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ABSTRACT: We present data which, to the best of our knowledge,
includes all known nontrivial values and bounds for specific graph,
hypergraph and multicolor Ramsey numbers, where the avoided
graphs are complete or complete without one edge. Many results per-
taining to other more studied cases are also presented. We give refer-
ences to al cited bounds and values, as well as to previous similar
compilations. We do not attempt complete coverage of asymptotic
behavior of Ramsey numbers, but concentrate on their specific values.

Mathematical Reviews Subject Number 05C55.

1. Scope and Notation

There is a vast literature on Ramsey type problems starting in 1930 with the original
paper of Ramsey [Ram]. Graham, Rothschild and Spencer in their book [GRS] present an
exciting development of Ramsey Theory. The subject has grown amazingly, in particular with
regard to asymptotic bounds for various types of Ramsey numbers (see the survey paper
[GrRO]), but the progress on evaluating the basic numbers themselves has been very unsatis-
factory for a long time. In the last decade, however, considerable progress has been obtained
in this area, mostly by employing computer algorithms. The few known exact values and
several bounds for different numbers are scattered among many technical papers. This compi-
lation is a fast source of references for the best results known for specific numbers. It is not
supposed to serve as a source of definitions or theorems, but these can be easily accessed via

* - This paper updates and extends a technical report RIT-TR-93-009 by the author [Rad4].
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the references gathered here.

Ramsey Theory studies conditions when a combinatorial object contains necessarily some
smaller given objects. The role of Ramsey numbers is to quantify some of the general existen-
tial theorems in Ramsey Theory.

Let G,,G,, ..., G, be graphs or s-uniform hypergraphs (s is the number of vertices
in each edge). R(G,,G,, ..., G_;s) denotes the m-color Ramsey number for s-uniform
graphs/hypergraphs, avoiding G, in color i for 1<i<m. It is defined as the least integer n
such that, in any coloring with m colors of the s-subsets of a set of n elements, for some i
the s-subsets of color i contain a sub-(hyper)graph isomorphic to G, (not necessarily
induced). If s =2 (standard graphs) then s can be omitted. If G, is a complete graph K, then
we can write k instead of G;, and if G, =G for al i we can use the abbreviation R_(G) (or
R.(G:s). Fors=2 K —e denotes a K _ without one edge, and for s =3, K, —t denotes a
K, without one triangle (hyperedge). P, is apath on i vertices, C, is a cycle of length i, and
W, is a wheel with i -1 spokes, i.e. a graph formed by some vertex x, connected to all ver-
tices of some cycle C,_,. The book graph B, =K, +K. has i +2 vertices, and can be seen as i
triangular pages attached to a single edge. Kn‘m is acomplete n by m bipartite graph, in par-
ticular K1, . Isastar graph. For agraph G, n(G) and e(G) denote the number of vertices and
edges, respectively, in G.

Section 2 contains the data for the classical two color Ramsey numbers R(k,I) for com-
plete graphs, and section 3 for the two color case when the avoided graphs are complete or
have the form K, —e, but not both are complete. Section 4 lists the most studied two color
cases for other graphs. The multicolor and hypergraph cases are gathered in sections 5 and 6,
respectively. If some new bound has been not yet published, we also give a reference to the
best published previous result, if any. Finally, section 7 gives pointers to cumulative data and
to some previous surveys, especially those containing data not subsumed by this compilation.

2. Classical Two Color Ramsey Numbers

We split the data into the table of values and a table with corresponding references.
Known exact values appear as centered entries, lower bounds as top entries, and upper bounds
as bottom entries.

