity (5) holds.
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2.5.1 Examples

Up to a power of x, the example of Section 2.4.2 enumerating matchings corresponds to
Z = 1+t

x
with coefficients z0 = z1 = 1/x and z2 = z3 = · · · = 0.

Our next example, stated as a theorem, will be the crucial ingredient for proving
Theorem 1:

Theorem 6. The characteristic polynomial of Section 2.4.3 corresponds to Z = x − t
with coefficients z0 = x, z1 = −1 and z2 = z3 = · · · = 0.

Proof. Follows easily from the formulae given in Section 2.4.3.

3 A local invariant enumerating Schrödinger operators

We consider the local invariant S : T −→ Z[q] of trees given by the specialization Z =
q − 1 + qt with coefficients z0 = q − 1, z1 = q and z2 = z3 = · · · = 0 of the local invariant
described by Proposition 5.

Since S depends only on the constant and on the linear coefficient of the corresponding
local invariant a+ bt+ . . . of rooted trees, we can also define S by the formulae

v = (1, 0),
e(a, b) = ((q − 1)a+ qb, a),

m((a, b), (α, β)) = (aα, aβ + bα),
f(a, b) = (q − 1)a+ qb

(6)

with (a, b) representing the series expansion a+ bt+O(t2).
For the (unrooted) tree underlying Figure 1 we get the polynomial

(q − 1)2(q2 − q + 1)(q4 + 2q3 + q2 + 2q + 1).

Remark 7. As a mnemotechnical device, the formula form corresponds also to the addition
b
a

+ β
α

= aβ+bα
aα

with forbidden simplification and the formula for e is, up to simplification

by a, given by the homography b
a
7−→

(
0 1
q q − 1

)
b
a

= 1
q b
a

+q−1
. The formula for f can

be recovered from e using the identity e(a, b) = (f(a, b), a).

We write ST for the local invariant in Z[q] associated to a tree T . Similarly, given a
rooted tree R, we denote by SR = (a, b) ∈ (Z[q])2 the corresponding pair of polynomials
defined by formulae (6).

Proposition 8. ST counts the number of invertible Schrödinger operators for a finite tree
T over the finite field Fq.

A matrix M with rows and columns indexed by vertices of a graph G is a G-matrix
if non-zero off-diagonal coefficients ms,t of M correspond to edges {s, t} of G. Diagonal
entries of G-matrices are arbitrary. The off-diagonal support (set of non-zero coefficients)
of a G-matrix encodes thus the edge-set of G. A G-matrix of an unoriented graph G has
always a symmetric support but is not necessarily symmetric. We have:
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Proposition 9. The number of invertible T -matrices over Fq of a finite tree T having n
vertices is given by (q − 1)2n−2ST .

Proof of Proposition 8. We consider the obvious action on T -matrices of the abelian group(
F∗q
)n × (F∗q)n of pairs of invertible diagonal matrices (with coefficients in Fq) by left

and right multiplication. An orbit of a T -matrix without non-zero diagonal coefficients
contains exactly one Schrödinger operator stabilized by a subgroup of order (q − 1)2. All
other orbits contain exactly q − 1 different Schrödinger operators, each stabilized by a
subgroup of order q−1. The number of (invertible) T -matrices is thus exactly (q−1)2n−2

times larger than the number of (invertible) Schrödinger operators. The result follows
now from Proposition 9.

Proof of Proposition 9. An R-matrix for a rooted tree R ∈ R is a T -matrix for the un-
derlying unrooted tree T with an unknown x on the diagonal corresponding to the root
of R. The determinant of an R-matrix over a finite field Fq is an affine function of the
form ax+ b ∈ Fq[x].

We consider now a fixed rooted tree R. Given two subsets A,B of Fq, we denote by
ν(A,B) the number of R-matrices of determinant ax+b with (a, b) ∈ A×B. We encode the
natural integers ν(0, 0), ν(0,F∗q), ν(F∗q, 0), ν(F∗q,F∗q) (with 0 denoting the singleton subset
{0} consisting of the zero-element in Fq) using the square matrix(

ν(0, 0) ν(0,F∗q)
ν(F∗q, 0) ν(F∗q,F∗q)

)
.

Right and left multiplications by invertible diagonal matrices essentially preserve the set
of R-matrices. More precisely, this holds up to replacement of the unknown x by a non-
zero multiple λx (with λ ∈ F∗q) of it. Since x can be thought of as a simple place-holder
for an arbitrary element of Fq, such a scalar λ can be dismissed. It follows that we have
ν(λa, µb) = ν(a, b) (using a slight abuse of notation) if λ and µ belong both to the set
F∗q of invertible elements in Fq. Elementary linear algebra shows now that the operators
V,E,M, F correspond to the operators

v =

(
0 0
1 0

)
,

e =

(
a b
c d

)
7−→ (q − 1)2

(
qa c+ d
qb (q − 1)(c+ d)

)
,

m = (

(
a b
c d

)
,

(
α β
γ δ

)
) 7−→

(
A B
C D

)
,

f =

(
a b
c d

)
7−→ qb+ (q − 1)(c+ d)

where

A = aα + aβ + bα + aγ + cα + aδ + dα + bβ,
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B = bγ + cβ + bδ + dβ,

C = cγ +
1

q − 1
dδ,

D = cδ + dγ +
q − 2

q − 1
dδ.

The coefficient ν(0, 0) contributes never to the number of invertible Schrödinger operators
and can be discarded. Inspection of the above formulae shows that we can lump together
ν(F∗q, 0) and ν(F∗q,F∗q) into a first coordinate with the second coordinate given by ν(0,F∗q).
This leads to the formulae (6) for ST , except for an extra factor of (q− 1)2 for every edge
of T .

3.1 Proof of Theorem 1

Substituting x with
√
−q+1/

√
−q and multiplying by the correct sign and power of

√
−q,

the expression (−
√
−q)nχT (

√
−q + 1/

√
−q) (with n denoting the number of vertices of

T ) can be computed using Theorem 6 as the local invariant given by

v = 1,

e(a+ tb+O(t2)) = −
√
−q
(√
−q + 1/

√
−q
)
a−
√
−q2

b+ at+O(t2)

= (q − 1)a+ qb+ at+O(t2),

m(A,B) = AB,

f(a+ tb+O(t2)) = −
√
−q
(√
−q + 1/

√
−q
)
a−
√
−q2

b

= (q − 1)a+ qb

and coincides thus with the local invariant given by formulae (6) which define the counting
function ST for Schrödinger operators by Proposition 8. �

4 A few additional properties of ST

Since Theorem 1 links ST closely to the characteristic polynomial (of an adjacency ma-
trix), many properties of ST mirror properties of characteristic polynomials for trees. For
example, since characteristic polynomials (of integral matrices) are monic and integral,
the polynomial ST is monic and integral.

