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Abstract

Given a family of (hyper)graphs F a (hyper)graph G is said to be F-saturated
if G is F -free for every F ∈ F but for any edge e in the complement of G the
(hyper)graph G + e contains some F ∈ F . We survey the problem of determining
the minimum size of an F-saturated (hyper)graph and collect many open problems
and conjectures.

Mathematics Subject Classifications: 05C35
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1 Introduction

Given a (hyper)graph F , we say that the (hyper)graph G is F -free if G has no sub-
(hyper)graph isomorphic to F . We say a (hyper)graph G is F -saturated if G is F -free
but G+ e does contain a copy of F for every (hyper)edge e ∈ E(G) where G denotes the
complement of G. For example, any complete bipartite graph is a K3-saturated graph.
Additionally, we have:
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ex(n, F ) = max{|E(G)| : |V (G)| = n and G is F -saturated},
Ex(n, F ) = {G : |V (G)| = n, |E(G)| = ex(n, F ), and G is F -saturated},
sat(n, F ) = min{|E(G)| : |V (G)| = n and G is F -saturated},
Sat(n, F ) = {G : |V (G)| = n, |E(G)| = sat(n, F ), and G is F -saturated}.

Note that the word saturated could be replaced with the word free in the definitions
for ex(n, F ) and Ex(n, F ) but not so in the other two. We will refer to ex(n, F ) as the
extremal number of F and sat(n, F ) as the saturation number.

We can generalize all the definitions above by replacing the graph F with a family of
(hyper)graphs F . So, a (hyper)graph G is F -saturated if G contains no member of F as
a sub(hyper)graph but for every edge e ∈ G, there exists F ∈ F such that G+ e contains
F as a sub(hyper)graph. When F = {F} we write F -saturated, sat(n, F ), etc. in place
of F -saturated, sat(n,F), etc.

The focus of this survey are the functions sat(n,F) and Sat(n,F), along with related
notions. For terms and notation used throughout the survey, we refer the reader to the
table of notation appearing at the end of the survey.

In 1941, P. Turán [Tur41] introduced the idea of an extremal number and determined
ex(n,Kp) and Ex(n,Kp). In particular, he proved that Ex(n,Kp) consists of a single
graph (up to isomorphism): the complete (p− 1)-partite graph, where the n vertices are
distributed among the partite sets as evenly as possible.

In 1964, motivated by a conjecture of P. Erdős and T. Gallai [EG61], P. Erdős,
A. Hajnal, and J.W. Moon [EHM64] introduced the idea of a saturation number (though
not using that terminology) and proved the following.

Theorem 1. [EHM64] If 2 6 p 6 n, then sat(n,Kp) = (p − 2)(n − p + 2) +
(
p−2

2

)
=(

n
2

)
−
(
n−p+2

2

)
and Sat(n,Kp) contains only one graph, Kp−2 +Kn−p+2.

Note that Kp−2 +Kn−p+2 can be thought of as the complete (p− 1)-partite graph on
n vertices such that all but one of the partite sets contains exactly one vertex, i.e. the
vertices are distributed as ‘unevenly’ as possible amongst the p− 1 parts.

In 1986 L. Kászonyi and Zs. Tuza [KT86] found the best known general upper bound
for sat(n,F). Note that α(F ) is the independence number of F (i.e. the order of the
largest clique in F ) and a star on n vertices refers to the complete bipartite graph K1,n−1.
To state their result, we first define

u = u(F) = min{|V (F )| − α(F )− 1 : F ∈ F}

and
d = d(F) = min{|E(F ′)| : F ′ ⊆ F ∈ F is induced by S ∪ x},

where S is an independent set in V (F ) and |S| = {|V (F )| − u− 1, x ∈ V (F ) \ S}.

Theorem 2. [KT86] sat(n,F) 6 un+ (d− 1)(n− u)/2−
(
u+1

2

)
.

This theorem is interesting for several reasons. First the proof hinges largely on
two simple observations and exploits the power of considering the saturation number of
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families of graphs. Second, the bound is exact for a great many graphs. Finally the proof
is implicitly constructive. That is, for many graphs, the proof describes how to construct
an F -saturated graph. In fact, for all graphs F , the proof constructs a graph that must
contain an F -saturated graph as a subgraph. An outline of the proof and its consequences
now follows.

Given a family of graphs F , Kászonyi and Tuza define the family of deleted subgraphs
of F as F ′ = {F\x | F ∈ F , x ∈ V (F )} and recursively, F ′′, F ′′′, and so forth. A first
observation is that a graph G on n vertices with a vertex x of degree n− 1 is F -saturated
if and only if G\x is F ′-saturated. Now, by the choice of parameter u in the hypothesis of
the theorem, the family Fu must contain a star on d+1 vertices from which it immediately
follows that any Fu-saturated graph has maximum degree less than d. The upper bound,
then, is simply a count of the number of edges in a graph on n vertices such that u of the
vertices have degree n − 1 and the subgraph containing the remaining n − u vertices is
(d−1)-regular. For reference, we will call this graph Ku+G′, where G′ is a (d−1)-regular
graph on n− u vertices.

R. Faudree and R. Gould observed in [FG13] that the bound in [KT86] can be improved
slightly by replacing G′ by a graph G∗ ∈ sat(n − u,K1,d), since the critical fact is that
the addition of any edge in G∗ will result in a vertex of degree d. This does not change
the bound asymptotically, but gives the inequality

sat(n,F) 6 un+ (d− 1)(n− u)/2−
(
u+ 1

2

)
− 1

2
bd2/4c.

This upper bound is sharp in many cases. In particular, in the case that F con-
tains only the complete graph — the construction gives the unique extremal graph in
this case (see Theorem 1 of Erdős, Hajnal, and Moon). Furthermore, in [FG13], the
authors establish the existence of infinite families of graphs such that for every mem-
ber F , Ku + G∗ ∈ Sat(n, F ). In [CFG08] this upper bound was also shown to give a
sharp bound for the saturation numbers for similar graphs, such as books and general-
ized books. And in [FG13] it is shown that the saturation numbers for various families
of nearly complete graphs are either precisely the Kászonyi-Tuza bound or the bound
is asymptotically correct. The bound is also sharp in the case of the very sparse graph
F = {K1,k−1 + e} = {K1 + (K2 ∪ (k − 3)K1)}. In this case, u = 1 and d = 1, and the
construction given by Theorem 2 gives the star graph K1,n−1. In some cases the bound is
known to be asymptotically correct. (See, for example, Theorem 14.)

