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Abstract

In this paper, we determine the maximum number of distinct Lyndon factors
that a word of length n can contain. We also derive formulas for the expected total
number of Lyndon factors in a word of length n on an alphabet of size σ, as well
as the expected number of distinct Lyndon factors in such a word. The minimum
number of distinct Lyndon factors in a word of length n is 1 and the minimum
total number is n, with both bounds being achieved by xn where x is a letter. A
more interesting question to ask is what is the minimum number of distinct Lyndon
factors in a Lyndon word of length n? In this direction, it is known (Saari, 2014)
that a lower bound for the number of distinct Lyndon factors in a Lyndon word of
length n is dlogφ(n)+1e, where φ denotes the golden ratio (1+

√
5)/2. Moreover, this

lower bound is sharp when n is a Fibonacci number and is attained by the so-called
finite Fibonacci Lyndon words, which are precisely the Lyndon factors of the well-
known infinite Fibonacci word f (a special example of an infinite Sturmian word).
Saari (2014) conjectured that if w is Lyndon word of length n, n 6= 6, containing the
least number of distinct Lyndon factors over all Lyndon words of the same length,
then w is a Christoffel word (i.e., a Lyndon factor of an infinite Sturmian word).
We give a counterexample to this conjecture. Furthermore, we generalise Saari’s
result on the number of distinct Lyndon factors of a Fibonacci Lyndon word by
determining the number of distinct Lyndon factors of a given Christoffel word. We
end with two open problems.
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1 Introduction

This paper is concerned with counting Lyndon words occurring in a given word of length n.
First, let us recall some terminology and notation from combinatorics on words (see,

e.g., [10, 11]). A word is a (possibly empty) finite or infinite sequence of symbols, called
letters, drawn from a given finite set Σ, called an alphabet, of size σ = |Σ|. A finite word
w := x1x2 · · ·xn with each xi ∈ Σ is said to have length n, written |w| = n. The empty
word is the unique word of length 0, denoted by ε. The set of all finite words over Σ
(including the empty word) is denoted by Σ∗, and for each integer n > 2, the set of all
words of length n over Σ is denoted by Σn.

A finite word z is said to be a factor of a given finite word w if there exist words u,
v such that w = uzv. If u = ε, then z is said to be a prefix of w, and if v = ε, then z is
said to be a suffix of w. If both u and v are non-empty, we say that z is a proper factor
of w. A prefix (respectively, suffix) of w that is not equal to w itself is said to be a proper
prefix (respectively, proper suffix ) of w. A factor of an infinite word is a finite word that
occurs within it.

A non-empty word x that is both a proper prefix and a proper suffix of a finite word
w is said to be a border of w. We say that a word which has only an empty border
is borderless. If, for some word x, w = xx · · ·x (k times for some integer k > 1), we
write w = xk, and w is called the k-th power of x. A non-empty finite word is said
to be primitive if it is not a power of a shorter word. Two finite words u, v are said
to be conjugate if there exist words x, y such that u = xy and v = yx. Accordingly,
conjugate words are cyclic shifts of one another, and thus conjugacy is an equivalence
relation. A primitive word of length n has exactly n distinct conjugates. For example,
the primitive word abacaba of length 7 has 7 distinct conjugates; namely, itself and the
six words bacabaa, acabaab, cabaaba, abaabac, baabaca, aabacab. The set of all conjugates
of a finite word w is called the conjugacy class of w.

In this paper we consider only words on an ordered alphabet Σ = {a1, a2, . . . , aσ}
where a1 < a2 < · · · < aσ. This total order on Σ naturally induces a lexicographical order
(i.e., an alphabetical order) on the set of all finite words over Σ. A Lyndon word over
Σ is a non-empty primitive word that is the lexicographically least word in its conjugacy
class, i.e., w ∈ Σ or w < vu for all non-empty words u, v such that w = uv (e.g., see [10]).
Equivalently, a non-empty finite word w over Σ is Lyndon if and only if w ∈ Σ or w < v for
all proper suffixes v of w [7]. Note, in particular, that there is a unique Lyndon word in the
conjugacy class of any given primitive word. For example, aabacab is the unique Lyndon
conjugate of the primitive word abacaba. Lyndon words are named after R.C. Lyndon
[12], who introduced them in 1954 under the name of “standard lexicographic sequences”.
Such words are well known to be borderless [7].

