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Abstract

The rules of “Bulgarian solitaire” are considered as an operation on the set of
partitions to induce a finite dynamical system. We focus on partitions with no
preimage under this operation, known as Garden of Eden points, and their relation
to the partitions that are in cycles. These are the partitions of interest, as we show
that starting from the Garden of Eden points leads through the entire dynamical
system to all cycle partitions. A primary result concerns the number of Garden
of Eden partitions (the number of cycle partitions is known from Brandt). The
same operation and questions can be put in the context of compositions (ordered
partitions), where we give stronger results.

1 Introduction

Let P (n) be the set of partitions of n. The relation λ ∈ P (n) will be written λ ` n.
The shift operator DP : P (n) → P (n) is defined as follows. Given a partition λ =
(λ1, . . . , λk) ` n, let DP (λ) be the partition of n with parts k, λ1−1, . . . , λk −1, excluding
any zeros (notice that the parts may not be in the standard nonincreasing order). The map
is more easily defined from the graphic representation of a partition known as a Ferrers
diagram: the first column of the diagram becomes a row, with reordering as needed to
write the image in nonincreasing order. See Fig. 1.
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Figure 1: An example of the map on partitions: DP ((6, 3, 1, 1)) = (5, 4, 2).

Analysis of this shift operator on partitions was first published by Jørgen Brandt in
1982 [4], although the author claimed that the problem had already “been circulating
for some time.” The next year, the idea was brought to a wider audience under the
name “Bulgarian solitaire” in Martin Gardner’s popular column [8]. A handful of papers
followed contributing to the analysis of this operator, and several variants were introduced.

We will also consider the natural analog of the shift operation on C(n), the set of
compositions of n (ordered partitions). The relation λ ∈ C(n) will be written λ |=
n. Given a composition λ = (λ1, . . . , λk) |= n, let DC(λ) be the composition (k, λ1 −
1, . . . , λk − 1) excluding any zeros. Thus DC is DP without reordering, but with the
provision of closing gaps where there are now zeros. See Fig. 2.

Figure 2: An example of the map on compositions: DC((6, 1, 3, 1)) = (4, 5, 2).

Here is some notation that we will use. Repeated elements are sometimes indicated
by exponents, such as (2, 14) rather than (2, 1, 1, 1, 1). In figures, we shorten the partition
notation by representing (2, 14) as 214. A partition or composition λ with k parts is said
to have length k, written here `(λ) = k. Repeated application of the DP or DC map is
denoted with exponents, e.g.,

D2
C((6, 1, 3, 1)) = DC(DC((6, 1, 3, 1))) = DC((4, 5, 2)) = (3, 3, 4, 1).

Recall the notion of the conjugate of a partition λ, written λ′, which is most easily
described in terms of the Ferrers diagram: reflect the dots across the diagonal, so that
rows and columns switch roles. Some partitions are self-conjugate, while the rest fall into
conjugate pairs. See Fig. 3.

Also, let (k,↘, 1) indicate the list of integers decreasing by 1. For k = 4, (k,↘, 1)
is shorthand for (4, 3, 2, 1). We list only the greatest and least elements of such sublists.
Lists with this notation sometimes collapse for small variable values. For example, when
k = 3, the abbreviated list in (k+2, k−1,↘, 3, 1) should be omitted entirely: the intended
list is (5, 1). When k = 4, the same notation denotes (6, 3, 1); when k = 5, it is (7, 4, 3, 1),
etc.
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Figure 3: Conjugate partitions (7,5,3,3,2,1,1), (7,5,4,2,2,1,1), and self-conjugate partition
(6,5,4,4,2,1), all in P (22).

The cellular automata / finite dynamical systems context comes from considering the
partition “state diagram,” a directed graph whose vertices are elements of P (n) and whose
directed edges are the set of all (λ, DP (λ)). We can now define the objects of interest and
outline of the paper.

Definition 1. A partition λ is a cycle partition if Dm
P (λ) = λ for some m ≥ 1.

Cycle partitions are studied in [4] (details in Section 2). It is important to realize
that P (n) can contain multiple cycles, one per connected component of the corresponding
directed graph.

Definition 2. A partition λ is a Garden of Eden partition or GE-partition if λ has no

preimage under DP .

The terminology comes from [12], a foundational paper in cellular automata. We
denote by GEP (n) the set of GE-partitions in P (n).

Definition 3. Given a GE-partition λ, its preperiod length is the least m for which Dm
P (λ)

is a cycle partition.

In Section 2, we establish the importance of GE-partitions by proving that they are the
entry points for all of P (n) (for n ≥ 3). The specific statement of Theorem 1 is that there
are no stand-alone cycles, so that all cycles can be reached by starting at GE-partitions.
Therefore, a complete analysis of P (n) can be achieved by determining the GE-partitions
and applying DP repeatedly to them. The proof of Theorem 1 establishes a stronger
result, giving the minimal period length among the GE-partitions of n. This contributes
to the program of understanding the complete distribution of GE-partition preperiod
lengths, a primary part of studying the global dynamics of a system [15]. Previously,
maximal preperiod lengths had been studied, along with selected intermediate values for
particular n. Complete data for preperiod lengths in P (n) up to n = 15 are given in
Section 4. The second primary result of Section 2 is a combinatorial proof establishing a
lower bound for the size of GEP (n).
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All definitions apply to compositions, using the map DC . In Section 3, we consider
analogous issues for GE-compositions. Again, we prove that there are no stand-alone
cycles. The size of GEC(n) is computed exactly in two ways, giving a combinatorial proof
of a Fibonacci number identity. In section 4, we will discuss various outstanding questions
raised by our work.