Finally, for any graph F , the F -saturated subgraph contained in Ku + G∗ can be
constructed by beginning with the graph Ku + Kn−u and adding edges one by one from
the graph G∗ if and only if their addition does not produce a copy of F. This procedure
must end in the desired subgraph.

In many instances the bound in Theorem 2 is neither sharp nor asymptotically correct.
(See, for example, Theorem 17 and Theorem 18.)

Note that Theorem 2 implies that sat(n,F) = O(n), while for the extremal number
we have ex(n,F) = O(n2) (see [ES66]).
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A nontrivial general lower bound has yet to be determined though lower bounds do
exist for certain classes of graphs as will be seen later in the survey.

One of the most interesting tools to arise as a result of the study of the saturation
function is due to B. Bollobás [Bol65]. We refer to this tool as Bollobás’ inequality or
the Two Families Theorem. It allows for simple proofs of many results, including the
quantitative part of Theorem 1, which we give after the statement. It was developed
however to establish a corresponding result for k-uniform hypergraphs (see Theorem 3),
but it also easily adapts to allow for proofs for bipartite graphs in a bipartite setting (see
Section 6, in particular Theorem 50). Bollobás’ inequality has also found use outside the
study of this function; most of these uses lie in Extremal Set Theory where the method of
proof is sometimes referred to as the set-pair method. For instances of such see Section 10
of the survey by P. Frankl in [GGL95] and the excellent two-part survey on the set-pair
method by Zs. Tuza [Tuz94, Tuz96].

Theorem 3. [Bol65] Let {(Ai, Bi) : i ∈ I} be a finite collection of finite sets such that
Ai ∩Bj = ∅ if and only if i = j. For i ∈ I set ai = |Ai| and bi = |Bi|. Then

∑
i∈I

(
ai + bi
ai

)−1

6 1 (1)

with equality if and only if there is a set Y and non-negative integers a and b, such that
|Y | = a+ b and {(Ai, Bi) : i ∈ I} is the collection of all ordered pairs of disjoint subsets
of Y with |Ai| = a and |Bi| = b (and so Bi = Y \ Ai).
In particular, if ai = a and bi = b for all i ∈ I, then |I| 6

(
a+b
a

)
. If ai = 2 and bi = n− p

for all i ∈ I, then |I| 6
(
n−p+2

2

)
.

We can now easily give a proof of the quantitative part of Theorem 1.
Proof of Theorem 1 (as given in [GGL95], page 1269) Let G be an n-vertex

Kp-saturated graph. We show that the number of non-edges l is at most
(
n−p+2

2

)
. Let

A1, . . . , Al be the pairs of vertices ‘belonging’ to a non-edge of G. For each such set there
is a corresponding p−set Ci of vertices in V (G) containing Ai such that V (Ci) induces a
Kp − e. Set Bi to be the complement of Ci in V (G). Now note that the hypotheses of
Theorem 3 are met and so l 6

(
n−p+2

2

)
, or rather sat(n,Kp) >

(
n
2

)
−
(
n−p+2

2

)
. �

In this paper, we will summarize known results for sat(n,F) and Sat(n,F). Earlier
such surveys may be found in [Tuz88], [GGL95] (see the chapter by B. Bollobás), and
the Ph.D. thesis of O. Pikhurko [Pik99b]. In an effort to stimulate further research, we
include many open conjectures, questions, and problems. We regard these items with
respect to importance and/or interest in the same order.

We now give a brief overview of the contents of this dynamic survey (a first version
of which appeared in 2011), though the reader is invited to peruse the the Table of
Contents given above. In Section 2 we consider results pertaining to complete graphs,
including degree restrictions, unions of cliques, complete partite graphs, and edge coloring
problems. These problems and results are among the first and most natural considerations
after the introduction of the function in the early 1960s. Some results are arrived at in
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a straightforward manner, e.g. unions of cliques, others thwarted attack for a long time
and required a novel approach, e.g. the results on complete partite graphs. In Section 3
and Section 4 we present results on cycles and trees, respectively. In these sections we
begin to get a sense of the challenges of studying this function, whether it be the technical
proof involved in determining the value of the function for the five-cycle or the strange
behavior of the function exhibited for two trees of a given order with ‘similar’ structure.
In Section 14 we grapple with some of the inherent difficulties of the sat-function. One of
the main current challenges in the study of the saturation function is that it fails to have
the monotonic properties for which one might hope. We discuss these issues in depth and
believe that Question 15 is most important to settle. Other open questions and conjectures
are sprinkled throughout the survey. Indeed, it is one of our main aims in writing this
survey: we wish to propel the research activities of our community in the direction of
saturated graphs of minimum size. Section 5 considers the problem for hypergraphs and
Section 6 considers the problem for when the ‘host’ graph is something other than the
complete graph. Section 17 shows some relationships that the sat-function has with other
extremal functions, including the ex-function. In particular, it seems that certain aspects
of the saturation function are as difficult as some of the most challenging outstanding
problems in the whole of extremal graph theory, see Subsection 17.1. In Section 10 we
consider the related notion of weak saturation. Though later in our presentation, the
topic should not be considered lesser in terms of interest or challenges present. Indeed,
this topic has attracted the attention of some of the top combinatorists of the past few
decades and as a consequence some beautiful results and techniques have been found.
Furthermore, since the first version of our survey appeared in 2011, many new topics have
appeared or grown considerably. These include, for instance, induced saturation (Section
13), edge-coloring problems (Section 7), and counting the minimum number of copies of
a graph H in an F -saturated graph (Section 12). One topic that is older but was not
included in the first version of the survey is that of bootstrap percolation (see Section 11).

It should be noted that while much of this survey is devoted to compiling known results
and open problems, we do give some proofs that we feel are particularly novel, striking
or beautiful, one such is given above and another is to follow immediately.

