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Abstract

Given a family of (hyper)graphs F a (hyper)graph G is said to be F-saturated

if G is F -free for any F ∈ F but for any edge e in the complement of G the

(hyper)graph G + e contains some F ∈ F . We survey the problem of determining

the minimum size of an F-saturated (hyper)graph and collect many open problems

and conjectures.

1 Introduction

In this paper we will deal only with finite graphs without loops or multiple edges. Notation

will be standard, and we will generally follow the notation of Chartrand and Lesniak
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in [CL05]. We let Kp denote the complete graph on p vertices, Cl denotes the cycle

on l vertices, and Pk denotes the path on k vertices. If F ′ is a subgraph of F , then

we write F ′ ⊆ F . If we wish to emphasize that F ′ is a proper subgraph of F , then

we write F ′ ⊂ F . We adopt a similar convention for sets. Given any two graphs G

and H , their join, denoted G + H , is the graph with V (G + H) = V (G) ∪ V (H) and

E(G + H) = E(G) ∪ E(H) ∪ {gh | g ∈ V (G), h ∈ V (H)}.
We will begin with some standard definitions. Given a (hyper)graph F , we say that

the (hyper)graph G is F -free if G has no sub(hyper)graph isomorphic to F . We say a

(hyper)graph G is F -saturated if G is F -free but G + e does contain a copy of F for every

(hyper)edge e ∈ E(G) where G denotes the complement of G. For example, any complete

bipartite graph is a K3-saturated graph.

Additionally, we have:

ex(n, F ) = max{|E(G)| : |V (G)| = n and G is F -saturated},
Ex(n, F ) = {G : |V (G)| = n, |E(G)| = ex(n, F ), and G is F -saturated},
sat(n, F ) = min{|E(G)| : |V (G)| = n and G is F -saturated},
Sat(n, F ) = {G : |V (G)| = n, |E(G)| = sat(n, F ), and G is F -saturated}.

Note that the word saturated could be replaced with the word free in the definitions

for ex(n, F ) and Ex(n, F ) but not so in the other two. We will refer to ex(n, F ) as the

extremal number of F and sat(n, F ) as the saturation number.

Additionally, we can generalize all the definitions above by replacing the graph F

with a family of (hyper)graphs F . So, a (hyper)graph G is F -saturated if G contains no

member of F as a sub(hyper)graph but for every edge e ∈ G, there exists F ∈ F such that

G + e contains F as a sub(hyper)graph. When F = {F} we write F -saturated, sat(n, F ),

etc. in place of F -saturated, sat(n,F), etc.

In 1941, P. Turán published a paper [Tur41] in which he introduced the idea of an

extremal number and determined ex(n, Kp) and Ex(n, Kp). In particular, he proved that

Ex(n, Kp) consists of a single graph (up to isomorphism): the complete (p − 1)-partite

graph, where the n vertices are distributed among the partite sets as evenly as possible.

In 1964, motivated by a conjecture of P. Erdős and T. Gallai [EG61], P. Erdős,

A. Hajnal, and J.W. Moon in [EHM64] introduced the idea of a saturation number (though

not using that terminology) and proved the following.

Theorem 1. [EHM64] If 2 ≤ p ≤ n, then sat(n, Kp) = (p − 2)(n − p + 2) +
(

p−2
2

)
=

(
n
2

)
−

(
n−p+2

2

)
and Sat(n, Kp) contains only one graph, Kp−2 + Kn−p+2.

Note that Kp−2 + Kn−p+2 can be thought of as the complete (p− 1)-partite graph on

n vertices such that all but one of the partite sets contains exactly one vertex, i.e. the

vertices are distributed as “unevenly” as possible amongst the p − 1 parts.

In 1986 L. Kászonyi and Zs. Tuza in [KT86] found the best known general upper

bound for sat(n,F). Note that α(F ) is the independence number of F (i.e. the order of
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the largest clique in F ) and a star on n vertices refers to the complete bipartite graph

K1,n−1. To state their result, we first define

u = u(F) = min{|V (F )| − α(F ) − 1 : F ∈ F}

and

d = d(F) = min{|E(F ′)| : F ′ ⊆ F ∈ F is induced by S ∪ x},
where S is an independent set in V (F ) and |S| = {|V (F )| − u − 1, x ∈ V (F ) \ S}.

Theorem 2. [KT86] sat(n,F) ≤ un + (d − 1)(n − u)/2 −
(

u+1
2

)
.

This theorem is interesting for several reasons. First the proof hinges largely on

two simple observations and exploits the power of considering the saturation number of

families of graphs. Second, the bound is exact for a great many graphs. Finally the proof

is implicitly constructive. That is, for many graphs, the proof describes how to construct

an F -saturated graph. In fact, for all graphs F , the proof constructs a graph that must

contain an F -saturated graph as a subgraph. An outline of the proof and its consequences

now follows.

Given a family of graphs F , Kászonyi and Tuza define the family of deleted subgraphs

of F as F ′ = {F\x | F ∈ F , x ∈ V (F )} and recursively, F ′′, F ′′′, and so forth. A first

observation is that a graph G on n vertices with a vertex x of degree n− 1 is F -saturated

if and only if G\x is F ′-saturated. Now, by the choice of parameter u in the hypothesis of

the theorem, the family Fu must contain a star on d+1 vertices from which it immediately

follows that any Fu-saturated graph has maximum degree less than d. The upper bound,

then, is simply a count of the number of edges in a graph on n vertices such that u of the

vertices have degree n − 1 and the subgraph containing the remaining n − u vertices is

(d−1)-regular. For reference, we will call this graph Ku +G′, where G′ is a (d−1)-regular

graph on n − u vertices.

R. Faudree and R. Gould observed in [FG] that the bound in [KT86] can be improved

slightly by replacing G′ by a graph G∗ ∈ sat(n − u, K1,d), since the critical fact is that

the addition of any edge in G∗ will result in a vertex of degree d. This does not change

the bound asymptotically, but gives the inequality

sat(n,F) ≤ un + (d − 1)(n − u)/2 −
(

u + 1

2

)

− 1

2
⌊d2/4⌋.

This upper bound is sharp in many cases. In particular, in the case that F contains

only the complete graph — the construction gives the unique extremal graph in this case

(see Theorem 1 of Erdős, Hajnal, and Moon). Furthermore, in [FG], the authors establish

the existence of infinite families of graphs such that for every member F , Ku + G∗ ∈
Sat(n, F ). In [CFG08] this upper bound was also shown to give a sharp bound for the

saturation numbers for similar graphs, such as books and generalized books. And in [FG]
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it is shown that the saturation numbers for various families of nearly complete graphs

are either precisely the Kászonyi-Tuza bound or the bound is asymptotically correct.

The bound is also sharp in the case of the very sparse graph F = {K1,k−1 + e} =

{K1 + (K2 ∪ (k − 3)K1)}. In this case, u = 1 and d = 1, and the construction given

by Theorem 2 gives the star graph K1,n−1. In some cases the bound is known to be

asymptotically correct. (See, for example, Theorem 12.)

Finally, for any graph F , the F -saturated subgraph contained in Ku + G∗ can be

constructed by beginning with the graph Ku + Kn−u and adding edges one by one from

the graph G∗ if and only if their addition does not produce a copy of F. This procedure

must end in the desired subgraph.

In many instances the bound in Theorem 2 is neither sharp nor asymptotically correct.

(See, for example, Theorem 13 and Theorem 14.)

Note that Theorem 2 implies that sat(n,F) = O(n), while for the extremal number

we have ex(n,F) = O(n2) (see [ES66]).

A nontrivial general lower bound has yet to be determined though lower bounds do

exist for certain classes of graphs as will be seen later in the survey.

One of the most interesting tools to arise as a result of the study of the saturation

function is due to B. Bollobás [Bol65]. We refer to this tool as Bollobás’ inequality. It

allows for simple proofs of many results, including the quantitative part of Theorem 1,

which we give after the statement. It was developed however to establish a corresponding

result for k-uniform hypergraphs (see Theorem 3), but it also easily adapts to allow for

proofs for bipartite graphs in a bipartite setting (see Section 7, in particular Theorem 30).

Bollobás’ inequality has also found use outside the study of this function; most of these

uses lie in Extremal Set Theory where the method of proof is sometimes referred to as the

set-pair method. For instances of such see Section 10 of the survey by P. Frankl in [GGL95]

and the excellent two-part survey on the set-pair method by Zs. Tuza [Tuz94, Tuz96].

Theorem 3. [Bol65] Let {(Ai, Bi) : i ∈ I} be a finite collection of finite sets such that

Ai ∩ Bj = ∅ if and only if i = j. For i ∈ I set ai = |Ai| and bi = |Bi|. Then

∑

i∈I

(
ai + bi

ai

)−1

≤ 1 (1)

with equality if and only if there is a set Y and non-negative integers a and b, such that

|Y | = a + b and {(Ai, Bi) : i ∈ I} is the collection of all ordered pairs of disjoint subsets

of Y with |Ai| = a and |Bi| = b (and so Bi = Y \ Ai).

In particular, if ai = a and bi = b for all i ∈ I, then |I| ≤
(

a+b
a

)
. If ai = 2 and bi = n − p

for all i ∈ I, then |I| ≤
(

n−p+2
2

)
.

