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Abstract

In 1980, about 20 years after sequenceable groups were introduced by Gordon
to construct row-complete latin squares, Keedwell published a survey of all the
available results concerning sequencings. This was updated (jointly with Dénes)
in 1991 and a short overview, including results about complete mappings and R-
sequencings, was given in the CRC Handbook of Combinatorial Designs in 1995. In
Sections 1 and 2 we give a survey of the current situation concerning sequencings,
including details of the most important constructions. In Section 3 we consider
some concepts closely related to sequenceable groups: R-sequencings, harmonious
groups, supersequenceable groups (also known as super P-groups), terraces and the
Gordon game. We also look at constructions for row-complete latin squares that do
not use sequencings.

the electronic journal of combinatorics 20(2) (2013), #DS10v2 1



Contents

1 Introduction 2

2 Classifying Sequenceable Groups 4
2.1 Abelian Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Dihedral Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Binary Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Groups of Odd Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Related Concepts 17
3.1 R-sequencings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Harmonious Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Supersequenceable Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Terraces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 The Gordon Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Row-Complete Latin Squares . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Index Of Notation 27

1 Introduction

The problem of finding sequencings for groups was introduced by Gordon in 1961 [56],
although similar ideas for cyclic groups go back at least as far as 1892 [74]. Our focus here
is on the sequenceable group problem of Gordon; we give the necessary definitions and
motivation in this section and look at the progress made in the next one. We consider
some related problems: R-sequencings, harmonious groups, supersequenceable groups
(also known as super P-groups), terraces and the Gordon game in Section 3 and also give
the conclusion to the row-complete latin square question that was one of the motivators
for the original problem.

Among topics not covered here are Fibonacci sequences in groups, the study of which
appears to have initiatied in [102] and sometimes includes the phrase “sequenceable group”
[97]. Also not included are problems that naturally arise in looking for paths or cycles in
Cayley graphs, where using a small number of generating elements for the Cayley graph
is usually desired.

Unless explicitly stated, group theoretic terms may be found in [96]. Sequencings have
been previously surveyed by Keedwell [68, 71] and Dénes and Keedwell [48, chapter 3].

A non-trivial finite group G of order n is said to be sequenceable if its elements
can be arranged in a sequence (b1, b2, . . . , bn) in such a way that the partial products
(a1, a2, . . . , an), where ai = b1b2 · · · bi, are distinct. The sequence (b1, b2, . . . , bn) is called a
sequencing for G. If (b1, b2, . . . , bn) is a sequencing for G then b1 = e, where e is the iden-
tity of G (if bi = e for some i 6= 1 then ai−1 = ai). The sequence (a1, a2, . . . , an) is called
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a basic directed terrace (for any element g ∈ G the sequence (ga1, ga2, . . . , gan) is called
a directed terrace—observe that Theorem 1 still holds for this more general definition).

Note that a sequencing uniquely determines a basic directed terrace and that a basic
directed terrace uniquely determines a sequencing. It is common practice in more recent
papers to omit the initial identity element of the sequencing.

A latin square of order n is an n × n array defined on a set X with n elements such
that every element of X appears once in each row and once in each column. The notation
L = (lij) represents a latin square L with lij in the ith row and jth column. A latin square
is said to be based on a group G if the latin square can be bordered with the elements of
G to form the Cayley table of G.

An n×n latin square is said to be row complete if every pair {x, y} of distinct elements
of X occurs exactly once in each order in adjacent horizontal cells. A latin square is said
to be column complete if every pair {x, y} of distinct elements of X occurs exactly once
in each order in adjacent vertical cells. If a latin square is both row complete and column
complete then it is said to be complete.

Another application is to graph theory. If there is a row-complete latin square of
order n then the complete directed graph on n vertices can be decomposed into n disjoint
Hamiltonian paths (a Hamiltonian path is a path which passes through each vertex exactly
once; paths are disjoint if they have no edges in common). This is done by associating each
symbol in the latin square with a vertex in the graph and taking a path to traverse the
vertices in the order a row lists the symbols. As we are using a latin square the paths are
Hamiltonian (since each symbol occurs exactly once in each row). As the latin square is
row complete each ordered pair of symbols (x, y) occurs exactly once in adjacent horizontal
cells, thus no edge is repeated and the paths are disjoint. Example 1 demonstrates this
for n = 4. Observe that we have not used the property that each symbol occurs once
in each column. If this property is removed from the definition of a row-complete latin
square then we have a Tuscan square. A Tuscan square of order n is equivalent to a
decomposition of the complete graph on n vertices into n Hamiltonian paths. See [55] for
more details about Tuscan squares.

Theorem 1 [56] Let G be a sequenceable group and (b1, b2, . . . , bn) be a sequencing with
associated basic directed terrace (a1, a2, . . . , an). Then L = (lij), where lij = ai

−1aj for
1 6 i, j 6 n, is a complete latin square.

Proof: Suppose lij = lik for some 1 6 i, j, k 6 n. Then ai
−1aj = ai

−1ak, giving aj = ak.
Therefore j = k and L has no repeated entries in any row. Similarly, L has no repeated
entries in any column. Therefore L is a latin square.

To show that L is row complete we need ai
−1aj = x and ai

−1aj+1 = y to have a unique
solution for i and j given any ordered pair (x, y) of distinct elements of G.

Inverting both sides of the first equation and post-multiplying by the second gives
aj
−1aj+1 = x−1y, that is bj+1 = x−1y, uniquely determining j. Now ai

−1aj = x uniquely
determines i, and L is row complete.

An analogous argument shows that L is also column complete. Therefore L is a
complete latin square. 2
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Example 1 Let G = Z4, the additively written cyclic group of order 4. Then (0, 3, 2, 1)
is a sequencing of G with basic directed terrace (0, 3, 1, 2). The corresponding complete
latin square L is given in Figure 1. Figure 2 shows how this leads to a decomposition of
the complete directed graph on 4 vertices into disjoint hamiltonian paths.

0 3 1 2
1 0 2 3
3 2 0 1
2 1 3 0

Figure 1: L
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Figure 2: Decomposition of the complete directed graph with 4 vertices

Sequencings with special properties have been used to solve problems concerning bi-
partite tournaments balanced for carry-over effects [16, 37, 89], to give additional balance
properties to latin squares [8, 10], to study 1-rotational Hamiltonian cycle systems of the
complete graph [31, 39, 40], to solve some cases of the Oberwolfach problem [86, 88],
to construct rainbow-difference paths [72], and to construct Hamiltonian double Latin
squares [62, 84]. Bate and Jones [34] give a survey of the use of sequencings and similar
ideas in the field of experimental design.

If a group is sequenceable then the Cayley table of the group has an almost transversal.
This result follows because a sequencing gives rise to a near-complete mapping; see [71] for
an explanation of this and other results concerning complete and near-complete mappings.

Vanden Eynden [101] extends the idea of a sequencing to groups of countably infinite
order, showing that all such groups are sequenceable. Caulfield [43] shows that this notion
corresponds to the ability to construct a quarter-plane complete infinite Latin square and
uses similar ideas to show that full-plane complete infinite Latin squares also exist.

2 Classifying Sequenceable Groups

In his paper [56], which introduced the concept of a sequencing, Gordon also completely
classified the sequenceable abelian groups: see Section 2.1. He also noted that the quater-
nion group, Q8, of order 8 andD6 andD8, the dihedral groups of order 6 and 8 respectively,
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are not sequenceable. He did find, however, that D10 is sequenceable. In 1968 Dénes and
Tőrők [49] confirmed these results and added D12, D14, D16 and the non-abelian group of
order 21 (the smallest non-abelian group of odd order) to the list of known sequenceable
groups. Also in 1968 Mendelsohn [75] published an independently obtained sequencing
for the non-abelian group of order 21. In 1973 Keedwell [67] sequenced the non-abelian
group of order 27 with exponent 9 and Wang [108] sequenced the non-abelian groups of
orders 39, 55 and 57.

In 1976 more significant headway started to be made with the question of which
dihedral groups are sequenceable: see Section 2.2. Also in 1976 the concept of a symmetric
sequencing was introduced. This set in motion the now nearly complete classification of
sequenceable binary groups: see Section 2.3. We define a binary group to be a group with
a single element of order 2. This does not contradict Dickson’s [50] use of the term and
fits well as a generalisation of binary polyhedral groups: see [45]. In the literature on
sequencings, binary groups are usually called Λ-groups. In 1981 Keedwell was the first to
give sequencings of infinitely many non-abelian groups of odd order: see Section 2.4.