Note that in the proof of Theorem 1 we only made use of the “in particular” statement
found in Theorem 3. We give a proof of just this part of the theorem (as found in L. Babai
and P. Frankl [BF92]) as it brings to light how L. Lovász [Lov77] brought the linear algebra
method into play for theorems of this type. Generalizations of Bollobás’ theorem often
allow extensions of this method.

Proof of the “In particular” statement of Theorem 3
Let Y = (∪IAi) ∪ (∪IBi). For each y ∈ Y we associate a vector

v(y) = (v0(y), v1(y), . . . , va(y)) ∈ Ra+1,

such that the set of vectors is in general position; that is, any a + 1 vectors are linearly
independent. Now for each set Y ′ ⊆ Y we associate a polynomial fY ′(x) in the a + 1
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variables x = (x0, x1, . . . , xa) as follows:

fY ′(x) =
∏
y∈Y ′

(v0(y)x0 + v1(y)x1 + · · ·+ va(y)xa).

The above polynomial is homogeneous and has degree equal to the size of the set Y ′.
It follows from the definition of orthogonal that the polynomial is non-zero only when x
is orthogonal to none of the v(y), y ∈ Y ′.

We now consider such a polynomial associated with a set Bi and let aj be a non-zero
vector orthogonal to the subspace generated by the a elements of Aj. Note that aj is
orthogonal to v(y) only if y ∈ Aj (this follows from the fact that the vectors were chosen
to be in general position). We are now able to claim that fBi(aj) = 0 if and only if Aj
and Bi intersect; that is, if and only if i 6= j.

It can then be shown that the polynomials fB1 , . . . fB|I| form a linearly independent
set. Thus, (by the so-call linear algebra bound) the size of this set is not greater than the
dimension of the space of homogeneous polynomials of degree b in a + 1 variables; that
is, |I| 6

(
(a+1)+b−1

b

)
=
(
a+b
a

)
. �

2 Complete graphs

Recall that in the original paper by Erdős, Hajnal and Moon [EHM64], their main result
was to establish sat(n,Kp) and the uniqueness of the graph in Sat(n,Kp). This section
describes results concerning graphs that are ‘related’ to minimum Kp-saturated graphs,
such as the saturation number of Kp with restrictions on the minimum or maximum degree
of the host graph, and the saturation number of complete multi-partite graphs, unions of
cliques and subdivisions of Kp. (One exception is the generalization to hypergraphs which
is discussed in Section 5.) The reader will find that even the set of results close to the
original [EHM64] result include a great variety of approaches all of which have natural
open problems in their respective directions.

2.1 Degree restrictions

One of the first generalizations considered was to place additional restrictions on the
graph. Recall that all the vertices in the unique extremal graph in Sat(n,Kp) either have
degree equal to ∆ = n − 1 or δ = p − 2. And, in fact, any Kp-saturated graph has to
have minimum degree at least p−2. While confirming a conjecture of T. Gallai about the
minimum degree of a Kp-saturated without conical (degree n− 1) vertices, A. Hajnal in
[Haj65] asked, what is the minimum number of edges in a Kp-saturated graph if ∆ 6 n−2?
With this question in mind, we define sat∆(n, F ) to be the minimum number of edges in
a F -saturated graph on n vertices with maximum degree no more than ∆. In Z. Füredi
and Á. Seress [FS94], the value of sat∆(n,K3) was found precisely for ∆ > (n− 2)/2 and
n sufficiently large.
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Theorem 4. [FS94] Let n > 2228. Then

sat∆(n,K3) =


2n− 5, for ∆ = n− 2,

2n− 5 + (n− 3−∆)2, for n− 3−
√
n− 10 6 ∆ 6 n− 3,

3n− 15, for (n− 2)/2 6 ∆ < n− 3−
√
n− 10.

Upper and lower bounds are established for other values of ∆. Continuing in this
direction, P. Erdős and R. Holzman [EH94] gave the following result.

Theorem 5. [EH94]

lim
n→∞

satcn(n,K3)

n
=

{
(11− 7c)/2, for 3/7 6 c < 1/2,

4 for 2/5 6 c 6 3/7.

N. Alon, P. Erdős, R. Holzman, and M. Krivelevich [AEHK96] proved similar results
for K4. Additionally, they construct a Kp-saturated graph with ∆ = 2p

√
n for all p and

sufficiently large n.. K. Amin, J. Faudree, R. Gould, and E. Sidorowicz [AFGS13] studied
sat∆(n,Kp) for ∆ 6 n− 2.

Theorem 6. [AFGS13] Let p, n ∈ N such that p > 3 and n > 3p+ 12. Then

satn−2(n,Kp) = (p− 1)n− p(p− 1)

2
− 2.

Problem 1. Investigate satn−c(n,Kp), where c is a small positive constant.

From a slightly different perspective, D. Duffus and D. Hanson [DH86] considered
minimally Kp-saturated graphs with minimum degree at least δ, for δ > p − 2. Thus,
define satδ(n, F ) to be the minimum number of edges in an n-vertex F -saturated graph G
with minimum degree δ; obviously, one only considers when δ(G) > δ(F )− 1 since both
endpoints of the added edge e must be contained in the copy of F created. Upper and
lower bounds for this function are found in some instances.

Theorem 7. [DH86]
sat2(n,K3) = 2n− 5, n > 5,

sat3(n,K3) = 3n− 15, n > 10.

Note that the upper bound for each of the above statements in Theorem 7 can be real-
ized by duplicating a vertex in the 5-cycle and Petersen graph, respectively. This process
of duplicating a vertex occurs frequently, but certainly not always, in the extremal graphs
for the sat-function. In addition, Theorem 7 plays a role in the previously mentioned
results found in [FS94] and [AEHK96].

Theorem 7 led B. Bollobás [GGL95] (see page 1271) to ask the following: for δ > 4,
does satδ(n,K3) = δn−O(1)? Certainly we have satδ(n,K3) 6 δ(n− δ) as the bipartite
graph Kδ,n−δ is K3-saturated with minimum degree at least δ. (In [DH86] a different

the electronic journal of combinatorics (2021), #DS19 9



construction is given yielding a slightly better upper bound, and better yet in [FS94].)
The more general problem of determining satδ(n,Kp) can also be considered.

