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Abstract

We prove that, for n > 4, the graphs Kn and Kn +Kn−1 are Ramsey equivalent.
That is, if G is such that any red-blue colouring of its edges creates a monochromatic
Kn then it must also possess a monochromatic Kn+Kn−1. This resolves a conjecture
of Szabó, Zumstein, and Zürcher [10].

The result is tight in two directions. Firstly, it is known that Kn is not Ramsey
equivalent to Kn + 2Kn−1. Secondly, K3 is not Ramsey equivalent to K3 +K2. We
prove that any graph which witnesses this non-equivalence must contain K6 as a
subgraph.

Mathematics Subject Classifications: 05D10

1 Introduction

A finite graph G is Ramsey for another finite graph H, written G → H, if there is a
monochromatic copy of H in every two-colouring of the edges of G. We say that H1 and
H2 are Ramsey equivalent, written H1 ∼R H2, if, for any graph G, we have G → H1 if
and only if G→ H2.

The concept of Ramsey equivalence was first introduced by Szabó, Zumstein, and
Zürcher [10]. A fundamental question to ask is which graphs are Ramsey equivalent to
the complete graph Kn. It follows from a theorem of Folkman [5] that if a graph H is
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Ramsey equivalent to Kn, then ω(H) = n, where ω(H) denotes the size of the largest
complete subgraph of H.

In a recent paper, Fox, Grinshpun, Person, Szabó, and the second author [6] showed
that Kn is not Ramsey equivalent to any connected graph containing Kn. Furthermore, it
is easily seen that Kn is not Ramsey equivalent to the vertex-disjoint union of two copies
of Kn, see e.g. [10]. For two graphs H1 and H2 and an integer t, we denote by H1+tH2 the
graph that consists of a copy of H1 and t pairwise vertex-disjoint copies of H2. It follows
that if Kn ∼R H then H is of the form Kn + H ′ where ω(H ′) < n. In [10], it is proved

that the graph Kn + tKk is Ramsey equivalent to Kn for k 6 n− 2 and t 6 R(n,n−k+1)−2n
2k

,
where R(m1,m2) denotes the asymmetric Ramsey number. In particular, this implies
that Kn is Ramsey equivalent to Kn + tKn−2 for some t = Ω(R(n, 3)/n). However, the
case of k = n − 1 was left open. It is easily checked that K3 is not Ramsey equivalent
to K3 + K2, since K6 → K3 but K6 9 K3 + K2. In [10] it is conjectured that this is an
aberration, and that Kn ∼R Kn + Kn−1 for large enough n.

The positive result on the Ramsey equivalence of Kn and Kn + tKk is complemented
by the following result, proved in [6]: For n > k > 3, the graph Kn + tKk is not Ramsey

equivalent to Kn if t > R(n,n−k+1)−1
k

. In particular, Kn is not Ramsey equivalent to
Kn +2Kn−1. In this paper, we prove the conjecture in [10], and thus, the latter statement
is tight.

Theorem 1. For any n > 4
Kn ∼R Kn + Kn−1.

Our methods are combinatorial and explicit, and the idea is the following: suppose for
a contradiction that we have a graph G which is Ramsey for Kn, yet has been coloured
so as to avoid a monochromatic Kn + Kn−1. We will then attempt, by giving an explicit
recolouring of some edges, to give a colouring which no longer possesses a monochromatic
Kn, which contradicts the Ramsey property of G.

This is not quite possible directly, and instead we will build up our proof in stages: in
a series of lemmas we will show that either a colouring of G must have a monochromatic
Kn+Kn−1, or if not we can deduce some further structural information about the colouring
of G, which will help us in the lemmas to follow. Eventually, we will have accumulated
enough information about our supposed counterexample that it collapses under the weight
of contradiction into non-existence, which proves Theorem 1.

At several steps of the proof, we employ a similar argument: We remove a small
number of vertices from a graph G that is Ramsey for Kn and show that the remaining
graph G′ satisfies G′ → Kn−1. The following result is an instance of such a Ramsey
stability result.

Theorem 2. Let n > 3 and G→ Kn. If V ⊂ G has |V | 6 2n− 2 then G \ V → Kn−1.

Note that this implies in particular that R(n) > R(n−1)+2n−2, where R(n) denotes
the Ramsey number. It is known that |R(n)−R(n− 1)| > 4n+O(1) [4, 11]. Theorem 2
follows, however, from a more technical result, c.f. Lemma 4, which also allows us to
retrieve information on the location of a monochromatic copy of Kn−1 in the remaining
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graph. It is this additional information (which is crucial to prove our main result) that
seems to yield the limitation on improving the lower bound on the difference of consecutive
Ramsey numbers.

As mentioned above, the clique on six vertices is an unfortunate obstruction which
prevents the Ramsey equivalence of K3 and K3 + K2. Interestingly, Bodkin and Szabó
(see [2]) have shown that, essentially, this is the only such obstruction.