A property not linked to the characteristic polynomial but to the formula (1) defining
ST is the fact that the polynomial ST associated to a tree T with n vertices satisfies the
equation

ST (q) = (−q)nST (1/q). (7)

We call this property sign-degree-palindromicity. It implies that a complex number ρ is a
root of ST if and only if 1/ρ is a root.

Another easy fact (left to the reader), is the observation that ST is always of the form
qn− qn−1 + . . . . This is (up to O(qn−2)) the expected number of non-zero elements among
qn (uniformly distributed) random elements of Fq.
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4.1 Root-locus of ST

All roots of the characteristic polynomial of a graph are real. Since a tree T is bipartite,
a real number ρ is a root of χ (the characteristic polynomial of an adjacency matrix of
T ) if and only if −ρ is a root. A pair of non-zero roots ±ρ of χ gives thus rise to the pair
σ, 1/σ of roots of ST satisfying the equation

0 = (
√
−σ + 1/

√
−σ − ρ)(

√
−σ + 1/

√
−σ + ρ)

= −σ + 2− 1/σ − ρ2.

We have thus

σ±1 =
2− ρ2 ±

√
(ρ2 − 2)2 − 4

2
.

For ρ ∈ [−2, 2] we get two conjugate roots σ, σ = 1/σ on the complex unit circle (except
perhaps for ρ = 0 giving sometimes rise to a unique root 1 of ST ), for ρ of absolute value
larger than 2 we get two negative real roots σ, 1/σ.

All roots of ST are thus on the union of the complex unit circle with the real negative
half-line.

Trees with all roots of ST on the unit circle are subtrees of affine Dynkin diagrams of
type D or E, see for example [2] which describes also all trees such that ST has exactly
one real root < −1. (More precisely, [2] deals with polynomials of the form (1) (up to
trivial signs) which give rise to Salem numbers.)

Our next result shows that “simple” trees give rise to polynomials ST with few real
negative roots:

Proposition 10. The number of real negative zeroes of ST ∈ Z[q] associated to a tree T
is at most equal to twice the number of non-root vertices of degree at least 3 in T .

The proof uses the following auxiliary result:

Lemma 11. The numbers of real negative zeroes of the polynomials a, b associated by
SR = (a, b) to a rooted tree R are at most equal to twice the number of non-root vertices
of degree at least 3 in R.

Proof of Proposition 10. We turn T into a rooted tree R by choosing a root vertex at
a leaf of T . The result follows now by applying Lemma 11 to the first polynomial of
SE(R) = (ST , ∗).

Proof of Lemma 11. Let R be a rooted tree. If the root vertex v∗ of R is not a leaf, then
S(R) = (A,B) = (aα, aβ + bα) where (a, b) and (α, β) are associated to smaller non-
trivial rooted trees R1, R2 such that R = M(R1, R2). The result holds thus for A = aα
by induction on the number of vertices and it holds for B since roots of A and B interlace
in an obvious sense on S1 ∪ R<0. If the root vertex v∗ is a leaf, the result holds by
a straightforward computation if R is a leaf-rooted path (Dynkin diagram of type A).
Otherwise, the tree R contains a vertex w of degree at least 3. Working with the rooted
tree Rw corresponding to T rooted at w, we see that aw, bw with S(Rw) = (aw, bw) have
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at most 2(k − 1) real negative zeroes where k is the number of vertices of degree at least
3 in T . This implies that ST has at most 2 + 2(k− 1) = 2k real negative zeroes. Since ST
has at least as many real negative zeroes as b involved in S(R) = (a, b) and since roots of
a and b interlace, the polynomials a, b have both at most 2k real zeroes.

4.2 Multiple roots of ST

A vertex w of degree k of a tree T can be considered as the result of gluing k maximal
leaf-rooted subtrees of T along their root-leaf corresponding to w. This construction is
linked to some multiple roots of ST as follows: Given a leaf-rooted tree R, let w1, . . . , wk
be the list of all vertices of T involving R (i.e. at least one of the maximal leaf-rooted
subtrees of T with root wi is isomorphic to R). Given such a vertex wi, we denote by
ri + 1 > 1 the number of occurrences of R at wi. We have the following result:

Proposition 12. The polynomial ST is (at least) divisible by ar where r = r1 + · · · + rk
and where a is defined by SR = (a, b).

Proof. Gluing ki + 1 copies of R along their root gives a rooted tree with invariant
(aki+1, (ki + 1)akib). Linearity of the formulae for e, f and m implies now the result.

Proposition 12 explains the factor q2 − q + 1 and one of the factors q − 1 of the
polynomial ST = (q − 1)2(q2 − q + 1)(q4 + 2q3 + q2 + 2q + 1) with T given by Figure 1.
Since ST is palindromic, the factor q−1 divides ST with even multiplicity. All cyclotomic
factors in this example have thus easy explanations.

5 Trees with coloured vertices

A rooted tree with ordinary (non-root) vertices coloured (not necessarily properly, i.e.
adjacent vertices might have identical colours) by a set C can be constructed using the
construction-operators V (creation of a root-vertex), M (merging of two rooted trees along
their root) and replacing E by operators Ec (for c ∈ C) depending on the final colour of
the initial root-vertex. For ordinary trees, one works with operators Fc indexed by all
possibilities of colouring the root-vertex after turning it into an ordinary vertex.

Identity (5) has to be replaced by

Fs(M(A,Et(B)) = Ft(M(Es(A), B)) (8)

for all s, t ∈ C and for all A,B ∈ R.
Local invariants for coloured (rooted or plane) trees are defined in the obvious way.

5.1 A few examples of coloured invariants

5.1.1 Colourings defined by (virtual) rooted trees

Every local invariant gives rise to a coloured local invariant by chosing colour-constants
uc ∈ E for all colours c ∈ C and by replacing e with ec(A) = e(m(A, uc)) and f with
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fc(A) = f(m(A, uc)). These invariants amount to attaching “virtual trees” Uc corre-
sponding to uc and representing colours to all ordinary vertices.

A particular case, closely related to ST , will be discussed in Section 6.2.

5.1.2 A coloured local invariant with values in N[z0(c), z1, z2, z3, . . . ]

The example of Proposition 5 in Section 2.5 can easily be generalized to a coloured local
invariant by considering formal power-series Z(s) = z0(s) +

∑∞
i=1 zit

i with constant terms
(with respect to t) depending on colours. Identity (8), corresponding to

〈Z(s1), A〉〈Z(s2), B〉+ 〈Z(s1), tAB〉 = 〈Z(s1), A〉〈Z(s2), B〉+ 〈Z(s2), tAB〉,

holds since 〈Z(s), tC〉 does not depend on the colour s.
As an example, we can consider the invariant given by Z(v) = xv + qt generalizing the

invariant counting invertible Schrödinger obtained by the specialization xv = q− 1 for all
v, see Section 3.