We begin in Section 2 by computing D(σ, n), the maximum number of distinct Lyndon
factors in a word of length n on an alphabet Σ of size σ. In Section 3 we compute
ET (σ, n), the expected total number of Lyndon factors (that is, counted according to
their multiplicity) in a word of length n over Σ, while Section 4 computes ED(σ, n), the
expected number of distinct Lyndon factors in word of length n over Σ. Section 5 considers

the electronic journal of combinatorics 24(3) (2017), #P3.28 2



distinct Lyndon factors in a Lyndon word of length n; in particular, we generalise a result
of Saari [13] on the number of distinct Lyndon factors of a Fibonacci Lyndon word by
determining the number of distinct Lyndon factors of a given Christoffel word (i.e., a
Lyndon factor of an infinite Sturmian word — to be defined later). Lastly, in Section 6,
we state some open problems.

2 The maximum number of distinct Lyndon factors in a word

Let D(σ, n) be the maximum number of distinct Lyndon factors in a word of length n on
the alphabet Σ = {a1, a2, . . . , aσ}. We want to find a word that achieves D(σ, n), given σ
and n. It is clear that a necessary condition for attaining the maximum is that w takes
the form ak11 a

k2
2 . . . akσσ . This word contains

(
n+1

2

)
factors of lengths 1, 2, . . . , n, of which

each is a Lyndon word except those of the form aki , k > 1. The number of powers of each
ai is

(
ki+1

2

)
, including ai itself. The total number of Lyndon factors in w is therefore(

n+ 1

2

)
−

σ∑
i=1

(
ki + 1

2

)
+ σ, (1)

where the final σ counts the single letters ai. We claim that the summation is min-
imised when the ki differ by at most one. Suppose to the contrary that kj = ki + s for
some i, j and s > 2. It is easily checked that(

ki + 1 + s

2

)
+

(
ki + 1

2

)
>

(
ki + s

2

)
+

(
ki + 2

2

)
for s > 2. Thus the summation term will be minimised when each ki equals either bn/σc
or dn/σe. If n = mσ+ p, where 0 < p < σ, then bn/σc = m and dn/σe = m+ 1. If p = 0
then each ki equals m. We therefore have the following result.

Theorem 1. If n = mσ + p, where 0 6 p < σ, then

D(σ, n) =

(
n+ 1

2

)
− (σ − p)

(
m+ 1

2

)
− p
(
m+ 2

2

)
+ σ (2)

and the maximum is attained using

w = am1 . . . a
m
n−pa

m+1
n−p+1 . . . a

m+1
n .

Corollary 2. If n = mσ then

D(σ, n) =

(
σ

2

)
m2 + σ.
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Proof. If n = mσ, Theorem 1 gives

D(σ, n) =

(
n+ 1

2

)
− σ

(
m+ 1

2

)
+ σ

=
σ

2
(m(mσ + 1)− (m+ 1)m) + σ

=

(
σ

2

)
m2 + σ as required.

The following table shows values of D(σ, n) for low values of n.

n D(2, n) D(5, n) D(10, n)
1 2 5 10
2 3 6 11
3 4 8 13
4 6 11 16
5 8 15 20
6 11 19 25
7 14 24 31
8 18 30 38
9 22 37 46

10 27 45 55
15 58 95 110
20 102 165 190
25 158 255 290
30 227 365 415

Table 1: The maximum number of distinct Lyndon factors that can appear in words of length n.