We can now easily give a proof of the quantitative part of Theorem 1.
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Proof of Theorem 1 (as given in [GGL95], page 1269) Let G be an n-vertex

Kp-saturated graph. We show that the number of non-edges l is at most
(

n−p+2
2

)
. Let

A1, . . . , Al be the pairs of vertices “belonging” to a non-edge of G. For each such set there

is a corresponding p−set Ci of vertices in V (G) containing Ai such that V (Ci) induces a

Kp − e. Set Bi to be the complement of Ci in V (G). Now note that the hypotheses of

Theorem 3 are met and so l ≤
(

n−p+2
2

)
, or rather sat(n, Kp) ≥

(
n
2

)
−

(
n−p+2

2

)
. �

In this paper, we will summarize known results for sat(n,F) and Sat(n,F). Earlier

such surveys may be found in [Tuz88], [GGL95] (see the chapter by B. Bollobás), and

the Ph.D. thesis of O. Pikhurko [Pik99b]. In an effort to stimulate further research, we

include many open conjectures, questions, and problems. We regard these items with

respect to importance and/or interest in the same order.

The paper is organized as follows. In Section 2 we consider results pertaining to

complete graphs, including degree restrictions, unions of cliques, complete partite graphs,

and edge coloring problems. These problems and results are among the first and most

natural considerations after the introduction of the function in the early 1960s. Some

results are arrived at in a straightforward manner, e.g. unions of cliques, others thwarted

attack for a long time and required a novel approach, e.g the results on complete partite

graphs. In Section 3 and Section 4 we present results on cycles and trees, respectively.

In these sections we begin to get a sense of the challenges of studying this function,

whether it be the technical proof involved in determining the value of the function for the

five-cycle or the strange behavior of the function exhibited for two trees of a given order

with ‘similar’ structure. In Section 5 we grapple with some of the inherent difficulties

of the sat-function. One of the main current challenges in the study of the saturation

function is that it fails to have the monotonic properties for which one might hope. We

discuss these issues in depth and believe that Question 7 is most important to settle.

Section 6 considers the problem for hypergraphs and Section 7 considers the problem

for when the ‘host’ graph is something other than the complete graph. Section 8 deals

with the problem when edges are directed. Section 9 shows some relationships that the

sat-function has with other extremal functions, including the ex-function. In particular,

it seems that certain aspects of the saturation function are as difficult as some of the most

challenging outstanding problems in the whole of extremal graph theory, see Subsection

9.1. Finally in Section 10 we consider the related notion of weak saturation. Though

last in our presentation, the topic should not be considered last in terms of interest or

challenges present. Indeed, this last topic has attracted the attention of some of the top

combinatorists of the past few decades and as a consequence some beautiful results and

techniques have been found.

It should be noted that while much of this survey is devoted to compiling known results

and open problems, we do give some proofs that we feel are particularly novel, striking

or beautiful, one such is given above and another is to follow immediately.
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Note that in the proof of Theorem 1 we only made use of the “in particular” statement

found in Theorem 3. We give a proof of just this part of the theorem (as found in L. Babai

and P. Frankl [BF]) as it brings to light how L. Lovász [Lov77] brought the linear algebra

method into play for theorems of this type. Generalizations of Bollobás’ theorem often

allow extensions of this method.

Proof of the “In particular” statement of Theorem 3

Let Y = (∪IAi)∪(∪IBi). For each y ∈ Y we associate a vector v(y) = (v0(y), v1(y), . . . ,

va(y)) ∈ R
a+1 such that the set of vectors is in general position; that is, any a + 1 vectors

are linearly independent. Now for each set Y ′ ⊆ Y we associate a polynomial fY ′(x) in

the a + 1 variables x = (x0, x1, . . . , xa) as follows:

fY ′(x) =
∏

y∈Y ′

(v0(y)x0 + v1(y)x1 + . . . + va(y)xa).

The above polynomial is homogeneous and has degree equal to the size of the set Y ′.

It follows from the definition of orthogonal that the polynomial is non-zero only when x

is orthogonal to none of the v(y), y ∈ Y ′.

We now consider such a polynomial associated with a set Bi and let aj be a non-zero

vector orthogonal to the subspace generated by the a elements of Aj . Note that aj is

orthogonal to v(y) only if y ∈ Aj (this follows from the fact that the vectors were chosen

to be in general position). We are now able to claim that fBi
(aj) = 0 if and only if Aj

and Bi intersect; that is, if and only if i 6= j.

It can then be shown that the polynomials fB1
, . . . fB|I|

form a linearly independent

set. Thus, (by the so-call linear algebra bound) the size of this set is not greater than the

dimension of the space of homogeneous polynomials of degree b in a + 1 variables; that

is, |I| ≤
(
(a+1)+b−1

b

)
=

(
a+b
a

)
. �

2 Complete graphs

Recall that in the original paper by Erdős, Hajnal and Moon, their main result was to

establish sat(n, Kp) and the uniqueness of the graph in Sat(n, Kp). This section describes

results concerning graphs relatively close to minimum Kp-saturated graphs, such as the

saturation number of Kp with restrictions on the minimum or maximum degree of the

host graph or the saturation number of complete bipartite graphs. (One exception is

the generalization to hypergraphs which is discussed in Section 6.) The reader will find

that even the set of results close to the original [EHM64] result include a great variety of

approaches all of which have natural open problems in their respective directions.

the electronic journal of combinatorics 18 (2011), #DS19 6



2.1 Degree restrictions

One of the first generalizations considered was to place additional restrictions on the

graph. Recall that all the vertices in the unique extremal graph in Sat(n, Kp) either have

degree equal to ∆ = n − 1 or δ = p − 2. And, in fact, any Kp-saturated graph has to

have minimum degree at least p−2. While confirming a conjecture of T. Gallai about the

minimum degree of a Kp-saturated without conical (degree n − 1) vertices, A. Hajnal in

[Haj65] asked, what is the minimum number of edges in a Kp-saturated graph if ∆ ≤ n−2?

With this question in mind, we define sat∆(n, F ) to be the minimum number of edges in

a F -saturated graph on n vertices with maximum degree no more than ∆. In Z. Füredi

and Á. Seress [FS94], the value of sat∆(n, K3) was found precisely for ∆ ≥ (n− 2)/2 and

n sufficiently large.

Theorem 4. [FS94] Let n > 2228

. Then

sat∆(n, K3) =







2n − 5, for ∆ = n − 2,

2n − 5 + (n − 3 − ∆)2, for n − 3 −
√

n − 10 ≤ ∆ ≤ n − 3,

3n − 15, for (n − 2)/2 ≤ ∆ < n − 3 −
√

n − 10.

Upper and lower bounds are established for other values of ∆. Continuing in this

direction, P. Erdős and R. Holzman [EH94] gave the following result.

Theorem 5. [EH94]

lim
n→∞

satcn(n, K3)

n
=

{

(11 − 7c)/2, for 3/7 ≤ c < 1/2,

4 for 2/5 ≤ c ≤ 3/7.

In a paper of N. Alon, P. Erdős, R. Holzman, and M. Krivelevich [AEHK96] similar

results for K4 are proved. Additionally, they construct a Kp-saturated graph with ∆ =

2p
√

n for all p and sufficiently large n.

Problem 1. Investigate sat∆(n, Kp) for p ≥ 5.

From a slightly different perspective, D. Duffus and D. Hanson [DH86] considered

minimally Kp-saturated graphs with minimum degree at least δ, for δ ≥ p − 2. Thus,

define satδ(n, F ) to be the minimum number of edges in an n-vertex F -saturated graph

with minimum degree at least δ. Upper and lower bounds for this function are found in

some instances.

Theorem 6. [DH86]

sat2(n, K3) = 2n − 5, n ≥ 5,

sat3(n, K3) = 3n − 15, n ≥ 10.
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Note that the upper bound for each of the above statements in Theorem 6 can be real-

ized by duplicating a vertex in the 5-cycle and Petersen graph, respectively. This process

of duplicating a vertex occurs frequently, but certainly not always, in the extremal graphs

for the sat-function. In addition, Theorem 6 plays a role in the previously mentioned

results found in [FS94] and [AEHK96]. Theorem 6 led B. Bollobás [GGL95] (see page

1271) to ask the following.

Question 1. For δ ≥ 4, does satδ(n, K3) = δn − O(1)?

Certainly we have satδ(n, K3) ≤ δ(n−δ) as the bipartite graph Kδ,n−δ is K3-saturated

with minimum degree at least δ. (In [DH86] a different construction is given yielding a

slightly better upper bound, and better yet in [FS94].) Progress has been made towards

proving this lower bound. The more general problem of determining satδ(n, Kp) can

also be considered. Indeed, one of the results of [AEHK96] (see Theorem 2) implies

that satδ(n, Kp) = δn + O( n
log log n

). O. Pikhurko [Pik04] improved the error term in the

following.

Theorem 7. [Pik04] For any fixed δ ≥ p − 1, satδ(n, Kp) = δn + O(n log log n
log n

).

Additionally, as a means of estimating satδ(n, Kp) Duffus and Hanson introduce the

idea of a minimally color-critical graph. If we look again at the graph Kp−2 + Kn−p+2,

we see that its chromatic number is p − 1 and the addition of any edge increases the

chromatic number to p. Suppose G is a graph on n vertices with chromatic number p− 1

and minimum degree at least δ. They define χδ(n, p) to be the minimum number of edges

that G can have such that the addition of any edge to G increases the chromatic number.

Such graphs are called minimal (χ, δ)-saturated graphs. Duffus and Hanson find the value

of χδ(n, p) precisely and show that the extremal graph corresponding to it is unique,

consisting of a complete (p − 1)-partite graph with suitably sized partite sets. More

precisely, they give the following. .