5.1.3 Bicoloured characteristic polynomial

Trees are connected bipartite graphs and have thus a canonical proper 2-colouring or bi-
colouring, well-defined up to colour-exchange. The corresponding bi-coloured variation
of the characteristic polynomial of the adjacency matrix is given by computing the de-
terminant of the matrix coinciding with the adjacency matrix outside the diagonal and
with diagonal coefficients −x or −y according to the bipartite class of the corresponding
vertex. The resulting determinant is well-defined in Z[x, y] up to exchanging x with y
and can be computed as a local invariant. This construction works of course also for the
combinatorial Laplacian of a tree.

5.1.4 Coloured Schrödinger operators

The enumeration of Schrödinger operators according to coloured diagonal zeros leads to
a local invariant of coloured trees. It takes its values in Z[q, C] with the coefficient (in
Z[q]) of a monomial

∏
j c

ej
j ∈ C∗ counting the number of Schrödinger operators with ej

zero terms on diagonal elements associated to vertices of colour cj.
The corresponding operators are given by

v = (0, 1, 0),
es(a, b, c) = (sb+ c, (q − 1 + s)a, (q − 1)b+ (q − 2 + s)c),
m((a, b, c), (α, β, γ)) = (aβ + bα + aγ + cα, bβ + cγ

q−1
, bγ + cβ + q−2

q−1
cγ)

fs(a, b, c) = (q − 1 + s)a+ (q − 1)b+ (q − 2 + s)c.

(with (a, b, c) standing for a = N(0,F∗q), b = N(F∗q, 0) and c = N(F∗q,F∗q) where N(∗, ∗) is
as in the proof of Proposition 9).

Skeptical readers are invited to check the identity

fs(m((a, b, c), et(α, β, γ))) = ft(m(es(a, b, c), (α, β, γ)))

corresponding to (8).
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5.2 A further generalization: working with coloured monoids

Rooted vertex-coloured trees with colours at all vertices including the root do not form a
natural monoid. However the subset of rooted trees with a given root colour is obviously
a monoid (by gluing, as before, all root-vertices into a root-vertex of the same colour).

A local invariant for such rooted coloured trees is given by monoidsMc with identities
vc and products mc and by edge-maps eci,cf :Mci −→Mcf (depending on the root-colour
ci of the initial argument-tree and on the colour cf of the final, added root-vertex) among
all coloured monoids.

Adding maps fc :Mc −→ F into some set F such that we have for all pairs of colours
c1, c2 the identity

fc1(mc1(A1, ec2,c1(A2))) = fc2(mc2(ec1,c2(A1), A2)) (9)

(with A1 ∈Mc1 , A2 ∈Mc2), we get an invariant of coloured trees.
Section 7 contains an example of this construction.

6 Edge-subdivisions

6.1 Properties of S

Proposition 13. Let Ti be a sequence of trees obtained by subdividing all edges around a
fixed vertex w of degree d > 3 of a finite tree T into a larger and larger number of edges
(by insertion of additional vertices of degree 2). Then there exists a sequence of roots ρi
of STi converging to 1− d.

The proof follows easily from the discussions in Section 6.2.
Applying Proposition 13 at all vertices we get:

Corollary 14. Subdividing all edges of a fixed finite tree T leads to a sequence of polyno-
mials with k strictly negative roots converging to 1− di where d1, . . . , dk are the degrees of
all k vertices of T with degrees > 2.

The density of roots on S1 under edge-subdivisions can be shown to behave as expected:

Proposition 15. Given a sequence Ti of finite trees obtained by subdividing some edges
of a given fixed tree T into more and more sub-edges, the density of roots of STi on the
unit circle S1 converges to the Lebesgue measure of S1. Otherwise stated, the proportion
of roots of STi in a given sub-interval I of S1 tends to 1

2π
length(I).

We omit the proof.

6.2 Essentially finite trees and limits of real negative roots of ST under edge-
subdivisions

A perhaps infinite tree is essentially finite if it is obtained by subdiving edges of a finite
tree at most countably many times. Essentially finite trees can be considered as trees with
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edges weighted by elements of {1, 2, . . . } ∪ {∞}. Edge-weights encode the final number
of edges after subdivision. Forbidding vertices of degree 2 leads to unique representations
of this form.

Essentially finite trees with an infinite number of vertices have no longer an S-
polynomial. They define however a finite set ρ1, . . . , ρk of k real numbers < −1 where k is
at most equal to the number of vertices of degree > 3 in the following way: Approximate
such a tree T by a sequence Ti of finite trees in the obvious way (by replacing all infinite
edge-weights by large finite edge-weights) and consider the limits (which exist by Theo-
rem 16) of all real roots < −1 of the polynomials STi , taking into account multiplicities.
The aim of this section is to compute these numbers and to study a few of their properties.

An essentially finite tree is arc-connected if all non-leaves are at finite distance. Equiv-
alently, a finite tree is arc-connected if all its edges with infinite weight contain a leaf. An
arc-connected component of an essentially finite tree is a subtree defined by all vertices
at finite distance of a non-leaf. An arc-connected essentially finite tree is a finite tree
together with attachements of finitely many infinite rays (ending at an “ideal”leaf-vertex)
at vertices. An essentially finite arc-connected tree can be encoded by a finite tree with
N-weighted vertices. Vertex-weights indicate numbers of attached infinite rays.

Arbitrary essentially finite trees can be decomposed into essentially finite arc-connected
trees with two arc-connected components intersecting at most in a unique “ideal mid-
point”of an infinitely subdivised edge.

The data

v = (1, 0),
ek(a, b) = (q(−ka+ b) + (q − 1)a, a),
m((a, b), (α, β)) = (aα, aβ + bα),
fk(a, b) = q(−ka+ b) + (q − 1)a

(10)

defines a local invariant for coloured trees with colour-values in some ring. We leave
it to the reader to check that (8) holds. This local invariant corresponds to a coloured
invariant where a vertex v of weight k is decorated by a non-existent ideal rooted tree with
S-polynomial (1,−k), see also Section 5.1.1. It can also be considered as the specialization
given by Z(k) = (q − 1− qk) + qt of the invariant described in Section 5.1.2.

We denote by QT ∈ Z[q] the polynomial defined by (10) for a finite tree T with
Z−coloured vertices.

For values in N encoding numbers of “limit rays” of an arc- connected essentially finite
tree, the polynomial QT has the inverse limit values 1/ρi ∈ (−1, 0) (taking multiplicities
into account) among its roots. In particular, the limit-values ρi are algebraic numbers
(in fact algebraic integers since QT (0) ∈ {±1}) of degrees bounded by the number of
vertices in a N-vertex-coloured finite tree representation. Indeed, given a sequence Ri

of increasing leaf-rooted paths (Dynkin diagrams of type A), the evaluation of SRi
at a

complex number ρ of norm < 1 tends to ± 1
1+ρ

(1,−1) (with a sign depending on the parity

of the number of vertices). Linearity of the maps e,m and f implies now that the limit
values ρi are algebraic numbers.

