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ABSTRACT: We present data which, to the best of our knowledge,
includes all known nontrivial values and bounds for specific graph,
hypergraph and multicolor Ramsey numbers, where the avoided
graphs are complete or complete without one edge. Many results per-
taining to other more studied cases are also presented. We give refer-
ences to all cited bounds and values, as well as to previous similar
compilations. We do not attempt complete coverage of asymptotic
behavior of Ramsey numbers, but concentrate on their specific values.
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1. Scope and Notation

There is a vast literature on Ramsey type problems starting in 1930 with the original
paper of Ramsey [Ram]. Graham, Rothschild and Spencer in their book [GRS] present an
exciting development of Ramsey Theory. The subject has grown amazingly, in particular with
regard to asymptotic bounds for various types of Ramsey numbers (see the survey papers
[GrRö, Nes̆, ChGra2]), but the progress on evaluating the basic numbers themselves has been
very unsatisfactory for a long time. In the last two decades, however, considerable progress
has been obtained in this area, mostly by employing computer algorithms. The few known
exact values and several bounds for different numbers are scattered among many technical
papers. This compilation is a fast source of references for the best results known for specific
numbers. It is not supposed to serve as a source of definitions or theorems, but these can be
easily accessed via the references gathered here.

Ramsey Theory studies conditions when a combinatorial object contains necessarily some
smaller given objects. The role of Ramsey numbers is to quantify some of the general existen-
tial theorems in Ramsey Theory.

Let G 1,G 2, . . . , Gm be graphs or s -uniform hypergraphs (s is the number of vertices
in each edge). R (G 1,G 2, . . . , Gm ; s ) denotes the m -color Ramsey number for s -uniform
graphs/hypergraphs, avoiding Gi in color i for 1 ≤ i ≤ m . It is defined as the least integer n
such that, in any coloring with m colors of the s -subsets of a set of n elements, for some i
the s -subsets of color i contain a sub-(hyper)graph isomorphic to Gi (not necessarily
induced). The value of R (G 1,G 2, . . . , Gm ; s ) is fixed under permutations of the first m
arguments.

If s = 2 (standard graphs) then s can be omitted. If Gi is a complete graph Kk , then we
can write k instead of Gi , and if Gi =G for all i we can use the abbreviation Rm (G ; s ) or
Rm (G ). For s = 2, Kk − e denotes a Kk without one edge, and for s = 3, Kk − t denotes a Kk
without one triangle (hyperedge). Pi is a path on i vertices, Ci is a cycle of length i , and Wi
is a wheel with i −1 spokes, i.e. a graph formed by some vertex x , connected to all vertices of
some cycle Ci −1. Kn ,m is a complete n by m bipartite graph, in particular K 1,n is a star
graph. The book graph Bi =K 2 +Ki =K 1 +K 1,i has i + 2 vertices, and can be seen as i tri-
angular pages attached to a single edge. The fan graph Fn is defined by Fn = K 1 + nK 2. For
a graph G , n (G ) and e (G ) denote the number of vertices and edges, respectively. Finally, let
χ(G ) be the chromatic number of G , and let nG denote n disjoint copies of G .

Section 2 contains the data for the classical two color Ramsey numbers R (k , l ) for com-
plete graphs, and section 3 for three much studied two color cases: when the avoided graphs
are complete or have the form Kk − e , but not both are complete, complete bipartite graphs,
and cycles, or cycles versus complete graphs. Section 4 lists other often studied two color
cases for general graphs. The multicolor and hypergraph cases are gathered in sections 5 and
6, respectively. Finally, section 7 gives pointers to cumulative data and to the previous sur-
veys.
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2. Classical Two Color Ramsey Numbers

2.1. Upper and lower bounds on R (k , l )

l 3 4 5 6 7 8 9 10 11 12 13 14 15
k

40 46 52 59 66 73
3 6 9 14 18 23 28 36

43 51 59 69 78 88
35 49 56 73 92 97 128 133 141 153

4 18 25
41 61 84 115 149 191 238 291 349 417

43 58 80 101 125 143 159 185 209 235 265
5

49 87 143 216 316 442 848 1461
102 113 127 169 179 253 262 317 401

6
165 298 495 780 1171 2566 5033

205 216 233 289 405 416 511
7

540 1031 1713 2826 4553 6954 10581 15263 22116
282 317 817 861

8
1870 3583 6090 10630 16944 27490 41525 63620

565 580
9

6588 12677 22325 39025 64871 89203
798 1265

10
23556 81200

Table I. Known nontrivial values and bounds for two color
Ramsey numbers R (k , l ) = R (k , l ; 2).

l 4 5 6 7 8 9 10 11 12 13 14 15
k

Ka2 GR Ka2 Ex5 Ka2 Ex12 Piw1 Ex8 WW
3 GG GG Kéry

GY MZ GR RK2 RK2 Les RK2 RK2 Les
Ka1 Ex9 Ex3 Ex15 Ex17 HaKr 2.3.e SLL2 2.3.e XXR XXR

4 GG
MR4 MR5 Mac Mac Mac Mac Spe3 Spe3 Spe3 Spe3 Spe3
Ex4 Ex9 CET HaKr Ex17 Ex17 Ex17 Ex17 Ex17 Ex17 Ex17

5
MR5 HZ1 Spe3 Spe3 Mac Mac HW+ HW+

Ka1 Ex17 XXR XXER Ex17 XXR 2.3.e XXER 2.3.h
6

Mac Mac Mac Mac Mac HW+ HW+
She1 2.3.e 2.3.g 2.3.h XXER 2.3.e XXR

7
Mac Mac HZ1 Mac HW+ HW+ HW+ HW+ HW+

BR XXER XXER 2.3.h
8

Mac Ea1 HZ1 HW+ HW+ HW+ HW+ HW+
She1 2.3.e

9
ShZ1 Ea1 HW+ HW+ HW+ HW+

She1 2.3.h
10

Shi2 Yang

References for Table I. HW+ abbreviates HWSYZH.
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We split the data into the table of values and a table with corresponding references. In
Table I, known exact values appear as centered entries, lower bounds as top entries, and upper
bounds as bottom entries.

The task of proving R (3, 3) ≤ 6 was the second problem in Part I of the William Lowell
Putnam Mathematical Competition held in March 1953 [Bush].

All the critical graphs for the numbers R (k , l ) (graphs on R (k , l ) − 1 vertices without Kk
and without Kl in the complement) are known for k = 3 and l = 3, 4, 5 [Kéry], 6 [Ka2], 7
[RK3, MZ], and there are 1, 3, 1, 7 and 191 of them, respectively. All (3, k )-graphs, for
k ≤ 6, were enumerated in [RK3], and all (4,4)-graphs in [MR2]. There exists a unique criti-
cal graph for R (4,4) [Ka2]. There are 430215 such graphs known for R (3,8) [McK], 1 for
R (3,9) [Ka2] and 350904 for R (4, 5) [MR4], but there might be more of them. In [MR5] evi-
dence is given for the conjecture that R (5, 5) = 43 and that there exist 656 critical graphs on
42 vertices. The graphs constructed by Exoo in [Ex9, Ex12, Ex13, Ex14, Ex15, Ex16, Ex17],
and some others, are available electronically from http://ginger.indstate.edu/ge/RAMSEY.

The construction by Mathon [Mat] and Shearer [She1] (see also sections 2.3.i, 5.2.h and
5.2.i), using data obtained by Shearer [She1], gives the following lower bounds for higher
diagonal numbers: R (11,11) ≥ 1597, R (13,13) ≥ 2557, R (14,14) ≥ 2989, R (15,15) ≥ 5485,
and R (16,16) ≥ 5605. Similarly, R (17,17) ≥ 8917, R (18,18) ≥ 11005 and R (19,19) ≥ 17885
were obtained in [LSL]. The same approach does not improve on an easy bound
R (12,12) ≥ 1637 [XXR], which can be obtained by applying twice 2.3.e. Only some of the
higher bounds implied by 2.3.* are shown, and more similar bounds could be easily derived.
In general, we show bounds beyond the contiguous small values if they improve on results
previously reported in this survey or published elsewhere. Some easy upper bounds implied
by 2.3.a are marked as [Ea1].

Cyclic (or circular ) graphs are often used for Ramsey graph constructions. Several
cyclic graphs establishing lower bounds were given in the Ph.D. dissertation by J.G.
Kalbfleisch in 1966, and many others were published in the next few decades (see [RK1]).
Only recently Harborth and Krause [HaKr] presented all best lower bounds up to 102 from
cyclic graphs avoiding complete graphs. In particular, no lower bound in Table I can be
improved with a cyclic graph on less than 102 vertices. See also item 2.3.k and section 4.16
[HaKr].

The claim that R (5, 5) = 50 posted on the web [Stone] is in error, and despite being
shown so more than once, this incorrect value is being cited by some authors. The bound
R (3, 13) ≥ 60 [XZ] cited in the 1995 version of this survey was shown to be incorrect in
[Piw1]. Another incorrect construction for R (3, 10) ≥ 41 was described in [DuHu].

There are really only two general upper bound inequalities useful for small parameters,
namely 2.3.a and 2.3.b. Stronger upper bounds for specific parameters were difficult to
obtain, and they often involved massive computations, like those for the cases of (3,8) [MZ],
(4,5) [MR4], (4,6) and (5,5) [MR5]. The bound R (6, 6) ≤ 166, only 1 more than the best
known [Mac], is an easy consequence of a theorem in [Walk] (2.3.b) and R (4, 6) ≤ 41. T.
Spencer [Spe3], Mackey [Mac], and Huang and Zhang [HZ1], using the bounds for minimum
and maximum number of edges in (4,5) Ramsey graphs listed in [MR3, MR5], were able to
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establish new upper bounds for several higher Ramsey numbers, improving on all of the pre-
vious longstanding results by Giraud [Gi3, Gi5, Gi6].

We have recomputed the upper bounds in Table I marked [HZ1] using the method from
the paper [HZ1], because the bounds there relied on an overly optimistic personal communica-
tion from T. Spencer. Further refinements of this method are studied in [HZ2, ShZ1, Shi2].
The paper [Shi2] subsumes the main results of the manuscripts [ShZ1, Shi2]. The upper
bound marked in Table I [Yang] was obtained by Yang using the method of [HWSYZH]
(abbreviated in the table as HW+).

2.2. Lower bounds on R (k , l ), higher parameters

The lower bounds marked [XXR], [XXER], 2.3.e and 2.3.h need not to be cyclic.
Several of the Cayley colorings from [Ex17] are also non-cyclic. All other lower bounds listed
in Table II were obtained by construction of cyclic graphs.

l 15 16 17 18 19 20 21 22 23
k

73 79 92 99 106 111 122 125 136
3

WW WW WWY1 Ex17 WWY1 Ex17 WWY1 WWY1 WWY1
153 163 182 187 213 234 242 282

4
XXR Ex17 LSS1 2.3.e 2.3.g Ex17 SLZL SL
265 289 313 365 393 421 441 485 509

5
Ex17 2.3.h 2.3.h 2.3.h 2.3.h 2.3.h 2.3.h 2.3.h 2.3.h
401 434 548 614 710 878 1070

6
2.3.h SLLL SLLL SLLL SLLL SLLL SLLL

711 725 908 1214
7

2.3.g 2.3.h SLLL SLLL
861 929 1045 1236 1617

8
2.3.h 2.3.h 2.3.g 2.3.g 2.3.h

Table II. Known nontrivial lower bounds for higher two color
Ramsey numbers R (k , l ), with references.

The graphs establishing lower bounds marked 2.3.g can be constructed by using
appropriately chosen graphs G and H with a common m -vertex induced subgraph, similarly
as it was done in several cases in [XXR].