Theorem 3 ([2]). If G→ K3 and G 9 K3 + K2 then K6 ⊆ G.

In Section 4, we give an alternative proof of this theorem, using similar techniques to
those developed for the proof of Theorem 1.

Notation. All graphs are simple and finite. As a convenient abuse of notation, we write
G both for a graph and for its set of vertices. We write E(G) for the set of edges of G.

Structure of the paper. In Section 2 we prove a Ramsey stability lemma, crucial for
the proof of Theorem 1, but which also may be of independent interest. Theorem 2 is a
direct corollary of that lemma. In Section 3 we give the proof of Theorem 1. In Section 4
we give the proof of Theorem 3. Finally, we conclude by giving a further discussion of
Ramsey equivalence, including a discussion of some still-open conjectures in this field,
and adding some more.

2 Ramsey stability

In this section we prove Theorem 2, a Ramsey stability result, showing that a small
number of arbitrary vertices can be removed from a graph while still preserving much of
its Ramsey properties.

The following lemma is the main stability result, from which Theorem 2 will be an easy
corollary. The statement of the lemma is slightly technical, but this allows for additional
flexibility which will be useful in the following section.

Lemma 4. Let n > 4 and G → Kn. Let V ⊂ G with 2 6 |V | 6 3n − 3 and let x and y
be two distinct vertices from V . Finally, let V0 ⊂ V \{x, y} be any set with |V0| 6 2n− 2.

Then, in any colouring of the edges of G, there exists a monochromatic copy of Kn−1
in G \ V0, say with vertex set W , such that either W ∩ V = {x}, or W ∩ V = {y}, or
x, y 6∈ W ∩ V .

Proof. Without loss of generality, we may suppose that |V | = 3n− 3 and |V0| = 2n− 2.
We arbitrarily divide V0 into two sets of n − 3 vertices each, say VR and VB, and four
single vertices, xR, yR, xB, yB. For brevity, we let V ′ = V \ (V0 ∪ {x, y}).

Fix an arbitrary red/blue colouring of the edges of G. The strategy is to recolour
some of the edges incident to V , and then show that the existence of a monochromatic
copy of Kn in the recoloured graph (guaranteed by the Ramsey property of G) forces a
monochromatic copy of Kn−1 in the original colouring with the required properties.
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Figure 1: The recolouring of V for Lemma 4. A black ring around a vertex class indicates
that we colour edges between this class and G \ V blue. A white ring around a vertex
class indicates that we colour edges between this class and G \ V red. No ring indicates
that such edges retain their original colour. Edges inside VB are red, edges inside VR are
blue, and edges inside V ′ retain their original colour. This figure shows the (red) edges of
GR.

This requires the recolouring to have some special features. The following explicit
method of recolouring suffices, though we make no claims as to its uniqueness in this
regard. Define auxiliary graphs GR and GB = Gc

R, with vertex set

{VR, VB, V
′, {x}, {y}, {xR}, {yR}, {xB}, {yB}} .

Instead of giving an incomprehensible list of edges, we refer the reader to Figures 1 and
2 for the definition of GR and GB, the complement of GR. We now recolour the edges
incident to V as follows. If u1 ∈ U1 ∈ GR and u2 ∈ U2 ∈ GR such that U1 6= U2, then
colour the edge u1u2 red if U1U2 ∈ E(GR), and colour the edge u1u2 blue otherwise.
Furthermore, colour all edges in E(VB) red, and all edges in E(VR) blue. The edges in
E(V ′) retain their original colouring. For all u ∈ {xB, yB} ∪ VB and all v ∈ G \ V , colour
the edge uv blue. For all u ∈ {xR, yR} ∪ VR and all v ∈ G \ V , colour the edge uv red.
It will be convenient to call the vertices in {xB, yB} ∪ VB blue vertices, and to call the
vertices in {xR, yR} ∪ VR red vertices.
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Figure 2: The (blue) edges of GB.

The crucial properties of this recolouring are the following, which are easy to verify
from examining Figures 1 and 2:

1. Both GR and GB are K4-free.

2. Every triangle in GR contains at least one of {xB}, {yB}, VB, and every triangle in
GB contains at least one of {xR}, {yR}, VR.

3. The blue vertices VB ∪ {xB, yB} are connected by only red edges in G, and the red
vertices VR ∪ {xR, yR} are connected by only blue edges in G.

Since G is Ramsey for Kn there must be a monochromatic copy of Kn present in G after
this recolouring. We claim that, thanks to the fortuitous properties of our recolouring,
this forces a monochromatic Kn−1 in the original colouring with the required properties.