2 Partitions

First, we summarize existing research relevant to our results. The initial observation
on “Bulgarian solitaire” was that, for n a triangular number Ts = 1 + · · · + s = s(s +
1)/2, repeated application of DP always leads to a single partition λ = (s,↘, 1), which
is fixed under DP . For other n, repeated application of DP always leads to multiple
cycle partitions. In addition to the results mentioned so far, [4] also gives a formula for
determining the number of cycles for n, i.e., the number of connected components of
the corresponding directed graph. The smallest state diagram with multiple components
occurs at n = 8 and is shown in Fig. 4.
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Figure 4: The two-component directed graph representing the state diagram for DP on
P (8).

We give the characterization of cycle partitions without proof, following the notation
of [1], a helpful elaboration on [4]. For n = Tk + r with 0 ≤ r ≤ k,

λ ` n is a cycle partition ⇐⇒ λ = (k + δk, . . . , 1 + δ1, δ0)

where exactly r of the δi are 1 and the rest are 0. Notice that cycle partitions have length
k or k + 1, depending on δ0. We can completely describe cyclic λ by ∆(λ) = (δk, . . . , δ0),
a binary vector of length k + 1. The effect of DP on cyclic λ is cycling the entries of the
vector ∆(λ). In particular,

DP (λ) = (k + δ0, k − 1 + δk, . . . , 1 + δ2, δ1)
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and ∆(DP (λ)) = (δ0, δk, . . . , δ1). For example, in the smaller component for n = 8 shown
in Fig. 4, ∆((4, 2, 2)) = (1, 0, 1, 0) and ∆((3, 3, 1, 1)) = (0, 1, 0, 1).

GE-partitions are characterized as a corollary to the following lemma, stated in [6]
without proof.

Lemma 1. The number of Dp-preimages of a partition λ is equal to the number of distinct

parts λi ≥ `(λ) − 1.

Proof. Let λ = (λ1, . . . , λk). For each distinct part λi ≥ k − 1, there exists a partition
that maps to λ under DP . Specifically,

DP ((λ1 + 1, . . . , λi−1 + 1, λi+1 + 1, . . . , λk + 1, 1λi−(k−1))) = λ.

This implies that λ has at least the number of DP -preimages as the number of distinct
parts λi ≥ `(λ) − 1.

Suppose κ = (κ1, . . . , κj) and DP (κ) = λ. DP (κ) consists of the nonzero parts in the
unordered list κ1 − 1, κ2 − 1, . . . , κj − 1, j. Because `(λ) = k, there are j + 1 − k zeros in
the unordered list of DP (κ)’s parts. This implies that κi = 1 for i = k − 1 to j so that
j ≥ k − 1. Further, because `(κ) = j must be a part in DP (κ) = λ, then j = λi for some
λi ≥ k − 1. Therefore, κi = λi + 1 for i = 1 to i − 1 and κi = λi+1 + 1 for i = i to k − 1.
There exists a unique DP -preimage for each distinct part λi ≥ `(λ) − 1.

Corollary 1. A partition λ is a Garden of Eden partition if and only if `(λ) > λ1 + 1.

The following theorem establishes the importance of studying GE-partitions in order
to understand the P (n) dynamical system determined by DP . We prove that there are
no stand-alone cycles, so that every cycle partition can be reached by starting from GE-
partitions.

Theorem 1. For n ≥ 3, every cycle partition λ ∈ P (n) satisfies Dm
P (κ) = λ for some

κ ∈ GEP (n) and m ≥ 2.

Proof. We show that every cycle partition has strictly positive minimal preperiod length.
In fact, we show that, for n = Tk with k ≥ 3, the minimal preperiod length is 3, and n 6= Tk

or n = 3, the minimal preperiod length is 2. The proof includes six cases. The initial
comments and initial five cases prove the theorem – case 1 addresses the case where n is a
triangular number, and cases two through five cover cycle partitions for other n in every
connected component of the P (n) directed graph determined by DP . Case six establishes
that there is GE-partition in some component of n 6= Tk with minimal preperiod length 2.

First we show that there is no GE-partition with preperiod length 1. Write n = Tk +r
where 0 ≤ r ≤ k. We know that each cycle partition λ satisfies `(λ) = k or k + 1. Since
application of DP can increase partition length by at most 1, any κ ` n with DP (κ) = λ
has `(κ) ≥ k − 1. Further, κ1 = λ2 + 1 or λ1 + 1, depending on the relation between
κ1 and `(κ). In either case, by the characterization of cycle partitions, we can conclude
κ1 ≥ k. Therefore, by Corollary 1, no κ ` n with DP (κ) = λ can be a GE-partition.
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We deal with some small values of n before proceeding to general arguments. Note
that there are no GE-partitions for n = 1, 2. For n = 3, the GE-partition (13) has
preperiod length 2 to the unique cycle partition (2, 1). For n = 4, the GE-partition
(14) has preperiod length 2 to the cycle partition (3, 1) (note ∆((3, 1)) = (1, 0, 0)). For
n = 5, the GE-partition (2, 13) has preperiod length 2 to the cycle partition (3, 2) (note
∆((3, 2)) = (1, 1, 0)).