Theorem 8. [DH86] For integers n, p, δ, such that 2 ≤ p ≤ n, δ ≥ p − 2, the complete

(p− 1)-partite graph with (p− 2−⌊n−p+1
n−δ−1

⌋) parts of cardinality one, ⌊n−p+1
n−δ−1

⌋ parts having

cardinality (n− δ), and one part having cardinality n− (p−2−⌊n−p+1
n−δ−1

⌋)−⌊n−p+1
n−δ−1

⌋(n− δ)

is the only n-vertex minimal (χ, δ)-saturated graph.

It is, in fact, χδ(n, p) that provides an upper bound for the number of edges in a

Kp-saturated graph with prescribed minimum degree. This upper bound is a direct con-

sequence of the construction in the previous theorem (as noted in Theorem 2 of [DH86]).

Finally, we mention the problem of determining the minimum size of a non-(p − 1)-

partite Kp-saturated graph. For p = 3, this was solved by C. Barefoot, K. Casey, D. Fisher,

K. Fraughnaugh, and F. Harary [BCF+95]. For p = 3, such a graph has 2n− 5 edges and

can be obtained by duplicating two non-adjacent vertices of a C5. For p > 3, the problem

has been solved and results are forthcoming [Gou].
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2.2 Unions of cliques, complete partite graphs, and more

Another extension is to consider graphs which generalize the complete graph. One ap-

proach is to consider unions of cliques. For a graph F , let tF denote the disjoint union

of t copies of F .

In [FFGJ09b], R. Faudree, M. Ferrara, R. Gould, and M. Jacobson determined

sat(n, tKp) and sat(n, Kp∪Kq) precisely as illustrated by Kp−2+{(t−1)Kp+1∪Kn−pt−t+3}
and Kp−2 + {Kq+1 ∪ Kn−q−p+1} (for p ≤ q), respectively.

Theorem 9. [FFGJ09b] Let t ≥ 1, p ≥ 3 and n ≥ p(p + 1)t − p2 + 2p − 6 be integers.

Then

sat(n, tKp) = (t − 1)

(
p + 1

2

)

+

(
p − 2

2

)

+ (p − 2)(n − p + 2).

Furthermore, if t = 2 or 3, the extremal graph, respectively, is unique.

This was built on previous work of W. Mader [Mad73] who considered the case p = 2.

Using similar techniques, R. Faudree et al. [FFGJ09b] were able to establish the

saturation number for generalized friendship graphs. That is, for integers t, p, and l,

define Ft,p,l to be the graph composed of t copies of Kp intersecting in a common Kl.

Theorem 10. [FFGJ09b] Let p ≥ 3, t ≥ 2 and p − 2 ≥ l ≥ 1 be integers. Then, for

sufficiently large n,

sat(n, Ft,p,l) = (p − 2)(n − p + 2) +

(
p − 2

2

)

+ (t − 1)

(
p − l + 1

2

)

.

The value of sat(n, Kp ∪ Kq ∪ Kr) is still open and, as the authors observe, the con-

struction they use to establish an upper bound for sat(n, Kp ∪Kq) (which they determine

exactly) does not apply in this case. Also, it is not known in general if Sat(n, tKp) is

unique for t ≥ 4.

Problem 2. [FFGJ09b] Investigate sat(n, Kp ∪ Kq ∪ Kr) or sat(n, 2Kp ∪ Kq).

Another generalization is to complete partite graphs. Let Ks1,...,sp
denote the complete

p-partite graph with partite sets of size s1, . . . , sp and 1 ≤ s1 ≤ . . . ≤ sp and p ≥ 2. Note

that the star K1,k−1 with k vertices will be considered in Section 4, and the 4-cycle

K2,2
∼= C4 in Section 3. O. Pikhurko and J. Schmitt [PS08] considered the graph K2,3 and

proved the following.

Theorem 11. [PS08] There is a constant C such that for all n ≥ 5 we have

2n − Cn3/4 ≤ sat(n, K2,3) ≤ 2n − 3.
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O. Pikhurko [Pik04] computed sat(n, K1,...,1,s) exactly for n sufficiently large, as sub-

sequently did G. Chen, R. Faudree and R. Gould [CFG08] while simultaneously giving

better estimates on n. R. Gould and J. Schmitt [GS07] considered the graph K2,...,2 and

determined the extremal graph under the assumption that the graph has a vertex of

smallest possible minimum degree. A very recent result of T. Bohman, M. Fonoberova,

and O. Pikhurko [BFP10] confirmed that sat-function for a complete multipartite graph

behaves asymptotically like the upper bound provided for this graph by Theorem 2.

Theorem 12. [BFP10] Let p ≥ 2, sp ≥ . . . ≥ s1 ≥ 1. Then for all large n,

sat(n, Ks1,...,sp
) = (s1 + . . . + sp−1 +

sp − 3

2
)n + O(n3/4).

Additionally, Bohman et al. are able to provide a stability type result — the first

such result in the study of this function! That is, Ks1,...,sp
-saturated graphs with at most

sat(n, Ks1,...,sp
) + o(n) edges can be changed into the construction provided by Theorem

2 by adding and removing at most o(n) edges. The authors note that the exact determi-

nation of the saturation number for complete multipartite graphs is an interesting open

problem (a conjecture for the exact value of sat(n, K2,...,2) is given in [GS07]). They

[BFP10] also conjectured that sat(n, K2,3) = 2n − 3 for all large n. This conjecture was

recently confirmed by Y.-C. Chen [Che].

2.3 Edge coloring

Let F1, F2, . . . , Ft be graphs. We will say that a graph G is (F1, F2, . . . , Ft)-saturated if

there exists a coloring C of the edges of G in t colors 1, 2, . . . , t in such a way that there

is no monochromatic copy of Fi in color i, 1 ≤ i ≤ t, but the addition of any new edge

(i.e. an edge not already in G) of color i with C creates a monochromatic Fi in color

i, 1 ≤ i ≤ t. D. Hanson and B. Toft [HT87] determined the minimum number of edges

(and the maximum number of edges) in an (Km1
, Km2

, . . . , Kmt
)-saturated graph. In

particular, they showed that the extremal graph is Km−2t + Kn−m+2t where m =
∑t

i=1 mi

for n ≥ m − 2t + 1.

They also considered a more restrictive question. We say that a graph F arrows a

t-tuple (F1, F2, . . . , Ft) of graphs, which is denoted F → (F1, F2, . . . , Ft), if any t-coloring

of E(F ) contains a monochromatic Fi-subgraph of color i for some i ∈ [t]. D. Hanson and

B. Toft [HT87] gave the following.

Conjecture 1. Given t ≥ 2 and integers mi ≥ 3, i ∈ [t], let

F = {F : F → (Km1
, Km2

, . . . , Kmt
)}.

Let r = r(Km1
, Km2

, . . . , Kmt
) be the classical Ramsey number. Then

sat(n,F) =

(
r − 2

2

)

+ (r − 2)(n − r + 2).
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Notice that the conjecture reduces to Theorem 1 in the case where either t = 1 or

m2 = . . . = mt = 2.

G. Chen, M. Ferrara, R. Gould, C. Magnant, and J. Schmitt [CFG+] confirmed this

conjecture in the smallest instance, that is, for the family of graphs that arrow the pair

(K3, K3) and n ≥ 56. These authors also determine the saturation number for the family

F = {F : F → (K3, P3)}. The conjecture of Hanson and Toft remains open and the more

general problem seems challenging.

Question 2. Given t ≥ 2, and graphs F1, . . . , Ft, let F = {F : F → (F1, F2, . . . , Ft)}.
What is sat(n,F)?

3 Cycles

We now consider Cl-saturated graphs where Cl denotes the cycle on l vertices. We begin

by discussing the known results for small values of l, after which we focus on the case

when l = n. The reader will find that for small values of l exact results are known only for

l ≤ 5. For l ≥ 6, a lower bound and some upper bounds are established. Finding precise

values appears to be quite difficult; the reader might try determining sat(n, C6)! For

l = n, the saturation number is established through the collective work of many people.

There are several interesting questions regarding the behavior of sat(n, Cl).

In his text on extremal graph theory (p. 167, Problem 39), B. Bollobás [Bol04] gave

the problem of estimating sat(n, Cl) for 3 ≤ l ≤ n. When l = 3, as C3
∼= K3, the value

of sat(n, Cl) is given by the result of [EHM64]. In 1972 L.T. Ollmann [Oll72] determined

that sat(n, C4) = ⌊3n−5
2

⌋ for n ≥ 5 (this differs from the erroneous value for the function

for this case given in [Bol78] p.167, Problem 40) and gave the set of extremal graphs.

Later, Zs. Tuza [Tuz89] gave a shorter proof. Tuza’s proof is a rare instance in which an

inductive argument (for a particular case) is used in proving a lower bound on sat(n, F ).

A slight extension was given by D. Fisher, K. Fraughnaugh, L. Langley [FFL97]. A graph

is Pl-connected if every pair of nonadjacent nodes is connected by a path with l vertices.

(It should be noted that this concept has sometimes been defined as a path with l edges,

as opposed to l vertices). Observe that a Cl-saturated graph is necessarily Pl-connected,

though a Pl-connected graph need not be Cl-saturated. Fisher et al. determined the

minimum size of a P4-connected graph, thus generalizing Ollmann’s result. This class of

extremal graphs properly contains those of Ollmann.