Given a sequence Ti of finite trees obtained by subdividing increasingly often a unique
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edge of an (essentially finite) tree, the argument above shows that a real limit-root ρ
“belongs”to one of the two arc-connected components of the essentially finite limit-tree.

Proof of Proposition 13. Follows from the fact that the essentially finite arc-connected
tree T represented by an isolated vertex of weight d > 3 gives rise to QT = f(1,−d) =
(1− d)q − 1.

We have:

Theorem 16. All non-limit roots of QT have norm > 1 if T encodes an essentially finite
arc-connected tree (i.e. if all vertex-colours are in N).

Proof. Let σ be a root of QT in the open complex unit disc. The root σ can be approx-
imated with arbitrary accuracy by a root of ST ′ where T ′ is a finite tree approximating
the essentially finite tree T . This implies that σ has to be a real negative number, see
Section 4.1.

We call the sum of vertex-weights the weight-degree of a N-coloured connected essential
tree T .

Trees of degree 0 are ordinary trees. Their S-polynomials define in some sense “gen-
eralized Salem numbers”. Trees of degree 1 define “generalized Pisot numbers”as accu-
mulation points of “generalized Salem numbers”. Trees of degree > 2 lead to iterated
accumulation points.

7 Counting Schrödinger operators according to values of the
Jacobi symbol

We describe a local invariant for computing the number of Schrödinger operators of a tree
over a field Fq of odd characteristic according to values of the Jacobi-symbol (correspond-
ing to coefficients which are zero, non-zero squares or non-squares) at diagonal entries
indexed by vertices.

Our formulae define in fact a coloured local invariant as defined in Section 5.2 with
five free parameters εv, qv, sv, xv, yv for each vertex v and an additional global parameter
q. The parameters εv, qv (and the global parameter q) are involved in the monoid-product
which depends thus on the root-colour, see Section 5.2.

Some specializations of this invariant count invertible Schrödinger operators with var-
ious restrictions (having for example only non-zero squares on the diagonal, or zeros,
non-zero squares, respectively non-squares on selected subsets of diagonal entries).

Verifications are straightforward but tedious and are omitted.
We denote by O either the zero element of Fq or the element [0] of the group-algebra

Q[Fq] of the additive group Fq. Similarly, S is either the set of all non-zero squares of
the field Fq or the weighted sum 2

q−1

∑
s∈S [s] of all non-zero squares in Q[Fq], with equal

weights summing up to 1. We define N analogously using non-squares.
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Addition-rules for the elements S,N (corresponding to the product in the group-
algebra Q[Fq] of the additive group (Fq,+)) are given by

S N
S 1+ε

q−1
O + q−4−ε

2(q−1)
S + q−ε

2(q−1)
N 1−ε

q−1
O + q−2+ε

2(q−1)
(S +N )

N 1−ε
q−1
O + q−2+ε

2(q−1)
(S +N ) 1+ε

q−1
O + q−ε

2(q−1)
S + q−4−ε

2(q−1)
N

where ε ∈ ±1 satisfies q ≡ ε (mod 4).
Addition-rules in Q[Fq] with O are of course given by O+X = X for X ∈ {O, S,N}.
Multiplication-rules are given by O2 = O,O · S = O · N = O, S2 = N 2 = S and

SN = N . In particular, the element S is a multiplicative unity.
Given a rooted tree R and two subsets A,B of a finite field Fq, we use the conventions

of Section 3 and we denote by ν(A,B) the number of Schrödinger operators with diagonals
in Fq of the rooted tree R having determinants of the form αx+β with α ∈ A and β ∈ B.
We denote by O = {0} the zero element of Fq and by S, respectively N the set of squares,
respectively non-squares in Fq where we assume that q is a power of an odd prime. We
display all possible numbers ν(A,B) with A,B ∈ {O,S,N} of a rooted tree R as a
square-matrix with rows and columns indexed by O,S and N by writing ν(O,O) ν(O,S) ν(O,N )

ν(S,O) ν(S,S) ν(S,N )
ν(N ,O) ν(N ,S) ν(N ,N )

 .

The number ν(O,O) is in fact useless from our point of view but it allows for some
numerical consistency checks.

The element

v =

 0 0 0
1 0 0
0 0 0


is the identity of monoid structures with products given by

mv(

 a1 b1 c1

d1 e1 f1

g1 h1 i1

 ,

 a2 b2 c2

d2 e2 f2

g2 h2 i2

) =

 A B C
D E F
G H I


where

A = a1a2 + a1(b2 + c2 + d2 + e2 + f2 + g2 + h2 + i2)

+(b1 + c1 + d1 + e1 + f1 + g1 + h1 + i1)a2 + (b1 + c1)(b2 + c2)

B = b1(d2 + e2 + f2) + c1(g2 + h2 + i2)

+(d1 + e1 + f1)b2 + (g1 + h1 + i1)c2

C = c1(d2 + e2 + f2) + b1(g2 + h2 + i2)

+(d1 + e1 + f1)c2 + (g1 + h1 + i1)b2
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D = d1d2 + g1g2 +
1 + εv
q − 1

(e1e2 + i1i2 + f1f2 + h1h2)

+
1− εv
q − 1

(e1f2 + f1e2 + h1i2 + i1h2)

E = d1e2 + e1d2 + g1i2 + i1g2 +
qv − 4− εv

2(q − 1)
(e1e2 + i1i2)

+
q̃v − 2 + εv

2(q − 1)
(e1f2 + f1e2 + h1i2 + i1h2) +

qv − εv
2(q − 1)

(f1f2 + h1h2)

F = d1f2 + f1d2 + g1h2 + h1g2 +
q̃v − 4− εv

2(q − 1)
(f1f2 + h1h2)

+
qv − 2 + εv

2(q − 1)
(e1f2 + f1e2 + h1i2 + i1h2) +

q̃v − εv
2(q − 1)

(e1e2 + i1i2)

G = d1g2 + g1d2 +
1− εv
q − 1

(e1h2 + h1e2 + f1i2 + i1f2)

+
1 + εv
q − 1

(e1i2 + i1e2 + f1h2 + h1f2)

H = d1h2 + h1d2 + f1g2 + g1f2 +
q̃v − 4− εv

2(q − 1)
(f1h2 + h1f2)

+
qv − 2 + εv

2(q − 1)
(e1h2 + h1e2 + f1i2 + i1f2) +

q̃v − εv
2(q − 1)

(e1i2 + i1e2)

I = d1i2 + i1d2 + e1g2 + g1e2 +
qv − 4− εv

2(q − 1)
(e1i2 + i1e2)

+
q̃v − 2 + εv

2(q − 1)
(e1h2 + h1e2 + f1i2 + i1f2) +

qv − εv
2(q − 1)

(f1h2 + h1f2)

and where qv, q̃v satisfy
qv + q̃v = 2q

and have thus only one degree of freedom at a given vertex since q is global (i.e. indepen-
dent of vertices).