Case 1. Let n = Tk for k ≥ 3. Consider the three successive images under DP of
(k,↘, 4, 2, 14) with length k + 2, which is a GE-partition:

D3
P ((k,↘, 4, 2, 14))

= D2
P ((k + 2, k − 1,↘, 3, 1)) of length k − 1

= DP ((k + 1, k − 1,↘, 2)) of length k − 1

= (k,↘, 1) of length k,

the unique cycle partition. To show that 3 is the minimal preperiod length between a
GE-partition and the cycle partition, we need to show that there are no GE-partitions 2
applications of DP away from the cycle. By Lemma 1, the only partition whose image is
(k,↘, 1), other than itself, is (k + 1, k − 1,↘, 2) with length k − 1; for an example when
n = 6, see Fig. 6. Again, by Lemma 1, this partition has three preimages under DP ,
namely

(k,↘, 3, 1, 1, 1) of length k + 1,

(k + 2, k − 1,↘, 3, 1) of length k − 1, and

(k + 2, k, k − 2,↘, 3) of length k − 2.

None of these are GE-partitions.

For the subsequent cases where n = Tk + r with 1 ≤ r ≤ k, every cycle partition λ of
n has ∆(λ) = (δk, ..., δ0) with at least one 0 and at least one 1. Since partitions in the
cycle are related by cycling this binary vector, we choose to work with a cycle partition
whose ∆ satisfies δk = 1 and δ0 = 0. We consider four cases determined by δk−1 and δk−2.

Cases 2-5 establish the initial statement of the theorem, that given a cycle of partitions
for any n ≥ 3, there is a GE-partition at most 3 applications of DP away from a partition
in the cycle. Minimality for these cases is discussed before case 6. For cases 2-5, we
expand our notation to represent (k + δk, . . . , 1 + δ1, δ0) by (k + δk,↘, 1 + δ1, δ0).

Case 2. ∆(λ) = (1, 0, 0, δk−3, . . . , δ1, 0). Consider the two successive images under DP of
(k, k − 1 + δk−3,↘, 3 + δ1, 1

4) with length k + 2, which is a GE-partition:

D2
P ((k, k − 1 + δk−3,↘, 3 + δ1, 1

4))

= DP ((k + 2, k − 1, k − 2 + δk−3,↘, 2 + δ1)) of length k − 1

= (k + 1, k − 1, k − 2, k − 3 + δk−3,↘, 1 + δ1) of length k.

This results in the cycle partition λ with ∆(λ) as specified. Since we showed earlier that
there are no GE-partitions whose image under DP is a cycle partition, this shows the
minimal preperiod length in this case is 2.
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Case 3. ∆(λ) = (1, 0, 1, δk−3, . . . , δ1, 0). Consider the three successive images under DP

of (k + δk−3,↘, 4 + δ1, 2, 2, 1
4) with length k + 3, which is a GE-partition:

D3
P ((k + δk−3,↘, 4 + δ1, 2, 2, 1

4))

= D2
P ((k + 3, k − 1 + δk−3,↘, 3 + δ1, 1, 1)) of length k

= DP ((k + 2, k, k − 2 + δk−3,↘, 2 + δ1)) of length k − 1

= (k + 1, k − 1, k − 1, k − 3 + δk−3,↘, 1 + δ1) of length k.

This results in the cycle partition λ with ∆(λ) as specified. (For n = 8, this corresponds
to the path from (2, 2, 14) to (4, 2, 2) in the smaller component shown in Fig. 4.)

Case 4. ∆(λ) = (1, 1, 0, δk−3, . . . , δ1, 0). Consider the two successive images under DP of
(k, k − 1 + δk−3,↘, 3 + δ1, 2, 1

3) with length k + 2, which is a GE-partition:

D2
P ((k, k − 1 + δk−3,↘, 3 + δ1, 2, 1

3))

= DP ((k + 2, k − 1, k − 2 + δk−3,↘, 2 + δ1, 1)) of length k

= (k + 1, k, k − 2, k − 3 + δk−3,↘, 1 + δ1) of length k.

This results in the cycle partition λ with ∆(λ) as specified. (For n = 8, this corresponds
to the path from (3, 2, 13) to (4,3,1) in the larger component shown in Fig. 4.)

Case 5. ∆(λ) = (1, 1, 1, δk−3, . . . , δ1, 0). Consider the three successive images under DP

of (k + δk−3,↘, 4 + δ1, 3, 2, 1
4) with length k + 3, which is a GE-partition:

D3
P ((k + δk−3,↘, 4 + δ1, 3, 2, 1

4))

= D2
P ((k + 3, k − 1 + δk−3,↘, 3 + δ1, 2, 1)) of length k

= DP ((k + 2, k, k − 2 + δk−3,↘, 2 + δ1, 1)) of length k

= (k + 1, k, k − 1, k − 3 + δk−3,↘, 1 + δ1) of length k.