All the critical graphs for the numbers R(k, 1) (graphs on R(k, ) -1 vertices without K,
and without K, in the complement) are known for k=3 and | =3, 4, 5, 6 [Ka2], 7 [RK3,
MZ], and there are 1, 3, 1, 7 and 191 of them, respectively. There exists a unique critical
graph for R(4,4) [Ka2]. There are 4 such graphs known for R(3,8) [RK2], 1 for R(3,9) [Ka2]
and 350904 for R(4,5) [MR5], but there might be more of them.
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| 3 4 5 6 7 8 9 10 11 12 13 14 15
k
3 6 9 14 18 23 28 36 40 46 >1 %9 66 3
43 51 60 69 78 89
4 18 o5 35 49 53 69 80 96 106 118 129 134
41 61 84 115 149 191 238 291 349 417
5 43 58 80 95 114
49 87 143 216 316 442
102
6 165 298 495 780 1171
205
! 540 1031 1713 2826
282
8 1870 3583 6090
565
° 6625 12715
10 798
23854
Table I. Known nontrivial values and bounds for two color
Ramsey numbers R(k,I) = R(k, I ;2).
| 3 4 5 6 7 8 9 10 11 12 13 14 15
k
Ka2 GR Ka2 Ex2 Ka2 Ex8 Piw3 Ex7 WW
3 GG GG GG Ka2
GY Mz GR RK2 RK2 RK2 RK2 RK2 Ral
4 GG Kal Ex8 Ex3 Ex3 RK1 Piw3 Piw3 Piw3 Piw3 Piw3 Piw4
MR5 MR4 Mac Mac Mac Mac Spe Spe Spe Spe Spe
5 Ex4 Ex8 CET Piw3 CET
MR4 Spe/HZ Spe Spe Mac Mac
Kal
6 Mac Mac Mac Mac Mac
7 Ma/S1
Mac Mac HZ Mac
8 BR
Mac Eal HZ
Ma/Sl
° Mac Eal
10 Ma/S1
Mac

References for Table I.

Chokbowornpaishand and Longani [ChLo] established R(3,20)=98. Wang and Wang in
[WW] showed that R(3,16) =79, and [WWY] gives R(3,17) 292, R(3,18) =98, R(3,19) > 106,
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R(3,20)=109, R(3,21) =122, R(3,22) =125 and R(3,23)>136. Most of the lower bounds for
R(4,n) presented by Bannani in [Ba], and two other results R(3,13)>58 [Ka2] and
R(5,8) =94 [RK1], were improved in [Piwl,Piw3] by Piwakowski. The bound R(3,13) =60
[XZ] cited in the last version of this survey was shown to be incorrect in [Piw3].

The previosuly best published upper bounds for (k,l) = (4,6), (5,5) and (5,6) of 43, 52
and 94 can be found in [MR2, MR3] and [Wa2], respectively. The bound R(6,6)< 166 is an
immediate consequence of theorem 1 in [Wal] and R(4,6)<41, in this case the best pub-
lished bound of 169 is due to Giraud [Gi3]. Recently, T. Spencer [Spe], Mackey [Mac], and
Huang and Zhang [HZ], using the bounds for minimum and maximum number of edges in
(4,5 Ramsey graphs found in [MR2, MR4], were able to establish new upper bounds for
several higher Ramsey numbers, improving all the previous longstanding results of Giraud
[Gi1, Gi3, Gi4]. Spencer and Mackey keep outdoing each other on these bounds, and when
the situation stabilizes we will try to report the outcome of this competition. We have recom-
puted the bounds marked [HZ] using the method from the paper [HZ], because the bounds in
the paper relied on an overly optimistic personal communication from Spencer. The upper
bounds implied by R(k,l)<R(k-1,1)+R(k,lI-1), or by its dight improvement with strict
inequality when both terms on the right hand side are even, are marked [Eal].

For a more in depth study of triangle-free graphs in relation to the case of R(3,k), for
which considerable progress has been obtained in recent years, see also [AKS, FL, Fral, Fra2,
Gri, Loc, RK3, RK4, S2, Stat, Yu]. Good asymptotic bounds for R(k, k) can be found, for
example, in [Chu3] (lower bound) and [Tho] (upper bound), and for many other asymptotic
bounds in the general case of R(k,|) consult [GRS, GrRY].

In 1995, Kim [Kim] proved that R(3,k) has order of magnitude exactly @(kzllog k).