Let U be the vertex set of the monochromatic Kn present in G after this recolouring.
If |U ∩ (V0 ∪ {x, y})| 6 1 then the lemma follows immediately, since discarding at most
one vertex would leave a monochromatic Kn−1 in the original colouring (as the only edges
which are recoloured are incident with V0 ∪ {x, y}), completely disjoint from V0 ∪ {x, y}
as required.
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We may suppose, therefore, that |U ∩ (V0 ∪ {x, y})| > 2. The first case to consider is
when U ⊂ V . By Property (1) and since n > 4, U must contain at least two vertices from
one of the classes VR, VB, or V ′.

Suppose first that |U ∩ VB| > 2. Then U must form a red Kn, and hence can contain
at most one vertex from VR, and no vertex from V ′, since all edges between VB and V ′ are
blue. By similar reasoning, if |U∩VR| > 2, then U must form a blue Kn, and hence cannot
use any vertex from V ′ ∪ VB. Therefore, there exists at most one class V ′′ ∈ {VR, VB, V

′}
such that |U ∩ V ′′| > 2. Since each such class contains at most n− 3 vertices, there is a
monochromatic copy of K4 within V , using at most one vertex from each of VR, VB, and
V ′. This gives a copy of K4 in either GR or GB, which contradicts Property (1).

Assume now that U 6⊂ V , and suppose that U hosts a red copy of Kn. Since all
blue vertices are connected to G \ V by blue edges, U cannot contain any blue vertices.
Therefore, by Property (2), U uses vertices of at most two nodes in GR. Furthermore,
since the copy is red, |U ∩ VR| 6 1.

If V ′ ∩ U 6= ∅ then U can use at most one vertex from V \ V ′, and discarding this
vertex leaves a monochromatic Kn−1 in the original colouring, disjoint from V0 ∪ {x, y},
as required.

If V ′ ∩ U = ∅ then, by Property (2) again, it must use exactly two vertices from
VR ∪ {xR, yR, x, y}. Since there are only blue edges between vertices in VR ∪ {xR, yR},
by Property (3), at least one of these two vertices in U ∩ V must be x or y. Discarding
the other vertex in U ∩ V leaves a monochromatic copy of Kn−1 in the original colouring
which intersects V in either x or y, but no other vertices, as required.

The case when U hosts a blue copy of Kn is handled similarly, and the proof is
complete.

Proof of Theorem 2. For n > 4 the theorem follows immediately from Lemma 4, after
expanding V by two arbitrary vertices from G \ V . For n = 3, it suffices to give an
explicit colouring of K4 in a similar fashion, as we do in Figure 3. Thus, if we recolour

Figure 3: Dashed lines indicate red edges, straight lines indicate blue edges.

the edges adjacent to V as indicated in Figure 3, then any monochromatic copy of K3 in
G must have at least two vertices from G \ V , and hence G \ V → K2 as required.
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VR \ {a, b} WR \ {a, b, c, d}
a

b

c

d

Figure 4: The colouring for Lemma 5. Edges inside VR \ {a, b} are red, edges inside
WR \ {a, b, c, d} are blue. Additionally, dashed lines indicate red edges, straight lines
indicate blue edges.

3 Proof of the main result

We recall our goal: to show that Kn is Ramsey equivalent to Kn+Kn−1 for n > 4. It is, of
course, trivial that if G→ Kn + Kn−1 then G→ Kn. It remains to show that if G→ Kn

then G → Kn + Kn−1. Our strategy will be to accumulate more and more information
about the monochromatic structures present in a colouring of a graph which is Ramsey
for Kn, without a monochromatic Kn + Kn−1, until we are eventually able to obtain a
contradiction.

Lemma 5. Let n > 4. If G → Kn then, in every colouring of G, there is either a
monochromatic Kn + Kn−1, or a red Kn and a blue Kn.

Proof. Suppose, without loss of generality, that the edges of G are coloured so that there
is a red copy of Kn. Let VR be the vertex set of this red Kn. As in the proof of Lemma 4,
we will recolour some edges of G and use the assumption that G→ Kn to prove the claim.

Suppose first that there is an edge ab of VR which has the property that every red Kn

intersects VR in at least one vertex besides a and b. In this case, we recolour every other
edge of VR blue, and colour the edges between VR \ {a, b} and G \ VR red.

Since G→ Kn there must be a monochromatic Kn in this recoloured G. Suppose first
that there is a red Kn. If it uses at least n−1 vertices from G\VR then there is a red Kn−1
present in G \ VR in the original colouring, and hence a red Kn + Kn−1 in G. Otherwise,
it must use a red edge from VR. But the only red edge remaining in VR is ab, and the
edges from {a, b} to G \ VR retained their original colouring. Therefore, we must have
a red Kn in the original colouring that intersects VR in exactly {a, b}, which contradicts
our choice of ab. Secondly, suppose that there is a blue Kn in the recoloured G. If it uses
any of the new blue edges inside VR, then it must be contained entirely inside VR, since
the edges from VR \ {a, b} to G \ VR are all red. However, this is impossible, since VR has
ab still coloured red. Therefore we must have a blue Kn that uses only edges which were
originally blue, and so we have a red Kn and a blue Kn in G, as required.