As a means of estimating satδ(n,Kp), Duffus and Hanson introduce the idea of a
minimally color-critical graph. If we look again at the graph Kp−2 +Kn−p+2, we see that
its chromatic number is p−1 and the addition of any edge increases the chromatic number
to p. Suppose G is a graph on n vertices with chromatic number p−1 and minimum degree
at least δ. They define χδ(n, p) to be the minimum number of edges that G can have such
that the addition of any edge to G increases the chromatic number. Such graphs are
called minimal (χ, δ)-saturated graphs. Duffus and Hanson find the value of χδ(n, p)
precisely and show that the extremal graph corresponding to it is unique, consisting of a
complete (p− 1)-partite graph with suitably sized partite sets. More precisely, they give
the following.

Theorem 8. [DH86] For integers n, p, δ, such that 2 6 p 6 n, δ > p − 2, the complete
(p− 1)-partite graph with (p− 2−bn−p+1

n−δ−1
c) parts of cardinality one, bn−p+1

n−δ−1
c parts having

cardinality (n− δ), and one part having cardinality n− (p−2−bn−p+1
n−δ−1

c)−bn−p+1
n−δ−1

c(n− δ)
is the only n-vertex minimal (χ, δ)-saturated graph.

It is, in fact, χδ(n, p) that provides an upper bound for the number of edges in a
Kp-saturated graph with prescribed minimum degree.

Duffus and Hanson showed that satδ(n,Kp) > n(δ+p−2)/2−O(1). Subsequently, one
of the results of [AEHK96] (see Theorem 2) implies that satδ(n,Kp) = δn + O( n

log logn
).

Another advance was made by O. Pikhurko [Pik04], who improved the error term and
showed that for any fixed δ > p − 1, satδ(n,Kp) = δn + O(n log logn

logn
). Finally, A.N. Day

[Day17] offered a dramatic improvement on these results and confirmed a generalization
of Bollobás’s conjecture.

Theorem 9. [Day17] Let t ∈ N. Then there exists a constant c = c(t) such that for
all p ∈ N with p > 3, satt(n,Kp) > tn − c. Furthermore, when n is sufficiently large,
G ∈ Satt(n,Kp) implies δ(G) = t.

For a graph G, let G∗ be the graph obtained by adding a new vertex v to G and
making v adjacent to all vertices in G, i.e. v is a conical vertex. For a graph G with
minimum degree at least t that is Kp-saturated, the graph G∗ is Kp+1-saturated and has
minimum degree at least t+ 1.

Problem 2. [Day17] For which n, t, p ∈ N are all graphs in Satt(n,Kp) of the form G∗

for some G ∈ Satt−1(n− 1, Kp−1)?

Finally, we mention the problem of determining the minimum size of a non-(p − 1)-
partiteKp-saturated graph. For p = 3, this was solved by C. Barefoot, K. Casey, D. Fisher,
K. Fraughnaugh, and F. Harary [BCF+95b]. For p = 3, such a graph has 2n−5 edges and
can be obtained by duplicating two non-adjacent vertices of a C5. K. Amin, J. Faudree,
R. Gould, and E. Sidorowicz [AFGS13] generalize the first part of this result, showing
that for p > 3 and n > 3(p + 4), the minimum number of edges in a non-(p − 1)-partite
Kp-saturated graph is (p− 1)n−

(
p
2

)
− 2. They show that one can construct graphs that

achieve this bound in a recursive fashion and the lower bound follows by induction on p.
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2.2 Unions of cliques and complete multi-partite graphs

Another extension is to consider graphs which generalize the complete graph. One ap-
proach is to consider a union of cliques. For a graph F , let tF denote the disjoint union
of t copies of F .

In [FFGJ09b], R. Faudree, M. Ferrara, R. Gould, and M. Jacobson determined
sat(n, tKp) and sat(n,Kp ∪ Kq) precisely with extremal graphs given by Kp−2 + {(t −
1)Kp+1 ∪Kn−pt−t+3} and Kp−2 + {Kq+1 ∪Kn−q−p+1} (for p 6 q), respectively.

Theorem 10. [FFGJ09b] Let t > 1, p > 3 and n > p(p + 1)t − p2 + 2p − 6 be integers.
Then

sat(n, tKp) = (t− 1)

(
p+ 1

2

)
+

(
p− 2

2

)
+ (p− 2)(n− p+ 2).

Furthermore, if t = 2 or 3, the extremal graph, respectively, is unique.

This was built on previous work of W. Mader [Mad73] who considered the case p = 2.
Using similar techniques, Faudree, Ferrara, Gould, and Jacobson [FFGJ09b] were able

to establish the saturation number for generalized friendship graphs. That is, for integers
t, p, and l, define Ft,p,l to be the graph composed of t copies of Kp intersecting in a common
Kl; Ft,p,l is called the generalized friendship graph.

Theorem 11. [FFGJ09b] Let p > 3, t > 2 and p − 2 > l > 1 be integers. Then, for
sufficiently large n,

sat(n, Ft,p,l) = (p− 2)(n− p+ 2) +

(
p− 2

2

)
+ (t− 1)

(
p− l + 1

2

)
.

The value of sat(n,Kp ∪Kq ∪Kr) is still open and, as the authors observe, the con-
struction they use to establish an upper bound for sat(n,Kp∪Kq) (which they determine
exactly) does not apply in this case. Also, it is not known in general if Sat(n, tKp) is
unique for t > 4.

Problem 3. [FFGJ09b] Investigate sat(n,Kp ∪Kq ∪Kr) and sat(n, 2Kp ∪Kq).