3. Two Colors - Dropping One Edge from Complete Graph

H || Ky—e | K,—e | Kg—e | Kgz—e | K;—e | Kg—e | Ky—e | Ky—-e
G
K;-e 3 5 7 9 11 13 15 17
Ks 5 7 11 17 21 25 31 36-39
K,—e 5 10 13 17 28
K, 7 11 19
Ks;—e 7 13 22
Ky 9 16 30-34
Keg—e 9 17
Ke 11

Table Il. Two types of Ramsey numbers R(G,H),
includes all known nontrivial values.
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H | K;—-e | K,—e Ks—e Ks—€ | K;—e | Kg—e | Kg—e | Kp—e
G
K;—e Tr Tr Tr Tr Tr Tr Tr Tr
Ks Tr CH2 Clan FRS1 GH Ra2 Ra2 Ea3-Ra2
K,—e Tr CH1 FRS2 McR McR
K, Tr CH2 EHM1
Ks—e Tr FRS2 | CEHMS
Kg Tr BH Ex7-Eal
Kg—€ Tr McR
Kg Tr

References for Table Il.

For the following numbers it was established that the critica graphs are unique:
R(K, K, —e) for I =3 [Tr], 6 and 7 [RaZ], R(K,~e,K ,-e) [FRSZ], R(K.-e, K. —e) [Ra3]
and R(K,—e,K_-e) [McR].

4. General Graph Numbersin Two Colors

This section includes data with respect to genera graph results. We tried to include all
nontrivial values and identities regarding exact results (or references to them), but only those
out of general bounds and other results which, in our opinion, have a direct connection to the
evaluation of specific numbers. If some small value cannot be found below, it may be covered
by the cumulative data gathered in section 7, or be a special case of a genera result listed in
this section. Note finally that B, =C,=W,=K,, B,=K,-e, W,=K, and C, = Kz,z
imply other identities not mentioned explicitly.

Paths:
R(P.,P )= n+Umi2L-1 foralnzm=>2 [GeGy]

Cycles:
R(C, C,) =6[GC]
R(C,C, =6[CH]]
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Result obtained independently in [Ros] and [FS1]

0g2n -1 for 3<m<n, m odd, (n,m) £(3,3)
O

R(C,.C) = Bn—1+ml2 for 4<m<n, m and n even, (n,m) ~(4,4)
O

max{n -1+m/2,2m -1} for 4<m<n, m even and n odd

R(nC,;,mC,) =3n+2m forn=zm=1, n =2 [BES]
Unions of cycles [MS, Den|

Whesls:
R(W, W,) =11 [Clan]
R(W,,W )=2n-1foral nz6 [BEZ]
All critical colorings for R(W,, W ) for al n 23 [R]]
R(W,,W,) =17 [He3]
R(W,, W) =15 [HM2, HeZ]
R(W,,Wg) =19, R(W., W) =17 and R(W, W) =17,
and all critical colorings (2, 1 and 2) for these numbers [FM]

Books:
R(B,,B,)=2n +3 for al n>1 [RS]]
R(B, B;) =14 [RS1, HMZ]
R(B, B =16 R(B,;,B.) =17, R(B,,B;) =21,
R(B,B,=18 R(B, By =22 R(B, B, =26,
in general R(B_,B_)=4n +2 for 4n +1 a prime power,
and some other general equalities and bounds for R(B,, B, ) [RS1].