3 The expected total number of Lyndon factors in a word

We now wish to calculate the total number M(σ, n) of Lyndon factors (that is, counted
according to multiplicity) appearing in all words in Σn. Consider a Lyndon word L of
length m 6 n and a position i, 1 6 i 6 n−m+ 1, in words of length n. Words containing
L starting at position i have the form xLy where xy is any word on Σ with length n−m.
Thus there will be σn−m words in Σn which contain L in this position. This will be the
same for any of the n−m+ 1 possible values of i so in the σn words in Σn there will be
(n−m+ 1)σn−m appearances of L. This is the same for all Lyndon words of this length.
The number of such Lyndon words is 1/m of the number of primitive words of this length,
since exactly one conjugate of each primitive word is Lyndon. The number of primitive
words of length n ([10], equation (1.3.7)) is∑

d|m

µ
(m
d

)
σd
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where µ is the Möbius function. To get the total number of Lyndon factors appearing in
Σn, we sum over possible values of m:

M(σ, n) =
n∑

m=1

n−m+ 1

m
σn−m

∑
d|m

µ
(m
d

)
σd. (3)

Dividing by σn gives the expected total number ET (σ, n) := M(σ, n)/σn of Lyndon factors
in a word of length n on the alphabet Σ. Table 2 below shows values for σ = 2, 5 and low
values of n.

n M(2, n) ET (2, n) M(5, n) ET (5, n)
1 2 1.00 5 1.00
2 9 2.25 60 2.40
3 30 3.75 515 4.12
4 87 5.43 3800 6.08
5 234 7.31 25749 8.24
6 597 9.32 165070 10.56
7 1470 11.48 1018135 13.03
8 3522 13.76 6103350 15.62
9 8264 16.14 35797125 18.33

10 19067 18.62 206363748 21.13

Table 2: Values of the total number M(σ, n) of Lyndon factors appearing in all words of

length n and the expected total number ET (σ, n) of Lyndon factors in a word of length n on

an alphabet of size σ for σ = 2, 5 and n = 1, 2, . . . , 10.

4 The expected number of distinct Lyndon factors in a word

We use the notation from above, with [n] being the set {1, 2, . . . , n}. Most of the following
analysis counts the number of words in Σn that contain at least one factor equal to a
specific Lyndon word L. At the end we sum over all possible L. Let S be a non-empty
set of positions in a word w and let P (L, S, w) = 1 if w contains factors equal to L at
each position in w beginning at a position in the set S, and 0 otherwise. Note that w
may contain other factors equal to L. We claim that

n∑
s=1

(−1)s+1
∑

S⊆[n],|S|=s

P (L, S,w) =

{
1 if w contains at least one factor equal to L,

0 otherwise.
(4)

If w contains no factor equal to L then P (L, S, w) equals 0 for all S so the “otherwise”
part of the claim holds. Suppose w contains copies of L beginning at positions in T =
{i1, i2, . . . , it} and nowhere else. Then P (L, S, w) equals 1 if and only if S is any non-empty
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subset of T , so the left hand side of (4) becomes

t∑
s=1

(−1)s+1|{S ⊆ T : |S| = s}|

=
t∑

s=1

(−1)s+1

(
t
s

)

=
t∑

s=0

(−1)s+1

(
t
s

)
+ 1.

This equals 1 since the final sum is the binomial expansion of (1 − 1)t. The number of
words in Σn which contain at least one factor equal to L is therefore∑

w∈Σn

n∑
s=1

(−1)s+1
∑

S⊆[n],|S|=s

P (L, S, w)

=
n∑
s=1

(−1)s+1
∑

S⊆[n],|S|=s

∑
w∈An

P (L, S, w). (5)

We now evaluate
∑

w∈Σn P (L, S, w). This is counting the words in Σn which have
factors L beginning at positions i ∈ S. It clearly equals 0 if s|L| > n since then there is
no room in w for s factors L (recalling that L is Lyndon, therefore borderless, and therefore
cannot intersect a copy of itself). We also need the members of S to be separated by at
least |L|. The number of such sets S is(

n− s|L|+ s

s

)
.