εv are also local variables.
It can be checked that mv defines for all q, qv, εv (with q̃v = 2q − qv) a commutative

and associative product with identity v.
The reader should be aware that we use the same letter v for a vertex, its colour and

the identity of colour v with respect to the monoid with product mv.
Edge-operators do not depend on the final root-colour which is thus omitted. The

index v in our formulae denotes the root-vertex (or its colour) of the rooted tree given as
the argument. The edge-operator ev is given by

ev(

 a b c
d e f
g h i

) =

 A 1+εv
2
B+ + 1−εv

2
B−

1+εv
2
C+ + 1−εv

2
C−

D 1+εv
2
E+ + 1−εv

2
E−

1+εv
2
F+ + 1−εv

2
F−

G 1+εv
2
H+ + 1−εv

2
H−

1+εv
2
I+ + 1−εv

2
I−


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(using the conventions of Section 3, except for a factor ((q − 1)/2)2 corresponding to
arbitrary non-zero square values on oriented edges, when working with the specialization
qv = q an odd prime power and εv ∈ {±1} given by q ≡ εv (mod 4)) where

A =

(
sv +

q∗ − 1

2
(xv + yv)

)
a

B+ = svd+ xve+ yvf

B− = svg + xvh+ yvi

C+ = svg + xvi+ yvh

C− = svd+ xvf + yve

D =

(
sv +

q − 1

2
(xv + yv)

)
b

E+ = sve+
q − 1

2
xvd+

qv − 4− εv
4

xve+
q̃v − 2 + εv

4
(xvf + yve) +

qv − εv
4

yvf

E− = svh+
q − 1

2
yvg +

q̃v − 4− εv
4

yvh+
qv − 2 + εv

4
(xvh+ yvi) +

q̃v − εv
4

xvi

F+ = svh+
q − 1

2
yvg +

q̃v − 4− εv
4

yvh+
qv − 2 + εv

4
(xvh+ yvi) +

q̃v − εv
4

xvi

F− = sve+
q − 1

2
xvd+

qv − 4− εv
4

xve+
q̃v − 2 + εv

4
(xvf + yve) +

qv − εv
4

yvf

G =

(
sv +

q − 1

2
(xv + yv)

)
c

H+ = svf +
q − 1

2
yvd+

q̃v − 4− εv
4

yvf +
qv − 2 + εv

4
(xvf + yve) +

q̃v − εv
4

xve

H− = svi+
q − 1

2
xvg +

qv − 4− εv
4

xvi+
q̃v − 2 + εv

4
(xvh+ yvi) +

qv − εv
4

yvh

I+ = svi+
q − 1

2
xvg +

qv − 4− εv
4

xvi+
q̃v − 2 + εv

4
(xvh+ yvi) +

qv − εv
4

yvh

I− = svf +
q − 1

2
yvd+

q̃v − 4− εv
4

yvf +
qv − 2 + εv

4
(xvf + yve) +

q̃v − εv
4

xve

where we have qv + q̃v = 2q, as above.
We consider moreover

f sv = D +
1 + εv

2
E+ +

1− εv
2

E− +
1 + εv

2
F+ +

1− εv
2

F−

fnv = G+
1 + εv

2
H+ +

1− εv
2

H− +
1 + εv

2
I+ +

1− εv
2

I−

with D,E±, F±, G,H±, I± as in the definition of Ev and we set

fv = f sv + fnv .
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We have then for arbitrary q, qv, εv, sv, xv, yv, qw, εw, sw, xw, yw with q̃v = 2q − qv, q̃w =
2q − qw the identity

fv(mv(A, ew(B))) = fw(mw(ev(A), B)) (11)

which holds for all A,B and which corresponds to (9). We get thus a coloured local invari-
ant. Observe that this identity is surprisingly general: The construction of the invariant
(enumeration of invertible Schrödinger operators according to values of the Jacobi symbol
on the diagonal) ensures it only for εv = ε with ε ∈ {±1} such that q ≡ ε (mod 4) for
q = qv = q̃v = qw = q̃w an odd prime-power.

Choosing an odd prime-power q and setting qv = q and εv = ε where ε ∈ {±1} is given
by q ≡ ε (mod 4), the coefficient of a monomial∏

v∈V (T )

uv

with uv ∈ {sv, xv, yv} of the final result is a natural integer counting the number of
invertible Schrödinger operators with diagonal coefficient at a vertex v equal 0 if uv =
sv, respectively in the set of non-zero squares or non-squares if uv = xv or uv = yv.
Contributions from f s correspond to operators with determinant a non-zero square and
contributions from fn correspond to non-square determinants.

Replacing fv either by f sv or by fnv we lose in general identity (11). It remains however
valid for a few specializations. Example are:

• εv = ε for ε ∈ {±1}, qv = q (and sv, xv, yv arbitrary at each vertex). This case, with
ε ≡ q (mod 4), counts of course Schrödinger operators with determinant a non-zero
square, respectively a non-square, of Fq.

• εv = ε, qv = q, sv = 1−q
2

(xv + yv).

• εv = ε, qv = q, xv = yv = x.

• εv = ε, qv = q and yv = −xv at each vertex v of T .

8 An identity in Z[SL2(Fq)]

We compute the coefficients of∑
µ∈M

∑
x∈Fq

[(
x µ
−1/µ 0

)]n

∈ Z[SL2(Fq)] (12)

where M is a subgroup of the multiplicative group of units F∗q. This allows to compute
the sum over all coefficients corresponding to elements of trace 2 or of trace −2. For
M = {1} the trivial group, these sums encode the number of Schrödinger operators of
determinant zero over Fq for the n-cycle Cn.
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Remark 17. The factorizations∑
µ∈M

∑
x∈Fq

[(
x µ
−1/µ 0

)]
= A(M)U = UA(M) (13)

where

A(M) =
∑
µ∈M

[(
µ−1 0
0 µ

)]
and U =

∑
x∈Fq

[(
x 1
−1 0

)]
show that M plays only a minor role in (12).

The element A(M) satisfies A(M)2 = mA(M) where m is the number of elements of

M . The element 1
m
A(M) is thus a non-central idempotent (of rank q3−q

m
) in Q[SL2(Fq)].

The spectrum (with multiplicities) of the linear endomorphism of Q[SL2] defined by
X 7−→ UX can also easily be recovered from our data. It consists of a subset of
{−1, 0,±√q,±

√
−q, q}, with ±

√
−q only occurring if −1 6∈M .