This results in the cycle partition λ with ∆(λ) as specified.

These cases show that every cycle of partitions can be reached with at most 3 appli-
cations of the DP map from some GE-partition, so that no cycle is isolated. It remains
to show that, for n = Tk + r with 1 ≤ r ≤ k, the minimal preperiod length from a
GE-partition to some cycle partition is 2. The case r = 1 is covered by case 2 above, and
r = 2 by case 4. While some other cases, depending on k and r, are covered by those
two arguments, not every n has a cycle partition λ with ∆(λ) covered by cases 2 and 4.
While there are partition cycles for which the bounds given in cases 3 and 5 are sharp
(such as the examples mentioned in P (8)), the next case shows that every n has some
cycle partition with preperiod length 2.

Case 6. We now have n = Tk + r with 3 ≤ r ≤ k. Consider the two successive images
under DP of (k,↘, r, r,↘, 3, 13) with length k + 2, which is a GE-partition:

D2
P ((k,↘, r, r,↘, 3, 13))

= DP ((k + 2, k − 1,↘, r − 1, r − 1,↘, 2)) length k

= (k + 1, k, k − 2,↘, r − 2, r − 2,↘, 1) length k + 1.
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This results in the cycle partition λ with ∆(λ) = (1, 1, 0k−r+1, 1r−2).

The proof of Theorem 1 contributes to the program of understanding all GE-partition
preperiod lengths. Earlier work has focused primarily on maximal preperiod lengths. For
n = Tk, the maximal preperiod length is k(k − 1) [10], attained by the GE-partition
(k − 1, k − 1,↘, 1, 1) [6]. Various bounds on maximal preperiod lengths for other n are
given in [7] and [9]. Minimal preperiod lengths for the case n = Tk are determined in [6],
which also considers various intermediate preperiod lengths when n = Tk.

Having established that GEP (n) is a sufficient starting set to determine the entire
structure of P (n), we want to know its size relative to P (n). We have not found an exact
formula, but we show the number of GE-partitions is bounded below by an established
sequence that can be described in terms of p(n) = |P (n)|.

Another notation for partitions simplifies the following discussion. The Frobenius
symbol of a partition λ is a 2 × k array of nonnegative integers

(

a1 . . . ak

b1 . . . bk

)

where k is the number of dots on the diagonal of the Ferrers diagram of λ, ai is the number
of dots to the right of the ith diagonal dot, and bi is the number of dots under the ith
diagonal dot. Fig. 5 includes some examples. Notice that the numbers in each row on
the Frobenius symbol must be strictly decreasing. This notation highlights conjugation,
as the Frobenius symbols of λ and λ′ simply have the two rows interchanged.

It is also easy to read from a partition’s Frobenius symbol whether it is a GE-partition:
λ1 = a1 + 1 and `(λ) = b1 + 1, so the characterization of Lemma 1 becomes λ is a GE-
partition exactly when a1 − b1 ≤ −2.

Theorem 2. The number of GE-partitions in P (n) is at least the number of conjugate

pairs in P (n − 1).

Proof. We construct a one-to-one map from conjugate pairs of P (n − 1) into GEP (n).
Let λ ` n − 1 satisfy λ 6= λ′. Without loss of generality, assume that the entries of

the Frobenius symbol for λ satisfy a1 = b1, . . . , aj = bj, aj+1 < bj+1, i.e., λ is the ‘more
vertical’ partition of the conjugate pair. We construct µ ` n from λ as follows, using the
entries of the Frobenius symbol of λ and the parameter j (which may be 0). Let

µ =































(

a1 a2 . . . ak

b1 + 1 b2 . . . bk

)

if j = 0

(

b2 . . . bj+1 aj+1 . . . . . . ak

b1 + 1 a1 . . . aj bj+2 . . . bk

)

if j ≥ 1.

In words, µ is constructed by adding a dot to the first column of λ and swapping the
first j horizontal arms from the diagonal with the second to (j + 1)st vertical arms. See
Fig. 5 for an example.
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Figure 5: The partition (7, 5, 4, 4, 3, 1, 1) with Frobenius symbol
(

6 3 1 0
6 3 2 0

)

corresponds to the

GE-partition (4, 4, 4, 4, 3, 3, 2, 2) with Frobenius symbol
(

3 2 1 0
7 6 3 0

)

.

First, we show that the array is the Frobenius symbol of a partition. The j = 0 case
is clear. For the j ≥ 1 cases, the entries of the first row are strictly decreasing since λ was
chosen to have bj+1 > aj+1. For the second row, b1 + 1 = a1 + 1 > a1 and aj = bj > bj+2.
Since one dot has been added, we have µ ` n.

Next, we show that µ ∈ GEP (n). For the j = 0 case, by assumption, b1 > a1, i.e.,
a1 − b1 ≤ −1. The difference of the numbers in the first column of the Frobenius symbol
for µ is then a1 − (b1 + 1) = a1 − b1 − 1 ≤ −2. For the j ≥ 1 cases, we know b1 ≥ b2 + 1,
from which b2 − (b1 − 1) ≤ −2 as well. Therefore µ is a GE-partition.