Once S is chosen there are σn−s|L| ways of choosing the letters in w which are not in the
specified factors L. Thus∑

w∈Σn

P (L, S, w) =

(
n− s|L|+ s

s

)
σn−s|L|.

Substituting in (5) we see that the number of words in Σn which contain at least one
occurrence of L is

bn/|L|c∑
s=1

(−1)s+1

(
n− s|L|+ s

s

)
σn−s|L|.

To get the expected number ED(σ, n) of distinct Lyndon factors in a word of length n,
we sum this over all L with length at most n, using the same technique as in the previous
section, and divide by σn. Replacing |L| with m we get the following:

ED(σ, n) =
n∑

m=1

1

m

∑
d|m

µ
(m
d

)
σd
bn/mc∑
s=1

(−1)s+1

(
n− sm+ s

s

)
σ−sm. (6)
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The following table shows values of ED(σ, n) for low values of n and several values
of σ.

n σ = 2 5 10 20
1 1.00 1.00 1.00 1.00
2 1.75 2.20 2.35 2.42
3 2.50 3.56 3.94 4.14
4 3.25 5.02 5.69 6.05
5 4.06 6.55 7.57 8.12
6 4.91 8.16 9.54 10.31
7 5.81 9.82 11.59 12.61
8 6.77 11.54 13.70 14.99
9 7.77 13.31 15.88 17.45

10 8.83 15.13 18.11 19.97
15 14.77 24.93 29.90 33.36
20 21.67 35.76 42.58 47.70
25 29.35 47.43 56.02 62.73
30 37.70 59.82 70.11 78.33

Table 3: The expected number ED(σ, n) of distinct Lyndon factors in a word of length n for

alphabets of size σ = 2, 5, 10, 20.

5 Distinct Lyndon factors in a Lyndon word

Minimising the number of Lyndon factors over words of length n is not very interesting:
the minimum number of distinct Lyndon factors is 1 and the minimum total number is
n. Both bounds are achieved by xn where x is a letter. A more interesting question has
been studied by Saari [13]: what is the minimum number of distinct Lyndon factors in
a Lyndon word of length n? He proved that a lower bound for the number of distinct
Lyndon factors in a Lyndon word of length n is

dlogφ(n) + 1e

where φ denotes the golden ratio (1+
√

5)/2. Moreover, this lower bound is sharp when n
is a Fibonacci number and is attained by the so-called finite Fibonacci Lyndon words,
which are precisely the Lyndon factors of the well-known infinite Fibonacci word f — a
special example of a characteristic Sturmian word.

Following the notation and terminology in [11, Ch. 2], an infinite word s over {a, b}
is Sturmian if and only if there exists an irrational α ∈ (0, 1), and a real number ρ, such
that s is one of the following two infinite words:

sα,ρ, s
′
α,ρ : N −→ {a, b}
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defined by

sα,ρ[n] =

{
a if b(n+ 1)α + ρc − bnα + ρc = 0,

b otherwise;

s′α,ρ[n] =

{
a if d(n+ 1)α + ρe − dnα + ρe = 0,

b otherwise.

(n > 0)

The irrational α is called the slope of s and ρ is the intercept. If ρ = 0, we have

sα,0 = acα and s′α,0 = bcα

where cα is called the characteristic Sturmian word of slope α. Sturmian words of the
same slope have the same set of factors [11, Prop. 2.1.18], so when studying the factors
of Sturmian words, it suffices to consider only the characteristic ones.

The infinite Fibonacci word f is the characteristic Sturmian word of slope α =
(3 −

√
5)/2. It can be constructed as the limit of an infinite sequence of so-called fi-

nite Fibonacci words {fn}n>1, defined by:

f−1 = b, f0 = a, fn = fn−1fn−2 for n > 1.