For n > 1 we consider the three sequences

αn =
(
q(n−1) (mod 2)

) q2b(n−1)/2c − 1

q2 − 1
− qb(n−1)/2c − 1

q − 1

βn =
(
q(n−1) (mod 2)

) q2b(n−1)/2c − 1

q2 − 1

γn =
(
q(n−1) (mod 2)

) q2b(n−1)/2c − 1

q2 − 1
− qb(n−1)/2c − 1

q − 1
+
qb(n−1)/2c

m

(with γn depending on m, considered as a fixed constant) with (n− 1) (mod 2) ∈ {0, 1}
equal 1 if n is even and zero otherwise and with b(n − 1)/2c = n−2

2
for even n and

b(n− 1)/2c = n−1
2

for odd n.
For q > 2 a prime-power and for m a natural integer dividing q − 1 we have αn 6

βn < γn for all n > 1 with equality occurring only for α1 = β1 = 0 and α2 = β2 = 0.
Given a multiplicative subgroup M of m elements in the unit group F∗q, we set M =

F∗q \M if −1 ∈M , respectively M = F∗q \ (+M ∪−M) if −1 6∈M . Observe that −1 6∈M

if and only if mq is odd. Given two subsets B,D of Fq, we denote by

(
B
D

)
the subset

of all column-vectors of F2
q with first coordinate in B and second coordinate in D. We

consider now the partition of all non-zero elements of F2
q given by the four disjoint subsets(

M
0

)
,

(
M
0

)
,

(
Fq
M

)
,

(
Fq
M

)
if −1 ∈M (i.e. if mq is even), respectively by the six disjoint subsets(

+M
0

)
,

(
−M

0

)
,

(
M
0

)
,

(
Fq

+M

)
,

(
Fq
−M

)
,

(
Fq
M

)
if −1 6∈M (i.e. if mq is odd) where 0 denotes of course the singleton {0} ⊂ Fq.
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For a fixed multiplicative subgroup M of m elements in F∗q and n > 1, we consider
the four, respectively six, rational sequences, named by the parts of the above partition
of non-zero column-vectors in F2

q, given by table (14).

n (mod 4) : 0 1 2 3(
M
0

)
n

βn γn βn γn(
+M

0

)
n

βn γn βn αn(
−M

0

)
n

βn αn βn γn(
M
0

)
n

βn αn βn αn(
Fq
M

)
n

γn βn γn βn(
Fq

+M

)
n

γn βn αn βn(
Fq
−M

)
n

αn βn γn βn(
Fq
M

)
n

αn βn αn βn

(14)

Values for

(
M
0

)
n

and

(
Fq
M

)
n

apply only if −1 ∈ M and depend only on the parity

of n. Values for

(
M
0

)
n

and

(
Fq
M

)
n

apply whether or not −1 is in M and depend

also only on the parity of n. The remaining values involving +M or −M apply only if
−1 6∈M and depend on n modulo 4.

For a non-zero vector

(
b
d

)
and for n > 1 (and for a given fixed subgroup M ⊂ F∗q of

m elements) we set

(
b
d

)
n

=

(
B
D

)
n

if b ∈ B and d ∈ D with B,D ∈ {M,M, 0,Fq} in

the case where −1 ∈M , respectively with B,D ∈ {+M,−M,M, 0,Fq} in the case where

−1 6∈ M . Observe that

(
b
d

)
n

∈ {αn, βn, γn} for all n > 1. We have now the following

result:

Theorem 18. For all integers n > 1 we have the identity∑
µ∈M

∑
x∈Fq

[(
x µ
−1/µ 0

)]n

= mn
∑

SL2(Fq)

(
b
d

)
n

[(
a b
c d

)]
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in the group ring Z[SL2(Fq)] where m is the number of elements in a subgroup M of F∗q and

where

(
b
d

)
n

are as above (the last sum is of course over all q3 − q elements

(
a b
c d

)
of SL2(Fq)).

Remark 19. Theorem 18 can easily be adapted to PSL2(Fq).
The following Lemma is the main ingredient for proving Theorem 18:

Lemma 20. The three sequences αn, βn, γn, n > 1 satisfy the identities

α2n = α2n−1 + (q − 1)β2n−1,

α2n+1 = qα2n,

βn = qβn−1 + (n (mod 2)) ,

= (q − 1−m)αn−1 + βn−1 +mγn−1 − ((n− 1) (mod 2)) ,

γ2n = (q − 1)β2n−1 + γ2n−1,

γ2n+1 = qγ2n.

We leave the straightforward but tedious verifications to the reader. �

Remark 21. The two recursive identities for βn yield

(q − 1−m)αn +mγn = (q − 1)βn + 1

which shows linear dependency of the constant sequence 1, 1, 1, . . . from the three se-
quences αn, βn, γn.

Proof of Theorem 18. The result holds by (14) for n = 1 since α1 = β1 = 0 and γ1 = 1
m

.
For n > 2, we have the recursive formula

mn

(
b
d

)
n

= mn−1
∑
µ∈M

∑
x∈Fq

(
0 −µ

1/µ x

)(
b
d

)
n−1

and induction implies

m

(
b
d

)
n

=
∑
µ∈M

∑
x∈Fq

(
−µd

b/µ+ xd

)
n−1

. (15)

Elementary properties of finite fields imply now the recursive formulae(
M
0

)
n

= q

(
Fq
M

)
n−1(

M
0

)
n

= q

(
Fq
M

)
n−1
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(
Fq
M

)
n

=

(
M
0

)
n−1

+m

(
Fq
M

)
n−1

+ (q − 1−m)

(
Fq
M

)
n−1(

Fq
M

)
n

=

(
M
0

)
n−1

+m

(
Fq
M

)
n−1

+ (q − 1−m)

(
Fq
M

)
n−1

if −1 ∈M and the recursive identities(
±M

0

)
n

= q

(
Fq
±M

)
n−1(

M
0

)
n

= q

(
Fq
M

)
n−1(

Fq
±M

)
n

=

(
∓M

0

)
n−1

+ Tn−1(
Fq
M

)
n

=

(
M
0

)
n−1

+ Tn−1

where

Tn−1 = m

(
Fq

+M

)
n−1

+m

(
Fq
−M

)
n−1

+ (q − 1− 2m)

(
Fq
M

)
n−1

if −1 6∈M . Replacing all expressions by their values given by (14) we check that all these
expressions boil down to equalities of Lemma 20.

Remark 22. Spectral calculus gives a different proof of Theorem 18.

8.1 Traces

We denote by mnSτ (n) the sum of all coefficients in (12) corresponding to elements of trace
τ ∈ Fq. We are only interested in the values of S2(n) and S−2(n). Observe that SL2(Fq)
contains exactly q2 elements of trace 2: The identity and all (other) q2 − 1 unipotent
elements. Multiplication by −1 induces of course a bijection between elements of trace τ
and elements of trace −τ .