Complete bipartite graphs:
R(Kz,z’ K1,15) =20 [La?]
R(Kz,s’ K1,7) = 13 [Par4]
R(K, 3K, ;) =10 [Bu4]
R(K2’3, K2,4) =12 [ER]
R(Kz,s’ K3’3) =13 and R(K3,3, K3,3) = 18 [HM3]
R(NK, 5, mK, ) =4n+m-1fornzm=z1,n=22[BES]
R(K, . K )=n+m-g, where e=1 if both n and m are even and £€=0 otherwise
Hal]. It is aso a specia case of multicolor numbers for stars obtained in [BuRo1].
[ sp
R(K, . K, )s4n -2 for al n=2, exact values 6, 10, 14, 18, 21, 26, 30, 33, 38, 42, 46,
50, 54, 57 and 62 of R(K, ,K, ) for 2<n <16, respectively. The first open case is

65<R(K,,,, K, ,) <66 [EHM2].
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Special cases.
R(WS, K5—e) =17 [He2][YH]
R(Bs, K, =14 [He3]
R(C., W) =13 [CS]
R(C4, K6)2 18 [Ex9]
Exact values 7, 9, 11, 12, 13, 16 and 16 of R(C o Bn) for 2<n <8, respectively [FRS6]

26<R(K 222 K 2’2,2) (octahedron) [Ex7]

General cases (exact results and bounds):

Paths versus stars [Par2, BEFRS2]
Paths versus books [RS2]

Paths versus cycles [FLPS, BEFRSZ]
Paths versus K [Parl]

Paths versus Kn’m [H&g]

Paths and cycles versus trees [FSS]
Books and K, + tree versus K [LR]
Cycles versus stars [Lal, Clark, see Par5]
Cycles versus books [FRS5]

Cycles versus K [BOET]

Unicyclic graphs [Grol, Kbh]

C , versus some stars [Par3]

C, versus books [FRSE]

C, versus trees [EFRS3, Bu6]

nC, versus mK , [LorMu]

K o VErsus some stars [Par4]

R(nK ,,nK ) =7n +4 for large n [Bu7]
Stars versus trees [Bul, GV]

Stars versus stripes, stripes [CL, Lor]
Stars versus books [CRSPS, RS2]
Stars versus Kn’m [Stev, Par3]

Stars versus K —tK, [Hud]

Union of two stars [Gro2]

Double stars [GHK]

Trees [EG, GRS, FSS, GV]

Trees versus K [Chv]

Treesversus K +K_ [RS2, FSR]
Trees versus bipartite graphs [EFRS5]
Trees versus amost complete graphs [GJ2]

* - A double star is a union of two stars with their centers joined by an edge.
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Trees versus small (n(G)<5) connected G [FR4]

Linear forests [BuR02, FS3]

Forests versus K [Stahl]

Forests versus almost complete graphs [CGP)

Sparse graphs versus paths and cycles [BEFRSZ]

Multipartite complete graphs [BEFRS3, EFRS3, FRS3, Stev]
Multipartite complete graphs versus trees [EFRS6, BEFRSGJ]
Disconnected graphs versus any graph [GJ1]

Graphs yvith long tails [Bu2, BG]

Brooms [EFRSZ]

General results:
[Kim]
[CCD]
[Alon2]

[Wal]
[Chv]
[CH2]

[BE1]
[BE2]

[BES]

[Zeng]
[Bu7, Bu§|

[BEFRSI]

[BEFRSA]

R(3,k)=0(k/logk).

Explicit construction for R(3,4k +1) > 6R(3,k +1) -5, for all k>1.
Explicit construction of triangle-free graphs with independence k on Q(k3/2)
vertices.

R(k,k)<4R(k,k —2)+2.

R(K,, T,)=(n=1)(m-1)+1 for any tree T on m vertices.
R(G,H)=2(X(G)-1(c(H)-1)+1, where x(G) is the chromatic number of
G, and c(H) is the size of the largest connected component of H .
R(G,G)= 44n(G)-1)/3Ufor any connected G.

Graphs yielding R(K ,G) = (n-1)(n(G)-1)+1 and related results (see
aso [EFRA]).

Study of Ramsey numbers for multiple copies of graphs (see also [Bul,
LorMu]).

R(nK 5, nG) for all isolate-free graphs G on 4 vertices.

Study of Ramsey numbers for large digjoint unions of graphs, in particular
R(nK,,nK;)=n(k +1 -1)+R(K, _;,K,_;) =2 for n large enough.