Throughout this section we give the constructions for sequencings of the groups in
question but usually refer the reader to the relevant papers for proofs of their correctness.

2.1 Abelian Groups

In this section we shall write abelian groups additively. In [56] Gordon proved the following
theorem, which shows exactly which abelian groups are sequenceable. Recall that a binary
group is defined to be a group with a single element of order 2.

Theorem 2 [56] A finite abelian group G is sequenceable if and only if G is a binary
group.

Proof (⇒): Suppose (b1, . . . , bn) is a sequencing for G with associated basic directed
terrace (a1, . . . , an). Since G is abelian we have that an is the sum of the elements of G
written in any order.

We first suppose that G has no elements of order 2. For each g ∈ G \ {0} we have
g 6= −g, so the non-identity elements of the sequencing will cancel in pairs. This gives
an = 0, contradicting a1 = 0.

Now suppose that G has k elements, hi, of order 2, where k > 1. These elements,
along with 0, form a subgroup H of G of order k + 1 = 2l for some l > 1. Then H
has a basis {u1, . . . , ul} for some u1, . . . , ul ∈ H, thus each hi is expressible in the form
ε1u1 + · · · + εlul with each εi ∈ {0, 1}. Each expression of this form represents one of
the elements of order 2. Therefore 2l−1 elements of H involve the generator ui for each
i. Since each element ui occurs an even number of times in the expression for an, and
2ui = 0 for all i, we again reach the contradiction an = 0.

Note that if G has exactly one element, h, of order 2 then an = h.
(⇐): Gordon gave a direct construction of sequencings in abelian binary groups.

However, later results have made possible a simpler proof; we give this simpler proof in
Section 3.4. 2
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Example 2 Consider the cyclic group of even order, Z2n. The following b is a sequencing
and has corresponding basic directed terrace a.

b = (0, 1, 2n− 2, 3, 2n− 4, 5, . . . , 4, 2n− 3, 2, 2n− 1)

a = (0, 1, 2n− 1, 2, 2n− 2, 3, . . . , n+ 2, n− 1, n+ 1, n).

This sequencing was first given (implicitly) by Lucas (who gave credit to Walecki) in [74],
where it was used to solve a problem concerning schoolchildren performing round-dances.
It is often referred to as the Lucas-Walecki-Williams (directed) terrace/sequencing, with
the addition of “Williams” due to his similar construction for a non-directed terrace, see
Section 3.4. Further solutions to this problem which use sequencings and related ideas are
given in [31].

Combining Example 2 and Theorem 1 gives a method for constructing a complete
latin square of any even order.

2.2 Dihedral Groups

Let n > 3. We describe the dihedral group D2n, of order 2n, as the set of ordered pairs
(x, ε) with x ∈ Zn and ε ∈ Z2 and multiplication defined by:

(x, 0)(y, δ) = (x+ y, δ)

(x, 1)(y, δ) = (x− y, 1 + δ).

In 1976 Anderson [2] showed that D2p is sequenceable if p is a prime with a primitive
root r such that 3r ≡ −1 (mod p). Also in 1976 Friedlander [53] showed that D2p is
sequenceable if p is prime and p ≡ 1 (mod 4). In 1981 Hoghton and Keedwell [63] added
the groups D2p, where p is a prime such that p ≡ 7 (mod 8) and p has a primitive root r
such that 2r ≡ −1 (mod p).

All of these results were obtained using quotient sequencings (see Section 2.4) and
number theoretic arguments of varying intricacy.

In 1987 Anderson [3] used a computer search to show that all dihedral groups D2n for
5 6 n 6 50 are sequenceable. In 1990 Isbell [65] produced a general argument which,
when allied to Anderson’s computer search, covered all of the infinite classes mentioned
above and more:

Theorem 3 [65] The dihedral groups D2n, of order 2n, are sequenceable for all n, where
n 6= 3 (D6 is not sequenceable) and n 6= 4k.

Construction: We split the construction into five cases and then some anomalous small
examples. For the first three cases we exhibit a sequencing of the form b = (e, α, β, γ)
where e is the identity, α and γ partition the remaining elements of the form (x, 0) and β
consists of the elements of the form (x, 1).
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Case 1; n = 4k + 1: We define α, β and γ as follows:

α = (2k − 1, 0), (2− 2k, 0), (2k − 3, 0), (4− 2k, 0), . . . , (3, 0), (−2, 0),

(1, 0), (2k, 0)

β = (0, 1), (1, 1), (2, 1), . . . , (2k − 1, 1), (4k, 1), (2k, 1), (2k + 1, 1), . . . ,

(4k − 1, 1)

γ = (−2k, 0), (−1, 0), (2, 0), (−3, 0), (4, 0), . . . , (3− 2k, 0), (2k − 2, 0),

(1− 2k, 0).

Case 2; n = 8k + 7, (k > 1): We produce β in the same manner as before:

β = (0, 1), (1, 1), . . . , (4k + 2, 1), (8k + 6, 1), (4k + 3, 1), . . . , (8k + 5, 1).

Now, working in Z8k+7, consider the following sequence:

σ = −(2k + 1), (4k + 2),−(4k + 1), 4k, . . . ,−(2k + 3), (2k + 2),

−1,−2k, (2k − 1),−(2k − 2), . . . , 3,−2.

Define α to be the sequence in D2n with σ in the first co-ordinates and 0’s in the
second, followed by (−(4k + 3), 0). Define γ to be (4k + 3, 0) followed by the sequence
with −σ in the first co-ordinates and 0’s in the second. Now the sequence (e, α, β, γ) lists
all elements of D2n and is the required sequencing.

Case 3; n = 8k+3, (k 6= 1, 2, 4): Again we use the list (e, α, β, γ) but here β is slightly
more complicated:

β = (0, 1), (1, 1), . . . , (4k − 1, 1), (8k, 1), (8k + 1, 1), (8k + 2, 1), (4k, 1),

(4k + 1, 1), . . . , (8k − 1, 1).

Similarly to the n = 8k + 7 case we look at sequences in Z8k+3 first. Define

X(k) = {x : −k 6 x 6 k − 1, x 6= 1,−1}.

We construct orderings Xk of X(k) beginning with 2 and ending with −k such that the
2k − 3 differences between consecutive elements contain exactly one of i and −i for 2 6
i 6 2k − 2. This condition is satisfied by the following three orderings:

X3 = (2,−2, 0,−3)

X5 = (2, 0,−4, 4,−3, 3,−2,−5)

X7 = (2,−5, 4, 0,−2, 3,−3, 5,−6, 6,−4,−7).

We now extend inductively from k to k + 3. Note that the penultimate element in each
case is −(k − 3); this condition will also be preserved by the induction.

To order X(k+3) list Xk as far as the penultimate element −(k − 3), then continue
k + 2,−(k + 2), k + 1,−(k + 1), k,−k,−(k + 3). This satisfies the conditions.
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Consider the sets Y(k) (⊇ X(k)) of integers defined as follows:

Y(k) = {x : −(2k − 1) 6 x 6 2k, x 6= −1}.

We define an ordering Yk of Y(k) beginning with 2, ending with 1 and having differences
of consecutive elements exactly one of i and −i for 1 6 i 6 4k − 2:

(2, . . . ,−k︸ ︷︷ ︸
Xk

, k,−(k + 1), k + 1, . . . ,−(2k − 1), (2k − 1), 2k, 1).

Let τk be the sequence of differences of consecutive elements in this ordering Yk: then
the partial sums of τk list the translate −2 + Y(k) without repetition. Define α to
be the sequence with τk in the first co-ordinates and 0’s in the second, followed by
(−(4k + 1), 0), (4k − 1, 0), (−4k, 0). Define γ to be (4k, 0) followed by the sequence with
−τk in the first co-ordinates and 0’s in the second, finishing with (4k+1, 0), (−(4k−1), 0).
We now have (e, α, β, γ) listing D2n without repetition and this is the required sequencing.

Case 4; n = 4k+ 2, k even (k > 2): For this we use the sequence (e, β, α, δ, γ) where e
is the identity, α and γ partition the remaining elements (x, 0) (here α and γ are not of
equal length), δ is (4k + 1, 1) and β covers the other elements (x, 1). We construct β in
the same manner as in case n = 4k + 1, that is

β = (0, 1), (1, 1), (2, 1), . . . , (2k − 1, 1), (4k, 1), (2k, 1), (2k + 1, 1), . . . ,

(4k − 1, 1).

