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Abstract

In this note we present a proof of the combinatorial nullstellensatz using simple
arguments from linear algebra.

The combinatorial nullstellensatz [1] is an elegant tool which has many applications
in combinatorial number theory, graph theory and combinatorics (see [1] and [2]). In
this note we present a proof of this result using simple arguments from linear algebra.
In Theorem 1, we recall the statement of the combinatorial nullstellensatz:

Theorem 1. Let P be a polynomial in m variables X1, X2, . . . , Xm over an arbitrary
field K. Suppose that the coefficient of the monomial Xn1

1 Xn2

2 · · ·Xnm
m in P is nonzero,

and that the total degree of P is
∑m

j=1 nj . Then, if S1, S2, . . . , Sm are subsets of K such
that card (Sj) > nj (for 1 ≤ j ≤ n,) there is some (t1, t2, . . . , tm) in S1 × S2 × · · · × Sm

so that P (t1, t2, . . . , tm) 6= 0.

Our proof is based upon a simple lemma concerning linear forms on the vector
space K[T ] of polynomials in one variable T over an arbitrary field K. In the dual space
(K[T ])∗, we consider the dual basis (ϕm)m≥0 of the canonical basis (Tm)m≥0 of K[T ],
this means that ϕm(P ) is the coefficient of Tm in P , in other words ϕi(T

j) = δij where
δij is the Kronecker symbol. We also denote by Kn[T ] the subspace of K[T ] formed of
polynomials of degree at most n.

With the above notation we have the following lemma :

Lemma 2. Let S be a subset of K such that card (S) = m + 1. Then there is a family
(λS

t )t∈S of elements in K such that

∀P ∈ Km[T ], ϕm(P ) =
∑

t∈S

λS
t P (t).
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Proof. Consider, for t ∈ S, the linear form µt : Km[T ] −→ K, µt(P ) = P (t). The
family (µt)t∈S constitutes a basis of the dual space (Km[T ])∗. (To see this, note that if
(ℓt)t∈S denotes the basis of Km[T ] formed by the Lagrange intepolation polynomials :
ℓt(T ) =

∏

s∈S\{t}
T−s
t−s

, then µu(ℓv) = δuv. This proves that (µt)t∈S is the dual basis of

(ℓt)t∈S .)
Now, the linear form P 7→ ϕm(P ) defines an element from (Km[T ])∗ and, con-

sequently, it has a unique expression as a linear combination of the elements of the
basis (µt)t∈S. This proves the existence of a familly of scalars (λS

t )t∈S, such that
ϕm(P ) =

∑

t∈S λS
t µt(P ) for any polynomial P in Km[T ], and achieves the proof of

Lemma 2.

Before proceeding with the proof of Theorem 1, let us recall that the total degree
of a polynomial P from K[X1, . . . , Xm] is the largest value of d1 + d2 + · · ·+ dm taken
over all monomials Xd1

1 Xd2

2 · · ·Xdm
m with nonzero coefficients in P .

Proof of Theorem 1. For each j in {1, . . . , m}, we may assume that card (Sj) = nj + 1
(by discarding the extra elements if necessary,) then, using Lemma 2, we find a familly

of scalars (λ
Sj

t )t∈Sj
such that

∀P ∈ Knj
[T ], ϕnj

(P ) =
∑

t∈Sj

λ
Sj

t P (t). (1)

Then, we consider the linear form Φ on K[X1, . . . , Xm] defined by :

Φ(Q) =
∑

(t1,...,tm)∈S1×···×Sm

λS1

t1
λS2

t2
· · ·λSm

tm
Q(t1, t2, . . . , tm).

Clearly, we have

Φ(Xd1

1 Xd2

2 · · ·Xdm

m ) =
∑

t1∈S1

∑

t2∈S2

· · ·
∑

tm∈Sm

λS1

t1
λS2

t2
· · ·λSm

tm
td1

1 td2

2 . . . tdm

m

=
m
∏

j=1

(

∑

t∈Sj

λ
Sj

t tdj

)

.

So we have the following two properties:

i. If there is some k in {1, . . . , m} such that dk < nk, then by (1) we have

∑

t∈Sk

λSk

t tdk = ϕnk
(T dk) = 0,

and therefore, Φ(Xd1

1 Xd2

2 · · ·Xdm
m ) = 0.
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ii. On the other hand,

Φ(Xn1

1 Xn2

2 · · ·Xnm

m ) =
m
∏

j=1

ϕnj
(Tnj ) = 1.

Let us suppose that

P =
∑

(d1,d2,...,dm)∈D

bd1,d2,...,dm
Xd1

1 Xd2

2 · · ·Xdm

m ,

where we collected in D the multi-indexes (d1, d2, . . . , dm) satisfying bd1,d2,...,dm
6= 0.

Now, if (d1, d2, . . . , dm) is an element from D which is different from (n1, n2, . . . , nm),
then there is some k in {1, . . . , m} such that dk < nk because deg(P ) =

∑m

j=1 nj.
Therefore, by (i.), if (d1, d2, . . . , dm) is an element from D which is different from
(n1, n2, . . . , nm), then Φ(Xd1

1 Xd2

2 · · ·Xdm
m ) = 0, and if we use (ii.) we conclude that

Φ(P ) =
∑

(d1,d2,...,dm)∈D

bd1,d2,...,dm
Φ(Xd1

1 Xd2

2 · · ·Xdm

m ) = bn1,n2,...,nm
6= 0.

Finally, the conclusion of the theorem follows since

∑

(t1,...,tm)∈S1×···×Sm

λS1

t1
λS2

t2
· · ·λSm

tm
P (t1, t2, . . . , tm) = Φ(P ) 6= 0.

This ends the proof of Theorem 1.
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