Another generalization is to complete partite graphs. Let Ks1,...,sp denote the complete
p-partite graph with partite sets of size s1, . . . , sp and 1 6 s1 6 cldots 6 sp and p > 2.
Note that the star K1,k−1 with k vertices will be fully considered in Section 4, and K2,2,
which is isomorphic to C4 and has saturation number b3n−5

2
c, in Section 3. O. Pikhurko

and J. Schmitt [PS08] considered the graph K2,3 and proved that there is a constant c
such that for all n > 5 we have 2n − cn3/4 6 sat(n,K2,3) 6 2n − 3.. Later Y.-C. Chen
[Che14] was able to accurately describe the properties and structures of the graphs in
Sat(n,K2,3), which enabled a proof of a conjecture of T. Bohman, M. Fonoberova, and
O. Pikhurko [BFP10] as given in the following theorem.

Theorem 12. [Che14] For n > 5, sat(n,K2,3) = 2n− 3.
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More recently, S. Huang, H. Lei, Y. Shi, and J. Zhang [HLSZ19] confirmed a conjecture
of Pikhurko and Schmitt [PS08].

Theorem 13. [HLSZ19]

sat(n,K3,3) =

{
2n if 6 6 n 6 8,

3n− 9 if n > 9.

Each of the proofs for these ‘small’ bipartite graphs relies on a case-by-case consider-
ation with respect to the minimum degree of the saturated graph G. Obviously, as one
considers larger bipartite graphs such an approach becomes more tedious.

O. Pikhurko [Pik04] computed sat(n,K1,...,1,s) exactly for n sufficiently large, as sub-
sequently did G. Chen, R. Faudree and R. Gould [CFG08] while simultaneously giving
better estimates on n. R. Gould and J. Schmitt [GS07] considered the graph K2,...,2

and determined the extremal graph under the assumption that the graph has a vertex of
smallest possible minimum degree. A result of Bohman et al. [BFP10] confirmed that sat-
function for a complete multipartite graph behaves asymptotically like the upper bound
provided for this graph by Theorem 2.

Theorem 14. [BFP10] Let p > 2, sp > · · · > s1 > 1. Then for all large n,

sat(n,Ks1,...,sp) = (s1 + · · ·+ sp−1 +
sp − 3

2
)n+O(n3/4).

Additionally, Bohman et al. are able to provide a stability type result — the first
such result in the study of this function! That is, Ks1,...,sp-saturated graphs with at most
sat(n,Ks1,...,sp) + o(n) edges can be changed into the construction provided by Theorem
2 by adding and removing at most o(n) edges. The authors note that the exact determi-
nation of the saturation number for complete multipartite graphs is an interesting open
problem (a conjecture for the exact value of sat(n,K2,...,2) is given in [GS07]).

Problem 4. Determine precisely the value of sat(n,Ks1,...,sp).

2.3 Subdivisions of Kp

A subdivision of a graph F is a graph obtained from F by replacing the edges of F with
internally disjoint paths of arbitrary length. Let S(F ) denote the family of subdivisions
of F , which includes F itself.

M. Ferrara, M. Jacobson, K. Milans, C. Tennenhouse, and P. Wenger [FJM+12] intro-
duced the study of sat(n,S(F )). In particular, they give results when F is the complete
graph or a cycle. Here we present their results for the complete graph and discuss the
results for cycles in Section 3.

Theorem 15. [FJM+12] Let p > 5. If n = d(p − 1) + r for d > 2 and 0 6 r 6 p − 2,
then

sat(n,S(Kp)) 6 (
p− 2

2
+ o(1))n.
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Further, Ferrara et al. [FJM+12] point out that S(K3)−saturated graphs are trees,
and so sat(n,S(K3)) = sat(n,K3) = n − 1. They also point out that sat(n,S(K4)) =
sat(n,K4) = 2n− 3 follows from the fact that a graph G is S(K4)-saturated graph if and
only if G is a 2-tree, where a p-tree is defined to be any graph that can be obtained from
a Kp by iteratively joining vertices to cliques of size p. Ferrara et al. [FJM+12] also show
the following.

Theorem 16. [FJM+12] For n > 10, sat(n,S(K5)) = d3n+4
2
e.

Problem 5. [FJM+12] Determine if there exists some absolute constant c such that
sat(n,S(Kp)) < cn for all p and large enough n.

3 Cycles

We now consider Cl-saturated graphs where Cl denotes the cycle on l vertices; we also
consider C>l-saturated graphs, where C>l denotes the family of all cycles of length at least
l. We begin by discussing the known results for small values of l, after which we focus on
the case when l = n (i.e. the Hamilton case). The reader will find that for small values of
l exact results are known only for l at most 5. Finding precise values appears to be quite
difficult. For l = n, the saturation number is established through the collective work of
many people. There are several interesting questions regarding the behavior of sat(n,Cl).

3.1 Cycles of small length

In his text on extremal graph theory (p. 167, Problem 39), B. Bollobás [Bol04] gave the
problem of estimating sat(n,Cl) for 3 6 l 6 n. When l = 3, as C3

∼= K3, the value
of sat(n,C3) = n − 1 is given by the result of [EHM64]. In 1972 L.T. Ollmann [Oll72]
determined that sat(n,C4) = b3n−5

2
c for n > 5 (this differs from the erroneous value for

the function for this case given in [Bol78] p.167, Problem 40) and gave the set of extremal
graphs. Later, Zs. Tuza [Tuz89] gave a shorter proof. Tuza’s proof is a rare instance
in which an inductive argument (for a particular case) is used in proving a lower bound
on sat(n, F ). A slight extension was given by D. Fisher, K. Fraughnaugh, L. Langley
[FFL97]. A graph is Pl-connected if every pair of nonadjacent nodes is connected by a
path with l vertices. (It should be noted that this concept has sometimes been defined
as a path with l edges, as opposed to l vertices.) Observe that a Cl-saturated graph is
necessarily Pl-connected, though a Pl-connected graph need not be Cl-saturated. Fisher
et al. determined the minimum size of a P4-connected graph, thus generalizing Ollmann’s
result. This class of extremal graphs properly contains those of Ollmann.

Theorem 17. [Oll72],[Tuz89],[FFL97] For n > 5, sat(n,C4) = b3n−5
2
c.

Work done by J. Cooper, J. Lenz, T.D. LeSaulnier, P. Wenger, and D. West on
uniquely C4-saturated graphs will be discussed in Section 17.