Consider the following two sequences in Z4k+2:

σ1 = −3, 5,−7, 9, . . . , 2k − 3, 1− 2k, 2k − 2︸ ︷︷ ︸,−(2k − 3), 2k − 5, . . . ,−5, 3

σ2 = −2, 4,−6, 8, . . . , 2k − 4,−(2k − 2), 1, 2k − 1,−1︸ ︷︷ ︸,−(2k − 4),

2k − 6, . . . ,−4, 2.

Define α to be (2k + 2, 0) followed by the sequence with σ1 in the first co-ordinates
and 0’s in the second, followed by (2k, 0), (2k + 1, 0). Define γ to be the sequence with
σ2 as the first co-ordinates and 0’s as the second. Now α and γ cover all elements (x, 0)
such that x 6= 0, and (e, β, α, δ, γ) is a sequencing of D2n.

Case 5; n = 4k + 2, k odd (k > 3): We define the sequencing (e, β, α, δ, γ) as in the
previous case, but we need to modify σ1 and σ2 slightly as the length of the list each
side of the braces is now odd, meaning that the sign alternation causes a problem. This
problem is rectified by reversing the order of the terms in the braces, that is

σ1 = −3, 5,−7, 9, . . . ,−(2k − 3), 2k − 2, 1− 2k︸ ︷︷ ︸, 2k − 3,−(2k − 5), . . . ,

−5, 3

σ2 = −2, 4,−6, 8, . . . ,−(2k − 4),−1, 2k − 1, 1,−(2k − 2)︸ ︷︷ ︸, 2k − 4,

−(2k − 6), . . . ,−4, 2.
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The construction now goes through as before.
The anomalous cases: The sequencings given here are those due to Anderson [3],

though Isbell did produce sequencings for D14, D22, D38 and D70 similar in style to his
sequencings of the infinite classes. For brevity, we identify (i, 0) with i+ 1 and (i, 1) with
n+ i+ 1 (exactly as in [100]). Recall that D6 is not sequenceable.

Below, S2n is a sequencing for D2n.

S12 : (1, 11, 2, 7, 3, 9, 12, 10, 6, 5, 8, 4)

S14 : (1, 8, 2, 10, 7, 6, 9, 5, 11, 4, 14, 13, 12, 3)

S22 : (1, 8, 18, 15, 16, 5, 10, 4, 6, 13, 11, 3, 19, 17, 7, 9, 22, 2, 14, 12, 20, 21)

S38 : (1, 32, 15, 24, 23, 8, 38, 14, 22, 19, 37, 34, 5, 33, 36, 26, 12, 25, 13, 6, 28,

21, 7, 29, 10, 4, 20, 11, 31, 18, 31, 35, 32, 16, 17, 27, 9)

S70 : (1, 3, 45, 10, 22, 33, 11, 16, 32, 54, 47, 61, 43, 62, 31, 12, 53, 20, 67, 35, 8,

46, 29, 21, 7, 60, 25, 39, 34, 57, 64, 59, 6, 55, 66, 4, 38, 63, 65, 51, 70, 2, 13,

68, 28, 37, 26, 50, 30, 24, 23, 58, 5, 40, 27, 69, 15, 48, 19, 42, 56, 9, 18, 36,

17, 41, 44, 49, 14, 52)

2

In 1997 Li [73] completed the classification of sequenceable dihedral groups by se-
quencing D2n where n ≡ 0 (mod 4), n 6= 4. Recourse to Anderson’s computer search [3]
was again needed for some small cases.

Theorem 4 [73] The dihedral groups D2n are sequenceable when n = 4k, except when
n = 4.

Construction: The construction varies slightly as k varies modulo 4. For each case the
sequencing is ((a), (b), . . ., (s)) from the appropriate table amongst Tables 1, 2, 3 and 4.
Note that for some small values of k some of the components may be empty.

The anomalous cases: As in the proof of Theorem 3 we identify (i, 0) with i + 1
and (i, 1) with n + i + 1. Recall that D8 is not sequenceable. Here we give Anderson’s
sequencing S2n for D2n [3]:

S16 : (1, 13, 11, 16, 4, 14, 3, 5, 6, 15, 8, 7, 9, 12, 2, 10)

S24 : (1, 17, 4, 11, 2, 8, 9, 13, 10, 3, 23, 24, 22, 15, 14, 6, 20, 18, 16, 7, 21, 19, 12, 5)

We have now covered all required values of n. 2
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Table 1: k ≡ 0 (mod 4), k > 4
Sequencing No. of terms
(a) (0, 0) 1
(b) (0, 1), (1, 1), (2, 1), . . . , (2k − 2, 1) 2k − 1
(c) (4k − 2, 1) 1
(d) (2k − 1), (2k, 1), (2k + 1, 1), . . . , (4k − 3, 1) 2k − 1
(e) (2k, 0) 1
(f) (4k − 3, 0), (5, 0), (4k − 7, 0), (9, 0), . . . , (2k − 3, 0) k − 2
(g) (2k + 2, 0) 1
(h) (2k − 1, 0), (2k + 3, 0), (2k − 5, 0), (2k + 7, 0), . . . , (3, 0) k − 1
(i) (4k − 2, 0) 1
(j) (4k − 1, 1) 1
(k) (2, 0), (4k − 4, 0), (6, 0), (4k − 8, 0), . . . , (k − 2, 0) k/2− 1
(l) (1, 0) 1
(m) (3k − 4, 0), (k + 6, 0), (3k − 8, 0), (k + 10, 0), . . . , (2k − 2, 0) k/2− 2
(n) (3k, 0) 1
(o) (2k + 1, 0) 1
(p) (k + 2, 0) 1
(q) (2k − 4, 0), (2k + 6, 0), (2k − 8, 0), (2k + 10, 0), . . . , (3k − 2, 0) k/2− 2
(r) (4k − 1, 0) 1
(s) (k, 0), (3k + 2, 0), (k − 4, 0), (3k + 6, 0), . . . , (4, 0) k/2− 1

Table 2: k ≡ 1 (mod 4), k > 5
Sequencing No. of terms
(a) (0, 0) 1
(b) (0, 1), (1, 1), (2, 1), . . . , (2k − 2, 1) 2k − 1
(c) (4k − 2, 1) 1
(d) (2k − 1), (2k, 1), (2k + 1, 1), . . . , (4k − 3, 1) 2k − 1
(e) (2k, 0) 1
(f) (4k − 3, 0), (5, 0), (4k − 7, 0), (9, 0), . . . , (2k − 1, 0) k − 1
(g) (2k + 2, 0) 1
(h) (2k − 3, 0), (2k + 5, 0), (2k − 7, 0), (2k + 9, 0), . . . , (3, 0) k − 2
(i) (4k − 2, 0) 1
(j) (4k − 1, 1) 1
(k) (2, 0), (4k − 4, 0), (6, 0), (4k − 8, 0), . . . , (k, 0) (k − 3)/2
(l) (1, 0) 1
(m) (3k − 3, 0), (k + 5, 0), (3k − 7, 0), (k + 9, 0), . . . , (2k − 4, 0) (k − 5)/2
(n) (3k + 1, 0) 1
(o) (2k + 1, 0) 1
(p) (k + 1, 0) 1
(q) (2k − 2, 0), (2k + 4, 0), (2k − 6, 0), (2k + 8, 0), . . . , (3k − 1, 0) (k − 1)/2
(r) (4k − 1, 0) 1
(s) (k − 1, 0), (3k + 3, 0), (k − 5, 0), (3k + 7, 0), . . . , (4, 0) (k − 3)/2

the electronic journal of combinatorics 20(2) (2013), #DS10v2 10



Table 3: k ≡ 2 (mod 4), k > 6
Sequencing No. of terms
(a) (0, 0) 1
(b) (0, 1), (1, 1), (2, 1), . . . , (2k − 2, 1) 2k − 1
(c) (4k − 2, 1) 1
(d) (2k − 1), (2k, 1), (2k + 1, 1), . . . , (4k − 3, 1) 2k − 1
(e) (2k, 0) 1
(f) (4k − 3, 0), (5, 0), (4k − 7, 0), (9, 0), . . . , (2k − 3, 0) k − 2
(g) (2k + 2, 0) 1
(h) (2k − 1, 0), (2k + 3, 0), (2k − 5, 0), (2k + 7, 0), . . . , (3, 0) k − 1
(i) (4k − 2, 0) 1
(j) (4k − 1, 1) 1
(k) (2, 0), (4k − 4, 0), (6, 0), (4k − 8, 0), . . . , (k, 0) k/2
(l) (4k − 1, 0) 1
(m) (3k − 2, 0), (k + 4, 0), (3k − 6, 0), (k + 8, 0), . . . , (2k − 2, 0) k/2− 1
(n) (3k, 0) 1
(o) (2k + 1, 0) 1
(p) (k + 2, 0) 1
(q) (2k − 4, 0), (2k + 6, 0), (2k − 8, 0), (2k + 10, 0), . . . , (3k − 4, 0) k/2− 3
(r) (1, 0) 1
(s) (k − 2, 0), (3k + 4, 0), (k − 6, 0), (3k + 8, 0), . . . , (4, 0) k/2− 2