Notice that the GE-partitions constructed in this way, from λ with j ≥ 2, have b3 = a1

in their Frobenius symbol, since these correspond to a2 and b2 of λ. This is not true of
GE-partitions in general and shows the limitations of the map: we show next that it
is an injection, but it is not a bijection. The smallest GE-partition not in its image is
(3, 3, 3, 3, 3, 3) with Frobenius symbol

(

2 1 0
5 4 3

)

.
For the inverse map, let µ ∈ GEP (n). If b1 > b2 + 1, let j = 0. If b1 = b2 + 1

and b3 6= a1, let j = 1. Otherwise, let j be the greatest index for which b3 = a1, . . . ,
bj+1 = aj−1. We construct λ ` n − 1 as follows.

λ =































(

a1 a2 . . . ak

b1 − 1 b2 . . . bk

)

if j = 0

(

b2 . . . bj+1 aj+1 . . . . . . ak

b1 − 1 a1 . . . aj bj+2 . . . bk

)

if j ≥ 1

In words, λ is constructed by removing a dot from the first column of µ and the same
swapping as in the previous map. Since µ is a GE-partition, a1 − b1 ≤ −2, so b1 − 1 > a1.
Notice that if j ≥ 2 and bj+2 > aj, then the proposed array is not a Frobenius symbol,
so the map is not defined for such µ. Otherwise, a verification similar to the preceding
shows that this is the Frobenius symbol for λ ∈ P (n − 1) with λ 6= λ′ and it is clear that
the two maps described are inverses.
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As mentioned, the map first fails to be a bijection at n = 18, as there are 146 conjugate
pairs in P (17) and 147 GE-partitions of 18. For n = 60, the injection misses 6,143 of the
421,957 GE-partitions, less than 1.5%.

The number of pairs of conjugate partitions λ 6= λ′, first documented in [13], is 1, 1,
2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 66, 86, 113, 146, . . . , starting from n = 2. Therefore
there at least that many GE-partitions of n, starting from n = 3. With an observation
by Jovovic in [14], we have

|GEP (n)| ≥ p(n − 3) − p(n − 9) + p(n − 19) − p(n − 33) + · · · + (−1)k+1p(n − 1 − 2k2)

for the largest k such that n− 1− 2k2 ≥ 0. This suggests that |GE(n)| is on the order of
p(n − 3), a significant improvement over p(n) for large n.

3 Compositions

Although there are generally many more compositions than partitions for a fixed n, com-
positions are more structured in many ways. For instance, while the Hardy-Ramanujan-
Rademacher formula for p(n) has “an infinite series involving π, square roots, complex
roots of unity, and derivatives of hyperbolic functions,” [2], the analogous c(n) = |C(n)|
is simply 2n−1. We give one of MacMahon’s proofs of this formula [11], since ideas in the
proof will be used later.

Proposition 1. c(n) = 2n−1.

Proof. Between each digit of 1n, place a + or ⊕. We show that the set of all possible
resulting sequences is in bijection to C(n). Two digits with a ⊕ between them are summed,
while digits separated by + remain different parts. For example,

1 + 1 ⊕ 1 ⊕ 1 + 1 ⊕ 1 −→ 1 + 3 + 2.

The inverse is clear. Since there are n − 1 binary decisions to create the sequence, the
claim follows.

Similarly, the dynamics on C(n) determined by DC , while having a directed graph
with more vertices than its partition analog, is often easier to analyze. For instance,
since the map DC requires no reordering, every preimage of a composition λ has the same
length, namely λ1.

The structure of the directed graph representing the map DC on compositions of n is
related to the corresponding directed graph for DP on partitions of n. For comparison,
the state diagrams of DP and DC for n = 6 appear in Fig. 6. The boxed entries in Fig. 6
represent equivalence classes of compositions that have the same partition representation.
Compositions in an equivalence class may or may not have the same image under DC ;
this depends on the distribution of ones in the compositions and the order of the parts
greater than 1.
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Figure 6: Expanding the directed graph for the shift map on partitions of 6 to the map
on compositions of 6.

Results for compositions are often similar to those for partitions, and sometimes
simpler. First, we show that GE-compositions have the same characterization as GE-
partitions, namely that the length of the composition is greater than the size of the first
part plus 1. In this setting, this result is a corollary to the following proposition. First,
we make another definition.

Definition 4. We say that compositions θ and κ are related by a partial permutation if

they correspond to the same partition and the integer parts greater than 1 appear in the

same relative order.

Lemma 2. Compositions θ and κ are related by a partial permutation if and only if

DC(θ) = DC(κ).

Proof. If θ and κ are related by a partial permutation, then the application of DC removes
any and all ones from θ and κ and puts an initial row of length `(θ) = `(κ) on the image
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compositions. The remaining rows of the images are one less than the parts of θ and
κ greater than 1. Since those parts are in the same order in θ and κ, the images are
identical.

Assume that DC(θ) = DC(κ) = λ. By the definition of DC , it follows that `(θ) =
`(κ) = λ1. Also, θ and κ each have λ1 − (`(λ) − 1) ones. From the parts λ2, . . . , λk in λ,
we know that λ2 +1, . . . , λk +1 must appear in the same relative order in θ and κ. Hence
θ and κ are related by a partial permutation (the ones may appear in any of the positions
of θ and κ without effecting their images under DC).