We have the following result:

Proposition 23. If n is even we have

S±2(n) = q3 q
n−2 − 1

q2 − 1
− (q2 − q + 1)

q(n−2)/2 − 1

q − 1
(16)

+
m(q − 1) + qκ(±2, n)

m
q(n−2)/2

with κ(±2, n) = 1 if −1 ∈M and with κ(±2, n) given by

n ≡ 0 (mod 4) n ≡ 2 (mod 4)

κ(2, n) 1 0
κ(−2, n) 0 1
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if −1 6∈M .
If n is odd, we have

S2(n) = S−2(n) =
qn+1 − 1

q2 − 1
, (17)

independently of M .

Proof. Counting the number of matrices of trace 2, respectively −2, in every possible class
we get

S±2(n) = m

(
M
0

)
n

+ (q − 1−m)

(
M
0

)
n

+(m(q − 1) + q)

(
Fq
M

)
n

+ (q − 1−m)(q − 1)

(
Fq
M

)
n

.

if −1 ∈M and

S±2(n) = m

(
+M

0

)
n

+m

(
−M

0

)
n

+ (q − 1− 2m)

(
M
0

)
n

+(m(q − 1) + q)

(
Fq
±M

)
n

+m(q − 1)

(
Fq
∓M

)
n

+(q − 1− 2m)(q − 1)

(
Fq
M

)
n

.

if −1 6∈M .
If −1 ∈M , the above expression for S±2(n) amounts to

(q − 1)βn + (m(q − 1) + q)γn + (q − 1−m)(q − 1)αn

= q3 q
n−2 − 1

q2 − 1
− (q2 − q + 1)

q(n−2)/2 − 1

q − 1
+ (m(q − 1) + q)

q(n−2)/2

m

if n is even and to

mγn + (q − 1−m)αn + (q2 − q + 1)βn =
qn+1 − 1

q2 − 1

if n is odd.
If −1 6∈M and n even the value of Sτ (n) with τ ∈ {±2} equals

(q − 1)βn + (q − 1−m)(q − 1)αn +m(q − 1)γn + qηn(τ)

with ηn(τ) given by

n ≡ 0 (mod 4) n ≡ 2 (mod 4)

ηn(2) = γn αn
ηn(−2) = αn γn.
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For ηn(τ) = αn we have

q3 q
n−2 − 1

q2 − 1
− (q2 − q + 1)

q(n−2)/2 − 1

q − 1
+ (q − 1)q(n−2)/2

and for ηn(τ) = γn we get

q3 q
n−2 − 1

q2 − 1
− (q2 − q + 1)

q(n−2)/2 − 1

q − 1
+ (m(q − 1) + q)

q(n−2)/2

m
.

For −1 6∈M and n odd, the common value S2(n) = S−2(n) is given by

m(αn + γn) + (q − 1− 2m)αn + (q2 − q + 1)βn =
qn+1 − 1

q2 − 1
.

This ends the proof.

9 Proof of Theorem 2

Proof. We denote by In the graph having vertices 1, . . . , n. Consecutive integers represent

adjacent vertices. For q a fixed prime-power and n > 1, we write ν

(
a b
c d

)
n

for the

number of Schrödinger operators M over Fq for In such that

a = det(M) b = det(M(n;n))
c = − det(M(1; 1)) d = − det(M(1, n; 1, n))

where M(i; j) respectively M(i1, i2; j1, j2) denotes the submatrix of M obtained by delet-
ing line(s) i∗ and row(s) j∗.

Initial values for ν

(
a b
c d

)
1

are given by ν

(
x 1
−1 0

)
1

= 1 and ν

(
a b
c d

)
1

= 0 if

(b, c, d) 6= (1,−1, 0). Expanding the determinant of a Schrödinger operator for In+1 with
a first diagonal coefficient x along the first row shows the recursion

ν

(
a b
c d

)
n+1

=
∑
x∈Fq

ν

(
−c −d

a+ xc b+ xd

)
n

.

The matrix identity (
a b
c d

)
=

(
x 1
−1 0

)(
−c −d

a+ xc b+ xd

)
implies now the identity∑

x∈Fq

[(
x 1
−1 0

)]n

=
∑

SL2(Fq)

ν

(
a b
c d

)
n

[(
a b
c d

)]
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in the group-ring Z[SL2(Fq)]. This correspond of course to the case M = 1 in (12) or in
Theorem 18, with −1 6∈M except if Fq is of characteristic 2.

Given a Schrödinger operator M for In we denote by M̃ the Schrödinger operator of
the n-cycle (obtained by joining the first and last vertex of In with an additional edge)
with the same diagonal coefficients. Thus, M̃ is obtained from M by adding two non-zero
coefficients 1 at the upper-right and lower-left corner of M . Denoting by x1 the first
diagonal coefficient of M or M̃ and expanding the determinant of M̃ along the first row
and perhaps subsequently along the first column, we get

det(M̃) = x1 det(M(1; 1))− det(M(1, 2; 1, 2))

−(−1)n
(

det(M(1, n; 1, 2)) + det(M(1, 2; 1, n))
)

− det(M(1, n; 1, n)).

The identities

x1 det(M(1; 1))− det(M(1, 2; 1, 2)) = det(M) = a,

det(M(1, n; 1, 2)) = det(M(1, 2; 1, n)) = 1,

− det(M(1, n; 1, n)) = c

with

(
a b
c d

)
the matrix associated to M as above yield

det(M̃) = a+ c− 2(−1)n.

The number of non-invertible Schrödinger operators for Cn is thus the total sum S2(−1)n(n)
of coefficients associated to matrices of trace 2(−1)n in∑

x∈Fq

[(
x 1
−1 0

)]n

.

This shows that qn− S2(−1)n(n) is the number of invertible Schrödinger operators for Cn.
Proposition 23 with m = 1 and M = {1} the trivial subgroup of Fq gives the values for
S2(−1)n . Observe that −1 ∈M if q is a power of 2 and −1 6∈M if q is an odd prime-power.
The easy identities

q2n − (1− q2n)(1− q2n+1)

1− q2

= q3 q
4n−2 − 1

q2 − 1
− (q2 − q + 1)

q2n−1 − 1

q − 1
+ (2q − 1)q2n−1

and

−(1− q2n+1)(1− q2n+2)

1− q2
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= q3 q
4n − 1

q2 − 1
− (q2 − q + 1)

q2n − 1

q − 1
+ (q − 1)q2n

end the proof.

Remark 24. Since S2(n) = S−2(n) for odd n, the number of invertible Schrödinger oper-
ators for Cn is also given by qn − S2(n).

10 Proof for complete graphs

10.1 Simple stars

The number of invertible Schrödinger operators of simple stars (finite graphs with at most
one non-leaf) is a crucial ingredient for proving Theorem 3.