D. Fisher, K. Fraughnaugh, and L. Langley [FFL95] gave an upper bound for sat(n,C5)
of d10

7
(n−1)e. Subsequently, a very technical proof given by Y.-C. Chen [Che09] has shown
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that this upper bound also serves as a lower bound for n > 21. In further work [Che11],
Y.-C. Chen has determined Sat(n,C5) - an impressive feat considering the number and
structure of the extremal graphs involved.

Theorem 18. [Che09][Che11] For n > 21, sat(n,C5) = d10
7

(n− 1)e.

C. Barefoot, L. Clark, R. Entringer, T. Porter, L. Székely, and Zs. Tuza [BCE+96]
gave constructions that showed that for l 6= 8 or 10 and n sufficiently large there exists a
positive constant c such that sat(n,Cl) is bounded above by n + cn

l
. For small values of

l their constructions rely upon, what they call, Cl-builders. Cl-builders are Cl-saturated
graphs (of generally small order) which are used to “build” Cl-saturated graphs of large
order by identifying many copies of the Cl-builder at a particular vertex. The main result
in [Che11] implies that most graphs in Sat(n,C5) have this structure. Note that the
particular vertex at which the copies are identified is a cut-vertex. Their construction for
l = 6 gives that sat(n,C6) 6 3n

2
for n > 11.

When l = 6, a construction given by R. Gould, T.  Luczak, and J. Schmitt [G LS06]
(see Section 3 of [G LS06]) yields sat(n,C6) 6 b3n−3

2
c. A different construction method

given by M. Zhang, S. Luo, and M. Shigeno [LSZ15] provides the same upper bound.
These authors also provide the best known lower bound.

Theorem 19. 1. ([G LS06], [LSZ15]) For n > 9, sat(n,C6) 6 b3n−3
2
c;

2. ([LSZ15]) sat(n,C6) > d7n
6
e − 2.

Further, Zhang et al. [LSZ15] believe the upper bound is tight.

Conjecture 1. [LSZ15] For n > 9, sat(n,C6) = b3n−3
2
c.

Gould et al. [G LS06] did improve the constant c of the upper bound given in [BCE+96]
for all l > 8. For certain values of l their constructions resemble a bicycle wheel and do not
contain cut-vertices. These wheel constructions showed that sat(n,Cl) 6 (1 + 2

l−ε(l))n +

O(l2), where ε(l) = 2 for l even > 10, ε(l) = 3 for l odd > 17. Z. Füredi and Y. Kim
[FK13] improved upon these bounds with a much simpler construction.

Barefoot et al. also gave the first non-trivial lower bound on sat(n,Cl) for n > l > 5.
Füredi and Kim improved upon their argument to obtain a better lower bound.

The main result of [FK13] is the following.

Theorem 20. [FK13] For all l > 7 and n > 2l − 5,

(1 +
1

l + 2
)n− 1 < sat(n,Cl) < (1 +

1

l − 4
)n+

(
l − 4

2

)
.

The reader will notice that a gap still exists between upper and lower bounds. However,
Füredi and Kim believe that the constructions that yield the upper bound are essentially
optimal and they pose the following.

Conjecture 2. [FK13] There exists an l0 such that sat(n,Cl) = (1 + 1
l−4

)n+O(l2) holds
for each l > l0.
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We now turn our attention to sat(n, C>l), where C>l denotes the family of all cycles of
length at least l. In other language, C>l is the set of all graphs that include Cl and any
subdivision of it. As all C>3-saturated graphs are trees, it is trivial to see that sat(n, C>3) =
n − 1, which is the same value as sat(n,C3). M. Ferrara, M. Jacobson, K.G. Milans,
C. Tennenhouse, and P.S. Wenger [FJM+12] initiated the study of sat(n, C>l), giving the
following results.

Theorem 21. [FJM+12]

1. If n > 1, sat(n, C>3) = n− 1;

2. If n > 1, sat(n, C>4) = n+ bn−3
4
c;

3. If n > 5, sat(n, C>5) = d10(n−1)
7
e.

Subsequently, Y. Ma, X. Hou, D. Hei, J. Gao [MHHG21] determined the value of
sat(n, C>6) which relied on a detailed analysis of the structure of C>6-saturated graphs.

Theorem 22. [MHHG21] If n > 10, sat(n, C>6) = d3n
2
e.

The observant reader will notice that sat(n, C>l) = sat(n,Cl) for l = 3 and l = 5.
Equality does not hold for any other value of l ([MHHG21]).

Among other results, Ma et al. [MHHG21] also give the following.

Theorem 23. 1. [MHHG21] If 2l > n > l > 6, sat(n, C>l) > n+ l
2
.

2. [MHHG21] If n > l > n
2
> 28, sat(n, C>l) = n+ d l

2
e.

Problem 6. Determine sat(n, C>l) for 7 6 l < n
2
.

We end this subsection with a list of open problems and questions.

Question 1. [BCE+96] Is sat(n,Cl) a convex function of l, l > 3, for fixed n? Or is it
convex at least when the parity of l is fixed?

If the answer to this question is in the affirmative, then one ought to be able to find
a better upper bound for, say, l = 9.

Problem 7. [BCE+96] Determine the value of l which minimizes sat(n,Cl) for fixed n.

Question 2. [BCE+96] Is lim supn sat(n,Cl)/n a decreasing function of l, at least for
odd l and even l, respectively?

Question 3. [ Luc]For every x ∈ [0, 1] define a function f(x) in the following way:

f(x) = lim sup
n→∞

(sat(n,Cdxne))/n− 1.

As f(1) = 1
2
, and, most probably, f(x) = O(1/x) for small x, does f(x) → 0 as x → 0?

Is f(x) continuous in [0, 1]? Is it strictly increasing? For instance, is it true that, say,
f(0.99) = 1

2
?
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3.2 Hamilton cycles

We now turn our attention to the case when l = n.
In an effort to understand the structure of Hamiltonian graphs or conditions which

imply when a graph is Hamiltonian, authors have often focused on when a graph just fails
to be Hamiltonian. One such focus is Cn-saturated graphs, often referred to as maximally
non-Hamiltonian (MNH) graphs. Thus the question of determining sat(n,Cn) is rather
‘natural.’