Proposition 2. A composition λ has indegree
(

λ1

`(λ)−1

)

.

Proof. Suppose κ is a preimage of λ, i.e., DC(κ) = λ. Then λ1 = `(κ) by the definition
of DC . Also, κ contains `(κ) − (`(λ) − 1) ones. By Lemma 2, any partial permutation of
κ maps to λ under DC . There are

(

λ1

`(λ)−1

)

partial permutations of κ, because that counts
the ways to select the positions of the parts greater than 1.

Corollary 2. A composition λ is a GE-composition if and only if `(λ) > λ1 + 1.

The shift map on compositions has been studied in [9] where it is called “Carolina
solitaire.” We cite their primary results before going on to new material. Griggs and
Ho [9] show that λ |= n is cyclic under DC if and only if the parts are in decreasing
order and λ is cyclic under DP . Hence, the cycle structure and corresponding number of
components of the directed graph representation of DC are the same as for the shift map
on partitions. Griggs and Ho provide a lower bound for the maximal preperiod length
from a GE-composition to a cycle composition and conjecture that this bound is tight.
Analogous to Theorem 1, we prove that there are no stand alone cycles for the shift map
on compositions.

Lemma 3. If DC(κ) = λ with λ1 > 2 and κi = 1 for some i, then there exists at least

one GE-composition θ such that DC(θ) = λ.

Proof. By the previous lemma, we know all partial permutations of κ are preimages of λ.
At least one of these has initial part 1; call this composition θ. Since

`(θ) = λ1 > 2 = θ1 + 1,

we know by Corollary 2 that θ is a GE-composition.

Theorem 3. For n ≥ 3, every cycle composition λ ∈ C(n) satisfies Dm
C (κ) = λ for some

κ ∈ GEC(n) and m ≥ 1.

Proof. We prove that, for n ≥ 4, the minimum preperiod length for a GE-composition
of n is 1. For smaller n, there are no GE-compositions for n = 1, 2, and (13) is the only
GE-composition for n = 3, which is distance 2 from the cycle composition (2, 1).

From the characterization of cycle compositions, we know that, for any n ≥ 4, every
cycle contains at least one cycle composition κ with final part 1 and `(κ) > 2. Then
λ determined by DC(κ) = λ, another cycle composition, has λ1 > 2. By the previous
lemma, there is at least one GE-composition θ, a partial permutation of κ, whose image
is λ.
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For example, in Fig. 6, the GE-composition (1, 3, 2) has preperiod 1. So while maxi-
mal preperiod lengths for compositions are longer than for partitions, minimal preperiod
lengths are shorter.

Again, having established that GEC(n) is a sufficient starting set to determine the
entire structure of C(n), we want to count the GE-compositions. Unlike the situation
with partitions, we establish an exact formula. In fact, we prove two formulas for the
number of GE-compositions, |GEC(n)|.

Theorem 4. |GEC(n)| = 2n−1 − Fn+1, where Fi are the Fibonacci numbers determined

by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3.

Proof. We count the number of compositions of n that are in the image of DC using
induction. Let In denote the set of compositions that have at least one preimage under
DC (equivalently, those with positive indegree in the state diagram). By inspection,
I1 = {(1)} and I2 = {(2), (1, 1)}, so that |I1| = F2 and |I2| = F3.

Assume that |In−1| = Fn and |In−2| = Fn−1. We define maps from In−1 and In−2 into
In that will lead to the conclusion that |In| = |In−1| + |In−2|.

For each λ = (λ1, . . . , λk) ∈ In−1, define

a(λ) = (λ1, . . . , λk−1, λk + 1).

Notice that a(λ) |= n and `(a(λ)) = k. Since λ ∈ In−1, we know by Corollary 2 that
λ1 ≥ k − 1, which shows that a(λ) ∈ In. The map a is clearly bijective.

For each µ = (µ1, . . . , µj) ∈ In−2, define

b(µ) = (µ1 + 1, µ2, . . . , µj, 1).

Notice that b(µ) |= n and `(b(µ)) = j + 1. Since µ ∈ In−2, we know by Corollary 2 that
µ1 ≥ j − 1. Therefore, µ1 + 1 ≥ j, which shows that b(µ) ∈ In. Again, b is injective. See
Fig. 7 for examples of applications of these maps.

Figure 7: a((2, 1, 2)) = (2, 1, 3) and b((1, 3)) = (2, 3, 1).

Writing a(In−1) and b(In−2) for these sets of compositions of n, we have a(In−1) ∪
b(In−2) ⊆ In.

We show that In ⊆ a(In−1) ∪ b(In−2). Consider an arbitrary ν = (ν1, . . . , νh) ∈ In.
By Corollary 2, we know ν1 ≥ h − 1. If νh ≥ 2, then (ν1, . . . , νh−1, νh − 1) ∈ In−1 since
ν1 ≥ h − 1, so that ν ∈ a(In−1). If νh = 1, then (ν1 − 1, ν2, . . . , νh−1) ∈ In−2 since
ν1 − 1 ≥ h − 2, so that ν ∈ b(In−2). Therefore In = a(In−1) ∪ b(In−2).