Theorem 13. [Oll72],[Tuz89],[FFL97] For n ≥ 5, sat(n, C4) = ⌊3n−5
2

⌋.

D. Fisher, K. Fraughnaugh, and L. Langley [FFL95] gave an upper bound for sat(n, C5)

of ⌈10
7

(n − 1)⌉. Recently, a very technical proof given by Y.-C. Chen [Che09] has shown

that this upper bound also serves as a lower bound for n ≥ 21. In a subsequent manuscript
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[Che11], Y.-C. Chen has determined Sat(n, C5) - an impressive feat considering the num-

ber and structure of the extremal graphs involved.

Theorem 14. [Che09][Che11] For n ≥ 21, sat(n, C5) = ⌈10
7

(n − 1)⌉.

C. Barefoot, L. Clark, R. Entringer, T. Porter, L. Székely, and Zs. Tuza [BCE+96]

gave constructions that showed that for l 6= 8 or 10 and n sufficiently large there exists a

positive constant c such that sat(n, Cl) is bounded above by n + cn
l
. For small values of

l their constructions rely upon, what they call, Cl-builders. Cl-builders are Cl-saturated

graphs (of generally small order) which are used to “build” Cl-saturated graphs of large

order by identifying many copies of the Cl-builder at a particular vertex. The main result

in [Che11] implies that most graphs in Sat(n, C5) have this structure. Note that the

particular vertex at which the copies are identified is a cut-vertex. The construction

given for l = 6 gives that sat(n, C6) ≤ 3n
2

for n ≥ 11. We mention this case as not only

is it the smallest instance for which we do not know the value of the function precisely

but also because it is the only instance for which the upper bounds given in [BCE+96]

have not been improved despite subsequent work by various authors. However, R. Gould,

T.  Luczak, and J. Schmitt [G LS06] did improve the constant c of the upper bound given

in [BCE+96] for all l ≥ 8. For certain values of l their constructions resemble a bicycle

wheel and do not contain cut-vertices. These wheel constructions showed that sat(n, Cl) ≤
(1+ 2

l−ǫ(l)
)n+O(l2), where ǫ(l) = 2 for l even ≥ 10, ǫ(l) = 3 for l odd ≥ 17. Z. Füredi and

Y. Kim [FK] very recently improved upon these bounds with a much simpler construction.

Barefoot et al. also gave the first non-trivial lower bound on sat(n, Cl) for n ≥ l ≥ 5.

Füredi and Kim improved upon their argument to obtain a better lower bound.

The main result of [FK] is the following.

Theorem 15. [FK] For all l ≥ 7 and n ≥ 2l − 5,

(1 +
1

l + 2
)n − 1 < sat(n, Cl) < (1 +

1

l − 4
)n +

(
l − 4

2

)

.

The reader will notice that a gap still exists between upper and lower bounds. However,

Füredi and Kim believe that the constructions that yield the upper bound are essentially

optimal and they pose the following.

Conjecture 2. [FK] There exists an l0 such that sat(n, Cl) = (1 + 1
l−4

)n + O(l2) holds

for each l > l0.

We now turn our attention to the case when l = n.

In an effort to understand the structure of hamiltonian graphs or conditions which

imply when a graph is hamiltonian, authors have often focused on when a graph just fails

to be hamiltonian. One such focus is Cn-saturated graphs, often referred to as maximally
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non-hamiltonian (MNH) graphs. Thus the question of determining sat(n, Cn) is rather

‘natural.’

The first result on Cn-saturated graphs of minimal size is due to A. Bondy [Bon72].

He showed that if such a graph G of order at least 7 has m vertices of degree two then

it has size at least 1
2
(3n + m). As an MNH graph with a vertex of degree one must be

a clique with a pendant edge (which in fact implies that the graph is edge maximum),

this result implies that sat(n, Cn) ≥ ⌈3n
2
⌉. As a result, it is logical to consider 3-regular

graphs in the search for graphs in Sat(n, Cn). Bondy also pointed out that the Petersen

graph, which has girth five, is in Sat(10, C10).

Another famous 3-regular graph, the Coxeter graph, which has girth seven, was shown

to be in Sat(28, C28) by L. Clark and R. Entringer [CE83a]. Previously, however, W. Tutte

[Tut60] had shown it to be non-hamiltonian and H.S.M. Coxeter himself [Cox81] knew

that his graph was an MNH graph.

If a graph is 3-regular and hamiltonian, then it is 3-edge colorable. This makes 4-

edge-chromatic 3-regular graphs suitable candidates for Sat(n, Cn). Over the course of

several papers [CE83a], [CCES86], [CES92], where each paper included some subset of the

following authors - L. Clark, R. P. Crane, R. Entringer, and H.D. Shapiro, it was shown

that sat(n, Cn) does indeed equal ⌈3n
2
⌉ for even n ≥ 36 and odd n ≥ 53. They showed

that graphs which help establish equality include the Isaacs’ flower snarks (which R. Isaacs

[Isa75] showed were 4-edge-chromatic 3-regular graphs), most of which have girth six, and

variations of them. These variations are obtained through “blowing up” a degree three

vertex into a triangle. Through the aid of a computer search, X. Lin, W. Jiang, C. Zhang,

and Y. Yang [LJZY97] analyzed the remaining small cases and were able to determine

that the value of sat(n, Cn) matched the lower bound provided by Bondy except in a few

small cases. Together, these results imply the following.

Theorem 16. For all even n ≥ 20 and odd n ≥ 17, we have sat(n, Cn) = ⌈3n
2
⌉.

P. Horák and J. Širáň [HŠ86] constructed triangle-free MNH graphs of near minimal

size using a construction technique of C. Thomassen [Tho74]. Thomassen’s technique

involves “pasting” together two graphs at two vertices of degree three. Thomassen was

interested in constructing families of hypo-hamiltonian graphs (non-hamiltonian graphs

which become hamiltonian upon the removal of any vertex) and his technique builds a

new hypo-hamiltonian graph from two smaller ones. Horák and Širáň show that the

technique also works for MNH graphs when the smaller graphs are copies of either the

Petersen graph or an Isaacs’ flower snark. The technique does not decrease the length of

the shortest cycle, thus the graphs constructed are triangle-free. L. Stacho [Sta96] also

used this technique on copies of the Coxeter graph, yielding MNH graphs of girth seven.

Problem 3. [HŠ86] Does there exist an MNH graph of girth greater than seven?
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Problem 4. Furthermore, if there is such a graph, is there one of (near) minimal size?

L. Stacho [Sta98] also proved that |Sat(n, Cn)| ≥ 3 for all n ≥ 88 and showed that

limn→∞ |Sat(n, Cn)| = ∞, answering a question of L. Clark and R. Entringer [CE83a].

We end this section with a list of open problems.

Question 3. [BCE+96] Is sat(n, Cl) a convex function of l, l > 3, for fixed n? Or is it

convex at least when the parity of l is fixed?

If the answer to this question is in the affirmative, then one ought to be able to find

a better upper bound for, say, l = 9.

Problem 5. [BCE+96] Determine the value of l which minimizes sat(n, Cl) for fixed n.

Question 4. [BCE+96] Is lim supn sat(n, Cl)/n a decreasing function of l, at least for

odd l and even l, respectively?

Question 5. [ Luc]For every x ∈ [0, 1] define a function f(x) in the following way:

f(x) = lim sup
n→∞

(sat(n, C⌈xn⌉))/n − 1.

As f(1) = 1
2
, and, most probably, f(x) = O(1/x) for small x, does f(x) → 0 as x → 0?

Is f(x) continuous in [0, 1]? Is it strictly increasing? For instance, is it true that, say,

f(0.99) = 1
2
?

4 Trees and forests

Trees and forests have been the focus of study for a couple of reasons. The primary one

is that their simplicity has made at least some precise results possible. A second and less

obvious reason is their role as building blocks to larger results. Recall that the implicitly

constructive nature of the proof of Theorem 2 required the use of a K1,d−1-saturated

graph. (Note that in this section K1,d−1 = Sd and will be called a star.) While there are

several types of trees for which the saturation number is known and in fact several for

which Sat(n, T ) is characterized, there are far more trees for which little is known at all.

The most intriguing question regarding saturation number and trees is Question 8 in the

next section.

In [KT86], L. Kászonyi and Zs. Tuza established sat(n, Sk), characterized Sat(n, Sk),

and proved that, of all the trees on k vertices, Sk, has the largest saturation number.

Theorem 17. [KT86] Let Sk = K1,k−1 denote a star on k vertices. Then,

sat(n, Sk) =

{(
k−1
2

)
+

(
n−k+1

2

)
if k ≤ n ≤ 3k−3

2
,

⌈k−2
2

n − (k−1)2

8
⌉ if 3k−3

2
≤ n,
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Sat(n, Sk) =

{

Kk−1 ∪ Kn−k+1 if k ≤ n ≤ 3k−3
2

,

G′ ∪ K⌊k/2⌋ if 3k−3
2

≤ n,

where G′ is a (k − 1)-regular graph on n − ⌊k/2⌋ vertices. Also note that in the second

case (n ≥ 3k−3
2

), an edge is added between G′ and K⌊k/2⌋ if k − 1 and n − ⌊k/2⌋ are both

odd.

Furthermore, let T be a tree on k vertices such that T 6= Sk, then sat(n, T ) <

sat(n, Sk).