That is, f1 = ab, f2 = aba, f3 = abaab, f4 = abaababa, f5 = abaababaabaab, etc. (where
fn is a prefix of fn+1 for each n > 1), and we have

f = lim
n→∞

fn = abaababaabaab · · ·

Note. The length of the n-th finite Fibonacci word fn is the n-th Fibonacci number Fn,
defined by: F−1 = 1, F0 = 1, Fn = Fn−1 + Fn−2 for n > 1.

More generally, any characteristic Sturmian word can be constructed as the limit of
an infinite sequence of finite words. To this end, we recall that every irrational α ∈ (0, 1)
has a unique simple continued fraction expansion:

α = [0; a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

a3 + · · ·

where each ai is a positive integer. The n-th convergent of α is defined by

pn
qn

= [0; a1, a2, . . . , an] for all n > 1,

where the sequences {pn}n>0 and {qn}n>0 are given by

p0 = 0, p1 = 1, pn = anpn−1 + pn−2, n > 2
q0 = 1, q1 = a1, qn = anqn−1 + qn−2, n > 2.
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Suppose α = [0; 1 + d1, d2, d3, . . .], with d1 > 0 and all other dn > 0. To the directive
sequence (d1, d2, d3, . . .), we associate a sequence {sn}n>−1 of words defined by

s−1 = b, s0 = a, sn = sdnn−1sn−2 for n > 1.

Such a sequence of words is called a standard sequence, and we have

|sn| = qn for all n > 0.

Note that ab is a suffix of s2n−1 and ba is a suffix of s2n for all n > 1.
Standard sequences are related to characteristic Sturmian words in the following way.

Observe that, for any n > 0, sn is a prefix of sn+1, which gives obvious meaning to
limn→∞ sn as an infinite word. In fact, one can prove [8, 3] that each sn is a prefix of cα,
and we have

cα = lim
n→∞

sn.

The following lemma collects together some properties of the standard words sn. Note
that from now on when referring to Lyndon words over the alphabet {a, b} we assume the
natural order a < b.

Lemma 3. Let cα be the characteristic Sturmian word of slope α = [0; 1 + d1, d2, d3, . . .]
with cα = lim

n→∞
sn where the words sn are defined as above.

I For all n > 1, sn is a primitive word [6].

I For all n > 1, there exist uniquely determined palindromes un, vn, pn such that

sn = unvn =

{
pnab if n is odd,

pnba if n is even,

where |un| = qn−1 − 2 and |vn| = qn − qn−1 + 2. [6]

I For all n > 1, the reversal of sn is the (qn − 2)-nd conjugate of sn, and hence the
conjugacy class of sn is closed under reversal. [9, Prop. 2.9(4)]

I The Lyndon factors of cα of length at least 2 are precisely the Lyndon conjugates of
the (primitive) standard words sn for all n > 1. [2, 5]

The following lemma is a generalisation of [13, Lemma 8].

Lemma 4. Let cα be the characteristic Sturmian word of slope α = [0; 1 + d1, d2, d3, . . .]
with cα = limn→∞ sn where sn = pnxy with xy ∈ {ab, ba}. The Lyndon conjugate of sn
is the word apnb for all n > 1. Moreover, every Lyndon factor of cα that is shorter than
apnb is either a prefix or a suffix of apnb.
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Proof. First we show that, for all n > 1, the Lyndon conjugate of sn is the word apnb. If
sn = pnba, then apnb is clearly a conjugate of sn and it is Lyndon [2, 5]. On the other
hand, if sn = pnab, then bpna is a clearly a conjugate of sn, and since the conjugacy class
of sn is closed under reversal and pn is a palindrome (by Lemma 3), it follows that apnb
is a conjugate of sn and it is Lyndon [2, 5].