By looking at the last entry of the compositions, clearly a(In−1)∩ b(In−2) = ∅. There-
fore

|In| = |a(In−1)| + |b(In−2)| = |In−1| + |In−2| = Fn + Fn−1 = Fn+1.

Since there are 2n−1 total compositions of n, |GEC(n)| = 2n−1 − Fn+1.
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The second formula for |GEC(n)| comes from a result on the number of compositions
of a given length. Before we proceed, we need a few smaller results. The first lemma is
another result of MacMahon [11].

Lemma 4. There are
(

n−1
k−1

)

compositions of n of length k where k ≤ n.

Proof. Using the bijection of Proposition 1, these compositions correspond to sequences
of n ones where exactly k − 1 of the n − 1 separators are + and the rest are ⊕.

Lemma 5. There are
(

n−j−1
k−2

)

compositions of n of length k with first part j < n

Proof. Because j < n, it follows that k ≥ 2. Using the bijection from Proposition 1, these
compositions correspond to sequences of n ones where the first j − 1 separators are ⊕
and the next separator is +. To have k − 1 more parts, exactly k − 2 of the remaining
n − j − 1 separators need to be +.

In the following theorem and discussion, we will let b·c represent the floor function
and d·e represent the ceiling function.

Theorem 5.

|GEC(n)| =

bn

2
c

∑

j=1

(

2n−j−1 −

j+1
∑

k=2

(

n − j − 1

k − 2

)

)

.

Proof. First, we show that the first part of a GE-composition cannot be greater than b n
2
c.

Let µ = (µ1, . . . , µk) |= n be a GE-composition. If µ1 > bn
2
c, then k ≤ n − µ1 + 1 <

n − bn
2
c + 1. It follows that

`(µ) = k ≤ n −
⌊n

2

⌋

≤
⌊n

2

⌋

+ 1 < µ1 + 1,

contradicting Corollary 2. Hence, µ1 ≤ bn
2
c.

Let λ = (j, λ2, . . . , λk) |= n with j ≤ bn
2
c and denote λ∗ = (λ2, . . . , λk) |= n − j.

By Lemma 4, there are
(

n−j−1
k−2

)

compositions λ∗ in C(n − j) of length k − 1. Because

c(n − j) = 2n−j−1 by Proposition 1, there are 2n−j−1 −
(

n−j−1
k−2

)

compositions of length k
in C(n) with first part j.

By Corollary 2, if k ≤ λ1 + 1, then λ is not a GE-composition. Summing over the
values of k ≤ j + 1 yields the number of compositions of n with λ1 = j that are not
GE-compositions, namely

∑j+1
k=2

(

n−j−1
k−2

)

. Notice that k ≥ 2 because λ1 = j ≤ bn
2
c, so λ

has at least 2 parts. Thus there are 2n−j−1 −
∑j+1

k=2

(

n−j−1
k−2

)

GE-compositions of n with
λ1 = j. Because j can range from 1 to bn

2
c, the number of GE-compositions is

bn

2
c

∑

j=1

(

2n−j−1 −

j+1
∑

k=2

(

n − j − 1

k − 2

)

)

.
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Together, these two results give a round-about combinatorial proof of the following
Fibonacci identity:

Fn+1 = 2n−1 −

bn

2
c

∑

j=1

(

2n−j−1 −

j+1
∑

k=2

(

n − j − 1

k − 2

)

)

= 2d
n

2
e−1 +

bn

2
c

∑

j=1

j−1
∑

i=0

(

n − j − 1

i

)

.

This can also be derived using two well-known Fibonacci identities,

Fn+1 − 1 =

n−1
∑

i=1

Fi and Fn+1 =

bn

2
c

∑

i=0

(

n − i

i

)

,

(both proved combinatorially in [5]), the binomial theorem, and a simple application of
geometric series:

Fn+1 = 1 +
n−1
∑

i=1

Fi

= 1 +
n−1
∑

i=1

b i−1

2
c

∑

h=0

(

i − h − 1

h

)

= 1 +

dn

2
e−2
∑

h=0

h
∑

i=0

(

h

i

)

+
n−2
∑

h=dn

2
e−1

n−h−2
∑

i=0

(

h

i

)

= 1 +

dn

2
e−2
∑

h=0

2h +

bn

2
c

∑

j=1

j−1
∑

i=0

(

n − j − 1

i

)

= 1 + 2d
n

2
e−1 − 1 +

bn

2
c

∑

j=1

j−1
∑

i=0

(

n − j − 1

i

)

.

In addition to exact formulas for |GEC(n)|, we can further our investigation of GE-
compositions by counting how many have a given indegree. We do not arrive at a formula,
rather an algorithm. From Proposition 2, counting the number of compositions with a
given indegree requires determining all of the ways that the indegree can be written as a
binomial coefficient with certain constraints. This generalizes Lemma 5.

Proposition 3. All of the
(

n−j−1
k−2

)

compositions of n of length k with first part j < n

have indegree
(

j

k−1

)

.