Exoo in [Ex15] gives the bounds R (3, 27) ≥ 158 and R (3, 31) ≥ 198. The constructions
establishing R (3, 24) ≥ 140, R (3, 25) ≥ 143, R (3, 26) ≥ 150, R (3, 28) ≥ 164, R (3, 29) ≥ 174,
R (3, 31) ≥ 198 and R (3, 32) ≥ 212 are presented in [LSWL], [LSWL], [SLL1], [WSLLH],
[SLL3], [LSS1] and [LSZL], respectively. In a recent manuscript [WSLX], the following
better lower bounds for the latter are claimed: R (3, 24) ≥ 143, R (3, 25) ≥ 153, R (3, 26) ≥ 159,
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R (3, 27) ≥ 167, R (3, 28) ≥ 172, R (3, 29) ≥ 182, and R (3, 30) ≥ 187.
Yu [Yu2] constructed a special class of triangle-free cyclic graphs establishing several

lower bounds for R (3, k ), for k ≥ 61. Only one of these bounds, R (3, 61) ≥ 479, cannot be
easily improved by the inequality R (3, 4k + 1) ≥ 6R (3, k + 1) − 5 from [CCD] (2.3.c) and data
from Tables I and II. Finally, for higher parameters we mention two more cases which
improve on bounds listed in earlier revisions: R (9, 17) ≥ 1411 is given in [XXR] and
R (10, 15) ≥ 1265 can be obtained by using 2.3.h.

In general, one can expect that the lower bounds in Table II are weaker than those in
Table I, in the sense that with some work many of them should not be hard to improve, in
contrast to the bounds in Table I, especially smaller ones.

2.3. Other results on R (k , l )

(a) R (k , l ) ≤ R (k −1, l ) +R (k , l −1), with strict inequality when both terms on the right hand
side are even [GG]. There are obvious generalizations of this inequality for avoiding
graphs other than complete.

(b) R (k , k ) ≤ 4R (k , k − 2) + 2 [Walk].
(c) Explicit construction for R (3, 4k + 1) ≥ 6R (3, k + 1) − 5, for all k ≥ 1 [CCD].
(d) Constructive results on triangle-free graphs in relation to the case of R (3, k ) [BBH1,

BBH2, Fra1, Fra2, FrLo, Gri, KM1, Loc, RK3, RK4, Stat, Yu1].
(e) Bounds for the difference between consecutive Ramsey numbers, in particular the bound

R (k , l ) ≥ R (k , l − 1) + 2k − 3 for k , l ≥ 3 [BEFS].
(f) By taking a disjoint union of two critical graphs one can easily see that R (k , p ) ≥ s and

R (k , q ) ≥ t imply R (k , p + q −1) ≥ s + t −1. Xu and Xie [XX1] improved this construc-
tion to yield better general lower bounds, in particular R (k , p + q −1) ≥ s + t + k − 3.

(g) For 2 ≤ p ≤ q and 3 ≤ k , if (k , p )-graph G and (k , q )-graph H have a common induced
subgraph on m vertices without Kk −1, then R (k , p + q − 1)> n (G ) + n (H ) +m . In partic-
ular, this implies the bounds R (k , p + q − 1) ≥R (k , p ) +R (k , q ) + k − 3 and
R (k , p + q − 1) ≥ R (k , p ) +R (k , q ) + p − 2 [XX1, XXR].

(h) R (2k − 1, l ) ≥ 4R (k , l − 1) −3 for l ≥ 5 and k ≥ 2, and in particular for k = 3 we obtain
R (5, l ) ≥ 4R (3, l − 1) −3 [XXER].

(i) If the quadratic residues Paley graph Qp of prime order p = 4t + 1 contains no Kk , then
R (k , k ) ≥ p + 1 and R (k + 1, k + 1) ≥ 2p + 3 [She1, Mat]. Data for larger p was
obtained in [LSL]. See also items 5.2.h and 5.2.i for similar multicolor results.

(j) Study of Ramsey numbers for large disjoint unions of graphs [Bu1, Bu9], in particular
R (nKk , nKl ) = n (k + l − 1) +R (Kk −1,Kl −1) − 2, for n large enough [Bu8].

(k) R (k , l ) ≥ L (k , l ) + 1, where L (k , l ) is the maximal order of any cyclic (k , l )-graph. A
compilation of many best cyclic bounds was presented in [HaKr].
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(l) The graphs critical for R (k , l ) are k − 1 vertex connected and 2k − 4 edge connected, for
k , l ≥ 3 [BePi].

(m) Two color lower bounds can be obtained by using items 5.2.k, 5.2.l and 5.2.m with
r = 2. Some generalizations of these were obtained in [ZLLS].

In the last six items of this section we only briefly mention some pointers to the litera-
ture dealing with asymptotics of Ramsey numbers. This survey was designed mostly for small,
finite, and combinatorial results, but still we wish to give the reader some useful and represen-
tative references to more traditional papers looking first of all at the infinite.

(n) In a 1995 breakthrough Kim proved that R (3, k ) = Θ(k 2/ log k ) [Kim].
(o) Explicit triangle-free graphs with independence k on Ω(k 3/ 2 ) vertices [Alon2, CPR].
(p) Other general and asymptotic results on triangle-free graphs in relation to the case of

R (3, k ) [AKS, Alon2, CCD, CPR, Gri, FrLo, Loc, She2].
(q) In 1947, Erdös gave an amazingly simple probabilistic proof that R (k , k ) ≥ c .k 2 k / 2

[Erd1]. Spencer [Spe1] improved the constant in the last result. More probabilistic
asymptotic lower bounds for other Ramsey numbers were obtained in [Spe1, Spe2,
AlPu].

(r) Other asymptotic bounds for R (k , k ) can be found, for example, in [Chu3, McS] (lower
bound) and [Tho] (upper bound), and for many other bounds in the general case of
R (k , l ) consult [Spe2, GRS, GrRö, Chu4, ChGra2, LiRZ1, AlPu, Kriv].

(s) Explicit construction of a graph with clique and independence k on 2c log
2k / log log k ver-

tices by Frankl and Wilson [FraWi]. Further constructions by Chung [Chu3] and Grol-
musz [Grol1, Grol2]. Explicit constructions like these are usually weaker than known
probabilistic results.
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3. Two Colors - Three Most Studied Cases

3.1. Dropping one edge from complete graph

This section contains known values and nontrivial bounds for the two color case when the
avoided graphs are complete or have the form Kk − e , but not both are complete.

H K 3 − e K 4 − e K 5 − e K 6 − e K 7 − e K 8 − e K 9 − e K 10 − e K 11 − e
G

K 3 − e 3 5 7 9 11 13 15 17 19

37 42K 3 5 7 11 17 21 25 31 38 47
29 34 41K 4 − e 5 10 13 17 28 38

27 37K 4 7 11 19 36 52
31 40K 5 − e 7 13 22 39 66

30 43K 5 9 16 34 67 112
31 45 59K 6 − e 9 17 39 70 135
37K 6 11 21 55 116 205
40 59K 7 − e 11 28 66 135 251

28 51K 7 13 34 88 202

Table III. Two types of Ramsey numbers R (G ,H ),
includes all known nontrivial values.

The exact values in Table III involving K 3 − e are trivial, since one can easily see that
R (K 3 − e ,Kk ) = R (K 3 − e ,Kk +1 − e ) = 2k − 1, for all k ≥ 2. Other bounds (not shown in
Table III) can be obtained by using Table I, an obvious generalization of the inequality
R (k , l ) ≤ R (k −1, l ) + R (k , l −1), and by monotonicity of Ramsey numbers, in this case
R (Kk −1,G ) ≤ R (Kk − e ,G ) ≤ R (Kk ,G ). The upper bounds from the manuscripts [ShZ1,
ShZ2] are subsumed by a later article [Shi2].

All (K 3,Kl − e )-graphs for l ≤ 6 have been enumerated [Ra1]. For the following
numbers it was established that the critical graphs are unique: R (K 3,Kl − e ) for l = 3 [Tr], 6
and 7 [Ra1], R (K 4 − e ,K 4 − e ) [FRS2], R (K 5 − e ,K 5 − e ) [Ra3] and R (K 4 − e ,K 7 − e )
[McR]. The number of R (K 3,Kl − e )-critical graphs for l = 4, 5 and 8 is 4, 2 and 9,
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respectively [MPR], and there are at least 6 such graphs for R (K 3,K 9 − e ) [Ra1]. All the
critical graphs for the cases R (K 4 − e ,K 4 ) [EHM1], R (K 4 − e ,K 5 ) and R (K 5 − e ,K 4 ) [DzFi]
are known, and there are 5, 13 and 6 of them, respectively.

H K 4 − e K 5 − e K 6 − e K 7 − e K 8 − e K 9 − e K 10 − e K 11 − e
G

MPR WWY2K 3 CH2 Clan FRS1 GH Ra1 Ra1 MPR MPR
Ea1 Ex14 Ex14K 4 − e CH1 FRS2 McR McR HZ2

Ex11 Ex14K 4 CH2 EHM1 Ea1 HZ2
Ex14 Ex14K 5 − e FRS2 CEHMS Ea1 HZ2

Ex8 Ea1K 5 BH Ex8 HZ2 HZ2
Ex14 Ex14 Ex14K 6 − e McR Ea1 HZ2 HZ2
Ex14K 6 McN Ea1 HYZ ShZ2
Ex14 Ex14K 7 − e McR HZ2 HZ2 ShZ1

Ea1 Ex14K 7 Ea1 ShZ2 HYZ

References for Table III.

The bound R (K 3,K 12 − e ) ≥ 46 is given in [MPR]. Wang, Wang and Yan in [WWY2]
constructed cyclic graphs showing R (K 3,K 13 − e ) ≥ 54, R (K 3,K 14 − e ) ≥ 59 and
R (K 3,K 15 − e ) ≥ 69.

The upper bounds in [HZ2] were obtained by a reasoning generalizing the bounds for
classical numbers in [HZ1]. Several other results from section 2.3 apply, though checking in
which situation they do may require looking inside the proofs whether they still hold for
Kn − e .

3.2. Complete bipartite graphs

NOTE: This subsection gathers information on Ramsey numbers where specific bipartite
graphs are avoided in a coloring of Kn (as everywhere in this survey), in contrast to often stu-
died bipartite Ramsey numbers (not covered in this survey) where the initial coloring is of a
bipartite graph Kn ,m .
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Numbers
The following tables IVa and IVb gather information mostly from the surveys by Lortz and
Mengersen [LoM3, LoM4]. All cases involving K 1,2 = P 3 are solved by a formula for
R (P 3,G ), holding for all isolate-free graphs G , derived in [CH2]. All star versus star
numbers are given by 3.2.a.

p , q 1, 2 1, 3 1, 4 1, 5 1, 6 2, 2 2, 3 2, 4 2, 5 3, 3 3, 4
m , n

4 6 7 8 9 6
2, 2

CH2 CH2 Par3 Par3 FRS4 CH1
5 7 9 10 11 8 10

2, 3
CH2 FRS4 Stev FRS4 FRS4 HaMe4 Bu4
6 8 9 11 13 9 12 14

2, 4
CH2 HaMe3 Stev HaMe4 LoM4 HaMe4 ExRe EHM2
7 9 11 13 14 11 13 16 18

2, 5
CH2 HaMe3 Stev Stev LoM4 HaMe4 LoM3 LoM1 EHM2

7 8 11 12 13 11 13 16 18 18
3, 3

CH2 HaMe3 LoM4 LoM4 LoM4 Lortz HaMe3 LoM4 LoM4 HaMe3
7 9 11 13 14 11 14 ≤ 19 ≤ 21 ≤ 25 ≤ 30

3, 4
CH2 HaMe3 LoM4 LoM4 LoM4 Lortz LoM4 LoM4 LoM4 LoM2 LoM2
9 10 14 ≤ 28 ≤ 33

3, 5
CH2 HaMe3 HaMe4 LoM2 LoM2

Table IVa. Ramsey numbers R (Km , n ,Kp , q ) ,
for published small cases, with references.

m 2 3 4 5 6 7 8 9 10 11
n

12 14 17 20 21
6

HaMe4 LoM3 LoM3 LoM1 EHM2
14 17 19 21 24 26

7
HaMe4 LoM3 LoM3 LoM3 LoM1 EMH2

15 18 20 21-23 24-25 28 30
8

HaMe4 LoM3 LoM3 LoM3 LoM3 LoM1 EMH2
16 19 22 22-25 24-27 28-29 32 33

9
HaMe4 LoM3 LoM3 LoM3 LoM3 LoM3 LoM1 EHM2

17 21 24 27 27-29 28-31 32-33 36 38
10

HaMe4 LoM3 LoM3 LoM3 LoM3 LoM3 LoM3 LoM1 EHM2
18 ≤ 35 36-37 40 42

11
HaMe4 LoM3 LoM3 LoM1 EHM2

Table IVb. Known Ramsey numbers R (K 2, n ,K 2,m ) ,
for 6 ≤ n ≤ 11, 2 ≤ m ≤ 11, with references.
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R (K 2,3,K 1,7 ) = 13 [Par4]
R (K 2,2,K 1,15 ) = 20 [La2]
R (K 2,2,K 4,4 ) = 14 [HaMe4]
R (K 3,5,K 3,5 ) ≤ 38 [LoM2]
R (K 4,4,K 4,4 ) ≤ 62 [LoM2]
R (K 1,4,K 1,2,3 ) = 11 [GuSL]
R (K 1,4,K 2,2,2 ) = 11 [GuSL]

- The next few easily computed values of R (K 1,n ,K 2,2 ), extending data in the first row of
Table IVa, are 13, 14, 21 and 22 for n equal to 9, 10, 16 and 17, respectively. See func-
tion f (n ) in 3.2.c below.