We may now assume that, for every pair {a, b} ⊆ VR, there is another red Kn inter-
secting VR in only the edge ab. Let WR be the vertex set of another red Kn such that
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|VR ∩WR| = 2, say VR ∩WR = {a, b}, and let c, d be any two vertices in WR \ VR. We
recolour (some of) the edges incident to WR in the following way. An illustration of this
colouring can be found in Figure 4.

• For all w ∈ WR \ {a, b, c, d}, all w′ ∈ WR (w′ 6= w), and all v ∈ G \WR, we colour
the edge ww′ blue and the edge wv red (if present in G).

• For all v ∈ VR \ {a, b}, we recolour the edges av and bv blue, and the edges cv and
dv red (if present in G).

• For all x ∈ G \ (VR ∪WR), we colour the edges ax, bx and dx in red (the edge cx
retains its original colour).

• Every edge in {a, b, c, d} is recoloured blue, except for ac which remains red.

Again, since G→ Kn there must be a monochromatic Kn in this recoloured G.
Suppose first that there is a red Kn, say on vertex set W . If it uses at least n − 1

vertices from G\WR then there is a red Kn−1 present in G\WR in the original colouring,
and hence a red Kn + Kn−1 in G. Otherwise, it must use a red edge from WR. But the
only red edge remaining in WR is ac. Then W must be disjoint from VR \ {a}, since ax is
blue for every x ∈ VR \{a}. Hence, W ∩ (VR∪WR) = {a, c}. But none of the edges inside
W \ {a} were recoloured, and hence W \ {a} hosts a red Kn−1 in the original colouring
that is vertex disjoint from VR.

Secondly, suppose that there is a blue Kn in the recoloured G, say on vertex set W .
If it uses any of the new blue edges inside VR ∪WR, then it must be contained entirely
inside VR ∪WR, since the edges from WR \ {c} to G \ (VR ∪WR) are all red. However,
VR ∪WR does not host a blue Kn in this recolouring. Therefore we must have a blue Kn

that uses only edges which were originally blue, and so we have a red Kn and a blue Kn,
as required.

Lemma 6. Let n > 4. If G→ Kn then, in any colouring of G, if there is a monochromatic
Kn+1 then there is a monochromatic Kn + Kn−1.

Proof. Suppose that G has, say, a red Kn+1, on vertex set VR. By Lemma 5, we may
assume that there exists a blue Kn, say on vertex set VB. Let V = VR ∪ VB, so that
2 6 |V | 6 2n + 1. We now apply Lemma 4, with V0 ⊂ V being any set of 2n − 2
vertices containing VB, and x and y two arbitrary vertices from VR\VB. This yields a
monochromatic Kn−1 which intersects the red Kn+1 in at most one vertex, as |V \V0| 6 3,
and the blue Kn not at all, and hence we must have a monochromatic Kn + Kn−1.

Lemma 7. Let n > 4, and let G be a graph such that G → Kn. Assume that there is
a colouring of the edges of G with no monochromatic copy of Kn + Kn−1. Then, in this
colouring, no two monochromatic copies of Kn intersect in exactly two vertices.

Proof. Suppose otherwise; without loss of generality, we have two red copies of Kn, say
on vertex sets VR and V ′R, such that |VR ∩ V ′R| = 2. By Lemma 5 we may further assume
that there is a blue Kn, say on vertex set VB.
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Assume first that VB ∩ VR 6= ∅. Let x ∈ VR \ (VB ∪ V ′R) and y ∈ V ′R \ (VB ∪ VR)
(which exist since n > 4 and since VB intersects with VR and V ′R with at most one vertex
each). Further, set V := VR ∪ V ′R ∪ VB and V0 := (VR ∪ VB) \ {x} ⊆ V . By assumption,
|V | 6 3n− 3 and |V0| 6 2n− 2. Therefore, by Lemma 4, there is a monochromatic copy
of Kn−1, say on set W , such that either W ∩ V = {x}, or W ∩ V ⊆ V \ (V0 ∪{x}). In the
first case, when W ∩ V = {x}, then W is disjoint from both VB and V ′R, and hence there
is a monochromatic copy of Kn + Kn−1, a contradiction. Otherwise, W is disjoint from
both VB and VR, and again, we find a monochromatic copy of Kn +Kn−1, a contradiction.

We argue similarly if VB ∩ V ′R 6= ∅, and therefore assume from now on that VB ∩
(VR ∪ V ′R) = ∅. Let x, y ∈ VR \ V ′R and z ∈ V ′R \ VR be some arbitrarily chosen vertices.
We again apply Lemma 4, with V := VB ∪ VR ∪W , where W = V ′R \ (VR ∪ {z}), and
V0 := (VR ∪ VB) \ {x, y}. It is clear that |V | 6 3n− 3 and |V0| = 2n− 2, as required.