Both results are proved simultaneously by observing that any Sk-saturated graph has

maximum degree at most k− 2 and that the set of vertices of degree less than k− 2 must

induce a complete graph. The number of edges in such a graph is bounded below by

f(s) = (n − s)(k − 2)/2 +
(

s
2

)
where s is the number of vertices of small degree. All that

is left is to show that f is minimized at the respective values and construct the graphs

that realize these lower bounds.

Similar results were given by K. Balińska, L. Quintas, and K. Zwierzyński [BQZ06].

They considered Sk-saturated graphs where the number of vertices of degree strictly less

than k − 1 is bounded.

In [FFGJ09a], J. Faudree, R. Faudree, R. Gould and M. Jacobson show that of all the

trees on k ≥ 5 vertices the tree T0 obtained by subdividing a single edge of a star on k−1

vertices has smallest saturation number.

Theorem 18. [FFGJ09a] For n ≥ k + 2, sat(n, T0) = n−⌊(n+ k −2)/k⌋ and Sat(n, T0)

consists of a forest of stars on k or more vertices.

Question 6. [FFGJ09a] Among all trees of order k, which is the tree(s) of second highest

and the tree(s) of second lowest saturation number?

Many other results and problems on trees can be found in [FFGJ09a]. In particular, it

is shown that given any positive number α and any tree T there is a tree T ′ with T ⊆ T ′

such that sat(n, T ′) ≥ αn, and also for any tree T there is a tree T ′′ with T ⊆ T ′′ such

that sat(n, T ′′) < n. That is, there is a series of nested trees with alternating saturation

numbers small and large. Thus, there are many trees with large saturation numbers and

many trees with small saturation numbers. This ‘non-monotone’ condition is discussed

further in the next section. However, the tree that is most fully understood is the path,

Pk.

In [KT86], L. Kászonyi and Zs. Tuza found sat(n, Pk) for all k and n sufficiently large

and also characterized the family of graphs in Sat(n, Pk). Specifically, they prove that all

minimally Pk-saturated trees have a common structure, referred to as an almost binary

tree. More specifically, for even k = 2p + 2, the base tree Tk is a binary tree with root of

degree 3 and depth p. For odd k = 2p + 3 the tree Tk is a binary tree with double roots

of degree 3 and depth p.

the electronic journal of combinatorics 18 (2011), #DS19 15



Not only is Tk a Pk-saturated tree but the addition of any number of pendant vertices

to those vertices already adjacent to vertices of degree 1 does not change this property.

In the theorem below, observe that ak = |V (Tk)|.

Theorem 19. [KT86] Let Pk be a path on k ≥ 3 vertices and let Tk be the tree defined

above.

Let ak =

{

3 · 2m−1 − 2 if k = 2m,

4 · 2m−1 − 2 if k = 2m + 1.
Then, for n ≥ ak, sat(n, Pk) = n − ⌊ n

am
⌋ and

every graph in Sat(n, Pk) consists of a forest with ⌊n/ak⌋ components. Furthermore, if T

is a Pk-saturated tree, then Tk ⊆ T.

While sat(n, Pk) is known for all n for k ≤ 6 (see [KT86] and [DW04a]), for the other

cases, the result above only applies for n sufficiently large. In A. Dudek and A. Wojda

[DW04a], some improvement was made. Specifically, it was shown that sat(n, Pk) = n

for bk ≤ n < ak where bk is on the order of 2m−2. Also, Sat(n, Pk) on this interval was

characterized and some general upper bounds were established.

Furthermore, when n = k much more is known. In A. Dudek, G. Katona, and

A. Wojda [DKW03], some graphs in Sat(n, Pn) were constructed from minimally hamil-

tonian saturated graphs (found in [CES92]). Though the exact structure of all graphs in

Sat(n, Pn) seems to be quite complicated, this at least established an upper bound on

sat(n, Pn). The lower bound from this paper was improved by M. Frick and J. Singleton

[FS05] and it is known that sat(n, Pn) = ⌈3n−2
2

⌉ for n ≥ 54 and several small order cases.

Theorem 20. [DKW03] and [FS05] For n ≥ 54, sat(n, Pn) = ⌈3n−2
2

⌉.

The notion of a hamiltonian path can be generalized to an m-path cover. That is, we

say F is an m-path cover of G if all components of F are paths, V (F ) = V (G), and F

has at most m components. We say a graph G is m-path cover saturated (or mPCS) if G

does not contain an m-path cover but connecting any two nonadjacent vertices with an

edge creates an m-path cover. In A. Dudek, G. Katona, and A. Wojda [DKW06], it was

shown that 3
2
n − 3m − 3 ≤ sat(n, mPCS) ≤ 3

2
n − 2m + 2.

An m-path cover is a specific kind of forest. The only other forest with unbounded

number of components for which the saturation number is known is matchings. Specifi-

cally, in [KT86], it was proved that if n ≥ 3m−3, sat(n, mK2) = 3m−3 and Sat(n, mK2)

consists of m − 1 disjoint triangles and n − 3m + 3 isolated vertices.

Theorem 21. [KT86] For n ≥ 3m − 3

sat(n, mK2) = 3m − 3

and

Sat(n, mK2) = (m − 2)K3 ∪ (n − 3m + 3)K1.
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In [CFF+] G. Chen, J. Faudree, R. Faudree, R. Gould, and C. Magnant investigated

the saturation numbers for forests in which the components were all paths or all stars.

Precise numbers were determined for sat(n, mPk) and sat(n, mK1,k) for small values of

m and k and upper bounds were given in the general case.

Some open questions are given below.

Problem 6. Determine sat(n, Pk) and Sat(n, Pk) when n is small relative to k.

Problem 7. Determine sat(n, Pn) for the remaining small order cases.

Problem 8. Determine sat(n, mPCS).

Problem 9. Determine sat(n, mK2) and Sat(n, mK2) for 2m ≤ n ≤ 3m − 4. Note that

the structure of mK2-saturated graphs was determined in [Mad73].

Problem 10. Determine sat(n, mPk) and sat(n, mK1,k) for all m and k.

5 Irregularity of the sat-function

The function sat(n,F), in general, is not monotone with respect to n or F . Turán’s

extremal function is monotone with respect to n and F . That is, for F ′ ⊆ F and F ′ ⊆ F
the following inequalities hold for every n.

ex(n, F ′) ≤ ex(n, F ) (2)

ex(n,F) ≤ ex(n,F ′) (3)

ex(n,F) ≤ ex(n + 1,F) (4)

We note that if we replace ex by sat in each of the above inequalities, then for every

F ′ ⊆ F and F ′ ⊆ F we need not have a true statement. Prior to giving examples that

illustrate when these inequalities fail, we note that the failure to be monotone makes

proving statements about sat(n,F) difficult. In particular, inductive arguments generally

do not work — this may also be due to the non-uniqueness of the extremal graphs; for

example, see the result on K2,2 [Oll72] or [Che11]. The failure to be monotone also may

explain the scarcity of results for sat(n,F), but in the authors’ collective opinion makes

the function an interesting study.

To see that the sat-function is not, in general, monotone with respect to subgraphs,

consider the ‘irregular pair’ as given by O. Pikhurko [Pik04], and that answered a question

of Zs. Tuza [Tuz92] about the existence of a connected spanning subgraph F ′ of subgraph

F . Let F ′ = K1,m and F = K1,m + e, where e joins two vertices in the m-set. Then

sat(n, F ) ≤ n − 1 as K1,n−1 serves as an extremal graph. However, sat(n, F ′) is strictly
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larger for n large enough as seen by Theorem 17. Even in the class of trees, this mono-

tone property fails at a very high level, and was observed in the previous section (see

[FFGJ09a]).

To see that the sat-function is not, in general, monotone with respect to subfamilies,

consider F = {K1,m, K1,m + e} and F ′ = {K1,m + e}. Then sat(n,F) = sat(n, K1,m) >

n − 1, but sat(n,F ′) ≤ n − 1. (Note that for any F ′ ⊂ F, F, F ′ ∈ F then sat(n,F) =

sat(n,F \ F ).)

To see that the sat-function is not, in general, monotone in n, consider when F = P4.

By a result in [KT86], we have sat(2k − 1, P4) = k + 1 > sat(2k, P4) = k.

As a result of this ‘irregularity’, Zs. Tuza [Tuz86] (more readily available in [Tuz88])

made the following conjecture.

Conjecture 3. [Tuz86],[Tuz88] For every graph F , the limit limn→∞
sat(n,F )

n
exists.

Some progress towards settling this conjecture has been made, both in the positive and

negative direction. However, the conjecture still remains open. We first give statements

in the positive direction.

Theorem 22. [TT91] Let F be a graph. If lim infn→∞
sat(n,F )

n
< 1, then limn→∞

sat(n,F )
n

exists and is equal to 1 − 1
p
, for some positive integer p.

A characterization of graphs for which limn→∞
sat(n,F )

n
= 1− 1

p
for any given p is given

in terms of connected components. Unfortunately, this characterization ‘grows’ with p.

In the characterization tree components of F play a role. Thus, Tuza gave the following

problem.

Question 7. [Tuz88] Which trees T satisfy limn→∞
sat(n,T )

n
< 1?

Towards the negative direction of settling Conjecture 3, O. Pikhurko [Pik99a] showed

that there exists an infinite family F of graphs for which limn→∞
sat(n,F)

n
does not exist.

Later, in [Pik04] he improved this to show that for every integer m ≥ 4 there exists a

family F consisting of m graphs for which limn→∞
sat(n,F)

n
does not exist, and suggested

that his approach might be altered to yield a smaller family.