R(K;, G)=2n(G) -1 for any connected G on at least 4 vertices and with
a most (17n(G) +1)/15 edges. In particular it holds for G =P, and G =C,,
for dl i >4.

Graphs H yielding R(G,H) = (x(G)-1)(n(H)-1)+s(G), where s(G) is
a chromatic surplus of G, defined as the minimum number of vertices in

some color class under al vertex colorings in x(G) colors (such H's are
caled G-good). This idea, initiated in [Bu2], is a basis of a number of

+ - A broom is a star with a path attached to its center.



[BEFS]
[Par3, Par4]
[CSRT]

[GS]
[Alonl]

[Sid3]
[Sid2]
[FSS]

[FM]

[-]
[-]
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exact results for R(G,H) for large and sparse graphs H [BG, BEFRS2,
Bu5, FS, EFRS3, FRS3, BEFSRGJ]. A survey of this area appeared in
[FRST].

Bounds for the difference between consecutive Ramsey numbers.

Relations between some Ramsey graphs and block designs.

R(G,G)=c n(G) for al G, where constant ¢, depends only on the max-
imum degree d in G.

R(G,G)=cyn for al d-arangeable graphs G on n vertices.

R(G,G)<12n for al n-vertex graphs G, in which no two vertices of
degree at least 3 are adjacent.

R(G,K;)<2e(G)+1 for any graph G without isolated vertices.
R(G,K;)=n(G)+e(G) for al G, aconjecture.

Discussion of the conjecture R(T,, T,) < n(T,)+n(T,) -2 for any trees T
and T,

Counterexample G =W, to the Erdos conjecture (see [GRS])
R(G,G) = R(KX(G), KX(G)).

Specia cases of multicolor results listed in section 5.

See aso surveys listed in section 7.

1

5. Multicolor Graph Numbers

The only known value of a multicolor classical Ramsey number:

R(3,3,3) = R(3,3,3;2) = 17 [GG]
2 critical colorings [KS, LayMa]

Bounds for multicolor classical numbers:

51<R(3,3,3,3) < 64 [Chul] [San]
162<R(3,3,3,3,3) <317 [Ex11] [Wh, Eal]
500<R(3,3,3,3,3,3) [Ex11]
128<R(4,4,4) < 236 [HI] [Ea2]
30<R(3,3,4) <31 [Ka2] [PR]
45<R(3,3,5) <57 [Ex9, KLR] [Ea2]
55< R(3,4,4) < 79 [KLR] [Ea2]
84<R(3,3,3,4) < 155 [Ex9] [Ea2]
R(3,4,5) < 161 [Ea2]
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The result by Sanchez-Flores [San], 1995, improved very old bound R(3,3,3,3)<65
obtained by Folkman [Fo] in 1974. The result in [PR] improved the bound from [Piw2] by 1.

Multicolor general graphs:

R(C,C,C)=11 [BS, see also Clap]
R(C,C,Ky=12 [Schu]

R(C, K, Ky=17 [ER]

R(C,,C,, Cy=17 [YR1]

R(C C Cp =12 [YR3]

R(K,-e,K,~e,P)=11 [Ex6]
R(C4,C4,C4,T):16forT:P4andT:K1‘3 [ER]
28<R(K,-e,K,-e,K,-e) <30 [Ex6] [Piw4]

R,C,)z18 and R,(C)=25 [Ex9]

All colorings on a least 14 vertices for (K, K, K,), and al colorings for

(K,—e,K,~e,P,) were found in [Piw4].

General multicolor results:

General bounds for R (G) [CH3].
Bounds for R (3) [Fre, Chul, Chu2, ChGri, GrRY].

Formulas for R (G) for G being P, 2K, and K , for al k, and for P, if k is not

dIVISIb|e by 3 [Ir]. Wallis [Wal] showed RG(P4) 13, which already implied
R, (P,)=6t+1, for al t=2. Independently, the case R (P,) for k/-3 was com-

pleted by Lindstrdm in [Lin], and later Bierbrauer proved R m(P4) 23" + 1 for al

mz=1.