To prove the second claim, it suffices to show that if k < n, then the Lyndon conjugate
of sk is a prefix or suffix of apnb (since, by Lemma 3, the Lyndon factors of cα of length
at least 2 are precisely the Lyndon conjugates of the (primitive) standard words in cα).
The claim is true for k = −1 and k = 0 since s−1 = b and s0 = a. It is also true for k = 1
because s1 = ad1b is the Lyndon conjugate of itself, and is a prefix of apnb if d1 > 1 and a
suffix of apnb if d1 = 0. Now suppose that k > 2. Then k < n implies that sk is a prefix
of pn. Furthermore, since pn is a palindrome, the reversal of sk is a suffix of pn. Therefore
if sk = pkba, then its Lyndon conjugate apkb is a prefix of apnb; otherwise, if sk = pkab,
then its Lyndon conjugate apkb is a suffix of apnb.

The Lyndon factors of (characteristic) Sturmian words of length at least 2 (i.e., the
Lyndon conjugates of standard words) over {a, b} are precisely the so-called Christoffel
words beginning with the letter a (see, e.g., the nice survey [1]). Christoffel words take
the form aPal(v)b and bPal(v)a where v ∈ {a, b}∗ and Pal is iterated palindromic closure,
defined by:

Pal(ε) = ε and Pal(wx) = (Pal(w)x)+ for any finite word w and letter x,

where u+ denotes the shortest palindrome beginning with u (called the palindromic closure
of u). For example, Pal(aba) = abaaba where the underlined letters indicate the points
at which palindromic closure is applied.

Let p, q be co-prime integers with 0 < p < q. The rational p/q has two distinct simple
continued fraction expansions:

p/q = [0; 1 + d1, d2, . . . , dn, 1] = [0; 1 + d1, d2, . . . , dn + 1]

where d1 > 0 and all other di > 1. The so-called Christoffel word of slope p/q beginning
with the letter a is the unique Sturmian Lyndon word over {a, b} of length q containing
p occurrences of the letter b, given by:

aPal(v)b with v = ad1bd2ad3 · · ·xdn where x =

{
a if n is odd,

b if n is even.

For example, the Christoffel word of slope 2/5 = [0; 2, 1, 1] = [0; 2, 2] beginning with the
letter a is aPal(ab)b = aabab.

Remark 5. Note that the Christoffel word of slope p/q = [0; 1+d1, d2, . . . , dn, 1] beginning
with the letter a is precisely the Lyndon conjugate of the standard word sn+1 = snsn−1

where s−1 = b, s0 = a, and si = sdii−1si−2 for 1 6 i 6 n (see, e.g., [1]).
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Example 6. For all n > 1, the Fibonacci Lyndon word of length Fn (i.e., the Lyndon
conjugate of the finite Fibonacci word fn) is the Christoffel word of slope Fn−2/Fn =
[0; 2, 1, 1, . . . , 1︸ ︷︷ ︸

(n− 1) 1s

] beginning with a.

Saari [13, Thm. 1] proved that if w is a Lyndon word with |w| > Fn for some n > 1,
then w contains at least n+2 distinct Lyndon factors, with equality if and only if w is the
Fibonacci Lyndon word of length Fn. For example, aPal(ab)a = aabab is the Fibonacci
Lyndon word of length F3 = 5 and contains the minimum number (3 + 2 = 5) of distinct
Lyndon factors over all Lyndon words of the same length. Saari also made the following
conjecture.

Conjecture 7. [13] If w is a Lyndon word of length n, n 6= 6, containing the least
number of distinct Lyndon factors over all Lyndon words of the same length, then w is a
Christoffel word.

The number 6 is excluded because the following words all contain 7 distinct Lyndon
factors, which is the minimum for length 6 words, and only the first and last are Christoffel:

aaaaab, aaabab, aabbab, ababbb, ababac, abacac, acbacc, abbbbb.