- The values and bounds for higher cases of R (K 2,2,K 2,n ) are 20, 22, 22/23, 22/24, 25, 26,
27/28, 28/29, 30 and 30 for 12 ≤ n ≤ 21 , respectively, and for R (K 2,2,K 3,n ) are 15, 16,
17, 20 and 22 for 6 ≤ n ≤ 10 , respectively [HaMe4]. See Tables IVa and IVb for the
smaller cases.

- R (K 2,n ,K 2,n ) is equal to 46, 50, 54, 57 and 62 for 12 ≤ n ≤ 16 , respectively.
The first open diagonal case is 65 ≤ R (K 2,17,K 2,17 ) ≤ 66 [EHM2].
The status of all higher cases for n < 30 is listed in [LoM1].

General results

(a) R (K 1,n ,K 1,m ) = n +m − ε, where ε = 1 if both n and m are even and ε = 0 otherwise
[Har1]. It is also a special case of multicolor numbers for stars obtained in [BuRo1].

(b) R (K 1,3,Km , n ) = m + n + 2 for m , n ≥ 1 [HaMe3].
(c) R (K 1,n ,K 2,2 ) = f (n ) ≤ n + √ n + 1, with f (q 2 ) = q 2 + q + 1 and f (q 2 + 1 ) = q 2 + q + 2

for every q which is a prime power [Par3]. Furthermore, f (n ) ≥ n + √ n − 6n 11 / 40
[BEFRS5]. For more bounds and values of f (n ) see [Par5, Chen, ChenJ].

(d) R (K 1,n + 1,K 2,2 ) ≤ R (K 1,n ,K 2,2 ) + 2 [Chen].
(e) R (K 2,λ+1,K 1,v −k +1 ) is either v + 1 or v + 2 if there exists a (v , k , λ)-difference set. This

and other related results are presented in [Par4, Par5]. See also [GoCM, GuLi].
(f) R (K 2,n ,K 2,n ) ≤ 4n − 2 for all n ≥ 2 , and the equality holds iff a strongly regular

(4n − 3, 2n − 2, n − 2, n − 1 )-graph exists [EHM2].
(g) Conjecture that 4n − 3 ≤ R (K 2,n ,K 2,n ) ≤ 4n − 2 for all n ≥ 2. Many special cases are

solved and several others are discussed in [LoM1].
(h) R (K 2,n −1,K 2,n ) ≤ 4n − 4 for all n ≥ 3 , with the equality if there exists a symmetric

Hadamard matrix of order 4n − 4. There are only 4 cases in which the equality does not
hold for 3 ≤ n ≤ 58, namely 30, 40, 44 and 48 [LoM1].

(i) R (K 2,n −s ,K 2,n ) ≤ 4n − 2s − 3 for s ≥ 2 and n ≥ s + 2 , with the equality in many cases
involving Hadamard matrices or strongly regular graphs. Asymptotics of R (K 2,n ,K 2,m )
for m>>n [LoM3].
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(j) Upper bounds for R (K 2,2,Km ,n ) for m , n ≥ 2 , with several cases identified for which the
equality holds. Special focus on the cases for m = 2 [HaMe4].

(k) Bounds for the numbers of the form R (Kk ,n ,Kk ,m ), specially for fixed k and close to the
diagonal cases. Asymptotics of R (K 3,n ,K 3,m ) for m>>n [LoM2].

(l) R (nK 1,3,mK 1,3 ) = 4n +m − 1 for n ≥m ≥ 1, n ≥ 2 [BES].
(m) Asymptotics for K 2,m versus Kn [CLRZ].
(n) Upper bound asymptotics for Kk ,m versus Kn [LiZa1].
(o) Special two-color case applies in the study of asymptotics for multicolor Ramsey

numbers for complete bipartite graphs [ChGra1].

3.3. Cycles, Cycles versus Complete Graphs

Cycles

R (C 3,C 3 ) = 6 [GG]
R (C 4,C 4 ) = 6 [CH1]

Result obtained independently in [Ros] and [FS1], a new simpler proof in [KáRos]:

R (Cn ,Cm ) =





 max { n − 1 +m / 2, 2m − 1 }

n − 1 +m / 2

2n − 1

for 4 ≤m <n , m even and n odd

for 4 ≤m ≤ n , m and n even, (n ,m ) =/ (4,4)

for 3 ≤m ≤ n , m odd, (n ,m ) =/ (3,3)

R (nC 3,mC 3 ) = 3n + 2m for n ≥m ≥ 1, n ≥ 2 [BES]
R (nC 4,mC 4 ) = 2n + 4m − 1 for m ≥ n ≥ 1, (n ,m ) =/ (1,1) [LiWa1]
Formulas for R (nC 4,mC 5 ) [LiWa2]
Unions of cycles, formulas and bounds for various cases [MiSa, Den]

Cycles versus complete graphs

Since 1976, it was conjectured that R (Cn ,Km ) = (n − 1)(m − 1) + 1 for all n ≥ m ≥ 3,
except n =m = 3 [FS4, EFRS2]. The parts of this conjecture were proved as follows: for
n ≥ m 2 − 2 [BoEr], for n > 3 = m [FS1], for n ≥ 4 = m [YHZ1], for n ≥ 5 = m [BJYHRZ],
for n ≥ 6 = m [Schi1], for n ≥ m ≥ 7 with n ≥ m (m − 2) [Schi1], for n ≥ 7 = m [ChenZ1],
and for n ≥ 4m + 2, m ≥ 3 [Nik]. Open conjectured cases are marked in Table V by "conj."
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C 3 C 4 C 5 C 6 C 7 C 8 ... Cn for n ≥m

6 7 9 11 13 15 2n − 1
K 3 GG CS CS FS1 FS1 FS1

...
FS1

9 10 13 16 19 22 3n − 2
K 4 GG CH2 He2/JR4 JR2 YHZ1 YHZ1

...
YHZ1

14 14 17 21 25 29 4n − 3
K 5 GG Clan He2/JR4 JR2 YHZ2 BJYHRZ

...
BJYHRZ

18 18 21 26 31 36 5n − 4
K 6 Kéry Ex2/RoJa1 JR5 Schi1 Schi1 Schi1

...
Schi1

23 22 25 31* 37* 43* 6n − 5*
K 7 Ka2/GY RT/JR1 Schi2 CheCZN CheCZN ChenZ1

...
ChenZ1

28 26 43* 50* 7n − 6
K 8 GR/MZ RT ChenZ2 ZZ3

...
conj.

36 ≥ 30 8n − 7
K 9 Ka2/GR RT

...
conj.

40 - 43 ≥ 34 9n − 8
K 10 Ex5/RK2 RT

...
conj.

Table V. Known Ramsey numbers R (Cn ,Km ),
results from unpublished manuscripts are marked with a *.

(a) The first column in Table V gives data from the first row in Table I.
(b) Joint credit [He2/JR4] in Table V refers to two cases in which Hendry [He2] announced

the values without presenting the proofs, which later were given in [JR4]. For other
joint credits in Table V, the first reference is for the lower bound and the second for the
upper bound. The special cases of R (C 6,K 5 ) = 21 [JR2] and R (C 7,K 5 ) = 25 were also
solved independently in [YHZ2] and [BJYHRZ].

(c) Lower bound asymptotics [Spe2, FS4, AlRö].
(d) Upper bound asymptotics [BoEr, FS4, EFRS2, CLRZ, Sud1, LiZa2, AlRö].
(e) For the numbers of cycles versus graphs other than complete see section 4.6.
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4. General Graph Numbers in Two Colors
This section includes data with respect to general graph results. We tried to include all

nontrivial values and identities regarding exact results (or references to them), but only those
out of general bounds and other results which, in our opinion, have a direct connection to the
evaluation of specific numbers. If some small value cannot be found below, it may be covered
by the cumulative data gathered in section 7, or be a special case of a general result listed in
this section. Note that B 1 = F 1 = C 3 = W 3 = K 3, B 2 = K 4 − e , P 3 = K 3 − e , W 4 = K 4 and
C 4 = K 2,2 imply other identities not mentioned explicitly.

4.1. Paths
R (Pn ,Pm ) = n + m / 2  − 1 for all n ≥m ≥ 2 [GeGy]
Stripes mP 2 [CL1, CL2, Lor]
Disjoint unions of paths (also called linear forests) [BuRo2, FS2]

4.2. Wheels
Note: In this survey the wheel graph Wn = K 1 +Cn −1 has n vertices,
while some authors use the definition Wn = K 1 +Cn with n + 1 vertices.

R (W 3,W 5 ) = 11 [Clan]
R (W 3,Wn ) = 2n −1 for all n ≥ 6 [BE3]
All critical colorings for R (W 3,Wn ) for all n ≥ 3 [RaJi]
R (W 4,W 5 ) = 17 [He3]
R (W 5,W 5 ) = 15 [HaMe2, He2]
R (W 4,W 6 ) = 19, R (W 5,W 6 ) = 17 and R (W 6,W 6 ) = 17,
and all critical colorings (2, 1 and 2) for these numbers [FM].
R (W 6,W 6 ) = 17, R (4,4) = 18 and χ(W 6 ) = 4 give a counterexample G =W 6
to the Erdös conjecture (see [GRS]) that R (G ,G ) ≥ R (K χ(G ),K χ(G ) ).

4.3. Books
R (B 1,Bn ) = 2n + 3 for all n>1 [RS1]
R (B 3,B 3 ) = 14 [RS1, HaMe2], and R (B 2,B 4 ) = 13 [Rou]
R (B 2,B 5 ) = 16, R (B 3,B 5 ) = 17, R (B 5,B 5 ) = 21,
R (B 4,B 4 ) = 18, R (B 4,B 6 ) = 22, R (B 6,B 6 ) = 26 [RS1]
254 ≤ R (B 37,B 88 ) ≤ 255 [Par6]
R (Bn ,Bm ) = 2n + 3 for all n ≥ cm for some c < 106 [NiRo1, NiRo2]
R (Bn ,Bn ) = (4 + o (1))n [RS1, NiRS]

In general, R (Bn ,Bn ) = 4n + 2 for 4n + 1 a prime power, and several other general
equalities and bounds for R (Bn ,Bm ) [RS1, FRS7, Par6, NiRS, LiRZ2].
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4.4. Trees and forests
In this subsection Tn and Fn denote n -vertex tree and forest, respectively.