Table 4: k ≡ 3 (mod 4), k > 7
Sequencing No. of terms
(a) (0, 0) 1
(b) (0, 1), (1, 1), (2, 1), . . . , (2k − 2, 1) 2k − 1
(c) (4k − 2, 1) 1
(d) (2k − 1), (2k, 1), (2k + 1, 1), . . . , (4k − 3, 1) 2k − 1
(e) (2k, 0) 1
(f) (4k − 3, 0), (5, 0), (4k − 7, 0), (9, 0), . . . , (2k − 1, 0) k − 1
(g) (2k + 2, 0) 1
(h) (2k − 3, 0), (2k + 5, 0), (2k − 7, 0), (2k + 9, 0), . . . , (3, 0) k − 2
(i) (4k − 2, 0) 1
(j) (4k − 1, 1) 1
(k) (2, 0), (4k − 4, 0), (6, 0), (4k − 8, 0), . . . , (k − 1, 0) (k − 1)/2
(l) (4k − 1, 0) 1
(m) (3k − 1, 0), (k + 3, 0), (3k − 5, 0), (k + 7, 0), . . . , (2k − 4, 0) (k − 3)/2
(n) (3k + 1, 0) 1
(o) (2k + 1, 0) 1
(p) (k + 1, 0) 1
(q) (2k − 2, 0), (2k + 4, 0), (2k − 6, 0), (2k + 8, 0), . . . , (3k − 3, 0) (k − 3)/2
(r) (1, 0) 1
(s) (k − 3, 0), (3k + 5, 0), (k − 7, 0), (3k + 9, 0), . . . , (4, 0) (k − 5)/2
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2.3 Binary Groups

Recall that a binary group is defined to be a group with a unique element of order 2. If G
is a binary group then we denote the unique subgroup of order 2 by Λ(G). The subgroup
Λ(G) is necessarily normal. Let G be a binary group of order 2n with z as its unique
element of order 2. A sequencing b of G is said to be symmetric if it is of the form

b = (e, b2, b3, . . . , bn, z, b
−1
n , . . . , b−13 , b−12 ).

Note that as z is the only element of order 2 we have immediately that bi 6= b−1i for
2 6 i 6 n. Gordon’s construction (Theorem 2) for sequencing abelian groups gives
symmetric sequencings, as does our new proof of that theorem in Section 3.4.

The aim of this section is to find symmetric sequencings for binary groups. We begin
by considering the structure of binary groups.

The class of binary groups has arisen in several different contexts. For example, a
Frobenius complement of even order (in particular, the multiplicative group of a nearfield)
is a binary group [93, chapter 3.18], as is the automorphism group of a switching class of
tournaments [29]. We have already noted that the binary polyhedral groups are binary
groups. Coxeter[45, p. 82] posed the problem of classifying the binary groups, which is
now solved (as we outline below). It is unclear who first solved this problem. Babai and
Cameron [29] give a classification due to Glauberman but report that “[t]his result is
known to some group theorists, but we are not aware of a proof in the literature”.

If G is a binary group, then so is any subgroup of even order; in particular, each Sylow
2-subgroup. Now, 2-groups with a unique involution are known [41, p. 132]: they are
cyclic or generalised quaternion groups. Here, the generalised quaternion group Q2n is
defined by

Q2n = 〈u, v : u2
n−1

= e, v2 = u2
n−2

, vuv−1 = u−1〉.
The Sylow 2-subgroups of G/Λ(G) have the form S/Λ(S) for Sylow 2-subgroups S

of G. The quotient S/Λ(S) is cyclic or dihedral according as S is cyclic or generalised
quaternion.

Conversely, a cohomological argument due to Glauberman, reported in [29], shows
that, if H is a finite group with cyclic or dihedral Sylow 2-subgroups, then there is a
unique binary group G with G/Λ(G) ∼= H.

So the classification of binary groups reduces to that of groups with cyclic or dihedral
Sylow 2-subgroups.

This classification is provided by Burnside’s Transfer Theorem [41, p. 155] and the
Gorenstein–Walter Theorem [57, 38]. The result is as follows. Recall that O(G) is the
largest normal subgroup of G of odd order. Let H be a finite group with Sylow 2-
subgroup T . Then

• if T is cyclic, then H/O(H) ∼= T ;

• if T is dihedral, then H/O(H) is isomorphic to the alternating group A7, or to a
subgroup of PΓL(2, q) containing PSL(2, q) (where q is an odd prime power), or
to T .
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In particular, if G is a soluble binary group, then G/O(G)Λ(G) is isomorphic to A4,
S4, V , or a cyclic or dihedral 2-group. (V denotes the elementary abelian 2-group of
order 4).

It is not completely straightforward to describe the corresponding binary groups.
Glauberman’s argument gives a description in cohomological terms.

The search for symmetric sequencings was effectively initiated by Lucas [74], although
he did not use this terminology. Following on from Gordon’s construction, further results
have been obtained by Bailey and Praeger [33], Nilrat and Praeger [80] and Anderson,
working alone and with Ihrig and Leonard. Symmetric sequencings with special properties
have been used to solve some cases of the Oberwolfach problem [86]. Theorem 5 is an
early result which the rest of the work can be seen as generalising:

Theorem 5 [2] If G is a sequenceable group of odd order n then G×C2 has a symmetric
sequencing.

Proof: Let z be the non-identity element of C2. Observe first that G × C2 is a binary
group with (e, z) as its unique element of order two. Let (e, d2, . . . , dn) be a sequencing
of G. Since G is of odd order, every non-identity element is distinct from its inverse.
Partition G \ {e} into (n− 1)/2 two-element subsets of the form {g, g−1} and choose an
element from each subset.

We now define a symmetric sequencing b, where b = (b1, b2, . . . , b2n), for G× C2:

(b1, b2, . . . , bn) = ((e, e), (d2, ε2), . . . , (dn, εn))

where

εi =

{
z if di is a chosen element
e otherwise,

bn+1 = (e, z)

and
(bn+2, bn+3, . . . , b2n) = ((dn

−1, εn), (dn−1
−1, εn−1) . . . , (d2

−1, ε2)).

Now b lists G × C2 without repetition and does so symmetrically (since (bi, εi)
−1 =

(bi
−1, εi)).
Also, all of the elements in G×C2 are in the sequence of partial products. The partial

products move through the basic directed terrace for G, with associated e’s and z’s in the
second co-ordinate. Then, from the (n+ 1)th position, they move back through G’s basic
directed terrace with the e’s and z’s switched, finishing on (e, z). 2

A key concept on which the work relies is that of a 2-sequencing (or equivalently a
basic terrace), introduced by Bailey [30]. A 2-sequencing of H, a group of order n, is a
sequence of elements (e, d2, d3, . . . , dn), not necessarily distinct, such that:

• the associated partial products e, ed2, ed2d3, . . . , ed2 · · · dn are all distinct; this se-
quence is called a basic terrace,
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• if h ∈ H and h 6= h−1 then

|{i : 2 6 i 6 n, di ∈ {h, h−1}}| = 2,

• if h ∈ H and h = h−1 then

|{i : 1 6 i 6 n, di = h}| = 1.

Note that a sequencing for H is also a 2-sequencing for H. We look at the theory of
terraces and 2-sequencings more in Section 3.4.

The following generalisation of Theorem 5 is pivotal:

Theorem 6 [4] Let G be a binary group of order 2n. Then G has a symmetric sequencing
if and only if G/Λ(G) has a 2-sequencing.

Proof: Let π : G→ G/Λ(G) be the natural projection. Then it is straightforward to check
that if (e, b2, . . . , bn, z, bn

−1, . . . , b2
−1) is a symmetric sequencing of G then (π(e), π(b2), . . .,

π(bn)) is a 2-sequencing of G/Λ(G).
Let z be the element of order 2 in G. If y ∈ G/Λ(G) then y = {x, xz} for some x ∈ G.

Suppose we are given a 2-sequencing of G/Λ(G). Lift this back to a sequence in G as
follows:

(i): If y ∈ G/Λ(G), y 6= y−1 and y (equivalently y−1) occurs twice in our 2-sequencing,
the two occurrences of y = {x, xz} can be lifted back to x and xz (in either order).