In addition, G. Semanǐsin [Sem97] has given certain instances under which the sat-

function is monotone and uses these to prove some inequalities and estimations.

6 Hypergraphs

We now consider F -saturated graphs where F is a hypergraph and we restrict our attention

to k-uniform hypergraphs (all edges are of size k) as these are the only results known.
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6.1 Complete hypergraphs

We introduce the following notation. Consider a vertex partition S1 ∪ . . .∪Sp of F where

|Si| = si. For k ≤ p let W k
s1,...,sp

denote the k-uniform hypergraph consisting of all k-tuples

that intersect k different parts (and call this the weak generalization of a complete graph).

Let Sk
s1,...,sp

denote the k-uniform hypergraph consisting of all k-tuples that intersect at

least two parts (and call this the strong generalization of a complete graph). Most results,

but not all, for F -saturated hypergraphs are when F is one of these graphs.

An early generalization of Theorem 1 was given by B. Bollobás [Bol65].

Theorem 23. [Bol65]

sat(n, Sk
1,...,1) =

(
n

k

)

−
(

n − p + k

k

)

where p counts the number of classes in the partition. Further, there exists a unique

extremal graph.

Bollobás achieved this as the result of introducing a powerful weight inequality, the

simplest version of which is given in the introduction as Theorem 3. This inequality is an

extension of the Lubell-Yamamoto-Meshalkin inequality, itself an extension of Sperner’s

Lemma from 1928. More importantly, N. Alon [Alo85] generalized Bollobás’ weight in-

equality, in fact, it is a special case of a corollary to his main result.

P. Erdős, Z. Furedi, and Zs. Tuza [EFT91] consider the saturation problem for families

of hypergraphs with a fixed number of edges. Among these are the graphs Sk
1,k.

Theorem 24. [EFT91] For n ≥ 4, sat(n, S3
1,3) = ⌊ (n−1)2

4
⌋. Moreover, there are two or

one extremal hypergraphs according as n is odd or even.

They also determined the asymptotic behavior of the function for the graph Sk
1,k for

n > k ≥ 2. O. Pikhurko [Pik00] went further.

Theorem 25. [Pik00] Let m > k ≥ 2. Then

m − k

2

(
n

k − 1

)

≥ sat(n, Sk
1,m−1) ≥ m − k

2

(
n

k − 1

)

− O(nk−4/3).

Later, Pikhurko [Pik04] posed the following.

Conjecture 4. [Pik04] For l ≤ k − 1 and l + m > k,

sat(n, Sk
l,m) =

m + 2l − k − 1

2(k − 1)!
nk−1 + o(nk−1).
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6.2 Asymptotics

With the thought of extending Theorem 2 to hypergraphs, Zs. Tuza [Tuz86] (more read-

ily available in [Tuz88]) conjectured that for any k-uniform hypergraph F , sat(n, F ) =

O(nk−1). This was positively confirmed.

Theorem 26. [Pik99a] For any finite family F of k-uniform hypergraphs, we have

sat(n,F) = O(nk−1).

More generally, we can ask the following.

Question 8. [Pik04] Does sat(n,F) = O(nk−1) for any infinite family of k-graphs?

Also, in light of the irregularity of the sat-function as discussed in Section 5 Pikhurko

also asked: does there exist a finite family F of k-uniform hypergraphs, k ≥ 3, for which

the ratio sat(n,F)
nk−1 does not tend to any limit? (For k = 2, see the discussion in Section 5.)

For a hypergraph F and edges E, E ′ ∈ F , the density of an edge E, D(E), is the

largest natural number D such that there is an E ′, E 6= E ′ with |E ∩ E ′| ≥ D. The local

density of the hypergraph F , D(F ), is min{D(E) : E ∈ F}. Zs. Tuza [Tuz92] conjectured

the following.

Conjecture 5. [Tuz92] For a hypergraph F there exists a constant c depending on F such

that sat(n, F ) = cnD(F ) + O(nD(F )−1).

6.3 A few specific problems

Triangular family

Let Tk denote the family which consists of all k-uniform hypergraphs with three edges

E1, E2, E3 such that E1∆E2 ⊆ E3, where ∆ denotes the symmetric difference. We call Tk

a triangular family.

Theorem 27. [Pik04] Let k ≥ 3 be fixed. Then

n − O(log n) ≤ sat(n, Tk) ≤ n − k + 1.

And, for k = 3 equality holds on the right.

Conjecture 6. [Pik04] In Theorem 27 equality holds on the right.

Intersecting hypergraphs

We will call a k-uniform hypergraph F intersecting (sometimes called disjoint-edges-

free) if for every pair of edges of F the intersection of the pair is non-empty. (Some

authors call such graphs k-cliques, however we refrain from doing so in light of how we
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wish to use this term elsewhere in this survey.) We say that such a graph is maximal if it

cannot be extended to another intersecting hypergraph by adding a new edge and possibly

new vertices. P. Erdős and L. Lovász [EL75] first investigated the minimum number and

maximum number of edges in a maximal intersecting k-uniform hypergraph. In light of

the topic of this survey, we are most interested in the minimum number of edges in a

maximal intersecting k-uniform hypergraph, m(k). Note that the function is independent

of n for n sufficiently large.

Erdős and Lovász [EL75] gave a lower bound on m(k) of 8k
3
− 3, while Z. Füredi gave

an upper bound of 3k2/4 whenever k = 2n for an integer n that is the order of a projective

plane. We know from J.C. Meyer [Mey74] that trivially m(1) = 1 and m(2) = 3, and that

m(3) = 7. S. Dow, D. Drake, Z. Füredi, and J. Larson [DDFL85] improved the previously

mentioned lower bound and gave the following.

Theorem 28. [DDFL85] For all k ≥ 4, m(k) ≥ 3k.

This result together with the upper bound of Füredi gives m(4) = 12.

Problem 11. Determine the value of m(k) for k > 4.

Disjoint-union-free

We say that a k-uniform hypergraph F is disjoint-union-free if all disjoint pairs of

elements of F have distinct unions; that is, if for all E1, E2, E3, E4 ∈ E(F ), E1 ∩ E2 =

E3 ∩ E4 = ∅ and E1 ∪ E2 = E3 ∪ E4 implies that {E1, E2} = {E3, E4}. Should this

implication fail, we say E1, E2, E3, E4 form a forbidden union. Let Dk denote the family

of k-uniform hypergraphs such that each hypergraph is a set of 4 edges forming a forbidden

union. (Note that D2
∼= C4 and in this case we refer the reader to Section 3.)

P. Dukes and L. Howard [DH08] gave the following.

Theorem 29. [DH08]

sat(n,D3) =
n2

12
+ O(n).

They also suggested the following.

Problem 12. [DH08] Determine sat(n,Dk) for k > 3.

7 Host graphs other than Kn

Note that in our definition of an F -saturated graph in the introduction, we allowed G to

be any subgraph of Kn. We now consider F -saturated graphs where G is restricted to

being a subgraph of some graph other than Kn.
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More formally, let J be an n-vertex graph. We say that G ⊆ J is an F -saturated graph

of J if G is F -free (i.e. has no subgraph isomorphic to F ), but for every edge e not in

E(G) but in E(J) the graph G + e does contain a copy of F . We define the following:

sat(J, F ) = min{|E(G)| : V (G) = V (J), E(G) ⊆ E(J), and G is an

F -saturated graph of J},
Sat(J, F ) = {G : V (G) = V (J), E(G) ⊆ E(J), |E(G)| = sat(n, F ), and G is an

F -saturated graph of J}.

Thus, sat(Kn, F ) and Sat(Kn, F ) are by definition sat(n, F ) and Sat(n, F ), respec-

tively. And, of course, we are interested in determining sat(J, F ) and Sat(J, F ) for various

choices of J and F . This problem will, at times, be very challenging. A more approachable

problem is made available with the following definition.

Let J(n1,...,np) be an n-vertex p-partite graph with ni vertices in the ith class. Let

F(r1,...,rp) be a p-partite graph with ri ≤ ni vertices in the ith class. Then G ⊆ J(n1,...,np)

is an F(r1,...,rp)-saturated graph of J(n1,...,np) if G has no copy of F(r1,...,rp) with ri vertices

in the ith class, but G + e has a copy of F(r1,...,rp) for any edge e joining vertices from

distinct classes and contained in J(n1,...,np). The difference between this definition and the

previous one is that this is “sensitive” with respect to the partition. Analogously, we define

sat(J(n1,...,np), F(r1,...,rp)) and Sat(J(n1,...,np), F(r1,...,rp)). Thus, the presence of parentheses in

the subscript indicates that we are considering the partition “sensitive” problem, the

absence of parentheses indicates we are considering the more general problem.

Problems of this type were first proposed in [EHM64]. Here the authors conjectured

a value for sat(K(n1,n2), K(r1,r2)), where K(n1,...,np) denotes the complete p-partite graph

with ni vertices in the ith class. Their conjectured value was established to be correct

by B. Bollobás ([Bol67b], [Bol67a]) and W. Wessel ([Wes66],[Wes67]). We thus have the

following.

Theorem 30. Let 2 ≤ r1 ≤ n1 and 2 ≤ r2 ≤ n2, then

sat(K(n1,n2), K(r1,r2)) = n1n2 − (n1 − r1 + 1)(n2 − r2 + 1)

and Sat(K(n1,n2), K(r1,r2)) consists of one graph, the n1 by n2 bipartite graph consisting of

all edges incident with a fixed set of size r1 − 1 of the n1-set and all edges incident with a

fixed set of size r2 − 1 of the n2-set.