(a) R (Tn ,Tn ) ≤ 4n + 1 [EG].
(b) R (Tn ,Tn ) ≥ (4n − 1) / 3 [BE2], see also 4.16.
(c) Conjecture that R (Tn ,Tn ) ≤ 2n − 2 , note that this is almost the same as asking if

R (Tn ,Tn ) ≤ R (K 1,n −1,K 1,n −1 ) [BE2], see also [Bu7, FSS1, ChGra2]. Discussion of the
conjecture that R (Tn ,Tm ) ≤ n +m − 2 holds for all trees [FSS1].

(d) If ∆(Tn ) = n − 2, ∆(Tm ) =m − 2 then the exact values of R (Tn ,Tm ) are known, and they
are between n +m − 5 and n +m − 3 depending on n and m . In particular, for n = 2k + 1
R (T 2k +1,T 2k +1 ) = 2n − 5 [GuoV].

(e) View tree T as a bipartite graph with parts t 1 and t 2, t 2 ≥ t 1. Define
b (T ) = max{ 2t 1 + t 2 − 1, 2t 2 − 1}. Then the bound R (T ,T ) ≥ b (T ) holds always,
R (T ,T ) = b (T ) holds for many classes of trees [EFRS3, GeGy], and asymptotically
[HaŁT], but cases for nonequality have been found [GHK].

(f) R (Fn ,Fn )>n + log2n −O (loglogn ) [BE2], forests tight for this bound [CsKo].
(g) Comment in [BaLS] about a recent result of the authors of [AKS], which implies that

R (Tn ,Tn ) ≤ 2n − 2 holds for sufficiently large n .

(h) R (Tm ,K 1,n ) ≤ m + n − 1 , with equality for (m − 1) | (n − 1) [Bu1].
(i) R (Tm ,K 1,n ) = m + n − 1 for sufficiently large n for almost all trees Tm [Bu1].

Many cases where identified when R (Tm ,K 1,n ) = m + n − 2 [Coc, ZZ1], see also [Bu1].
(j) R (Tm ,K 1,n ) ≤ m + n if Tn is not a star and (m − 1) |/ (n − 1),

some classes of trees and stars for which the equality holds [GuoV].
(k) Forests, linear forests (unions of paths) [BuRo2, FS3, CsKo].
(l) Paths versus trees [FSS1], see also other parts of this survey involving special graphs,

in particular sections 4.5 and 4.7.

4.5. Stars, stars versus other graphs
R (K 1,n ,K 1,m ) = n +m − ε, where ε = 1 for even n and m , and ε = 0 otherwise [Har1].
This is also a special case of multicolor numbers for stars obtained in [BuRo1].

R (K 1,n ,Km ) = n (m − 1) + 1 by Chvátal’s theorem [Chv].

Stars versus C 4 [Par3, Par4, Par5, BEFRS5, Chen, ChenJ, GoMC]
Stars versus K 2,n [Par4, GoMC]
Stars versus Kn ,m [Stev, Par3]
Stars versus complete bipartite graphs [Par4, Stev]
See also section 3.2

R (K 1,4,B 4 ) = 11 [RS2]
R (K 1,4,K 1,2,3 ) =R (K 1,4,K 2,2,2 ) = 11 [GuSL]
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Stars versus W 5 and W 6 [SuBa1]
Stars versus wheels [HaBA, ChenZZ2, Kor]
Stars versus paths [Par2, BEFRS2]
Stars versus cycles [La1, Clark, see Par6]
Stars versus books [CRSPS, RS2]
Stars versus trees [Bu1, Coc, GuoV, ZZ1]
Stars versus stripes mP 2 [CL1, CL2, Lor]
Stars versus Kn − tK 2 [Hua1, Hua2]
Stars versus 2K 2 [MO]
Union of two stars [Gros2]
Unions of stars versus wheels [BaHA]

4.6. Fans, fans versus other graphs
Fans Fn = K 1 + nK 2 versus paths [SaBr1]
Fans versus Km [LR2]

R (Fn ,K 4 ) = 6n + 1 for n ≥ 3 [SuBB3]

R (F 1,Fn ) = R (K 3,Fn ) = 4n + 1 for n ≥ 2 , and bounds for R (Fm ,Fn ) [GGS]

4.7. Paths versus other graphs
P 3 versus all isolate-free graphs [CH2]
Paths versus stars [Par2, BEFRS2]
Paths versus trees [FS4, FSS1]
Paths versus books [RS2]
Paths versus cycles [FLPS, BEFRS2]
Paths versus Kn [Par1]
Paths versus Kn ,m [Häg]
Paths versus W 5 and W 6 [SuBa1]
Paths versus W 7 and W 8 [Bas]
Paths versus wheels [BaSu, ChenZZ1, Zhang]
Paths versus fans [SaBr1]
Paths versus K 1 +Pm [SaBr2]
Paths and cycles versus trees [FSS1]
Sparse graphs versus paths and cycles [BEFRS2]
Graphs with long tails [Bu2, BG]
Unions of paths [BuRo2]

4.8. Triangle versus other graphs
R (3, k ) =Θ(k 2/ log k ) [Kim]
Explicit construction for R (3, 4k + 1) ≥ 6R (3, k + 1) − 5, for all k ≥ 1 [CCD]
Explicit triangle-free graphs with independence k on Ω(k 3/2 ) vertices [Alon2, CPR]
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R (K 3,K 7 − 2P 2 ) = R (K 3,K 7 − 3P 2 ) = 18 [SchSch2]
R (K 3,K 3 + Km ) = R (K 3,K 3 + Cm ) = 2m + 5 for m ≥ 212 [Zhou1]
R (K 3,K 2 + Tn ) = 2n + 3 for n -vertex trees Tn , for n ≥ 4 [SoGQ]

R (K 3,G ) = 2n (G ) − 1 for any connected G on at least 4 vertices and with at most
(17n (G ) + 1)/15 edges, in particular for G =Pi and G =Ci , for all i ≥ 4 [BEFRS1]

R (K 3,G ) ≤ 2e (G ) + 1 for any graph G without isolated vertices [Sid3, GK]
R (K 3,G ) ≤ n (G ) + e (G ) for all G , a conjecture [Sid2]
R (K 3,G ) for all connected G up to 9 vertices [BBH1, BBH2], see also section 7.1
R (K 3,Kn ), see section 2
R (K 3,Kn − e ), see section 3.1

Formulas for R (nK 3,mG ) for all G of order 4 without isolates [Zeng]

Since B 1 = F 1 = C 3 = W 3 = K 3, other sections apply

See also [AKS, BBH1, BBH2, FrLo, Fra1, Fra2, Gri, Loc, KM1, LiZa1, RK3, RK4,
She2, Spe2, Stat, Yu1]

4.9. Cycles versus other graphs
C 4 versus stars [Par3, Par4, Par5, BEFRS5, Chen, ChenJ, GoMC]
C 4 versus trees [EFRS4, Bu7, BEFRS5, Chen]
C 4 versus all graphs on six vertices [JR3]
C 4 versus various types of complete bipartite graphs, see section 3.2

R (C 4,Bn ) = 7, 9, 11, 12, 13 and 16, for 2 ≤ n ≤ 7, respectively [FRS6]
R (C 4,Bn ) = 17, 18, 19, 20 and 21, for 8 ≤ n ≤ 12, respectively [Tse1]
R (C 4,B 13 ) = 22 and R (C 4,B 14 ) = 24 [Tse2]
R (C 4,Wn ) = 10, 9, 10, 9, 11, 12, 13, 14, 16 and 17, for 4 ≤ n ≤ 13, respectively [Tse1]
R (C 4,Wn ) ≤ n + (n − 1) / 3 for n ≥ 7 [SuBUB]
R (C 4,G ) ≤ 2q + 1 for any isolate-free graph G with q edges [RoJa2]
R (C 4,G ) ≤ p + q − 1 for any connected graph G on p vertices and q edges [RoJa2]

R (C 5,W 6 ) = 13 [ChvS]
R (C 5,K 6 − e ) = 17 [JR4]
R (C 5,B 1 ) =R (C 5,B 2 ) = 9 [CRSPS]
R (C 5,B 3 ) = 10, and in general R (C 5,Bn ) = 2n + 3 for n ≥4 [FRS8]
C 5 versus all graphs on six vertices [JR4]
R (C 6,K 5 − e ) = 17 [JR2]
C 6 versus all graphs on five vertices [JR2]
R (C 2m +1,G ) = 2n − 1 for sufficiently large sparse graphs G on n vertices, in particular
R (C 2m +1,Tn ) = 2n − 1 for all n > 1512m + 756, for n vertex trees Tn [BEFRS2]

R (Cn ,G ) ≤ 2q +  n / 2  − 1, for 3 ≤ n ≤ 5, for any isolate-free graph G with q > 3 edges.
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It is conjectured that it also holds for other n [RoJa2].

Cycles versus paths [FLPS, BEFRS2]
Cycles versus stars [La1, Clark, see Par6]
Cycles versus trees [BEFRS2, FSS1]
Cycles versus books [FRS6, FRS8, Zhou1]
Cycles versus Kn ,m [BoEr]

R (C 5,W 6 ) = 13 [ChvS]
R (Cn ,W 5 ) = 2n − 1 and R (Cn ,W 6 ) = 3n − 2 for n ≥ 5 [SuBB2]
Odd cycles versus wheels [Zhou2]
Cycles versus Wm for odd m [SuBT]

4.10. Wheels versus other graphs
Note: In this survey the wheel graph Wn = K 1 +Cn −1 has n vertices,
while some authors use the definition Wn = K 1 +Cn with n + 1 vertices.

R (W 5,K 5 − e ) = 17 [He2][YH]
R (W 5,K 5 ) = 27 [He2][RST]
W 5 and W 6 versus stars and paths [SuBa1]
Wheels versus stars [HaBA, ChenZZ2, Kor]
W 5 and W 6 versus trees [BSNM]
R (W 6,C 5 ) = 13 [ChvS]
R (W 5,Cn ) = 2n − 1 and R (W 6,Cn ) = 3n − 2 for n ≥ 5 [SuBB2]
W 7 and W 8 versus paths [Bas]

W 7 versus trees Tn with ∆(Tn ) ≥ n − 3, other special trees T ,
and for n ≤ 8 [ChenZZ3, ChenZZ5, ChenZZ6]

W 7 and W 8 versus trees [ChenZZ4, ChenZZ5]
Wheels versus paths [BaSu, ChenZZ1, Zhang]
Wheels Wn , for even n , versus star-like trees [SuBB1]
R (Wn ,C 4 ) ≤ n + (n − 1) / 3 for n ≥ 7 [SuBUB]
Wheels versus C 4 [Tse1]
Wheels Wn , for odd n , versus cycles [SuBT]
Wheels versus odd cycles [Zhou2]
Wheels versus books [Zhou3]
Wheels versus linear forests (disjoint unions of paths) [SuBa2]
Wheels versus unions of stars [BaHA]
Upper bound asymptotics for R (Wn ,Km ) [Song5]
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4.11. Books versus other graphs
R (B 4,K 1,4 ) = 11 [RS2]
R (B 3,K 4 ) = 14 [He3]
R (B 3,K 5 ) = 20 [He2][BaRT]
Books versus paths [RS2]
Books versus stars [CRSPS, RS2]
Books versus trees [EFRS7]
Books versus cycles [FRS6, FRS8, Zhou1, Tse1, Tse2]
Books versus Kn [LR1, Sud2]
Books versus wheels [Zhou3]
Books versus K 2 + Cn [Zhou3]
Books and (K 1 + tree ) versus Kn [LR1]
Generalized books Kr + qK 1 versus Kn [NiRo3]

4.12. Trees and forests versus other graphs
In this subsection Tn and Fn denote n -vertex tree and forest, respectively.

R (Tn ,Km ) = (n − 1)(m − 1) + 1 [Chv]
R (Tn ,C 2m +1 ) = 2n − 1 for all n > 1512m + 756 [BEFRS2]
R (Tn ,Bm ) = 2n − 1 for all n ≥ 3m − 3 [EFRS7]

R (Fnk ,Km ) = (n − 1)(m − 2) + nk for all forests Fnk consisting of k trees with
n vertices each, also exact formula for all other cases of forests versus Km [Stahl]

Exact results for almost all small (n (G ) ≤ 5) connected G versus all trees [FRS4]

Trees versus C 4 [EFRS4, Bu7, BEFRSS5, Chen]
Trees versus paths [FS4, FSS1]
Trees versus cycles [FSS1, EFRS6]
Trees versus stars [Bu1, Coc, GuoV, ZZ1]
Trees versus books [EFRS7]
Trees versus W 5 and W 6 [BSNM]
Trees versus W 7 and W 8 [ChenZZ4, ChenZZ5]

Trees Tn with ∆(Tn ) ≥ n − 3, other special trees T ,
and for n ≤ 8 versus W 7 [ChenZZ3, ChenZZ5, ChenZZ6]

Star-like trees versus odd wheels [SuBB1, ChenZZ3]
nK 1,m versus wheels [BaHA]
Trees versus Kn +Km [RS2, FSR]
Trees versus bipartite graphs [BEFRS5, EFRS6]
Trees versus almost complete graphs [GoJa2]
Trees versus multipartite complete graphs [EFRS8, BEFRSGJ]
Linear forests versus wheels [SuBa2]
Forests versus almost complete graphs [CGP]
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Study of graphs G for which all or almost all trees are G -good [BF, BEFRSGJ],
see also section 4.16, item [Bu2], for the definition and more pointers.
See also various parts of this survey for special trees, sparse graphs and section 4.4.