Suppose that there is a monochromatic copy of Kn−1 which intersects V in only ver-
tices of W . In particular, it is vertex-disjoint from VB ∪ VR, and hence it creates a
monochromatic Kn + Kn−1, which is a contradiction.

It follows that there exists a monochromatic copy of Kn−1 which intersects V in either
x or y, but no other vertices. Since it is disjoint from VB, we may assume that it is red. If
this red Kn−1 does not use z, however, then together with V ′R we have a red Kn + Kn−1,
which is a contradiction. Therefore, either xz or yz is red. Since x and y were an arbitrary
choice of two vertices from VR \ V ′R, it follows that all but at most one vertex of VR is
connected to z by a red edge.

That is, VR∪{z} hosts two red copies of Kn that intersect in n−1 vertices. Note that
if VR∪{z} forms in fact a red copy of Kn+1, then we are done by Lemma 6. Therefore, to
finish the argument, let x ∈ VR \V ′R such that the edge xz is blue or not present in G. As
noted, there is at most one such x. We apply Lemma 4 yet again to reach a contradiction.
Let y ∈ VR \ (V ′R ∪ {x}), set V0 := (VR ∪ VB) \ {x, y} and V := (VR ∪ V ′R ∪ VB) \ {x}.
Then |V | = 3n − 3 and |V0| = 2n − 2. By Lemma 4, there exists a monochromatic
copy of Kn−1, say on vertex set W , such that either W ∩ V = {y}, W ∩ V = {z}, or
W ∩ V ⊆ V \ (V0 ∪ {y, z}). If W ∩ V = {y}, then W is disjoint from V ′R ∪ VB and hence
forms a monochromatic copy of Kn + Kn−1 in the original colouring, a contradiction. If
W ∩ V = {z}, then W is disjoint from VB, and hence we may assume that it is red. But
then, W is either disjoint from VR and forms a red copy of Kn + Kn−1, or x ∈ W , and
hence the edge zx is red, a contradiction. Finally, if W ∩ V ⊆ V \ (V0 ∪ {y, z}), then W
together with V0 ∪ {y, z} forms a monochromatic copy of Kn + Kn−1.

We will now conclude the proof of the main result.

Proof of Theorem 1. Let n > 4, and let G be a graph such that G → Kn. Assume that
there exists a colouring of the edges of G without a monochromatic copy of Kn + Kn−1.
By Lemma 5, we can assume that there are two (not necessarily disjoint) sets VR and VB

of vertices such that G[VR] and G[VB] form a red and a blue copy of Kn, respectively.
By assumption, any other red (blue) copy of Kn intersects VR (VB) in at least two

vertices; in fact, by Lemma 7, any other red (blue) copy of Kn intersects VR (VB) in at
least three vertices. That is, every set WR ⊂ VR of size |WR| = n − 2 meets every red
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copy of Kn in at least one vertex, and every set WB ⊂ VB of size |WB| = n − 2 meets
every blue copy of Kn in at least one vertex.

If VR ∩ VB = ∅, fix two arbitrary subsets WR ⊂ VR and WB ⊂ VB, both of size
|WR| = |WB| = n − 2. If VR ∩ VB 6= ∅, let WB ⊆ VB be a set of size n − 2 such that
VR ∩ VB ⊆ WB, and let WR ⊆ VR be a subset of size n− 3 such that WR ∩ VB = ∅ (note
that |VR ∩ VB| = 1). In both cases, the sets WR ⊂ VR and WB ⊂ VB are disjoint and,
by the above discussion, any monochromatic copy of Kn meets WR ∪WB in at least one
vertex.

We now recolour the graph and show that the resulting colouring does not contain a
monochromatic copy of Kn. We may assume, without loss of generality, that all edges
in VR ∪ VB are present, since losing edges will only help prevent a monochromatic Kn

occurring. Let {xR, yR} = VR \ (WR ∪WB) and {xB, yB} = VB \ (WR ∪WB).

• If n = 4 and VR ∩ VB 6= ∅ (i.e. |WR| = 1), colour one edge between WR and WB

red, and the other one blue. Otherwise, colour the edges between WR and WB so
that for every v ∈ WR there are wr, wb ∈ WB such that vwr is red and vwb is blue,
and for every v ∈ WB there are wr, wb ∈ WR such that vwr is red and vwb is blue.1

• For all x ∈ WR, y ∈ VR, and z 6∈ VR ∪WB, colour the edge xy blue and colour the
edge xz red.

• For all x ∈ WB, y ∈ VB, and z 6∈ WR ∪ VB, colour the edge xy red and colour the
edge xz blue.