R(C,)<k’+k+1 for al k=1, and R (C,) =k’ ~k+2 for al k-1 a prime power

[Ir, Chu2, ChGra]. For small k some improvements on the latter are known:

R,(C,)=11[BS], R,(C,) =18 and R(C ) =25 [Ex9].

Bounds for the bipartite graphs Rk(KS,t), in particular for K2,2: C, [ChGra].

Formulas for R(C ,C_,C,) and R(C_,C_,C,,C,) for n sufficiently large [EFRSL].

Formulas for R(Pnl, e ,Pnk), except few cases [FS2].

Monotone paths and cycles [Lef].

Formulas for R(S,, - - - ,§ ), where S’s are arbitrary stars [BuRo1].
Formulas for R(S,, - -+ ,§,K_), where S’s are arbitrary stars [Jac].
Formulas for R(S,, - - - ,§,nP,), where S's are arbitrary stars [CL2].

- 10 -
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- Formulas for R(pP,,qP,,rP,) and R(pP,, oP , rP ) [Scob].

- Cockayne and Lorimer [CL1] found the exact formula for R(n P,, --- ,n P.,), and
later Lorimer [Lor] extended it to a more general case of R(K_,n P,, -+ ,nP,).
Still more general cases of the latter, with multiple copies of the complete graph and

forests, were studied in [Stahl, LorSe, LorSo].
- If G is connected and R(K,,G)=(k-1)(n(G)-1)+1, in particular if G is any tree,

then R(K_, -+ ,K_,G) =(R(K_, - ,K )-1)(n(G)-1)+1[BE2Z]. A generali-
1 k 1 k
zation for connected G, . . ., G in place of G appeared in [Jac].
- Study of R(S,G,, - -+ ,G,) for large sparse S [EFRSL, Bu3].

- Bounds for treesR (T) and forests R (F) [EG, GRS, BB, GT, Bral.
- See aso surveys listed in section 7.

6. Hypergraph Numbers

The only known value of a classical Ramsey number for hypergraphs:

R(4,4;3) =13 [MR1]
more than 200000 critical colorings

Other hypergraph cases.

R(K,-t,K,~t;3)=7 [Ead]
R(K,-t,K,;3)=8 [So, Ex1, MR]]
14<R(K,-t,K;3) [Ex1]
63<R(5,5:3) [Eal]
32<R(4,5;3) [Ex7]
33<R(5,5: 4) [Ex10]
56<R(4,4,4;3) [Ex7]
13<R(K,-t,K,~t,K,~t;3)<17 [Ex1] [Eal]

The computer evauation of R(4,4;3) in [MR1] consisted of an improvement of the
upper bound from 15 to 13, which followed an extensive theoretical study of this number in
[Gi2, Isl, Sidl]. Exoo in [Ex1] announced the bounds R(4,5;3)=30 and R(5,5;4)>27
without presenting the constructions. The best published bound of R(4,5;3)=24 was
obtained by Isbell [Is2]. Shastri in [Sha] shows a weak bound R(5,5; 4) > 19, nevertheless his
lemmas and those in [Ka3, Abb, GRS] can be used to derive other lower bounds for higher
numbers. Study of lower bounds for R (k ;s) can be found in [DLR].

-11 -
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Theoretical results on hypergraph numbers are gathered in [GrRb, GRS].

7. Cumulative Data and Surveys

Cumulative data for two colors:

[CH1]
[CH2]
[Clan]

[Hed]

[Bud]
[Hel]
[HM2]
[He2]

[FR4]

[FRS1]
[Jin]

[Brin]

R(G,G) for al graphs G without isolates on at most 4 vertices.
R(G,H) for al graphs G and H without isolates on at most 4 vertices.

R(G,H) for al graphs G on at most 4 vertices and H on 5 vertices, except
five entries.

All critical colorings for R(G,H), for isolate-free graphs G and H as in
[Clan] above.