4.13. Mixed special cases:
Hendry [He2], in 1989, presented a table of R (G ,H ) for all graphs G and H on 5
vertices without isolates, except 7 entries. Four of the open entries have been solved,

R (4, 5) = 25 [Ka1][MR4]
R (W 5,K 5 − e ) = 17 [He2][YH]
R (B 3,K 5 ) = 20 [He2][BaRT]
R (W 5,K 5 ) = 27 [He2][RST]

The still open cases are for K 5 versus K 5 (section 2.1), K 5 − e (section 3), and K 5 −P 3.

25 ≤ R (K 5 −P 3,K 5 ) ≤ 28 [He2]
R (C 5 + e ,K 5 ) = 17 [He5]
26 ≤ R (K 2,2,2 ,K 2,2,2 ), K 2,2,2 is an octahedron [Ex8]

4.14. Mixed general cases
Unicyclic graphs [Gros1, Köh, KrRod]
K 2,m and C 2m versus Kn [CLRZ]
K 2,n versus any graph [RoJa2]
2K 2 versus all isolate-free graphs [CH2]
nK 2 versus mK 2, in particular R (nK 2, nK 2 ) = 3n − 1 for n ≥ 1 [CL1, CL2, Lor]
nK 3 versus mK 3, in particular R (nK 3, nK 3 ) = 5n for n ≥ 2 [BES], see also section 3.3
nK 3 versus mK 4 [LorMu]
R (nK 4, nK 4 ) = 7n + 4 for large n [Bu8]
Variety of results for numbers R (nG ,mH ) [Bu1, BES]

Union of two stars [Gros2]
Double stars* [GHK]
Graphs with bridge versus Kn [Li]
Multipartite complete graphs [BEFRS3, FRS3, Stev]
Multipartite complete graphs versus sparse graphs [EFRS4]
Multipartite complete graphs versus trees [EFRS8, BEFRSGJ]
Disconnected graphs versus any graph [GoJa1]
Graphs with long tails [Bu2, BG]
Brooms+ [EFRS3]

* double star is a union of two stars with their centers joined by an edge

+ broom is a star with a path attached to its center
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4.15. General results for sparse graphs
[Chv] R (Kn ,Tm ) = (n −1)(m −1) + 1 for any tree Tm on m vertices.
[BEFRS2] R (C 2m +1,G ) = 2n − 1 for sufficiently large sparse graphs G on n vertices,

little more complicated formulas for P 2m +1 instead of C 2m +1.
[CRST] R (G ,G ) ≤ cd n (G ) for all G , where constant cd depends only on the max-

imum degree d in G . The constant was improved in [GRR1]. Tight lower
and upper bounds for bipartite G [GRR2].

[BE1] Study of L -sets, which are sets of pairs of graphs whose Ramsey numbers are
linear in the number of vertices. Conjecture that Ramsey numbers grow
linearly for d -degenerate graphs (graph is d -degenerate if all its subgraphs
have minimum degree at most d ). Progress towards this conjecture was
obtained by several authors, including [KoRö1, KoRö2, KoSu].

[ChenS] R (G ,G ) ≤ cd n for all d -arrangeable graphs G on n vertices, in particular
with the same constant for all planar graphs. The constant cd was improved in
[Eaton]. An extension to graphs not containing a subdivision of Kd [RöTh].

[Shi3] Ramsey numbers grow linearly for degenerate graphs versus some sparser
graphs, arrangeable graphs, crowns, graphs with bounded maximum degree,
planar graphs, and graphs without any topological minor of a fixed clique.

[EFRS9] Study of graphs G , called Ramsey size linear, for which there exists a con-
stant cG such that for all H with no isolates R (G ,H ) ≤ cG e (H ). An over-
view and further results were given in [BaSS].

[LRS] R (G ,G ) < 6n for all n -vertex graphs G , in which no two vertices of degree
at least 3 are adjacent. This improves the result R (G ,G ) ≤ 12n in [Alon1].

[Gros1] Conjecture that R (G ,G ) = 2n (G ) − 1 if G is unicyclic of odd girth. Further
support for the conjecture was given in [Köh, KrRod].

[-] See also earlier subsections 4.* for various specific sparse graphs.

4.16. Other general two color results
[CH2] R (G ,H ) ≥ ( χ(G ) − 1)(c (H ) − 1) + 1, where χ(G ) is the chromatic number of

G , and c (H ) is the size of the largest connected component of H .
[CH3] R (G ,G ) > (s 2 e (G ) − 1) ) 1 / n (G ) , where s is the number of automorphisms of G .

Hence R (Kn ,n ,Kn ,n ) > 2
n .

[BE2] R (G ,G ) ≥ (4n (G ) − 1) / 3 for any connected G , and R (G ,G ) ≥ 2n − 1 for
any connected nonbipartite G . These bounds can be achieved for all n ≥ 4.

[BE3] Graphs yielding R (Kn ,G ) = (n −1)(n (G ) − 1) + 1 and related results (see also
[EFRS5]).

[Bu2] Graphs H yielding R (G ,H ) = (χ(G ) − 1)(n (H ) − 1) + s (G ), where s (G ) is a
chromatic surplus of G , defined as the minimum number of vertices in some
color class under all vertex colorings in χ(G ) colors (such H ’s are called G -
good). This idea, initiated in [Bu2], is a basis of a number of exact results for
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R (G ,H ) for large and sparse graphs H [BG, BEFRS2, BEFRS4, Bu5, FS,
EFRS4, FRS3, BEFSRGJ, BF, LR4]. A survey of this area appeared in
[FRS5].

[BaLS] Graph G is Ramsey saturated if R (G + e ,G + e ) > R (G ,G ) for every edge e
in G . Several theorems involving cycles, cycles with chords and trees on Ram-
sey saturated and unsaturated graphs. Seven conjectures including one stating
that almost all graphs are Ramsey unsaturated.

[Par3] Relations between some Ramsey graphs and block designs. See also [Par4].
[Bra3] R (G ,H ) > h (G , d ) n (H ) for all nonbipartite G and almost every d -regular H ,

for some h unbounded in d .
[LiZa1] Lower bound asymptotics of R (G ,H ) for large dense H .

[AlKS] Discussion of a conjecture by Erdös that there exists a constant c such that
R (G ,G ) ≤ 2c √e (G ). Proof for bipartite graphs G and progress towards the
conjecture in other cases.

[Kriv] Lower bound on R (G ,Kn ) depending on the density of subgraphs of G . This
construction for G =Km produces a bound similar to the best known probabilis-
tic lower bound by Spencer [Spe2].

[Shi1] R (Qn ,Qn ) ≤ 2
(3 + √5)n / 2 + o (n ), for the n -dimensional cube Qn with 2

n vertices.
This bound can also be derived from a theorem in [KoRö1].

[RoJa2] R (K 2,k ,G ) ≤ kq + 1, for k ≥ 2, for isolate-free graphs G with q ≥ 2 edges.
[FM] R (W 6,W 6 ) = 17 and χ(W 6 ) = 4. This gives a counterexample G =W 6 to the

Erdös conjecture (see [GRS]) R (G ,G ) ≥ R (K χ(G ),K χ(G ) ), since R (4,4) = 18.
[NiRo3] R (Kp + 1,Bqr ) = p (q + r − 1) + 1 for generalized books Bqr = Kr + qK 1, for all

sufficiently large q .
[LR3] Bounds on R (H +Kn ,Kn ) for general H . Also, for fixed k and m , as n→ ∞,

R (Kk +Km ,Kn ) ≤ (m + o (1)) n k / (log n )k −1 [LiRZ1].
[LiTZ] Asymptotics of R (H +Kn ,Kn ). In particular, the order of magnitude of

R (Km , n ,Kn ) is n
m +1/ (log n )m .

[LiRZ2] Let G ′′ be a graph obtained from G by deleting two vertices. Then
R (G ,H ) ≤ A +B + 2 + 2√ (A 2 +AB +B 2 ) / 3 , where A = R (G ′′,H ) and
B = R (G ,H ′′).

[BE1] Relations between the cases of G or G +K 1 versus H or H +K 1.
[Zeng] Formulas for R (nK 3,mG ) for all isolate-free graphs G on 4 vertices.
[BES] Study of Ramsey numbers for multiple copies of graphs.

See also [Bu1, Bu8, Bu9, BE1, LorMu, MiSa, Den].
[HaKr] Study of cyclic graphs yielding lower bounds for Ramsey numbers. Exact for-

mulas for paths and cycles, small complete graphs and for graphs with up to
five vertices.
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[Bu6] Given integer m and graphs G and H , determining whether R (G ,H ) ≤ m
holds is NP-hard. Further complexity results related to Ramsey theory were
presented in [Bu10].

[Scha] Ramsey arrowing is Π2
p-complete, a rare natural example of a problem higher

than NP in the polynomial hierarchy of computational complexity theory.
[-] Special cases of multicolor results listed in section 5.
[-] See also surveys listed in section 7.
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5. Multicolor Graph Numbers

The only known value of a multicolor classical Ramsey number:

R 3(3) = R (3,3,3) = R (3,3,3 ; 2) = 17 [GG]

2 critical colorings (on 16 vertices) [KaSt, LayMa]
2 colorings on 15 vertices [Hein]
115 colorings on 14 vertices [PR1]

General upper bound, implicit in [GG]:

R (k 1, ... , kr ) ≤ 2 − r +
i = 1
Σ
r
R (k 1, ... , ki − 1, ki − 1, ki + 1, ... , kr ) (a)

Inequality in (a) is strict if the right hand side is even, and at least one of the terms in the
summation is even. It is suspected that this upper bound is never tight for r ≥ 3 and ki ≥ 3,
except for r = k 1 = k 2 = k 3 = 3. However, only two cases are known to improve over (a),
namely R 4(3) ≤ 62 [FKR] and R (3,3,4) ≤ 31 [PR1, PR2], for which (a) produces only the
bounds of 66 and 34, respectively.

5.1. Bounds for multicolor classical numbers

Diagonal Cases

m 3 4 5 6 7 8 9
r

17 128 417 1070 3214 5384 13761
3

GG HiIr Ex17 Mat Xu XX2 XXER
51 634 3049 15202 62017

4
Chu1 XXER Xu XXER XXER
162 3416 26912

5
Ex10 XXER Xu
538

6
FreSw
1682

7
FreSw

Table VI. Known nontrivial lower bounds for diagonal multicolor
Ramsey numbers Rr (m ), with references.