(ii): If y ∈ G/Λ(G), y 6= y−1 and both y and y−1 occur once in our 2-sequencing, say
y = {x, xz} and y−1 = {x−1, x−1z}, we can either lift y to x and y−1 to x−1z or y to xz
and y−1 to x−1.

(iii): If y ∈ G/Λ(G), y = y−1 and y 6= {e, z} then y must occur once in our 2-
sequencing. Now y = {x, x−1} and y may be lifted back to either x or x−1.

(iv): If y = {e, z} ∈ G/Λ(G) then y must be lifted to e.
This process clearly gives a sequence of the form (e, b2, . . . , bn) in G where bi 6= bj and

bi
−1 6= bj for i, j 6 n, where i 6= j. Extend this to a sequence of all the elements of G:

(e, b2, . . . , bn, z, bn
−1, . . . , b2

−1).
We claim that this is a symmetric sequencing of G.
The partial products are (e, a2, . . . , an, anz, an−1z, . . . , a2z): we therefore need that

{e, a2, . . . , an} is a transversal of {{w,wz} : w ∈ G}. This follows because each ai is either
wi or wiz for some wi ∈ G and the elements {e, z}, {w2, w2z}, . . . , {wn, wnz} of G/Λ(G)
are distinct as we started from a 2-sequencing. The sequence is clearly symmetric, so the
claim is verified and the proof is complete. 2

Note that the construction of Theorem 6 gives 2(n+k−1)/2 different symmetric sequenc-
ings of G for each 2-sequencing of G/Λ(G), where k is the number of elements of order 2
in G/Λ(G).

Anderson and Ihrig extend this further to show:

Theorem 7 [13] If G is a binary group and G/O(G)Λ(G) has a 2-sequencing then G has
a symmetric sequencing.
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The groups A4 and S4 have sequencings [3] and hence have 2-sequencings. We have
also seen that cyclic and dihedral 2-groups have sequencings (Example 2 and Theorem 4).
Prior to the proof of Theorem 4, Anderson had shown that all dihedral groups have
2-sequencings [4, 6, 7].

The case G/O(G)Λ(G) ∼= V only arises when we consider binary groups with Q8

as their Sylow 2-subgroup. The group Q8 itself is not sequenceable, but Anderson and
Leonard [15] show that the groups Q8 × B, where B is a non-trivial abelian group of
odd order, have symmetric sequencings. These groups are Hamiltonian groups; that is,
each is a non-abelian group every subgroup of which is normal. In fact, they are the only
Hamiltonian binary groups. Anderson and Ihrig [13] show that all soluble binary groups
G with G/O(G)Λ(G) ∼= V , where G 6= Q8, have symmetric sequencings. Theorem 7 now
gives:

Theorem 8 [13] All finite soluble binary groups, except Q8, have symmetric sequencings.

In [14] Anderson and Ihrig consider the structure of insoluble binary groups. They
show that to find sequencings of all insoluble binary groups it is sufficient to find 2-
sequencings of A7, PSL(2, q) and PGL(2, q) for q an odd prime power greater than 3. They
also show that there is no redundancy here; finding a 2-sequencing of each of these groups
gives symmetric sequencings for an infinite set of insoluble binary groups and these sets
are disjoint. The only result in this direction to date is the sequencing of PSL(2, 5) ∼= A5

[5], showing that such infinite sets of sequenceable insoluble binary groups do exist.

2.4 Groups of Odd Order

Keedwell [69] and Wang [105] have sequenced some non-abelian groups of odd order which
have a cyclic normal subgroup with prime index. We do not give the full constructions
here, merely introduce the two crucial concepts.

The first concept is the quotient sequencing (this concept was introduced by Friedlan-
der [53]). Let G be a group of order pq with normal subgroup H of order q. A sequence
Q of length pq containing elements of G/H is said to be a quotient sequencing of G/H if
each element of G/H occurs q times in both Q and the partial product sequence (the basic
quotient directed terrace) of Q. Note that the natural map G→ G/H maps a sequencing
of G to a quotient sequencing of G/H; however, most quotient sequencings cannot be
lifted to a sequencing of the parent group.

Suppose, with the above notation, that G/H ∼= Cp for some odd prime p, where
Cp = 〈u : up = e〉. Let β be a primitive root of p such that β/(β − 1) is also a primitive
root of p (Wang [105] reports that such a β exists, using the results of [44]). Wang [105]
gives a quotient sequencing for G/H. Here we just give the associated basic quotient
directed terrace as that may be expressed more simply:

e, e, . . . , e, x (q elements)

followed by q − 2 copies of the sequence

xβ
p−2

, xβ
p−3

, . . . , x (p− 1 elements)
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and finishing with

xβ
p−2

, xβ
p−3

, . . . , xβ, xβ, xβ
2/(β−1), xβ

3/(β−1)2 , . . . , xβ−1, e (2(p− 1) elements).

Wang observes that this is a generalisation of the quotient directed terrace used by Keed-
well [69].

The second important concept is the R-sequencing. An R-sequencing (sometimes
called a near-sequencing) of a group G is a sequence (e, b2, b3, . . . , bn) of all the ele-
ments of G such that the partial products (e, eb2, eb2b3, . . . , eb2b3 · · · bn−1) are distinct
and eb2b3 · · · bn = e. Keedwell and Wang both consider groups G with a normal cyclic
subgroup of order q and index a prime p. The method they use is to find an R-sequencing
of Cq and use the first q− 1 elements of this for the first q− 1 elements of the sequencing,
filling the rest of the sequencing in a way that is also compatible with the above quotient
directed terrace.

Suppose that p and q are odd primes, with p < q. Then there is a non-abelian group
of order pq if and only if q = 2ph + 1 for some positive integer h. This group has a
cyclic normal subgroup of order q. Keedwell [69] found sequencings of groups of this
type whenever 2 is a primitive root of p. Wang showed that it is sufficient to to find an
R-sequencing of Cq in which xr−r

1−β
and xr−r

1−β−1 are adjacent for some r with rp ≡ 1
(mod q) and r 6≡ 1 (mod q). In [104] Wang gives some examples of such R-sequencings
where 2 is not a primitive root of p.

Wang [105] also finds a sequencing which is compatible with the above quotient di-
rected terrace for the unique non-abelian group of order pm that has a cyclic normal
subgroup of index p, where p is an odd prime and m > 3.

Let G be a group of odd order n. A sequencing (e, b2, . . . , bn), is said to be a starter-
translate sequencing (Anderson [9] abbreviates this to st-sequencing) if both of the sets
{b2, b4, . . . , bn−1} and {b3, b5, . . . , bn} contain precisely one of g and g−1 for each g ∈ G\{e}.
Anderson [9] shows that if G and H are groups with st-sequencings then G×H also has
an st-sequencing. He also shows that Keedwell’s sequencing of the non-abelian group of
order pq is starter-translate whenever both p and q are congruent to 3 modulo 4. This
considerably extends the set of odd integers n for which a sequenceable group of order n
is known to exist.

2.5 Summary

In addition to the results given already in this chapter, Anderson [3, 5] has used a hill-
climbing algorithm to sequence all non-abelian groups of order n, where 10 6 n 6 32, and
A5 and S5, the alternating and symmetric groups on 5 symbols. Therefore the following
groups are known to be sequenceable.

• Dihedral groups of order at least 10

• Soluble (including abelian) binary groups, except Q8

• Insoluble binary groups G with A5 as their only non-abelian composition factor
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• Some groups of order pq where p and q are odd primes

• Direct products of some of the groups of the previous type if both p and q are
congruent to 3 modulo 4

• At least one of the non-abelian groups of order pm, for p an odd prime and m > 3

• Non-abelian groups of order n, where 10 6 n 6 32

• A5 and S5

The only groups known to be non-sequenceable are abelian groups which do not have
a unique element of order 2 and the non-abelian groups D6, D8 and Q8.

Conjecture 1 (Keedwell) D6, D8 and Q8 are the only non-abelian non-sequenceable
groups.

A milder conjecture is

Conjecture 2 (Anderson) Q8 is the only binary group which does not have a symmetric
sequencing.

3 Related Concepts

In this section we look at some concepts related to sequencings: R-sequencings, harmo-
nious groups, supersequenceable groups (also known as super P-groups), terraces and the
Gordon Game. We also look at an alternative method for constructing row-complete latin
squares.