This recolouring is illustrated in Figure 5 (where we label as black those edges which
retain their original colouring).

Note that we only recolour edges incident to WR ∪ WB. Therefore, by our choice
of WR ∪ WB, any monochromatic copy of Kn (after recolouring the edges) must meet
WR ∪WB in at least one vertex.

Suppose now that a red Kn exists in the recoloured graph and uses vertices from WR

but not WB. Then it must use just one vertex from WR and n− 1 from G \ (VR ∪WB),
and hence we have a red Kn + Kn−1 in the original colouring. If a blue Kn exists and
uses vertices from WR but not WB, then it cannot use any vertices from {xB, yB} or
G \ (VR ∪ VB), and can only use at most one vertex from {xR, yR} (since the edge xRyR
remains red as in the original colouring). But this contradicts the fact that |WR| 6 n− 2.

Similarly, we can rule out the case that a monochromatic copy of Kn uses vertices from
WB but not WR. Therefore, if there is a monochromatic copy of Kn after recolouring the
edges, then it must use vertices from both WR and WB. Assume first that this copy is
red. Since all vertices in WB are connected to G \ (VR ∪ VB) via blue edges, the red copy
of Kn must lie entirely inside VR ∪ VB. But then, it can use at most one vertex from WR

and at most one of {xB, yB}. The remaining n − 2 vertices must come from WB, so we
must use all vertices from WB. However, in the case VR ∩ VB = ∅ or n > 5, every vertex
in WR sees at least one vertex of WB in blue. In the case n = 4, |WR| = 1 and |WB| = 2,

1This is clearly possible if |WR| , |WB | > 2, i.e. if VR ∩ VB = ∅ or n > 5.
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xB yB

yR
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WR
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Figure 5: The colouring for the proof of Theorem 1. Edges inside WB are red, edges inside
WR are blue. Dashed lines indicate red edges, straight lines indicate blue edges. Thin
grey edges retain their original colouring.

the two edges between WR and WB are of opposite colour, and hence, at most one vertex
of WB can contribute to a red K4.

A similar argument shows that we do not find a blue copy of Kn using vertices from
both WR and WB. We have therefore constructed a colouring of G which has no monochro-
matic Kn, contradicting the original Ramsey property of G and concluding the proof.

4 Ramsey equivalence of K3

In this section we give a proof of Theorem 3, a result of Szabó and Bodkin (see [2]). We
need to show that, if G→ K3 and G 9 K3 + K2, then K6 ⊂ G.

Proof of Theorem 3. Let G be a graph which is Ramsey for K3 and not Ramsey for
K3 + K2, and fix some colouring of G with no monochromatic copy of K3 + K2. We first
show that G must possess both a red copy of K3 and a blue copy of K3.

Without loss of generality, there is a red K3, say on vertex set VR = {xR, yR, zR}. We
now recolour the edges xRyR and xRzR blue, and colour all the edges from xR to G \ VR

red. It is now straightforward that a blue copy of K3 must be a blue copy in the original
colouring, and that a red copy of K3 forces either a monochromatic copy of K3 + K2 in
the original colouring, or it uses the edge yRzR and single new vertex, say vR. In this case,
we recolour once again in the following way, as indicated in Figure 6.

We colour the three-edge path (zR, xR, vR, yR) red, and the complement in Vr ∪ {vR}
blue. Furthermore, we colour all edges between {zR, yR} and G − (Vr ∪ {vR}) red. As
before, if there is now a blue K3, then it cannot use either of the vertices yR or zR, and
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xR

yR

vR

zR

Figure 6: Dashed edges are red, straight edges are blue.

hence it must have been already present in the original colouring of G. Otherwise, a red
K3 must use exactly two vertices from {xR, vR, yR, zR}. In particular, we have a red K2

that is either disjoint from {xR, yR, zR} or {vR, yR, zR}, and hence a red K3 + K2 in the
original colouring.

We have shown that there must be, in our coloured graph G, a red K3, say on VR, and
a blue K3, say on VB. We now show that we can assume that VR and VB are disjoint.

Suppose that our original choices are not, so that |VR ∪ VB| = 5. Suppose VR ∩ VB =
{x} and VR = {x, yR, zR} and VB = {x, yB, zB}. Clearly, any edges between {yR, zR} and
G \ (VR ∪ VB) must be red. If their neighbourhoods intersect in G \ (VR ∪ VB) we have
found another red K3, entirely disjoint from VB, and we may proceed. Otherwise, we may
assume that the neighbourhoods of yR and zR in G \ (VR ∪ VB) are disjoint. Similarly, we
can assume that the neighbourhoods of yB and zB in G \ (VR ∪ VB) are disjoint. We now
colour the edges incident to VR∪VB as indicated in Figure 7. Since G→ K3, there must be
a monochromatic copy of K3 after recolouring. Furthermore, it must intersect VR ∪ VB in
exactly two vertices, since the original colouring would contain a monochromatic K3 +K2

otherwise. If it is a red K3, say, then it must therefore use yR, zR, and a single vertex
from G \ (VR ∪ VB), which contradicts the fact that their neighbourhoods are disjoint as
discussed above, and we argue similarly if we have found a blue K3.