The best published bounds corresponding to the entries in Table VI marked by personal com-
munication [Xu] are: 3211 ≤ R 3(7) [Mat], 2721 ≤ R 4(5) [XXER] and 26082 ≤ R 5(5) [XXER].
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The most studied and intriguing open case is

[Chu1] 51 ≤ R 4(3) = R (3,3,3,3) ≤ 62 [FKR]

The inequality 5.a implies R 4(3) ≤ 66, Folkman [Fo] in 1974 improved this bound to 65,
and Sánchez-Flores [San] in 1995 proved R 4(3) ≤ 64. The upper bounds in
162 ≤ R 5(3) ≤ 307, 538 ≤ R 6(3) ≤ 1838, 1682 ≤ R 7(3) ≤ 12861, and 128 ≤ R (4, 4, 4) ≤ 236
are implied by 5.(a) (we repeat lower bounds from Table VI just to see easily the ranges).

Off-Diagonal Cases

Three colors:

m 4 5 6 7 8 9 10 11 12 13 14
k

30 45 60 81 101 117 141 157 182 212 233
3

Ka2 Ex2 Rob3 Ex16 Ex17 Ex17 5.2.c 5.2.c LSS2 LSS2 5.2.c
55 81 107 143 193

4
KLR Ex17 Ex17 Ex17 5.2.c
81 129 169

5
Ex17 Ex17 5.2.c

Table VII. Known nontrivial lower bounds for 3-color
Ramsey numbers of the form R (3, k ,m ), with references.

In addition, the bounds 303 ≤ R (3,6,6), 609 ≤ R (3,7,7) and 1689 ≤ R (3,9,9) were derived in
[XXER] (used there for building other lower bounds for some diagonal cases).

The other most studied, and perhaps the only open case of a classical multicolor Ramsey
number, for which we can anticipate exact evaluation in the not-too-distance future is

[Ka2] 30 ≤ R (3,3,4) ≤ 31 [PR1, PR2]

In [PR1] it is conjectured that R (3,3,4) = 30, and the results in [PR2] eliminate some
cases which could give R (3,3,4) = 31. The upper bounds in 45 ≤ R (3,3,5) ≤ 57,
55 ≤ R (3,4,4) ≤ 79, and 81 ≤ R (3,4,5) ≤ 160 are implied by 5.(a) (we repeat lower bounds
from the Table VII to show explicitly the current ranges).

Four colors:

93 ≤ R (3,3,3,4) ≤ 153 [Ex16, XXER], 5.(a)
162 ≤ R (3,3,3,5) [XXER]
171 ≤ R (3,3,4,4) [Ex16, XXER]
561 ≤ R (3,3,3,11) [XX2, XXER]
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Lower bounds for higher numbers can be obtained by using general constructive results
from section 5.2 below. For example, the bounds 261 ≤ R (3,3,15) and 247 ≤ R (3,3,3,7) were
not published explicitly but are implied by 5.2.c and 5.2.d, respectively.

5.2. General multicolor results for complete graphs

(b) Rr (3) ≥ 3Rr −1(3) + Rr −3(3) − 3 [Chu1]
(c) R (3, k , l ) ≥ 4R (k , l − 1) −3 , and in general for r ≥ 2 and ki ≥ 2

R (3, k 1, ... , kr ) ≥ 4R (k 1 − 1, k 2, ... , kr ) − 3 for k 1 ≥ 5, and
R (k 1, 2k 2 − 1, k 3, ... , kr ) ≥ 4R (k 1 − 1, k 2, ... , kr ) − 3 for k 1 ≥ 5 [XX2, XXER]

(d) R (3, 3, 3, k 1, ... , kr ) ≥ 3R (3, 3, k 1, ... , kr ) + R (k 1, ... , kr ) − 3 [Rob2]
(e) Bounds for Rk (3) [AbbH, Fre, Chu2, ChGri, GrRö, Wan, XXER]

(f) R (k 1, ... , kr ) ≥ S (k 1, ... , kr ) + 2, where S (k 1, ... , kr ) is the generalized Schur number
[AbbH, Gi1, Gi2]. In particular, the special case k 1 = ... = kr = 3 has been widely studied
[Fre, FreSw, Ex10, Rob3].

(g) R (k 1, ... , kr ) ≥ L (k 1, ... , kr ) + 1, where L (k 1, ... , kr ) is the maximal order of any cyclic
(k 1, ... , kr )-coloring, which can be considered a special case of Schur partitions defining
(symmetric) Schur numbers. Many lower bounds for Ramsey numbers were established
by cyclic colorings. The following recurrence can be used to derive lower bounds for
higher parameters. For ki ≥ 3

L (k 1, ... , kr , kr + 1 ) ≥ (2kr + 1 − 3)L (k 1, ... , kr ) − kr + 1 + 2 [Gi2]

(h) Rr (m ) ≥ p + 1 and Rr (m + 1) ≥ r ( p + 1) + 1 if there exists a Km -free cyclotomic r − class
association scheme of order p [Mat].

(i) If the quadratic residues Paley graph Qp of prime order p = 4t + 1 contains no Kk , then
R (s , k + 1, k + 1) ≥ 4ps − 6p + 3 [XXER].

(j) Rr (m ) ≥ cm (2m − 3)r , and some slight improvements of this bound for small values of m
[AbbH, Gi1, Gi2, Song2].

(k) Rr ( pq + 1)> (Rr ( p + 1) − 1)(Rr (q + 1) − 1) [Abb1]
(l) Rr ( pq + 1)>Rr ( p + 1)(Rr (q + 1) − 1) for p ≥ q [XXER]
(m) R ( p 1q 1+ 1, ... , pr qr + 1) > (R ( p 1+ 1, ... , pr + 1) − 1)(R (q 1+ 1, ... , qr + 1) − 1) [Song3]
(n) Rr + s (m )> (Rr (m ) − 1)(Rs (m ) − 1) [Song2]
(o) R (k 1, k 2, ... , kr ) > (R (k 1, ... , ki ) − 1)(R (ki +1, ... , kr ) − 1) in [Song1], see [XXER].
(p) R (k 1, k 2, ... , kr ) > (k 1 + 1)(R (k 2 − k 1 + 1, k 3, ... , kr ) − 1) [Rob4]
(q) Further lower bound constructions, though with more complicated assumptions, were

presented in [XX2, XXER].
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(r) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wil-
son [FraWi] (section 2.3.r) to more colors and to hypergraphs [Grol3] (section 6).

All lower bounds in (b) through (r) above are constructive. (d) generalizes (b), (m) gen-
eralizes both (k) and (o), and (o) generalizes (n). (l) is stronger than (k). Finally observe that
the construction (m) with q 1 = ... = qi = 1 = pi +1 = ... = pr is the same as (o).

5.3. Special multicolor cases

Cycles

R 3(C 3 ) = 17 [GG, see also page 25]
R 3(C 4 ) = 11 [BS, see also Clap]
R 3(C 5 ) = 17 [YR1]
R 3(C 6 ) = 12 [YR2]
R 3(C 7 ) = 25 [FSS2]
R 3(C 2m ) ≥ 4m for all m ≥ 2 [DzNS]
R 3(C 2m +1 ) = 8m + 1 for all sufficiently large m [KoSS]

For more results on R 3(Cn ) see section 5.4.
For more results on Rk (C 3 ) see sections 5.1 and 5.2.

18 ≤R 4(C 4 ) ≤ 19 [Ex2] [Eng]
27 ≤R 5(C 4 ) ≤ 29 [LaWo1]

R (C 3,C 3,C 4 ) = 17 [ExRe]
R (C 3,C 4,C 4 ) = 12 [Schu]
R (C 3,C 4,C 5 ) = 13 [Rao][Tse3]
R (C 3,C 4,C 6 ) = 13 [Tse3]
R (C 3,C 4,C 7 ) ≥ 15 [Tse3]

R (C 3,C 3,C 5 ) ≥ 21 [Tse3]
R (C 3,C 5,C 5 ) ≥ 17 [Tse3]
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R (C 4,C 4,C 5 ) = 12 [Tse3]
R (C 4,C 4,C 6 ) = 12 [Tse3]
R (C 4,C 4,C 7 ) = 12 [Tse3]
R (C 4,C 5,C 5 ) = 13 [Tse3]
R (C 4,C 5,C 6 ) = 13 [Tse3]
R (C 4,C 5,C 7 ) ≥ 15 [Tse3]
R (C 4,C 6,C 6 ) = 11 [Tse3]
R (C 4,C 6,C 7 ) = 13 [Tse3]

R (C 3,C 3,C 4,C 4 ) ≥ 27 [Eng]

Xu in an unpublished note obtained R (C 3,C 3,C 4,C 4 ) ≥ 28 [Xu]

Mixed cases

R (P 3,P 4,C 3 ) = 7 [AKM]
R (P 3,P 4,C 4 ) = 7 [AKM]
R (P 3,P 4,C 5 ) = 7 [Dzi]
R (P 4,P 4,C 3 ) = 9 [AKM]
R (P 4,P 4,C 4 ) = 7 [AKM]
R (P 4,P 4,C 5 ) = 9 [Dzi]
R (P 4,P 4,C 6 ) = 8 [Dzi], see also 5.4.k

R (P 3,C 3,C 3 ) = 11 [BE3]
R (P 3,C 3,C 4 ) = 8 [AKM]
R (P 3,C 3,C 5 ) = 9 [Dzi]
R (P 3,C 3,C 6 ) = 11 [Dzi]
R (P 3,C 4,C 4 ) = 8 [AKM]
R (P 3,C 4,C 5 ) = 8 [Dzi]
R (P 3,C 4,C 6 ) = 8 [Dzi]
R (P 3,C 5,C 5 ) = 9 [Dzi], see also 5.4.i
R (P 3,C 5,C 6 ) = 11 [Dzi]
R (P 3,C 6,C 6 ) = 9 [Dzi]

R (K 4 − e ,K 4 − e ,P 3 ) = 11 [Ex7]
R (K 1,3,C 4,K 4 ) = 16 [KM2]
R (C 4,C 4,C 4,T ) = 16 for T =P 4 and T =K 1,3 [ExRe]
28 ≤ R 3(K 4 − e ) ≤ 30 [Ex7] [Piw2]
86 ≤ R (K 4,K 4,C 4,C 4 ) [Bev], 5.2.o+

All colorings for (K 4 − e ,K 4 − e ,P 3 ) were found in [Piw2].
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5.4. General multicolor results for cycles and paths

(a) R (Cn ,Cn ,Cn ) ≤ (4 + o (1)) n , with equality for odd n [Łuc]. It was conjectured by
Bondy and Erdös, see [Erd2], that R (Cn ,Cn ,Cn ) ≤ 4n − 3 for n ≥ 4. If true, then for all
odd n ≥ 5 we have R (Cn ,Cn ,Cn ) = 4n − 3.

(b) R (Cn ,Cn ,Cn ) = 4n − 3 for all sufficiently large odd n [KoSS].
(c) R (Cn ,Cn ,Cn ) = (2 + o (1)) n for even n [FiŁu].
(d) Formulas for R (Cn ,Cm ,Ck ) and R (Cn ,Cm ,Ck ,Cl ) for large n [EFRS1].

(e) Rk (C 4 ) ≤ k
2 + k + 1 for all k ≥ 1, Rk (C 4 ) ≥ k

2 − k + 2 for all k − 1 which is a prime
power [Ir, Chu2, ChGra1], and Rk (C 4 ) ≥ k 2 + 2 for odd prime power k [LaWo1]. The
latter was extended to any prime power k in [Ling, LaMu].

(f) Rk (C 2m ) ≥ (k + 1)m for odd k and m ≥ 2, and
Rk (C 2m ) ≥ (k + 1)m − 1 for even k and m ≥ 2 [DzNS].

(g) 2k m < Rk (C 2m +1 ) < 2(k + 2)!m [EG], see [GRS].
(h) Asymptotic bounds for Rk (Cn ) [Bu1, GRS, ChGra2].