The first result on Cn-saturated graphs of minimal size is due to A. Bondy [Bon72].
He showed that if such a graph G of order at least 7 has m vertices of degree two then
it has size at least 1

2
(3n + m). As an MNH graph with a vertex of degree one must be

a clique with a pendant edge (which in fact implies that the graph is edge maximum),
this result implies that sat(n,Cn) > d3n

2
e. As a result, it is logical to consider 3-regular

graphs in the search for graphs in Sat(n,Cn). Bondy also pointed out that the Petersen
graph, which has girth five, is in Sat(10, C10).

Another famous 3-regular graph, the Coxeter graph, which has girth seven, was shown
to be in Sat(28, C28) by L. Clark and R. Entringer [CE83]. Previously, however, W. Tutte
[Tut60] had shown it to be non-Hamiltonian and H.S.M. Coxeter himself [Cox81] knew
that his graph was an MNH graph.

If a graph is 3-regular and Hamiltonian, then it is 3-edge colorable. This makes 4-
edge-chromatic 3-regular graphs suitable candidates for Sat(n,Cn). Over the course of
several papers [CE83], [CCES86], [CES92], where each paper included some subset of the
following authors - L. Clark, R. P. Crane, R. Entringer, and H.D. Shapiro, it was shown
that sat(n,Cn) does indeed equal d3n

2
e for even n > 36 and odd n > 53. They showed

that graphs which help establish equality include the Isaacs’ flower snarks (which R. Isaacs
[Isa75] showed were 4-edge-chromatic 3-regular graphs), most of which have girth six, and
variations of them. These variations are obtained through “blowing up” a degree three
vertex into a triangle. Through the aid of a computer search, X. Lin, W. Jiang, C. Zhang,
and Y. Yang [LJZY97] analyzed the remaining small cases and were able to determine
that the value of sat(n,Cn) matched the lower bound provided by Bondy except in a few
small cases. Together, these results imply the following.

Theorem 24. For all even n > 20 and odd n > 17, we have sat(n,Cn) = d3n
2
e.

P. Horák and J. Širáň [HŠ86] constructed triangle-free MNH graphs of near minimal
size using a construction technique of C. Thomassen [Tho74]. Thomassen’s technique
involves “pasting” together two graphs at two vertices of degree three. Thomassen was
interested in constructing families of hypo-Hamiltonian graphs (non-Hamiltonian graphs
which become Hamiltonian upon the removal of any vertex) and his technique builds a
new hypo-Hamiltonian graph from two smaller ones. Horák and Širáň show that the
technique also works for MNH graphs when the smaller graphs are copies of either the
Petersen graph or an Isaacs’ flower snark. The technique does not decrease the length of
the shortest cycle, thus the graphs constructed are triangle-free. L. Stacho [Sta96] also
used this technique on copies of the Coxeter graph, yielding MNH graphs of girth seven.
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Problem 8. [HŠ86] Does there exist an MNH graph of girth greater than seven?

Problem 9. Furthermore, if there is such a graph, is there one of (near) minimal size?

L. Stacho [Sta98] also proved that |Sat(n,Cn)| > d3n
2
e for all n > 88 and showed that

limn→∞ |Sat(n,Cn)| =∞, answering a question of L. Clark and R. Entringer [CE83].

4 Trees and Forests

Early results concerning stars, paths, and sets of independent edges – results that both
identified the saturation number precisely and characterized the set of minimum saturated
graphs – spurred interest in saturation of trees and forests. Recall that the best known
upper bound for sat(n,G) stated in Theorem 2 in the Introduction depends upon an
understanding of (K1,k−1)-saturated graphs. Most of the results in this section are of the
form sat(n,G) where G is a tree or a forest and will begin with trees, followed by forests,
and finish with some miscellaneous results. Later sections of this survey, Saturation
in Hypergraphs (Section 5), Saturation in Hosts other than Kn (Section 6), Saturation
Spectrum of Graphs (Section 8), and Unique Saturation (Section 17) also contain results
on trees.

The most intriguing question regarding saturation numbers and trees is in Section 14,
Question 15, which essentially asks how to identify trees with small saturation number.

4.1 Trees

Let Sk = K1,k−1 denote the star on k vertices. In [KT86], L. Kászonyi and Zs. Tuza
established sat(n, Sk), characterized Sat(n, Sk), and proved that, of all the trees on k
vertices, Sk, has the largest saturation number.

Both the value of sat(n, Sk) and the characterization of Sat(n, Sk) are proved simul-
taneously by observing that any Sk-saturated graph has maximum degree at most k − 2
and that the set of vertices of degree less than k − 2 must induce a complete graph. The
number of edges in such a graph is bounded below by f(s) = (n− s)(k− 2)/2 +

(
s
2

)
where

s is the number of vertices of degree less than k − 2. All that is left is to show that f is
minimized at the respective values and to construct the graphs that realize these lower
bounds.

Similar results were given by K. Balińska, L. Quintas, and K. Zwierzyński [BQZ06].
They considered Sk-saturated graphs where the number of vertices of degree strictly less
than k − 1 is bounded.

Theorem 25. [KT86] Let Sk = K1,k−1 denote a star on k vertices. Then,

sat(n, Sk) =

{(
k−1

2

)
+
(
n−k+1

2

)
if k 6 n 6 3k−3

2
,

dk−2
2
n− (k−1)2

8
e if 3k−3

2
6 n,

Sat(n, Sk) =

{
Kk−1 ∪Kn−k+1 if k 6 n 6 3k−3

2
,

G∗ if 3k−3
2
6 n,
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where G∗ is the disjoint union of a (k− 1)-regular graph on n−bk/2c vertices and Kbk/2c
if k − 1 or n− bk/2c is even. Otherwise G∗ consists of a nearly-(k − 1)-regular graph on
n− bk/2c vertices with an edge to a Kbk/2c.

Furthermore, let T be a tree on k vertices such that T 6= Sk, then sat(n, T ) <
sat(n, Sk).

J. Faudree, R. Faudree, R. Gould, and M. Jacobson [FFGJ09a] show that for a fixed
k > 5 the tree on k vertices with the smallest saturation number is the tree obtained by
subdividing a single edge K1,k−2.