We may therefore assume that we have produced two disjoint sets, VR and VB, each
of which spans a red and blue K3 respectively.

Suppose first that there are two vertex-disjoint edges missing from VR ∪ VB. We then
recolour the edges incident to VR ∪VB as in Figure 8 (where, as usual, a red (blue) vertex
represents the fact that the edges between that vertex and G \ (VR ∪VB) are coloured red
(blue)). It is easy to check that this colouring of VR ∪VB contains no monochromatic K3.
Moreover, there are no blue edges between blue vertices, and, vice versa, no red edges
between red vertices. It follows that a monochromatic copy of K3 in this recoloured G
must use at least two vertices from G \ (VR ∪ VB), which would create a monochromatic
K3 + K2 in the original colouring of G, a contradiction.

We may suppose, therefore, that there is a vertex, without loss of generality say
xR ∈ VR, such that every missing edge in VR ∪ VB is adjacent to xR. Furthermore, we
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zR

zB

yB

yR

x

Figure 7: The recolouring when VR ∩ VB = {x}. The edges between {yR, zR} and G −
(VR ∪ VB) are red, the edges between {yB, zB} and G− (VR ∪ VB) are blue. Dashed edges
are red, straight edges are blue.

may suppose that at least one edge is missing, or else we have a K6 in G as required. Let
xRxB be some missing edge, where xB ∈ VB.

Assume first that there is a vertex, say w, in G \ (VR ∪ VB) that has at least five
neighbours in VR ∪ VB. If it is adjacent to every vertex of (VR ∪ VB) \ {xR} then this
creates a K6, as required. Hence, we can assume that wxR is an edge in G. Furthermore,
all edges between w and VR (if present in G) must be red, and all edges between w and VB

must be blue (as otherwise they create a monochromatic copy of K3 + K2 in the original
colouring).

Suppose that w is adjacent to every vertex of VR and to two vertices of VB, say a and
b, and that the edge wc is missing. If either of the edges xRa or xRb is missing, then by
considering {w, xR, yR}∪VB we have a similar situation as above – namely, disjoint vertex
sets of a red and a blue copy of K3 with two vertex disjoint edges missing, and we are
done. Otherwise, we have a K6 in {w, xR, yR, zR, a, b}. Suppose now that w is adjacent to
every vertex of VB and xR and some other vertex of VR, say a, and the edge wb is missing,
where b ∈ VR. As above, we are now done by considering VR ∪ {w, xB, yB}, since wb and
xBxR are two independent edges missing.

For the remainder of the argument, we may therefore assume that every vertex of
G \ (VR ∪ VB) has at most four neighbours in VR ∪ VB. We now describe a recolouring
of the edges incident to VR ∪ VB such that there is no monochromatic K3 that uses at
least two vertices from VR ∪ VB. Recolour the interior edges of VR ∪ VB as in Figure 9.
Let now w ∈ G \ (VR ∪ VB) and let Nw ⊆ VR ∪ VB be any set of four vertices containing
N(w)∩(VR∪VB). Then, either (1), {xR, xB} 6⊆ Nw and we see a red copy of the three-edge
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Figure 8: The two thin grey edges are absent (other edges may or may not be present).
Dashed edges are red, straight edges are blue.

path P3 and a blue copy of P3 in Nw, or (2), {xR, xB} ⊆ Nw, say Nw = {a, b, xR, xB}, for
some a, b, and we see a monochromatic copy of C4 or a monochromatic star K1,3 with a
being the centre of the star.

In case (1), say (a, b, c, d) forms the red P3 in Nw, then we colour the edges wb and wc
blue, and the edges wa and wd red (if present in G). In case (2), we colour the edge wa,
wxR and wxB the opposite colour of axR and wb the same colour as axR.

Note first that the colouring of VR ∪ VB does not contain a monochromatic triangle.
Furthermore, it is evident that we do not create a monochromatic triangle on vertices
w, x, y with x, y ∈ VR ∪ VB and w 6∈ VR ∪ VB, since no such w sees both vertices of a red
edge in red nor both vertices of a blue edge in blue.

However, since G→ K3, there must be an edge vw with v, w 6∈ VR∪VB, which creates
a monochromatic K3 + K2 in the original colouring, a contradiction.

5 Further remarks

Theorem 2 states that the removal of any 2n− 2 vertices of a graph G that is Ramsey for
Kn leaves a graph that is Ramsey for Kn−1. We wonder whether 2n−2 can be replaced by
2n in that statement, since our main result would then follow immediately from Lemma 5.
More generally, it is natural to ask the following.