However the conjecture is not true. The following Lyndon word has length 28 and
contains 10 distinct Lyndon factors — the minimum number of distinct Lyndon factors
in a Lyndon word of this length — but it is not Christoffel (compare the prefix of length 5
to the suffix of length 5):

aabaababaabaabababaabaababab

The minimum of 10 distinct Lyndon factors for a Lyndon word of length 28 is also
attained by the Lyndon word aabaababaababaababaababaabab which is the Christoffel word
aPal(abab4)b of slope 11/28 = [0; 2, 1, 1, 4, 1].

We now generalise Saari’s result on the number of distinct Lyndon factors in a Fi-
bonacci Lyndon word by determining the number of distinct Lyndon factors in a given
Christoffel word. Let L(w) denote the number of distinct Lyndon factors in a word w.

Theorem 8. If w is a Sturmian Lyndon word on {a, b} with a < b, i.e., a Christoffel
word (beginning with the letter a) of slope p/q = [0; 1+d1, d2, . . . , dn, 1] for some co-prime
integers p, q with 0 < p < q, then L(w) = d1 + d2 + · · ·+ dn + 3.

Proof. The word w is the Lyndon conjugate of the standard word sn+1 = snsn−1 with
s−1 = b, s0 = a, and si = sdii−1si−2 for 1 6 i 6 n (see Remark 5). By Lemma 4, the Lyndon
conjugates of si for 1 6 i 6 n are either prefixes or suffixes of w. Moreover, for each i with
1 6 i 6 n, the standard word si contains di distinct Lyndon factors of lengths |smi−1si−2|
for m = 1, 2, . . . , di. By Lemma 3, these are the only Lyndon factors of the Lyndon word
w besides itself and the two letters a and b. Hence L(w) = (d1 + d2 + · · ·+ dn) + 3.
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The above result is a generalisation of [13, Lemma 9], which reworded (with the index-
ing of Fibonacci words and numbers shifted back by 2) states that if w is the Fibonacci
Lyndon word of length Fn−2 for some n > 3, i.e., the Christoffel word of slope

Fn−4/Fn−2 = [0; 2, 1, 1, . . . , 1︸ ︷︷ ︸
(n− 3) 1s

]

beginning with the letter a, then L(w) = (n− 3) + 3 = n.

Examples:

I The Christoffel word of slope 2/5 = [0; 2, 1, 1] beginning with the letter a, namely
aPal(ab)b = aabab, is the Fibonacci Lyndon word of length F3 = 5 that contains
the minimum number (5 = 2 + 3) of distinct Lyndon factors for its length.

I The Christoffel word of slope 1/6 = [0; 5, 1] beginning with the letter a, namely
aPal(a4)b = aaaaab, is a Sturmian Lyndon word of length 6 containing the minimum
number (7 = 4 + 3) of distinct Lyndon factors for its length.

I The Christoffel word of slope 3/8 = [0; 2, 1, 1, 1] beginning with the letter a, namely
aPal(aba)b = aabaabab, is the Fibonacci Lyndon word of length F4 = 8 containing
the minimum number (6 = 3 + 3) of distinct Lyndon factors for its length.

6 Open Problems

I Open Problem 1: One might suspect that any given Christoffel word contains
the minimum number of distinct Lyndon factors over all Lyndon words of the same
length. However, this is not true. For instance, the Christoffel word of slope 5/11 =
[0; 2, 4, 1] beginning with the letter a, namely aPal(ab4)b = aababababab, contains
8 (= 5 + 3) distinct Lyndon factors, but the minimum number of distinct Lyndon
factors of a Lyndon word of length 11 is actually 7. This minimum is attained by
the Christoffel word aPal(a2ba)b = aaabaaabaab of slope 3/11 = [0; 3, 1, 1, 1].

Is it true that the minimum number of distinct Lyndon factors over all Lyndon
words of the same length is attained by at least one Christoffel word of that length?

I Open Problem 2: Tables 2 and 3, showing values for ET (σ, n) and ED(σ, n), raise
the question of whether there may exist asymptotic formulas for these quantities,
simpler than the exact values displayed in equations (2) and (6), respectively.
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