3.1 R-sequencings

A pair of latin squares (lij) and (l′ij) are said to be orthogonal if every ordered pair of
symbols occurs exactly once among the n2 pairs (lij, l

′
ij). It is shown in [92] that the

existence of a group of order n having an R-sequencing (see page 16 for the definition)
is a sufficient condition for there to exist a pair of orthogonal latin squares of order n.
(More specifically, it is shown that having an R-sequencing is a sufficient condition for a
group to have a complete mapping and having a complete mapping in a group of order
n is sufficient to produce a pair of orthogonal latin squares of order n. See [71] for a
summary of these and related topics.)

The study of orthogonal latin squares was originally motivated by a problem of Eu-
ler, set in 1779: “Thirty-six officers of six different ranks and taken from six different
regiments, one of each rank in each regiment, are to be arranged, if possible, in a solid
square formation of six by six, so that each row and each column contains one and only
one officer of each rank and one and only one officer from each regiment”. The solution
of this problem is equivalent to the construction of a pair of orthogonal latin squares of
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order 6. In 1782 Euler conjectured that no such pairs of latin squares exist for orders
n = 4k + 2; this was proved true for n = 6 by Tarry in 1900 and false for all n > 6 by
Bose, Shrikhande and Parker in 1960. It is easily seen to be true for n = 2. See [47,
chapter 5] for a thorough account of orthogonal latin squares and the history of Euler’s
conjecture.

Observe that for abelian groups the properties of being sequenceable and R-sequence-
able are mutually exclusive as the final element of the partial product sequence is invariant.

Theorem 9 The following types of abelian group are R-sequenceable:
(i) Cn, where n is odd,
(ii) Abelian groups of odd order with (possibly trivial) cyclic Sylow 3-subgroups,
(iii) Cn

3 , where n > 2,
(iv) C3 × C3n, where n > 2,
(v) C2 × C4n, where n > 1,
(vi) Abelian groups with Sylow 2-subgroups Cn

2 , where n = 2 or n > 4,
(vii) Abelian groups with Sylow 2-subgroups C2 × C2n, where n is odd.

Proof. Part (iv) is proved in [106]; all of the others are proved in [54]. 2

Alternative constructions for R-sequencings of Cn are given in [1].
It is reported in [48, Chapter 3] that Ringel claims to have shown that C2 × C6n+2 is

R-sequenceable for n > 1.
Since then Headley [58] has extended these results to include all abelian groups whose

Sylow 2-subgroups are neither cyclic (including trivial) nor C2 × C4 nor C2 × C2 × C2.
Wang [106] has shown that C3 × C3m is R-sequenceable for all m > 1.

The following theorem gives the position for non-abelian groups. The dicyclic group
Q4n is defined by

Q4n = 〈a, b : a2n = e, b2 = an, ab = ba−1〉.

If n is a power of 2 then Q4n is a generalised quaternion group.

Theorem 10 (i) The dihedral group D2n of order 2n is R-sequenceable if and only if n
is even.
(ii) The dicyclic group Q4n is R-sequenceable if and only if n is an even integer greater
than 2.
(iii) The non-abelian groups of order pq, where p and q are odd primes, are R-sequenceable.
(iv) The two non-abelian groups of order 27 are R-sequenceable.

Proof: (i): See [70].
(ii): See [107].
(iii): The case when p < q and p has 2 as a primitive root was covered by Keedwell in

[70]. Wang and Leonard subsequently removed the primitive root condition in [107].
(iv): See [36]. 2
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3.2 Harmonious Groups

Similarly to R-sequencings, a harmonious or #-harmonious sequence for a group of order n
gives rise to a complete mapping of the group and hence a pair of orthogonal latin squares.
They were introduced in [35].

Let G be a non-trivial group of order n and let a = (a1, a2, . . . , an) be an arrangement
of the elements of G. Let b = (b1, b2, . . . , bn) be defined by bi = aiai+1 for i < n and
bn = ana1. If the elements of b also include all of the elements of G then a is a
harmonious sequence and G is harmonious.

The situation for abelian groups is completely settled:

Theorem 11 [35] An abelian group is harmonious if and only if it has non-cyclic or
trivial Sylow 2-subgroups and is not an elementary abelian 2-group.

Here is the current state of knowledge for non-abelian groups:

Theorem 12 The following non-abelian groups are harmonious:
(i) non-abelian groups of odd order,
(ii) D8t and D24t−12, for t > 1,
(iii) Q8t, for t > 2.

Proof. Parts (i) and (ii) are proved in [35] and (iii) is proved in [107]. 2

Groups of twice an odd order and Q8 and the dicyclic groups of four times an odd
order are not harmonious [35, 107].

The notion of #-harmoniousness is similar, but with the identity of G removed. Let
G be a non-trivial group of order n with identity e and let a = (a1, a2, . . . , an−1) be an
arrangement of the elements of G\{e}. Let b = (b1, b2, . . . , bn−1) be defined by bi = aiai+1

for i < n − 1 and bn−1 = an−1a1. If the elements of b also include all of the elements
of G \ {e} then a is a #-harmonious sequence and G is #-harmonious.

Theorem 13 [35] An abelian group is #-harmonious if and only if it has non-cyclic or
trivial Sylow 2-subgroups and is not Z3.

3.3 Supersequenceable Groups

Let G be a group of order n with derived group G′. As the elements of G commute modulo
G′, the products of all the elements of G lie in the same coset hG′ of G′, regardless of the
order of multiplication. It is known [46, 95] that each element of this special coset may
be expressed as the product of all of the group elements in some order (groups with this
property were originally known as P-groups, but this name is now redundant).

In 1983 Keedwell [70] defined super P-groups, which we now call supersequenceable
groups. A super sequenceable group is a finite group G in which each element g of the
special coset is either

• the last element of some basic directed terrace, or
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• the last element of the partial product sequence associated with some R-sequencing.

The second condition is used only when g = e; we have g = e only when hG′ = G′.
Keedwell [70] proved the following two theorems:

Theorem 14 Let G be an abelian group. Then G is a supersequenceable group if and
only if G is sequenceable or R-sequenceable.

Proof: Observe that G′ = {0}, so the relevant coset of G′ has just one element. This
element is the identity if G is not a binary group, and is the unique element of order 2
if G is a binary group (see Theorem 2). Thus, if G is not a binary group then G is a
supersequenceable group if and only if G is R-sequenceable. If G is a binary group then
G is a supersequenceable group if and only if G is sequenceable. 2

Theorem 15 The following groups are supersequenceable groups:
(i) Dihedral groups D2n where n > 5 is odd.
(ii) Dihedral groups D2n where n is twice an odd prime.
(iii) Groups of order pq where p and q are primes, p < q and 2 is a primitive root of p.

Also, Bedford [36] has shown that both of the non-abelian groups of order 27 are
supersequenceable.

3.4 Terraces

As we noted in Section 2.3, terraces and 2-sequencings are equivalent. We say that a
group that has a terrace is terraced. Terraces were introduced by Bailey [30] to prove
Theorem 16—an analogue of Theorem 1 for quasi-complete latin squares. An n× n latin
square is said to be row quasi-complete if each distinct pair of symbols {x, y} occurs in
adjacent horizontal cells twice (in either order). It is said to be column quasi-complete if
each pair of distinct symbols {x, y} occurs in adjacent vertical cells twice (in either order).
A latin square that is both row quasi-complete and column quasi-complete is said to be
quasi-complete.

Row-quasi-complete latin squares were used by Williams [109] for designing experi-
ments where carry-over effects are thought to be present. He uses them in pairs, one
containing the reverses of the other’s rows, giving a design in which each pair of treat-
ments occurs twice in each order as row-neighbours. He gives an example of such a design
being used in practice to study the effect of diet on the milk yield of cows. An application
where quasi-completeness is the natural requirement, rather than being used when com-
pleteness is unavailable, is given in [32]. The experiment described concerns five methods
of controlling insects on spring beans. A quasi-complete latin square of order 5 is advo-
cated because it was felt that there may be neighbour effects between adjacent plots from
insects overspilling from a plot containing spring beans with a treatment that does little
(or nothing) to repel them. It is pointed out that row neighbours should be kept distinct
from column neighbours as plots in this type of experiment are rarely square—in this
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instance they measured 1.2m × 1m. A similar experiment is described in [98]. However,
this experiment has six treatments and their quasi-complete latin square is also complete.

Quasi-complete latin squares have also been considered by Freeman [51, 52] and Camp-
bell and Geller [42].

Theorem 16 [30] Let G be a terraced group with terrace (a1, a2, . . . , an). Then the square
(lij) = (ai

−1aj), where 1 6 i, j 6 n, is a quasi-complete latin square.