Also, and again, N. Alon [Alo85] reproved Theorem 30, generalizing it to complete

k-uniform graphs in a k-partite setting — Alon’s generalization is a consequence of an

extremal problem on sets which was proved using multilinear techniques (exterior algebra).

Unaware of some of these results, D. Bryant and H.-L. Fu [BF02] considered K2,2-saturated

graphs of Kn1,n2
(which is the same as K(2,2)-saturated graphs of K(n1,n2)), showing how

to construct such graphs (not just those of minimum size) using design theory. Another
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generalization of Theorem 30 can be found in the results on layered graphs of O. Pikhurko,

for these we refer the reader to the Ph.D. thesis of O. Pikhurko [Pik99b] (cf. page 14).

The problem of determining sat(Kn1,n2
, Pt), where Pt is the path of order t, was

considered by A. Dudek and A. P. Wojda [DW04a]. They determined the saturation

number precisely for t ≤ 6 and for t > 6 they determined the value of the function under

the added constraint that the graph contains no isolated vertices for n1, n2 sufficiently

large.

Problem 13. Determine sat(Kn1,n2
, C2t) for t > 2, where C2t denotes the cycle of order

2t.

Some attention has also been given to determining sat(Qn, Q2), where Qi denotes

the i-dimensional hypercube. S.-Y. Choi and P. Guan [CG08] give an asymptotic upper

bound of (1
4

+ ǫ)n2n−1 and give exact values or sharper upper bounds for n ≤ 6. An-

thony Santolupo (a former undergraduate student of the third author) conjectures that

sat(Qn, Q2) is asymptotically 1
4
n2n−1.

Problem 14. For a fixed k ≥ 2, determine sat(Qn, Qk).

Finally, quite recently the notion of minimal saturated matrices was introduced by

A. Dudek, O. Pikhurko and A. Thomason [DPT]. We omit introducing the required

definitions and terminology here, and we refer the reader to [DPT] for these and their

results.

8 Graphs with directed edges

We now briefly focus our attention on graphs with directed edges. (Our focus is brief as

the number of results is fairly limited. We restrict our attention to graphs; the only result

for hypergraphs that we are aware of is given in [Pik99a],[Pik99b].)

Investigation in this direction began with Zs. Tuza [Tuz86] (he presented further results

and a summary of earlier results in the more readily available [Tuz88]). We begin with

some definitions found in [Pik99b]. Let C be a class of objects, with a binary relation ⊆.

A member H of the class C is F -admissible if, for every F ∈ F , H does not contain F as

a sub-object. Then we denote the family of maximal F -admissible objects of order n by

SAT (n,F). H , of order n, is called F -saturated if H ∈ SAT (n,F), and if, in addition,

H has minimum size, we say it has size sat(n,F).

O. Pikhurko [Pik99b] (cf. Section 4) asked if the order estimates given above (see

Theorem 2 and Theorem 26) remain valid for the class of directed graphs. That is, for

directed graphs do we have sat(n,F) = O(n)? He pointed out that, in general, the answer

is no. As an immediate consequence to the main result of Z. Füredi, P. Horak, C. Pareek,

and X. Zhu [FHPZ98], we have that sat(n, C3) ≥ O(n log n) (where C3 has directed edges

the electronic journal of combinatorics 18 (2011), #DS19 23



12, 23 and 31); that is, the order estimate is super-linear! The results of these authors do

not provide an upper bound (their constructions contain copies of C3), and so we pose

the following.

Problem 15. In the class of directed graphs determine a good upper bound for sat(n, C3).

O. Pikhurko [Pik99b] did show that the order estimates do remain valid under certain

conditions. He considered the class of cycle-free directed graphs. A graph is cycle-free if

it does not contain a cycle, in other words, there is no alternating sequence of vertices

and edges (x1, e1, x2, e2, . . . , xl, el, xl+1 = x1) such that xixi+1 = ei. So within the class

of cycle-free directed graphs, a graph H is F -saturated if it contains no F ∈ F but the

addition of any directed edge creates a copy of some F ∈ F or a directed cycle.

Theorem 31. [Pik99b] In the class of cycle-free directed graphs sat(n,F) = O(n) for any

family F of cycle-free graphs.

In addition, M. Jacobson and C. Tennenhouse [JT] considered sat(n, F ) and showed

that SAT (n, F ) is non-empty for any F . They also give values and estimates for sat(n, Pk),

where all arcs of Pk point in the ‘same direction’. Similar results were given earlier by

S. van Aardt, J. Dunbar, M. Frick, and O. Oellermann [vAFDO09].

9 Saturation numbers and ....

In this section we consider the saturation function in relation to other functions in extremal

graph theory.

9.1 extremal numbers

As noted in the introduction, P. Turán [Tur41] determined ex(n, Kp) and raised the ques-

tion of determining ex(n, W k
1, . . . , 1
︸ ︷︷ ︸

p

). Despite a strong understanding of the function

ex(n, F ) for graphs (see [ES66]), his question remains unanswered for 3 ≤ k < p. In

the case k = 3, p = 4, Turán conjectured that ex(n, W 3
1,1,1,1) = (5

9
+ o(1))

(
n
3

)
— more

commonly known as Turán’s (3, 4)-conjecture.

In a series of papers O. Pikhurko [Pik99a] (cf. Section 3), [Pik01a] gave results that

could be thought of as generalizing Theorem 17. Note that the star on m + 1 vertices

is isomorphic to W 2
1,m. That is, Pikhurko first determined in [Pik99a] the asymptotic

behavior of sat(n, W 3
1,1,m). Pikhurko [Pik01a] also gave a constructive upper bound for

sat(n, W 4
1,1,1,m), while also considering the more general problem and giving a lower bound

sat(n, W k
1, . . . , 1
︸ ︷︷ ︸

p−1<k

,m
) in terms of the extremal number. Specifically, we know that if Turán’s

(3, 4)-conjecture is true, then sat(n, W 4
1,1,1,m) = (m

9
+ o(1))

(
n
3

)
.
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9.2 potential numbers

M. Ferrara and J. Schmitt [FS09] considered the following problem and related it to the

saturation number. For a given graph F , an integer sequence π is said to be potentially

F -graphic if there is some realization of π that contains F as a subgraph. Additionally, let

σ(π) denote the sum of the terms of π. Define σ(n, F ) to be the smallest integer m so that

every n-term graphic sequence π with σ(π) ≥ m is potentially F -graphic. It is assumed

that F has no isolated vertices and that n is sufficiently large relative to |V (F )|. Define the

quantities u(F ) = |V (F )|−α(F )−1, and s(F ) = min{∆(H) : H ⊆ F, |V (H)| = α(F )+1}.
The following is an immediate consequence to Theorem 2 and the lower bound they

establish for σ(n, F ).

Theorem 32. [FS09] Let d be defined as in Theorem 2. Given a graph F , if there exists

an F ′ ⊆ F with 2u(F ′) + s(F ′) ≥ 2u(F ) + d(F ), then for n sufficiently large we have

2(sat(n, F )) < σ(n, F ). (5)

In particular, this result holds if d(F ) = s(F ).

These authors believe that the conclusion of Theorem 32 holds in general, even though

the hypothesis does not. Therefore, they conjecture the following.

Conjecture 7. Let F be a graph and let n be a sufficiently large integer. Then

2(sat(n, F )) < σ(n, F ).

10 Weak saturation

We now discuss the related notion of weakly saturated graphs. To do so, we first introduce

some definitions and terminology.

Let kF (G) count the number of copies of F in G; if F = Kp we will write kp(G) in

place of kKp
(G). We say that an n-vertex graph G is weakly F -saturated if there is a

nested sequence of graphs G = G0 ⊂ G1 ⊂ . . . ⊂ Gl = Kn such that Gi has exactly

one more edge than Gi−1 for 1 ≤ i ≤ l and kF (G0) < kF (G1) < . . . < kF (Gl). (That

is, G is weakly F -saturated if we can add the missing edges of G one at a time and

each edge we add creates at least one new copy of F .) Of course, we are interested in

the minimum size of a weakly F -saturated n-vertex graph, w-sat(n, F ). Corresponding

to this, an n-vertex graph that is weakly F -saturated and has w-sat(n, F ) edges is said

to be a member of W -Sat(n, F ). The notion of weak saturation appears to have been

introduced by B. Bollobás [Bol68]. In this paper he states that the problem of determining

the saturation number for k-uniform hypergraphs with k ≥ 3 motivated the concept.
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We first note that w-sat(n, F ) ≤ sat(n, F ) as any F -saturated graph is also weakly

F -saturated. Of course, the first instance of the problem considered is when F = Kp.

Bollobás [Bol68] showed that for 3 ≤ p < 7 we have w-sat(n, Kp) = sat(n, Kp) (see

Theorem 1). Bollobás also conjectured that equality holds for at least some larger values

of p, and later conjectured [Bol78] (see page 362) that equality holds for all p. The

conjecture was confirmed by L. Lovász [Lov77] using flats of matroids representable over

fields.

Theorem 33. For integers n and p, we have w-sat(n, Kp) = sat(n, Kp).

This result is of interest since the corresponding result in Turán extremal theory was

such a key result, but it is also of great interest because of the many different proofs and

mathematical tools used in the proofs. The different proofs found later included P. Frankl

[Fra82], N. Alon [Alo85] and J. Yu [Yu93]. All of these proofs came from extremal results

on pairs of families of sets with certain interesting properties that were then applied

to obtain proofs of the conjecture of Bollobás on weakly Kp-saturated graphs. (For a

statement of this more general result and discussion on how it implies the conjecture, see

[GGL95] page 1274.)