(i) R (P 3,Cn ,Cn ) = R (Cn ,Cn ) = 2n − 1 for odd n ≥ 5 [DzKP].
(j) R (P 3,P 4,Cn ) = n + 1 for n ≥ 6 [Dzi].
(k) R (P 4,P 4,Cn ) = n + 2 for n ≥ 6, and

R (P 3,P 5,Cn ) = n + 1 for n ≥ 8 [DzKP].
(l) R (Pn ,Pn ,Pn ) = 2n − 1 for odd n , for all sufficiently large n , and

R (Pn ,Pn ,Pn ) = 2n − 2 for even n , for all sufficiently large n [GyRSS].
(m) Formulas for R (Pn 1, ... ,Pnk ) for several special cases [FS2].

(n) Formulas for Rk (P 3 ) for all k , and for Rk (P 4 ) if k is not divisible by 3 [Ir]. Wallis
[Wall] showed R 6(P 4 ) = 13, which already implied R 3t (P 4 ) = 6t + 1, for all t ≥ 2.
Independently, the case Rk (P 4 ) for k =/ 3

m was completed by Lindström in [Lind], and
later Bierbrauer proved R 3m (P 4 ) = 2

.3m + 1 for all m ≥ 1.

(o) Formulas for R (n 1P 2, ... , nk P 2 ), in particular R (nP 2, nP 2, nP 2 ) = 4n − 2 [CL1].
(p) Formulas for R ( pP 3, qP 3, rP 3 ) and R ( pP 4, qP 4, rP 4 ) [Scob].

(q) Monotone paths and cycles [Lef].
(r) Study of asymptotics for R (Cm , ... ,Cm ,Kn ) [AlRö].
(s) Study of asymptotics for R (C 2m ,C 2m ,Kn ) for fixed m [ShiuLL, AlRö].
(t) See section 7.2, especially [AKM], for a number of cases for other small graphs, similar

to those listed in section 5.3.
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5.5. Other general multicolor results

(a) Formulas for Rk (G ), where G is one of the graphs P 3, 2K 2 and K 1,3 for all k , and for
P 4 if k is not divisible by 3 [Ir].

(b) tk 2 + 1 ≤ Rk (K 2, t +1) ≤ tk
2 + k + 2, where the upper bound is general, and the lower bound

holds when both t and k are prime powers [ChGra1, LaMu].

(c) (m − 1) (k +1) / 2<Rk (Tm )< 2km +1 for any tree Tm with m edges [EG], see [GRS].
The upper bound was improved to Rk (Tm )< (m − 1)(k + √k (k − 1) ) + 2 in [GyTu].

(d) k (√m − 1) / 2<Rk (Fm )< 4km +1 for any forest Fm with m edges [EG], see [GRS].
See also items (r) and (s) below.

(e) Formula for R (S 1, ... , Sk ), where Si ’s are arbitrary stars [BuRo1].
(f) Formula for R (S 1, ... , Sk ,Kn ), where Si ’s are arbitrary stars [Jac].
(g) Formula for R (S 1, ... , Sk , nP 2), where Si ’s are arbitrary stars [CL2].
(h) Formula for R (S 1, ... , Sk ,T ), where Si ’s are stars and T is a tree [ZZ1].
(i) Formula for R (S 1, ... , Sk ), where each Si ’s is a star or miK 2 [ZZ2, EG].

(j) Cockayne and Lorimer [CL1] found the exact formula for R (n 1P 2, ... , nk P 2), and later
Lorimer [Lor] extended it to a more general case of R (Km , n 1P 2, ... , nk P 2). Still more
general cases of the latter, with multiple copies of the complete graph, stars and forests,
were studied in [Stahl, LorSe, LorSo, GyRSS].

(k) If G is connected and R (Kk ,G ) = (k −1)(n (G ) − 1) + 1, in particular if G is any tree, then
R (Kk 1, ... ,Kkr ,G ) = (R (k 1, ... , kr ) − 1)(n (G ) − 1) + 1 [BE3]. A generalization for con-
nected G 1, ... ,Gn in place of G appeared in [Jac].

(l) If F ,G ,H are connected graphs then R (F ,G ,H ) ≥ (R (F ,G ) − 1)(χ(H ) − 1) +
min{R (F ,G ), s (H ) }, where s (G ) is the chromatic surplus of G (see item [Bu2] in sec-
tion 4.16). This leads to several formulas and bounds for F and G being stars and/or
trees when H = Kn [ShiuLL].

(m) R (Kk 1, ... ,Kkr ,G 1, ... ,Gs ) ≥ (R (k 1, ... , kr ) − 1)(R (G 1, ... ,Gs ) − 1) + 1 for arbitrary graphs
G 1,... ,Gs [Bev]. This generalizes 5.2.o.

(n) Constructive bound R (G 1, ...,Gtn −1 ) ≥ t n + 1 for decompositions of Ktn [LaWo1, LaWo2].

(o) Bounds on Rk (G ) for unicyclic graphs G of odd girth.
Some exact values for special graphs G , for k = 3 and k = 4 [KrRod].

(p) Rk (G ) > (sk
e (G ) − 1) ) 1 / n (G ) , where s is the number of automorphisms of G [CH3].

Other general bounds for Rk (G ) [CH3, Par6].
(q) Bounds on Rk (Ks , t ), in particular for K 2,2 =C 4 and K 2, t [ChGra1, AFM].
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(r) Bounds on Rk (G ) for trees, forests, stars and cycles [Bu1].
(s) Bounds for trees Rk (T ) and forests Rk (F ) [EG, GRS, BB, GyTu, Bra1, Bra2, SwPr].
(t) Study of R (G 1, ... ,Gk ,G ) for large sparse G [EFRS1, Bu3].
(u) Study of asymptotics for R (Cn , ... ,Cn ,Km ) [AlRö].
(v) Asymptotics of Rk (Ks , t ) for fixed k and s [LiTZ].
(w) See also surveys listed in section 7.

6. Hypergraph Numbers

The only known value of a classical Ramsey number for hypergraphs:

R (4,4 ; 3) = 13
more than 200000 critical colorings [MR1]

Other hypergraph cases:

33 ≤R (4, 5 ; 3) [Ex13]
63 ≤R (5, 5 ; 3) [Ea1]
56 ≤R (4,4,4 ; 3) [Ex8]
34 ≤R (5, 5 ; 4) [Ex11]

R (K 4 − t ,K 4 − t ; 3) = 7 [Ea2]
R (K 4 − t ,K 4 ; 3) = 8 [Sob, Ex1, MR1]
14 ≤R (K 4 − t ,K 5 ; 3) [Ex1]
13 ≤R (K 4 − t ,K 4 − t ,K 4 − t ; 3) ≤ 17 [Ex1] [Ea1]

The computer evaluation of R (4,4 ; 3) in [MR1] consisted of an improvement of the
upper bound from 15 to 13, which followed an extensive theoretical study of this number in
[Gi4, Is1, Sid1]. The first bound on R (4, 5 ; 3) ≥ 24 was obtained by Isbell [Is2]. Shastri in
[Sha] shows a weak bound R (5, 5 ; 4) ≥ 19 (now 34 in [Ex11]), nevertheless his lemmas, the
Stepping-Up Lemmas by Erdös and Hajnal (see [GRS, GrRö]), and others in [Ka3, Abb2,
GRS, GrRö, HuSo] could be used to derive better lower bounds for higher numbers.

Several lower bound constructions for 3-uniform hypergraphs were presented in [HuSo].
Study of lower bounds on R ( p , q ; 4) can be found in [Song3] and [SYL, Song4] (the latter
two papers are almost the same in contents). Most lower bounds in these papers can be easily
improved by using the same techniques, but starting with better constructions for small param-
eters listed above.
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General hypergraph results:

(a) 2cn
2
< R (n ,n ; 3) < 22

n
, Erdös, Hajnal and Rado (see [ChGra2] p. 30).

(b) R (H ,H ; r ) ≤ c .n (H )1+ ε , for some constant c = c (∆, r , ε ) depending only on the max-
imum degree of H , r and ε> 0 [KoRö3].

(c) A loose 3-uniform cycle Cn on [n ] is the set of triples {123, 345, 567, ... ,(n −1)n 1}
(note that n must be even). For such loose cycles we have R (C 4k ,C 4k ; 3)> 5k − 2 and
R (C 4k +2,C 4k +2; 3)> 5k + 1, and asymptotically these lower bounds are tight [HaŁP+].

(d) Let H (r )(s , t ) be the complete r -partite r -uniform hypergraph with r − 2 parts of size 1,
one part of size s , and one part of size t (for example, for r = 2 it is the same as Ks , t ).
For the multicolor numbers, Lazebnik and Mubayi [LaMu] proved that

tk 2 − k + 1 ≤ Rk (H
(r )(2, t +1);r ) ≤ tk 2 + k + r ,

where the lower bound holds when both t and k are prime powers. For the general case
of H (r )(s , t ), more bounds are presented in [LaMu].

(e) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wil-
son [FraWi] (section 2.3.s) to more colors and to hypergraphs [Grol3].

(f) Lower bounds on Rm (k ; s ) are discussed in [DLR, AbbW]. In [AbbS], it is shown that
for some values of a , b the numbers R (m , a , b ; 3) are at least exponential in m .

(g) General lower bounds for large number of colors were given in an early paper by
Hirschfeld [Hir], and some of them were later improved in [AbbL].

(h) Lower and upper asymptotics, and other theoretical results on hypergraph numbers are
gathered in [GrRö, GRS].

7. Cumulative Data and Surveys

7.1. Cumulative data for two colors
[CH1] R (G ,G ) for all graphs G without isolates on at most 4 vertices.
[CH2] R (G ,H ) for all graphs G and H without isolates on at most 4 vertices.
[Clan] R (G ,H ) for all graphs G on at most 4 vertices and H on 5 vertices, except

five entries (now all solved).
[He4] All critical colorings for R (G ,H ), for isolate-free graphs G and H as in

[Clan] above.
[Bu4] R (G ,G ) for all graphs G without isolates and with at most 6 edges.
[He1] R (G ,G ) for all graphs G without isolates and with at most 7 edges.
[HaMe2] R (G ,G ) for all graphs G on 5 vertices and with 7 or 8 edges.
[He2] R (G ,H ) for all graphs G and H on 5 vertices without isolates, except 7

entries (3 still open, see the paragraph at the end of this section).
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[HoMe] R (G ,H ) for G =K 1,3 + e and G =K 4 − e versus all connected graphs H on 6
vertices, except R (K 4 − e ,K 6 ). The result R (K 4 − e ,K 6 ) = 21 was claimed by
McNamara [McN, unpublished].

[FRS4] R (G ,T ) for all connected graphs G on at most 5 vertices and all (except some
cases) trees T .

[FRS1] R (K 3,G ) for all connected graphs G on 6 vertices.
[Jin] R (K 3,G ) for all connected graphs G on 7 vertices. Some errors in [Jin] were

found by [SchSch1].
[Brin] R (K 3,G ) for all connected graphs G on at most 8 vertices. The numbers for

K 3 versus sets of graphs with fixed number of edges, on at most 8 vertices,
were presented in [KM1].

[BBH1] R (K 3,G ) for all connected graphs G on 9 vertices. See also [BBH2].
[JR3] R (C 4,G ) for all graphs G on at most 6 vertices.
[JR4] R (C 5,G ) for all graphs G on at most 6 vertices.
[JR2] R (C 6,G ) for all graphs G on at most 5 vertices.
[LoM3] R (K 2,n ,K 2,m ) for all 2 ≤ n ,m ≤ 10 except 8 cases, for which lower and upper

bounds are given. Further data for other complete bipartite graphs in [LoMe4]
and in section 4.22 of this survey.

[HaKr] All best lower bounds up to 102 from cyclic graphs. Formulas for best cyclic
lower bounds for paths and cycles, small complete graphs and for graphs with
up to five vertices.