Proof: Similar to the proof of Theorem 1. 2

We would therefore like to know which groups are terraced. The following result is
originally due to Williams [109] and has been rediscovered, in various guises, by many
authors.

Theorem 17 [109] For all positive integers n, the cyclic group Zn is terraced.

Proof: A terrace for Zn is (0, 1, n− 1, 2, n− 2, . . .), having (0, 1, n− 2, 3, n− 4, . . .) as
its 2-sequencing. 2

Note that when n is even the terrace given in Theorem 17 is directed. This is the one
given in Example 2, explaining the Lucas-Walecki-Williams name given there.

Much work has been done on finding terraces for cyclic groups that have special
properties. Sometimes the interest is in the Latin squares or other desgins that can be
constructed from them [8, 10, 18, 81, 83, 86, 88, 99]; sometimes it is in properties of the
terraces themselves [17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 90, 94].

Returning to the question of which groups are terraced, the following two results are
due to Bailey.

Theorem 18 [30] G = Z2
n is not 2-sequenceable for n > 1.

Proof: For each g ∈ G, we have g = −g. Thus G is 2-sequenceable if and only if G is
sequenceable, but G is not sequenceable, by Theorem 2. 2

Theorem 19 [30] Abelian groups of odd order are terraced.

Proof: Let Zn1 × · · · × Znl be an abelian group of odd order. We use induction on the
number of summands. By Theorem 17, Zn1 is terraced.

Suppose that Zn1 × · · · × Znk−1
is terraced with terrace a = (a1, a2, . . . , am) and let

c = (c1, c2, . . . , cnk) be the Williams terrace for Znk . For i > 0 let

α(0) = (a1, 0), (a2, 0), . . . , (am, 0)
α(i) = (am, ci), (am−1, ci+1), (am−2, ci), (am−3, ci+1), . . . , (a1, ci) if i is odd
α(i) = (a1, ci), (a2, ci−1), (a3, ci), (a4, ci−1), . . . , (am, ci) if i is even
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We claim that (α(0), α(1), . . . , α(nk)) is a terrace for Zn1 × · · · × Znk :
An allowable set of differences with zeros in the second co-ordinate occurs within the

differences produced by α(0) as a is a terrace. An allowable set of differences with zeros in
the first co-ordinate occurs within the differences produced by the juxtapositions of α(i)

and α(i+1) as c is a terrace. These are the only occurrences of differences with zero in
either co-ordinate.

Let x be a non-zero element of Znk such that ci+1− ci = x for some odd i (this covers
exactly one of x and −x for each x ∈ Znk). Then x or −x occurs in the second co-ordinate
of the differences in α(i) and α(i+1) (and nowhere else). As a is a terrace, for each non-zero
y, where y ∈ Zn1 × · · · × Znk−1

, we get one of the following combinations of differences
among the differences produced by α(i) and α(i+1):

• two occurrences each of (y, x) and (−y, x) (and no occurrences of (y,−x) or (−y,−x))

• one occurrence each of (y, x), (−y, x), (y,−x) and (−y,−x)

• two occurrences each of (y,−x) and (−y,−x) (and no occurrences of (y, x) or
(−y, x)).

None of these combinations contravene the definition of a terrace, so (α(0), α(1), . . .,
α(nk)) is a terrace as claimed. The result now follows by induction on k. 2

We can now complete the proof of Theorem 2; that is, abelian binary groups have
directed terraces:

Proof of Theorem 2: Let A be an abelian binary group, say A = Z2m × B where m > 1
and B is an abelian group of odd order. Then A/Z2

∼= Z2m−1 × B and Theorem 6 says
that if A/Z2 is terraced then A has a directed terrace. The preceding theorem gives a
terrace for B, so the result now follows by induction on m. 2

The question of which abelian groups are terraced is almost settled:

Theorem 20 All abelian groups, except non-cyclic elementary abelian 2-groups and pos-
sibly those of order coprime to 15 with an elementary abelian Sylow 2-subgroup of order 8,
are terraced.

Proof. Abelian groups of odd order were terraced by Bailey [30]. Groups of the form
C2n × C2 were terraced by Anderson and Leonard [15]. The remaining groups were
covered in a series of papers by Ollis and Willmott [82, 85, 90]. 2

Here is the situation for non-abelian groups. The semidihedral group of order 8t,
denoted SD8t and another similarly structured group of the same order that we denote
M8t, are given by:

SD8t = 〈u, v : u4t = e = v2, vu = u2t−1v〉
M8t = 〈u, v : u4t = e = v2, vu = u2t+1v〉

Call a non-trivial abelian group a generalised Klein group if it as a composition series with
all factors isomorphic to the Klein 4-group C2

2 .
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Theorem 21 The following non-abelian groups are terraced:
(i) all non-abelian sequenceable groups,
(ii) all non-abelian groups of odd order,
(iii) all non-abelian groups with a terraced normal subgroup of odd index and non-abelian
groups with a odd-order normal subgroup with a terraced quotient group,
(iv) SD8t and M8t, for t > 2,
(v) various groups with a central subgroup isomorphic to C2

2 , including those of the form
A × G where A is a generalised Klein group and G is D8t, SD8t, M8t, for t > 2, or a
non-abelian group of order 12, 16 or 20,
(vi) all non-abelian groups of order up to 86 (except possibly 64).

Proof: Part (i) follows immediately from the definitions; for (ii) see [12]; for (iii) see
[12, 14]; for (iv) and (v) see [91]; and for (vi), see [11]. 2

Conjecture 3 (Bailey) All finite groups, except the elementary abelian 2-groups of order
at least 4, are terraced.

In 1988 Morgan [76] generalised the concept of a terrace as follows. Let G be a group
of order n and let a be a list (a1, a2, . . . , ap) of elements of G (repeats and omissions of
elements permitted) where p = 1 +m(n− 1)/2 for some integer m. Note that if n is even
then m must also be even. For such an a let b = (a1

−1a2, a2
−1a3, . . . , ap−1

−1ap). We say
that a is an m-terrace of G if each element of G occurs in a either bp/nc or bp/nc + 1
times (bkc denotes the least integer greater than k − 1) and if b consists of

• m/2 occurrences of each non-identity element g which satisfies g = g−1

• m total occurrences from the pair {g, g−1} for each element g which does not satisfy
g = g−1.

Observe that a 2-terrace is a terrace as previously defined. The cyclic groups Zn have
2- and 4-terraces when n is even and 1-, 2-, 3- and 4-terraces when n is odd [76]. That all
abelian groups of odd order have a 1-terrace follows immediately from the existence of a
half-and-half terrace for such groups, proved in [87].

The purpose of this generalisation is for use in the construction of “polycross designs”.
We refer the reader to the papers [76, 77, 78, 79, 110] for more on this topic.

3.5 The Gordon Game

In 1992 Isbell [66] introduced the idea of competitive sequencing: the Gordon game Γ(G)
for a given finite group G is played as follows.

A counter is placed on the identity, e, of G. White and Black then take turns (White
first) to move the counter around the group subject to the condition that the (n + 1)st
move (to xn+1) must satisfy

xn+1 6∈ {e, x1, . . . , xn}
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and
xn
−1xn+1 6∈ {x1, x1−1x2, . . . , xn−1−1xn}.

That is, if a game contained as many moves as the group had non-identity elements then
the sequence (e, x1, . . . , x|G|−1) would be a directed terrace for G. The first player unable
to make a move loses.

Isbell investigated the Gordon game for groups of small order, finding the following
results. Here W and B denote forced wins for White and Black respectively.

C2 : W C3 : W C4 : W
C2 × C2 : B C5 : W C6 : B

D6 : W C7 : B C8 : B
C2 × C4 : W C2 × C2 × C2 : B D8 : B

Q8 : W C9 : B C3 × C3 : B
C10 : W C11 : B C13 : B

Isbell tentatively suggests

Conjecture 4 Black wins Γ(Cp) for primes p > 5.

The reasoning behind this conjecture is (as Isbell freely admits) shaky. Fix h ∈ Cp\{e}.
White’s first move is irrelevant as for each g ∈ Cp \ {e} there is an automorphism which
maps g to h. However, this automorphism is unique and the argument for Black winning
is that “in the unique game which Black faces after White’s first move in Γ(Cp) the p− 3
possible opening moves are all different (i.e. inequivalent by automorphisms). For large
p, it is very unlikely that all are losing moves”.

As far as the author is aware, no further work has been done on this problem.

3.6 Row-Complete Latin Squares

We have already noted that sequencings were primarily investigated because they can be
used to construct row-complete latin squares. In this section we outline another construc-
tion method.