Proof. By Proposition 2, the indegree of a composition depends only on its length and
first part, so these compositions all have indegree

(

j

k−1

)

.
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Figure 8: Truncated Pascal’s triangle containing the number of compositions of n = 8
with the specific indegree as entries of the form indegree:number.

The proposition fails to consider length 1 compositions. There is a unique length 1
composition, (n), which has indegree 1 since DC((1n)) = (n) and no other composition
has length n. We apply this proposition to the compositions of C(8).

Example 1. The indegrees for compositions of n = 8. Proposition 3 suggests
creating a form of Pascal’s triangle where the entries are indegrees from a particular
binomial coefficient paired with the number of compositions with that indegree. For
example, the

(

4
2

)

entry indicates the compositions with indegree 6 that have first part 4

and length 3; it is followed by a 3 since there are
(

8−4−1
3−1

)

=
(

3
2

)

= 3 such compositions.
The triangle for C(8) is given in Fig. 8. The figure omits the GE-compositions, indegree
0, and the composition (8), indegree 1. All of C(8) is accounted for in Table 1, which
collects the triangle entries with the same indegree. (The fact that binomial coefficients
from different rows can have the same value, such as

(

4
2

)

and
(

6
1

)

, prevents this approach
from leading to a direct formula.)

4 Suggestions for Further Work

There are many remaining questions about the state diagrams induced by DP and DC .
First, we know from [4] that the diagrams have multiple components for any n two or
more away from the nearest triangular number – what are the sizes of those components?
For partitions, we know that DP splits the 22 partitions in P (8) into components of size
15 and 7. For 12 and 13, the splits are 77 = 45 + 32 and 101 = 67 + 34, respectively.
The problem appears no easier for compositions: DC splits the 128 compositions in C(8)
into components of size 93 and 35.

While we have developed a procedure to determine the distribution of compositions
in C(n) according to their indegrees, we do not see an analogous approach to P (n), even
though there are fewer possible indegrees. Data up to n = 15 are given in Table 2.

Turning to GE-partitions, Theorem 2 gives a lower bound of their number; an exact
formula is desired. Also, we know only the bounds for preperiod length. Theorem 1
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Indegree Number of Compositions

0 94 (= 27 − F9 = 128 − 34)

1
[

from
(

1
1

)

,
(

2
2

)

,
(

3
3

)

,
(

4
4

)

and 18
]

14 (= 1 + 5 + 6 + 1 + 1)

2
[

from
(2
1

)]

1

3
[

from
(

3
1

)

and
(

3
2

)]

5 (= 1 + 4)

4
[

from
(4
1

)

and
(4
3

)]

4 (= 1 + 3)

5
[

from
(

5
1

)]

1

6
[

from
(6
1

)

and
(4
2

)]

4 (= 1 + 3)

7
[

from
(7
1

)]

1

10
[

from
(5
2

)

and
(5
3

)]

3 (= 2 + 1)

15
[

from
(6
2

)]

1

Table 1: The number of compositions of n = 8 with specific indegrees.

i\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 1 1 2 3 5 7: 5,2 10 14 20 27: 17,10 37: 24,13 49 66

1 1 2 1 3 3 5 5 8: 5,3 11 15 18 26: 13,13 32: 22,10 44 55

2 1 1 2 3 5 7: 5,2 8 12 16 21: 13,8 27: 18,9 35 44

3 1 1 2 3: 2,1 5: 3,2 7 11

Table 2: The number of partitions of n with specific indegree i, broken down by component
when more than one component exists.

shows that the minimal preperiod length is 2 or 3 in each component induced by DP ,
and maximal preperiod lengths are conjectured in [9] (with proofs in some cases). Some
additional information about possible preperiod lengths for the n = Tk case is given in
[6]. However, no general results are known about the distribution of GEP (n) according
to preperiod length. Data up to n = 15 are given in Table 3.

For GE-compositions, Theorem 3 shows that the minimal preperiod length is 1 in each
component induced by DC for n ≥ 4. There is a general relation between partition and
composition preperiod length explored in [9], related to the ‘explosion’ of the partition
(3, 2, 1) ` 6 into the six related compositions in C(6) shown in Fig. 6. This allows them
to conjecture maximal preperiod lengths, with proofs in some cases. Again, no general
results are known about the distribution of GEC(n) according to preperiod length. Data
up to n = 10 are given in Table 4.
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d\n 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 1 1 0 1 1: 1,0 1 0 1 2: 1,1 2: 1,1 1 0

3 1 1 3 4: 2,2 4 1 3 4: 2,2 6: 4,2 4 1

4 1 1 1: 1,0 2 3 9 13: 9,4 13: 7,6 10 3

5 0 1: 1,0 1 1 2 3: 2,1 5: 3,2 7 8

6 1 1 1 2 2: 1,1 3: 2,1 3 3

7 1 1 1 1: 1,0 2: 1,1 6 3

8 2 3 2: 1,1 5: 5,0 3 3

9 1 1: 1,0 3 3

10 1 1 3

11 0 1 2

12 3 6 2

13 2

14 2

15 5

16 4

17 3

18 3

19 0

20 16

Table 3: The number of GE-partitions of n with preperiod length d, broken down by
component when more than one component exists.
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