R(G,G) for al graphs G without isolates and with at most 6 edges.
R(G,G) for al graphs G without isolates and with at most 7 edges.
R(G,G) for al graphs G on 5 vertices and with 7 or 8 edges.

R(G,H) for dl graphs G and H on 5 vertices without isolates, except 7
entries.

R(G,T) for al connected graphs G on at most 5 vertices and all (except some
cases) trees T.

R(K,, G) for al connected graphs G on 6 vertices.

R(K;, G) for al connected graphs G on 7 vertices. Some errors in this paper
were corrected by [SchSch].

R(K,, G) for all connected graphs G on at most 8 vertices.

Cumulative data for three colors:

[YR2]
[YR1]
[YY]

[AKM]

R,(G) for al graphs G with at most 4 edges and no isolates.

R,(G) for al graphs G with 5 edges and no isolates, except K, —e.
R,(G) for al graphs G with 6 edges and no isolates, except 10 cases.
R(F,G,H) for most triples of isolate-free graphs with at most 4 vertices.

Chvatal and Harary [CH1, CH2] formulated several ssmple but very useful observations
how to discover values of some numbers. All five missing entries in the tables of Clancy
[Clan] have been solved. The open entries of [He2] with GAK, and H =K till stand, but
may yield soon. The case of R,(K,~e) is aso open.

-12 -
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Surveys:
[Bul] A genera survey of results in Ramsey graph theory by S.A. Burr (1974)
[Par5] A genera survey of results in Ramsey graph theory by T.D. Parsons (1978)
[Ha2] Summary of progress by Frank Harary (1981)

[ChGri] A general survey of bounds and values by F.R.K. Chung and C.M. Grinstead
(1983)

[JGT] Specia volume of the Journal of Graph Theory (1983)

[Rob] Nice textbook-type review of Ramsey graph theory for newcomers (1984)
[Bu6] What can we hope to accomplish in generalized Ramsey Theory ? (1987)
[GrRY]  Survey of asymptotic problems by R.L. Graham and V. Rbdl (1987)

[GRS]  An excelent book by R.L. Graham, B.L. Rothschild and J.H. Spencer, second
edition (1990)

[FRS7] Survey of goodness results of the type R(G,H) =
(X(G)-1)(n(H)-1)+s(G) (1991)

[Nes| A chapter in Handbook of Combinatorics (1996)

The surveys by S.A. Burr [Bul] and T.D. Parsons [Par5] contain extensive chapters on
general exact results in graph Ramsey theory. F. Harary presented the state of the theory in
1981 in [Ha2], where he also gathered many references including seven to other survey
papers. A decade ago, Chung and Grinstead in their survey paper [ChGri] gave less data than
in this note, but included a broad discussion of different methods used in Ramsey computa-
tions in the classical case. S.A. Burr, one of the most experienced researchers in Ramsey
graph theory, formulated in [Bu6] seven conjectures on Ramsey numbers for sufficiently large
and sparse graphs, and reviewed the evidence for them found in the literature.

For newer extensive presentations see [GRS, GrRb, FRS7, Ne§|, though these focus on
asymptotic theory not on the numbers themselves. Finally, this compilation could not pretend
to be complete without mentioning a special volume of the Journal of Graph Theory [JGT]
dedicated entirely to Ramsey theory. Besides a number of research papers, it includes histori-
cal notes and presents to us Frank P. Ramsey (1903-1930) as a person.

8. Concluding Remarks

This compilation does not include information on numerous variations of Ramsey
numbers, nor related topics, like size Ramsey numbers, zero-sum Ramsey numbers, irredun-
dant Ramsey numbers, loca Ramsey numbers, connected Ramsey numbers, chromatic Ram-
sey numbers, avoiding sets of graphs in some colors, coloring graphs other than complete, or
the so called Ramsey multiplicities. Interested reader can find such information in the surveys
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listed in section 7 here.

The author apologizes for any omissions or other errors in reporting results belonging to
the scope of this work. Suggestions for any kind of corrections and/or additions will be
greatly appreciated.
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