Question 8. What is the maximum number f(n) of vertices that can be removed from
any graph Ramsey for Kn such that the remainder is Ramsey for Kn−1?

Trivially, f(n) 6 R(n) − R(n − 1) which, together with our lower bound of 2n − 2,
implies that f(3) = 4 and that 6 6 f(4) 6 12. To the best of our knowledge, nothing
better is known.
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Figure 9: Straight edges are blue, dashed edges are red. The thin grey edge is not present.

We have shown that Kn and Kn+Kn−1 are Ramsey equivalent for n > 4. Furthermore,
we have seen that K6 is the only obstruction to the Ramsey equivalence of K3 and K3+K2,
i.e. any graph G that satisfies G→ K3 and G 9 K3 +K2 must contain K6 as a subgraph.

The only pairs of graphs (H1, H2) known to be Ramsey equivalent are of the form H1
∼=

Kn and H2
∼= Kn + H3, where H3 is a graph of clique number less than n. Furthermore,

it is known ([6] and [7]) that the only connected graph that is Ramsey equivalent to Kn

is the clique Kn itself.
It is an open question, first posed in [6], whether there are two connected non-

isomorphic graphs H1 and H2 that are Ramsey equivalent. It follows from [7] that, if
such a pair exist, they must have the same clique number. In [1] it is shown that they
must also have the same chromatic number, under the assumption that one of the two
graphs satisfies an additional property, called clique-splittability.

To tackle problems on Ramsey equivalence, a weaker concept was proposed by Szabó
[9]. We will first introduce some necessary notation. We say that G is Ramsey minimal for
H if G is Ramsey for H and no proper subgraph of G is Ramsey for H. Denote byM(H)
the set of all graphs which are Ramsey minimal for H, and by R(H) the set of all graphs
which are Ramsey for H. Finally, let D(H1, H2) := (M(H1)\R(H2))∪ (M(H2)\R(H1))
be the class of graphs G that are Ramsey minimal for H1, but which are not Ramsey
for H2, or vice versa. Equivalently, D(H1, H2) is the set of minimal obstructions to the
Ramsey equivalence of H1 and H2.

In particular, H1 and H2 are Ramsey equivalent if and only if D(H1, H2) = ∅. We
say that H1 and H2 are Ramsey close, denoted by H1 ∼c H2, if D(H1, H2) is finite. We
stress that this is not an equivalence relation: reflexivity and symmetry are trivial, but
transitivity does not hold, since every graph containing at least one edge is close to K2.

Two graphs may be Ramsey close in a rather trivial sense if M(H1) and M(H2) are
both finite, or if H2 ⊂ H1 and M(H2) is finite. Graphs such that M(H) is finite are
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known as Ramsey-finite graphs. The class of Ramsey-finite graphs has been studied quite
intensively; see, for example, [3] for some results and further references. In particular, it
has been shown that the only Ramsey-finite graphs are disjoint unions of stars.

If one wishes to prove that two graphs are Ramsey equivalent, a possible first step is
to show that the two graphs are Ramsey close. Szabó [9] has posed the following weaker
version of the open problem mentioned earlier.

Question 9. Is there a pair of non-isomorphic, Ramsey-infinite, connected graphs which
are Ramsey close?

We suspect that the answer to Question 9 is negative, even with this weakening of the
notion of Ramsey equivalence.

Nešetřil and Rödl [8] proved that if ω(H) > 3 then there exist infinitely many Ramsey-
minimal graphs G ∈ M(H) such that ω(H) = ω(G). In particular, it follows that if
ω(G1) > 3 and ω(G2) > 3, and G1 ∼c G2, then ω(G1) = ω(G2).

Theorem 3 states that, although K3 and K3 + K2 are not Ramsey equivalent, they
are Ramsey close. Indeed, the only graph G that is Ramsey minimal for K3 and sat-
isfies G 9 K3 + K2 is K6 itself. This is the only example of a pair of Ramsey-infinite
graphs which are Ramsey close but not Ramsey equivalent that we know of. In this case,
|D(K3, K3 + K2)| = 1. We pose the following.

Question 10. For any integer k > 2, is there a pair of Ramsey-infinite graphs H1 and
H2 such that |D(H1, H2)| = k?

An affirmative answer, which we believe to exist, would in particular imply the fol-
lowing conjecture.

Conjecture 11. There are infinitely many pairs of Ramsey-infinite graphs which are
Ramsey close but not Ramsey equivalent.

In an earlier draft of this paper, we posed the following question.

Question 12. Are Kn and Kn + Kn Ramsey close for n > 3?

Shagnik Das observed that the answer is no: any graph that is Ramsey-minimal for Kn

is not Ramsey for Kn + Kn and if n > 3 then there are infinitely many Ramsey-minimal
graphs for Kn.
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