Chvátal and Harary [CH1, CH2] formulated several simple but very useful observations
how to discover values of some numbers. All five missing entries in the tables of Clancy
[Clan] have been solved. Out of 7 open cases in [He2] 4 have been solved, namely
R (4, 5) = R (G 19,G 23 ) = 25 and the items 2, 3 and 4 in section 4.13. The still open 3 cases
are for K 5 versus the graphs K 5 (section 2.1), K 5 − e (section 3.1), and K 5 −P 3 (section 4.13).

7.2. Cumulative data for three colors
[YR3] R 3(G ) for all graphs G with at most 4 edges and no isolates.
[YR1] R 3(G ) for all graphs G with 5 edges and no isolates, except K 4 − e .

The case of R 3(K 4 − e ) remains open (see section 5.3).
[YY] R 3(G ) for all graphs G with 6 edges and no isolates, except 10 cases.
[AKM] R (F ,G ,H ) for most triples of isolate-free graphs with at most 4 vertices.

Some of the missing cases completed in [KM2].
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7.3. Surveys
[Bu1] A general survey of results in Ramsey graph theory by S. A. Burr (1974)
[Par6] A general survey of results in Ramsey graph theory by T. D. Parsons (1978)
[Har2] Summary of progress by Frank Harary (1981)
[ChGri] A general survey of bounds and values by F. R. K. Chung and C. M. Grin-

stead (1983)
[JGT] Special volume of the Journal of Graph Theory (1983)
[Rob1] A review of Ramsey graph theory for newcomers by F. S. Roberts (1984)
[Bu7] What can we hope to accomplish in generalized Ramsey Theory ? (1987)
[GrRö] Survey of asymptotic problems by R. L. Graham and V. Rödl (1987)
[GRS] An excellent book by R. L. Graham, B. L. Rothschild and J. H. Spencer,

second edition (1990)
[FRS5] Survey by Faudree, Rousseau and Schelp of graph goodness results, i.e. condi-

tions for the formula R (G ,H ) = ( χ(G ) − 1 ) ( n (H ) − 1 ) + s (G ) (1991)
[Nes̆] A chapter in Handbook of Combinatorics by J. Nes̆etr̆il (1996)
[Caro] Survey of zero-sum Ramsey theory by Y. Caro (1996)
[Chu4] Among 114 open problems and conjectures of Paul Erdös, presented and com-

mented by F. R. K. Chung, 31 are concerned directly with Ramsey numbers.
216 references are given (1997). An extended version of this work was
prepared jointly with R. L. Graham [ChGra2]. (1998)

[GrNe] Ramsey Theory and Paul Erdös (2002)
[CoPC] Special issue of Combinatorics, Probability and Computing (2003)
[Ros2] Dynamic survey of Ramsey theory applications by V. Rosta (2004)

The surveys by S. A. Burr [Bu1] and T. D. Parsons [Par6] contain extensive chapters on
general exact results in graph Ramsey theory. F. Harary presented the state of the theory in
1981 in [Har2], where he also gathered many references including seven to other early sur-
veys of this area. More than two decades ago, Chung and Grinstead in their survey paper
[ChGri] gave less data than in this work, but included a broad discussion of different
methods used in Ramsey computations in the classical case. S. A. Burr, one of the most
experienced researchers in Ramsey graph theory, formulated in [Bu7] seven conjectures on
Ramsey numbers for sufficiently large and sparse graphs, and reviewed the evidence for them
found in the literature. Three of them have been refuted in [Bra3].

For newer extensive presentations see [GRS, GrRö, FRS5, Nes̆, Chu4, ChGra2], though
these focus on asymptotic theory not on the numbers themselves. The newest very welcome
addition is a 2004 compilation of applications of Ramsey theory by Rosta [Ros2]. Finally, this
compilation could not pretend to be complete without mentioning special volumes of the Jour-
nal of Graph Theory [JGT, 1983] and Combinatorics, Probability and Computing [CoPC,
2003], dedicated entirely to Ramsey theory. Besides a number of research papers, they
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include historical notes and present to us Frank P. Ramsey (1903-1930) as a person.

8. Concluding Remarks
This compilation does not include information on numerous variations of Ramsey

numbers, nor related topics, like size Ramsey numbers, zero-sum Ramsey numbers, irredun-
dant Ramsey numbers, induced Ramsey numbers, local Ramsey numbers, connected Ramsey
numbers, chromatic Ramsey numbers, avoiding sets of graphs in some colors, coloring graphs
other than complete, or the so called Ramsey multiplicities. Interested reader can find such
information in the surveys listed in section 7 here.

Readers may be interested in knowing that the US patent 6965854 B2 issued on
November 15, 2005 claims a method of using Ramsey numbers in "Methods, Systems and
Computer Program Products for Screening Simulated Traffic for Randomness". Check the ori-
ginal document at http://www.uspto.gov/patft if you wish to find out whether your usage of
Ramsey numbers is covered by this patent.

The author apologizes for any omissions or other errors in reporting results belonging to
the scope of this work. Suggestions for any kind of corrections or additions will be greatly
appreciated and considered for inclusion in the next revision of this survey.
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A-B, 269 (1969) A620-A622.
[Gi5] G. Giraud, Une minoration du nombre de quadrangles unicolores et son application à la majoration

des nombres de Ramsey binaires-bicolores, C.R. Acad. Sc. Paris, Séries A-B, 276 (1973) A1173-
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[GrRö] R.L. Graham and V. Rödl, Numbers in Ramsey Theory, in Surveys in Combinatorics, (ed. C. White-

head), Cambridge University Press, 1987, 111-153.
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Number for Hypergraph Cycles I, Journal of Combinatorial Theory, Series A, 113 (2006) 67-83.
[HaŁT] P.E. Haxell, T. Łuczak and P.W. Tingley, Ramsey Numbers for Trees of Small Maximum Degree,

Combinatorica, 22 (2002) 287-320.
[-] He Jiandong, see [WSLLH].
[Hein] K. Heinrich, Proper Colourings of K 15, Journal of the Australian Mathematical Society, Series A, 24

(1977) 465-495.
[He1] G.R.T. Hendry, Diagonal Ramsey Numbers for Graphs with Seven Edges, Utilitas Mathematica, 32

(1987) 11-34.
[He2] G.R.T. Hendry, Ramsey Numbers for Graphs with Five Vertices, Journal of Graph Theory, 13 (1989)

245-248.
[He3] G.R.T. Hendry, The Ramsey Numbers r (K 2 +K 3,K 4) and r (K 1 +C 4,K 4), Utilitas Mathematica, 35

(1989) 40-54, addendum in 36 (1989) 25-32.
[He4] G.R.T. Hendry, Critical Colorings for Clancy’s Ramsey Numbers, Utilitas Mathematica, 41 (1992)

181-203.
[He5] G.R.T. Hendry, Small Ramsey Numbers II. Critical Colorings for r (C 5 + e ,K 5), Quaestiones

Mathematica, 17 (1994) 249-258.
[-] G.R.T. Hendry, see also [YH].
[HiIr]* R. Hill and R.W. Irving, On Group Partitions Associated with Lower Bounds for Symmetric Ramsey

Numbers, European Journal of Combinatorics, 3 (1982) 35-50.
[Hir] J. Hirschfeld, A Lower Bound for Ramsey’s Theorem, Discrete Mathematics, 32 (1980) 89-91.
[HoMe] M. Hoeth and I. Mengersen, Ramsey Numbers for Graphs of Order Four versus Connected Graphs of

Order Six, Utilitas Mathematica, 57 (2000) 3-19.
[HuSo] Huang Da Ming and Song En Min, Properties and Lower Bounds of the Third Order Ramsey

Numbers (in Chinese), Mathematica Applicata, 9 (1996) 105-107.
[Hua1] Huang Guotai, Some Generalized Ramsey Numbers (in Chinese), Mathematica Applicata, 1 (1988)

97-101.
[Hua2] Huang Guotai, An Unsolved Problem of Gould and Jacobson (in Chinese), Mathematica Applicata, 9

(1996) 234-236.
[-] Huang Jian, see [HWSYZH].

- 47 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2006), DS1.11

[-] Huang Wenke, see [DuHu].
[HWSYZH] (also abbreviated by HW+) Huang Yi Ru, Wang Yuandi, Sheng Wancheng, Yang Jiansheng, Zhang

Ke Min and Huang Jian, New Upper Bound Formulas with Parameters for Ramsey Numbers, to
appear in Discrete Mathematics, (2006).

[HYZ] Huang Yi Ru, Yang Jian Sheng and Zhang Ke Min, A Note on Ramsey Numbers with Two Parame-
ters, Electronic Journal of Combinatorics, 27 (2006) 574-576.

[HZ1] Huang Yi Ru and Zhang Ke Min, An New Upper Bound Formula for Two Color Classical Ramsey
Numbers, Journal of Combinatorial Mathematics and Combinatorial Computing, 28 (1998) 347-350.

[HZ2] Huang Yi Ru and Zhang Ke Min, New Upper Bounds for Ramsey Numbers, European Journal of
Combinatorics, 19 (1998) 391-394.

[-] Huang Yi Ru, see also [BJYHRZ, YHZ1, YHZ2].
[Ir] R.W. Irving, Generalised Ramsey Numbers for Small Graphs, Discrete Mathematics, 9 (1974) 251-

264.
[-] R.W. Irving, see also [HiIr].
[Is1] J.R. Isbell, N (4,4 ; 3) ≥ 13, Journal of Combinatorial Theory, 6 (1969) 210.
[Is2] J.R. Isbell, N (5,4 ; 3) ≥ 24, Journal of Combinatorial Theory, Series A, 34 (1983) 379-380.
[Jac] M.S. Jacobson, On the Ramsey Number for Stars and a Complete Graph, Ars Combinatoria, 17

(1984) 167-172.
[-] M.S. Jacobson, see also [BEFRSGJ, GoJa1, GoJa2].
[JR1] C.J. Jayawardene and C.C. Rousseau, An Upper Bound for the Ramsey Number of a Quadrilateral

versus a Complete Graph on Seven Vertices, Congressus Numerantium, 130 (1998) 175-188.
[JR2] C.J. Jayawardene and C.C. Rousseau, Ramsey Numbers r (C 6,G ) for All Graphs G of Order Less

than Six, Congressus Numerantium, 136 (1999) 147-159.
[JR3] C.J. Jayawardene and C.C. Rousseau, The Ramsey Numbers for a Quadrilateral vs. All Graphs on Six

Vertices, Journal of Combinatorial Mathematics and Combinatorial Computing, 35 (2000) 71-87.
Erratum in 51 (2004) 221.

[JR4] C.J. Jayawardene and C.C. Rousseau, Ramsey Numbers r (C 5,G ) for All Graphs G of Order Six, Ars
Combinatoria, 57 (2000) 163-173.

[JR5] C.J. Jayawardene and C.C. Rousseau, The Ramsey Number for a Cycle of Length Five vs. a Com-
plete Graph of Order Six, Journal of Graph Theory, 35 (2000) 99-108.

[-] C.J. Jayawardene, see also [BJYHRZ, RoJa1, RoJa2].
[Jin]** Jin Xia, Ramsey Numbers Involving a Triangle: Theory & Applications, Technical Report RIT-TR-

93-019, MS thesis, Department of Computer Science, Rochester Institute of Technology, 1993.
[-] Jin Xia, see also [RaJi].
[JGT] Special volume on Ramsey theory of Journal of Graph Theory, Volume 7, Number 1, (1983).
[Ka1] J.G. Kalbfleisch, Construction of Special Edge-Chromatic Graphs, Canadian Mathematical Bulletin, 8

(1965) 575-584.
[Ka2]* J.G. Kalbfleisch, Chromatic Graphs and Ramsey’s Theorem, Ph.D. thesis, University of Waterloo,

January 1966.
[Ka3] J.G. Kalbfleisch, On Robillard’s Bounds for Ramsey Numbers, Canadian Mathematical Bulletin, 14

(1971) 437-440.
[KaSt] J.G. Kalbfleisch and R.G. Stanton, On the Maximal Triangle-Free Edge-Chromatic Graphs in Three

Colors, Journal of Combinatorial Theory, 5 (1968) 9-20.
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