We denote in this subsection by Rn the rooted graph consisting of a central root
adjacent to n − 1 leaves. Writing Sr(Rn) = (an, bn) with Sr(Rn) defined as in Section 3,
we have

SRn =
(
(q − 1)n−1, (n− 1)(q − 1)n−2

)
as can be checked using

(an+1, bn+1) = m((an, bn), e(v)) = m((an, bn), (q − 1, 1))

= ((q − 1)an, an + (q − 1)bn).

We have thus

S∗n = f(an, bn) =
(
q2 + (n− 3)q + 1

)
(q − 1)n−2 (18)

for the non-rooted star ∗n underlying Rn given by a central vertex of degree n − 1 sur-
rounded by n− 1 leaves.

10.2 Proof of Theorem 3

We consider an invertible Schrödinger operator M for the star ∗n with a central vertex of
degree n− 1 surrounded by n− 1 leaves. If the diagonal coefficient λ of the central vertex
is different from −1, we get an invertible Schrödinger operator of the complete graph Kn

on n vertices by adding the first row, corresponding to the central vertex of ∗n, of M to
all other rows and by dividing the first column of the resulting matrix by 1 + λ. This
construction can be reversed, as easily seen on the following illustration:

λ 1 1 . . . 1
1 a2 0 . . . 0
1 0 a3 . . . 0
...

. . .
...

1 0 0 . . . 0
1 0 0 . . . an


↔


λ 1 1 . . . 1

1 + λ 1 + a2 1 . . . 1
1 + λ 1 1 + a3 . . . 1

...
. . .

...
1 + λ 1 1 . . . 1 + an


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↔



µ 1 1 . . . 1 1
1 1 + a2 1 . . . 1 1
1 1 1 + a3 . . . 1 1
...

. . .
...

1 1 1 . . . an−1 1
1 1 1 . . . 1 1 + an


.

Every invertible Schrödinger operator of Kn with first diagonal coefficient µ = λ/(1 + λ)
different from 1 is of this form by taking λ = µ

1−µ .
Schrödinger operators of Kn with first coefficient 1 are invertible if and only if they

have a first diagonal coefficient equal to 1 and all n − 1 remaining diagonal coefficients
different from 1. There are thus (q − 1)n−1 such matrices.

The number κn of invertible Schrödinger operators for the complete graph Kn (over a
fixed finite field Fq) is thus given by

κn = S∗n(q) + (q − 1)n−1 − sn (19)

where S∗n is given by (18) and where sn denotes the number of invertible Schrödinger
operators of ∗n with −1 as the diagonal entry corresponding to the central vertex of the
simple star ∗n consisting of a central vertex of degree n− 1 adjacent to n− 1 leaves.

The number sn can be computed as follows: First observe that an invertible Schrödinger
operator of ∗n has at most a unique diagonal coefficient which is zero. The contribution
of such matrices to sn, given by

(n− 1)(q − 1)n−2, (20)

is easy to establish.
Matrices contributing to sn having only non-zero diagonal entries are in bijection with

solutions (b2, . . . , bn) ∈ (F∗q)n−1 of

−b2 · · · bn(1 +
1

b2

+ · · ·+ 1

bn
) 6= 0.

We denote by s̃n the number of such solutions (b2, . . . , bn) ∈ (F∗q)n−1.
Choosing an arbitrary non-zero element x1 ∈ F∗q and setting x2 = x1

b2
, . . . , xn = x1

bn
we have (q − 1)s̃n = βn where βn counts the number of solutions (x1, . . . , xn) ∈ (F∗q)n
of the inequality

∑n
i=1 xi 6= 0. We denote similarily by αn the number of solutions

(x1, . . . , xn) ∈ (F∗q)n of the equality
∑n

i=1 xi = 0.
We have α0 = 1, β0 = 0 and the recursive formulae

αn = βn−1,

βn = (q − 1)αn−1 + (q − 2)βn−1.

Lemma 25. We have

βn =
(q − 1)n+1 + (−1)n+1(q − 1)

q
.
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Proof. The sequence βn has the recursive definition β0 = 0, β1 = q − 1 and βn = (q −
2)βn−1 + (q − 1)βn−2 for n > 2. An induction on n based on the trivial identity

(q − 1)n+1 + (−1)n+1(q − 1) = (q − 2) ((q − 1)n + (−1)n(q − 1))

+(q − 1)
(
(q − 1)n−1 + (−1)n−1(q − 1)

)
ends the proof.

Remark 26. Lemma 25 follows also easily from the fact that the characteristic polynomial
X2 − (q − 2)X − (q − 1) of the recursion defining βn has roots q − 1 and −1.

(20) and the equality (q − 1)s̃n = βn already mentionned imply sn = (n − 1)(q −
1)n−2 + 1

q−1
βn. Lemma 25 shows thus that

sn = (n− 1)(q − 1)n−2 +
(q − 1)n − (−1)n

q
. (21)

Identities (18), (19) and (21), taken together, show that Kn has

(q2 + (n− 3)q + 1)(q − 1)n−2 + (q − 1)n−1

−
(

(n− 1)(q − 1)n−2 +
(q − 1)n − (−1)n

q

)
= n(q − 1)n−1 +

(q − 1)n−2 (q3 − 2q2 + q − (q − 1)2) + (−1)n

q

= n(q − 1)n−1 +
(q − 1)n+1 + (−1)n

q

invertible Schrödinger operators over Fq. �

11 Final remarks

11.1 Generalizations

It is of course possible to define Schrödinger operators for arbitrary (perhaps oriented)
simple graphs and to count invertible Schrödinger operators over finite fields. I ignore if
there is an efficient way for computing the corresponding numbers.

Enumerating for example all Schrödinger operators over F3 and F5 for the Petersen
graph (obtained by identifying opposite points of the 1−skeleton of the dodecahedron)
we get q10 − q9 + q8 invertible Schrödinger operators in both cases. This formula fails
however for F2 for which no invertible Schrödinger operators exists.

A second notion, closely related to Schrödinger operators and used for example in
Proposition 9, is to look at the set of all invertible matrices with off-diagonal support
defining a given graph (diagonal elements are arbitrary). In the case of unoriented graphs,
one can moreover require matrices to be symmetric.

For trees, both definitions are essentially identical (up to a factor (q − 1)∗).
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11.2 Counting points over finite fields for algebraic varieties over Q

Our main problem, counting invertible Schrödinger operators, is of course a particular
case of counting points over finite fields on algebraic varieties defined over Z (or more
generally over Q). Such problems are in general difficult, see e.g. the monograph [4]
devoted to such questions.

The main problem is of course the question if the behaviour of invertible (or equiva-
lently, non-invertible) Schrödinger operators of graphs is simpler. All our examples give
rise to polynomials (depending perhaps on the parity of the characteristic) enumerating
invertible Schrödinger operators over finite fields. Does this fail for some finite graph G
or do there always exist polynomials depending on q (mod NG) for some natural integer
NG evaluating to the number of invertible Schrödinger operators over Fq for G?
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