Let q be an odd prime power. Let A be a q × mq array of symbols from Fq × Zm,
where Fq is the field with q elements. Write Aij = (xij, yij) for 1 6 i 6 q, 1 6 j 6 mq.
Then A is a generating array if the following conditions hold:

• each symbol appears once in each row of A;

• if xij = xi′j then i = i′;

• if yi,j+1 − yij = yi′,j′+1 − yi′j′ and (xij, xi,j+1) = (xi′j′ , xi′,j′+1) then (i, j) = (i′, j′).

Given a q ×mq generating array, A, define L to be the mq ×mq array (with symbols
from Fq × Zm) with

Lkq+i,j = (xij, yij + k)

where 1 6 i 6 q, 1 6 j 6 mq and 0 6 k 6 m− 1.
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Theorem 22 [28] L, as defined above, is an mq ×mq row-complete latin square.

Thus to construct an mq×mq row-complete latin square we need only to construct a
q ×mq generating array.

Example 3 [28] Let n = 9, F3 = {0, 1, 2}, Z3 = {0, 1, 2}. Then the array A given in
Figure 3 is a generating array. The corresponding row-complete latin square L is given in
Figure 4. It is obtained by using the map φ : F3 ×Z3 → {1, 2, . . . , 9}, (x, y) 7→ 3x+ y + 1
as integers.

Figure 3: A 3× 9 generating array, A.
(0, 0) (1, 0) (2, 0) (0, 1) (1, 2) (2, 1) (1, 1) (2, 2) (0, 2)
(1, 0) (0, 1) (0, 0) (2, 1) (2, 0) (0, 2) (2, 2) (1, 1) (1, 2)
(2, 0) (2, 1) (1, 2) (1, 1) (0, 1) (1, 0) (0, 2) (0, 0) (2, 2)

Figure 4: A 9× 9 row-complete latin square, L.
1 4 7 2 6 8 5 9 3
4 2 1 8 7 3 9 5 6
7 8 6 5 2 4 3 1 9
2 5 8 3 4 9 6 7 1
5 3 2 9 8 1 7 6 4
8 9 4 6 3 5 1 2 7
3 6 9 1 5 7 4 8 2
6 1 3 7 9 2 8 4 5
9 7 5 4 1 6 2 3 8

It seems that this method was used by Mertz and Sonneman to construct row-complete
latin squares of orders 9 and 15 respectively, reported in [59] (they are given as column-
complete latin squares there; transposing gives row-complete squares). Archdeacon,
Dinitz, Stinson and Tillson [28] first formally defined generating arrays; they also con-
structed row-complete latin squares of orders 9 and 15 and found examples of orders 21
and 27 not based on groups. In [48, chapter 3] it is reported that Owens, Dinitz and
Stinson have found examples of orders 25 and 33. Until 1997 squares constructed from
sequencings were the only other known row-complete latin squares of odd order. Higham
[60] combined these squares to make larger ones, showing that if there is a sequenceable
group of odd order m and a row-complete latin square of odd order n then there is a row-
complete latin square of order mn. In 1998 he returned to the concept of a generating
array to show

Theorem 23 [61] Row-complete latin squares of all odd composite orders exist.

the electronic journal of combinatorics 20(2) (2013), #DS10v2 25



Proof: We will show how to construct the appropriate generating arrays. Detailed proofs
of their correctness may be found in [61].

Let q be an odd prime power, q > 3. We construct a q×mq generating array A, where
Aij = (xij, yij). Note that every odd composite number except 9 has a proper prime
power divisor greater than 3 and we have already seen a 9× 9 row complete latin square.

Case 1, m = 4r + 1: We set the yij’s first. Choose yij to be constant within each
column, yij = sj say.

Now,

(0, 4r, 1, 4r − 1, . . . , r − 2, 3r + 2, r − 1, 3r + 1, r,

3r − 1, r + 1, 3r − 2, . . . , 2r − 2, 2r + 1, 2r − 1, 2r, 0)

is the sequence of partial sums of an R-sequencing of Zm (see Section 3.1).
Let w be the sequence obtained from this by removing the final 0, adding r+1 to each

term and cyclically shifting the new sequence forward 2r places. That is,

w = (2r + 1, 4r, 2r + 2, 4r − 1, . . . , 3r − 1, 3r + 2, 3r, 3r + 1,

r + 1, r, r + 2, r − 1, . . . , 2r − 1, 2, 2r, 1).

Let sj be the jth element of the sequence that begins with q − 1 0’s, then has q − 1
copies of w, then the reverse of w and finishes with a 0.

To allocate the xij’s we produce m q×q component latin squares, C(k), 0 6 k 6 m−1.
The kth component square is then matched with the symbol k where it occurs in the
second co-ordinate of the generating array. More specifically, put the lth column of C(k)

in the first co-ordinates of the lth column of A which consists of the symbol k in the
second co-ordinate (1 6 l 6 q).

We now define these component squares. Let σ be a primitive element of Fq such that
σ 6= 2. The field Fq has such a σ for q an odd prime power > 5. Let Fq = {f1, f2, . . . fq}.
Then

C(k)
ij =

{
akfi + bkσ

j + ck if 1 6 j < q
akfi + ck if j = q

where a0 = · · · = a2r = 1, a2r+1 = · · · = a4r = −1, b0 = 1, b1 = 1− σ, b2 = · · · = br = 1,
br+1 = · · · = b2r = −1, b2r+1 = · · · = b3r = 1/2− 1/σ, b3r+1 = · · · = b4r = 1/2, c0 = −σ/2
and c1 = · · · = c4r = 0.

We now have a generating array for m = 4r + 1.
Case 2, m = 4r + 3: This differs only slightly from the previous case. Again choose

yij = sj
Now,

(0, 4r + 2, 1, 4r + 1, . . . , r − 2, 3r + 4, r − 1, 3r + 3, r,

3r + 1, r + 1, 3r, r + 2, 3r − 1, . . . , 2r − 1, 2r + 2, 2r, 2r + 1, 0)
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is the sequence of partial sums of an R-sequencing in Zm.
Let w be the sequence obtained from this by removing the final 0, adding r + 1 to

each term, reversing the sequence and cyclically shifting the new sequence forward 2r+ 1
places. That is,

w = (2r + 1, 1, 2r, 2, . . . , r + 3, r − 1, r + 2, r, r + 1,

3r + 2, 3r + 1, 3r + 3, 3r, 3r + 4, . . . , 4r, 2r + 3, 4r + 1, 2r + 2, 4r + 2).

Again, let sj be the jth element of the sequence that begins with q − 1 0’s then has
q − 1 copies of w, then the reverse of w and finishes with a 0.

We use component squares as before to allocate the xij’s. Let σ be a primitive element
of Fq such that σ 6= 2 and 3σ 6= 2. The field Fq has such a σ for q an odd prime power
power > 5. Let Fq = {f1, f2, . . . , fq}. Then

C(k)
ij =

{
akfi + bkσ

j + ck if 1 6 j < q
akfi + ck if j = q

where a0 = · · · = a2r = 1, a2r+1 = · · · = a4r+1 = −1, a4r+2 = 1, b0 = · · · = br = 1, br+1 =
· · · = b2r = −1, b2r+1 = 1/2 − 1/σ, b2r+2 = · · · = b3r+1 = 1, b3r+2 = · · · = b4r+1 = −1,
c0 = −σ/2 and c1 = · · · = c4r = 0.

We now have a generating array for m = 4r + 3 and hence we have a row complete
latin square of every odd composite order. 2

It is known that there are no n × n row-complete latin squares for n = 3, 5 or 7, but
the question for other odd primes remains open.

4 Index Of Notation

Zn : The integers modulo n (considered as the additively written cyclic
group of order n)

Cn : The (multiplicatively written) cyclic group of order n
D2n : The dihedral group of order 2n

SD2n : The semidihedral group of order 2n
Q4n : The dicyclic group of order 4n; this is a generalised quaternion group

if n is a power of 2
An : The alternating group on n symbols
Sn : The symmetric group on n symbols
Fq : The field with q elements (q must be a prime power)

PSL(2, q) : The projective special linear group of 2× 2 matrices over Fq
PGL(2, q) : The projective general linear group of 2× 2 matrices over Fq
PΓL(2, q) : The automorphism group of PSL(2, q)

G′ : The derived subgroup of a group G
O(G) : The largest normal subgroup of odd order of a group G
Λ(G) : The normal subgroup of order 2 of a binary group G
bkc : The smallest integer greater than k − 1
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Kiadó, Budapest/English Universities Press, London/Academic Press (1974). 3.1
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