Bollobás’ conjecture was also proved via two additional and different methods of

G. Kalai in [Kal84] and [Kal85]. The first proof, which we give below, is based on the

fact that an embedding of a weakly Kp-saturated graph G in R
p−2 with vertices in gen-

eral position is rigid (continuous deformation of adjacent vertices preserving distance also

preserves distance for all vertices). This, along with the fact that a graph G of order n

with less than (p − 2)n −
(

p−1
2

)
edges embedded in R

p−2 is flexible (not rigid), completes

the proof.

To give G. Kalai’s proof we need a few definitions. Given a graph G on vertex set

{1, 2, . . . , n}, a d-embedding G(v) of G is a sequence of n points in R
d, v = (v1, v2, . . . , vn),

together with the line segments [vi, vj], for {i, j} ∈ E(G). We say that G(v) is rigid if

any continuous deformation (v1(t), v2(t), . . . , vn(t)) of (v1, v2, . . . , vn) that preserves the

distance between every pair of adjacent vertices, preserves the distance between any pair

of vertices. G(v) is flexible if it is not rigid.

Proof of Theorem 33 as given by G. Kalai [Kal84]:

Suppose G is a weakly Kp-saturated graph, with G = G0 ⊂ G1 ⊂ . . . ⊂ Gl = Kn such

that Gi has exactly one more edge than Gi−1 for 1 ≤ i ≤ l and kp(G0) < kp(G1) < . . . <

kp(Gl). We first show that every embedding of G into R
p−2, such that the vertices are in

general position, is rigid. Suppose that v1, v2, . . . , vn are n points in general position in

R
p−2, and consider G(v). Note that Gl(v) = Kn(v) is rigid. Assume Gi+1(v) is rigid, and

suppose that Gi = Gi+1−e, where e = {µ, ν} belongs to a Kp of Gi+1. Every embedding of

Kp−e in R
p−2, with vertices in general position, is rigid. Thus, any continuous deformation

of Gi(v) preserves the distance between vµ and vν , and so is a continuous deformation
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of Gi+1(v). By the assumption the deformation preserves the distances between any two

vertices of Gi(v). Repeated application of this argument shows that G(v) = G0(v) is

rigid.

Now we take advantage of the fact that if G is a graph of order n and fewer than

(p − 2)n −
(

p−1
2

)
edges, then G(v) is flexible. �

The second proof [Kal85] introduced the notion of hyperconnectivity in matroids.

Kalai defined a matroid Hn
k on the set of edges of the complete graph on n vertices. A

graph G on the same vertex set is k-hyperconnected if the set of its edges span Hn
k . Kalai

showed that the rank of Hn
p−2 equals (p−2)n−

(
p−1
2

)
and that Kp corresponds to a circuit

in Hn
p−2. Now, let e be any non-edge in a (weakly) Kp-saturated graph G. Since the

addition of e yields a copy of Kp, the edges of G span e and consequently the entire

matroid. That is, G must be (p − 2)-hyperconnected. Thus such a graph has at least

(p−2)n−
(

p−1
2

)
edges. The ideas introduced here were later used by O. Pikhurko [Pik01c],

see Theorem 35.

In fact, we know even more — that is, we know that equality also holds for the

complete k-uniform hypergraph [Lov77], [Fra82], [Kal84], [Kal85], [Alo85].

However, it is not the case that equality always holds! For instance, sat(n, C4) =

⌊3n−5
2

⌋ (see Section 3) while w-sat(n, C4) = n (note that for n odd Cn is weakly C4-

saturated and for n even the graph obtained from Cn−1 by appending an edge is weakly

C4-saturated). It is also interesting to note that while there exists a unique K3-saturated

graph of minimum size, this is not the case for weakly K3-saturated graphs. Here, the

set of all n-vertex trees comprise W -Sat(n, K3). This pattern repeats itself for many

graphs. This gives an indication that, here too, the determination of w-sat(n, F ) might

be challenging. In addition, Zs. Tuza [Tuz88] points out that the behavior of w-sat(n, F )

and sat(n, F ) differ significantly if F is relatively sparse.

Question 9. [Tuz88] Are there necessary and/or sufficient conditions for w-sat(n, F ) to

equal sat(n, F )?

Let Hk(p, q) denote the family of all k-uniform hypergraphs with p vertices and q

edges. Tuza [Tuz88] conjectured that w-sat(n, Hk(k + 1, q)) =
(

n−k−2+q
q−2

)
. (Note that as

Hk(k + 1, k + 1) consists only of the complete k-uniform hypergraph on k + 1 vertices,

this instance of the conjecture is solved by Theorem 33.) As a first step towards this

conjecture, Erdős, Füredi, and Tuza [EFT91] gave the following result.

Theorem 34. [EFT91] For n > k ≥ 2, w-sat(n, Hk(k + 1, 3)) = n − k + 1.

They left open the problem of determining W -Sat(n, Hk(k + 1, 3)), but this was later

solved by O. Pikhurko [Pik01b]. In a different paper [Pik01c], Pikhurko made further

progress. To state these results we must introduce a new type of graph.

Let sequences k = (k1, . . . , kt) of nonnegative integers and P1, . . . , Pt of disjoint sets

of sizes p = (p1, . . . , pt) be given. Define [t] = {1, . . . , t} and, for I ⊆ [t], we write kI in
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place of
∑

i∈I ki and PI in place of ∪i∈IPi; also, we assume k0 = 0, P0 = ∅, etc. Then the

pyramid ∆ = ∆(p; k) is the k-graph, k = k[t], on P = P[t] such that E is an edge of ∆ if

and only if, for every i ∈ [t], we have |E ∩ S[i]| ≥ r[i].

Theorem 35. [Pik01c] Suppose we are given two non-empty sequences p = (p1, . . . , pt)

and k = (k1, . . . , kt) of integers such that pi ≥ ki ≥ 1 for i ∈ [t]. Then

w-sat(n, ∆(p; k)) =
∑

k′

(
n − p[t] + kt

k′
t+1

)
∏

i∈[t]

(
pi + ki−1 − ki

k′
i

)

, n ≥ p[t],

where the summation is taken over all sequences of nonnegative integers

k′ = (k′
1, . . . , k

′
t+1) such that k′

[t+1] = k[t] and, for some i ∈ [t], k′
[i] > k[i−1].

Now, let us examine the many cases covered by this theorem. First, for t = 1 the

graph ∆(p; k) is the k-uniform complete hypergraph on p vertices. Thus, this theorem

confirms Bollobás’ conjecture in the case k = 2 and its generalization for k ≥ 3. In the

case of k = 2, i.e. graphs, it gives a new result for split graphs (consider ∆(p1, p2; 1, 1).

And, Theorem 35 confirms Tuza’s conjecture as the only graph in Hk(k + 1, q) is the

pyramid graph ∆(k − q + 1, q; k − q + 1, q − 1).

In [Pik01b] Pikhurko gives a construction of an Hk(p, q)-saturated graph which he

conjectures to be minimum. This conjecture remains open.

10.1 Asymptotics

When exact determination of the function w-sat(n, F ) is unknown, we may turn to the

following result of Zs. Tuza [Tuz92] for an estimation. Prior to stating the estimation,

we must introduce a graph invariant which, as Tuza points, out is a ‘local’ parameter of

the graph F . (This is in contrast to the global parameter, the chromatic number, which

controls the asymptotic behavior of the extremal number as told to us by the theorem of

Erdős-Stone-Simonovits.)

We assume that F is a k-uniform hypergraph with at least two edges. For an edge

E ∈ E(F ) the sparseness of an edge s(E) is the smallest natural number s for which there

is an E∗ ⊆ E with |E∗| = s + 1 such that E∗ ⊆ E ′ ∈ E(F ) implies E ′ = E (i.e. a set

which uniquely determines the edge); if E is a subset of some other edge of F , then we put

s(F ) := |F |. The local sparseness of the hypergraph F s(F ) is the min{s(E) : E ∈ E(F )}.

Note that 1 ≤ s(F ) ≤ k − 1 for all k-uniform hypergraphs.

Theorem 36. [Tuz92] For every k-uniform hypergraph F , w-sat(n, F ) = Θ(ns(F )).

Tuza suggests that this statement might be refined, and thus offers the following.

Conjecture 8. [Tuz92] For some positive constant c = c(F ), we have w-sat(n, F ) =

cns(F ) + O(ns(F )−1).

The results in [Alo85] yield w-sat(n, F ) = cn + o(n) in the case of s(F ) = 1.
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10.2 Other results

When F is the set of all minimal forbidden subgraphs of some hereditary property P ,

some results for w-sat(n,F) have been obtained. Such hereditary properties include k-

degeneracy and bounded maximum degree. For results of this type, we refer the reader to

work by G. Semanǐsin [Sem97], M. Borowiecki and E. Sidorowicz [BS02], and E. Sidorowicz

[Sid07].
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(185):287–293, 1986.

[Tuz88] Zsolt Tuza. Extremal problems on saturated graphs and hypergraphs. Ars

Combin., 25(B):105–113, 1988. Eleventh British Combinatorial Conference

(London, 1987).

[Tuz89] Zsolt Tuza. C4-saturated graphs of minimum size. Acta Univ. Carolin. Math.

Phys., 30(2):161–167, 1989. 17th Winter School on Abstract Analysis (Srńı,
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