Theorem 26. [FFGJ09a] Let T0 be the tree obtained by subdividing a single edge K1,k−2.
For n > k + 2, sat(n, T0) = n− b(n+ k − 2)/kc and Sat(n, T0) consists of K2 along with
a forest of b(n− 2)/kc stars on k or more vertices.

Also in [KT86], Kászonyi and Tuza found sat(n, Pk) for all k and n sufficiently
large and again characterized the family of graphs in Sat(n, Pk). They prove that all
Pk-saturated trees contain a common subgraph which we will refer to as a perfect, almost-
binary tree defined as follows. For k = 2m, this perfect, almost-binary tree can be
constructed by starting with a perfect binary tree of depth m and duplicating, in its
entirely, one branch from the root such that in the result the root has degree three. For
k = 2m+1, the perfect, almost-binary tree can be constructed by starting with two copies
of a perfect binary tree of depth m and adding an edge between their roots. Moreover,
every Pk-saturated tree can be obtained by either multiplying branches of these perfect
almost-binary trees or by adding a single pendant vertex to vertices of degree at least 3. In
the theorem below, observe that ak is the number of vertices in the perfect almost-binary
tree. Note that the small order cases were handled in an ad hoc manner.

Theorem 27. [KT86] Let Pk be a path on k > 6 vertices and let Tk be the almost binary
tree defined above.

Let ak =

{
3 · 2m−1 − 2 if k = 2m,

4 · 2m−1 − 2 if k = 2m+ 1.
Then, for n > ak, sat(n, Pk) = n−b n

ak
c and every

graph in Sat(n, Pk) consists of a forest with bn/akc components each of which contains
Tk as a subgraph.

Note that the result above only applies for n > 3 · 2(k−2)/2 − 2 for even k > 6 and
n > 2(k+1)/2− 2 for odd k > 7. In fact, sat(n, Pk) is known for all n for k 6 6 (see [KT86]
and [DW04b]). Dudek and Wojda [DW04b] found sat(n, Pk) = n for bk 6 n < ak where
bk = 3 · 2(k−4)/2 for even k > 6 and n > 3 · 2(k−3)/2 for odd k > 7. Graphs in Sat(n, Pk) on
this interval were also characterized. Upper bounds for sat(n, Pk) for n > k for all but a
finite number of values of k can be found in [DKW06]. The examples used to establish
these upper bounds make use of several special properties of snarks.

Problem 10. Determine sat(n, Pk) and Sat(n, Pk) when k 6 n 6 bk.
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When n = k much more is known. Dudek et al. in [DKW06] exploited some properties
of snarks established in [CE83, CES92, LJZY97] to construct graphs in Sat(n, Pn) for n >
54 and several small order cases. Though the exact structure of all graphs in Sat(n, Pn)
seems to be quite complicated, this at least established an upper bound on sat(n, Pn). The
lower bound from [DKW06] was improved by M. Frick and J. Singleton [FS05]. There
exist a finite number of small order cases for which sat(n, Pn) remains unknown.

Theorem 28. [DKW06] and [FS05] For n > 54, sat(n, Pn) = d3n−2
2
e.

Problem 11. Determine sat(n, Pn) for the remaining small order cases.

Faudree et al. in [FFGJ09b] established sat(n, T ) precisely for several other infinite
families of trees but largely without characterizations of Sat(n, T ). In the same paper,
it is also established that any tree T with a sufficiently long sub-path (i.e. sub-tree
with vertices of degree 2 ending with a vertex of degree 1) must have sat(n, T ) < n for
sufficiently large n. For most trees T, sat(n, T ) is unknown.

4.2 Forests

Most of the results on the saturation of forests concern linear forests: forests such that
each component is a path. The first result of this type concerned a forest consisting of m
independent edges.

Theorem 29. [Mad73, KT86] For n > 3m− 3

sat(n,mK2) = 3m− 3

and
Sat(n,mK2) = (m− 2)K3 ∪ (n− 3m+ 3)K1.

For 2m < n < 3m− 3 and k > 3, the saturation number is unknown.

Problem 12. Determine sat(n,mK2) and Sat(n,mK2) for 2m 6 n 6 3m−4 and k > 3.

G. Chen, R. Faudree, J. Faudree, R. Gould, and M. Jacobson (in [CFF+15a]) demon-
strated that sat(n, F ) for a general linear forest F = Pk1 ∪ Pk2 ∪ · · · ∪ Pkt is determined
by the smallest path in the forest.

Theorem 30. [CFF+15a] If F = Pk1 ∪ Pk2 ∪ · · · ∪ Pkt where k1 > k2 > · · · > kt,
q =

(∑t
i=1 kt

)
− 1 and akt is defined as in Theorem 27, then

sat(n, F ) =

{
n−

⌊
n
akt

⌋
+ c(n) if k 6= 4

n−
⌊
n
2

⌋
+ c(n) if k = 4

for some constant c(n) such that 0 6 c(n) 6
(
q
2

)
− q +

⌈
q
akt

⌉
.
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In [CFF+15a], the Theorem above is improved in several special cases such as when
t = 2 and when k1 = k2 = · · · = kt.

There are a number of recent results on the saturation numbers of specific linear forests
listed below:

Source Saturation Number (for n sufficiently large)
[CFF+15b] sat(n, tP3) =

⌊
n+6t−6

2

⌋
for t ∈ {2, 3}

[JF16, LH19] sat(n, tP3 ∪ sK2) = 3(r + s− 10), for s > 3

[CFF+15b] sat(n, 2P4) =
⌊
n+13

2

⌋
[CFF+15b] sat(n, P4 ∪ sK2) = 3s+ 7, for s > 3

[FW15] sat(n, P5 ∪ sK2) = min{
⌈

5n−4
6

⌉
, 3s+ 12} for s > 3

[Son17] sat(n, P4 ∪ P3 ∪ tP2) = 3t+ 10, for t > 1

Several conjectures concerning the saturation numbers of linear forests can be found
in [CFF+15b], the simplest of which is below.

Conjecture 3. For t > 2 and n sufficiently large, sat(n, tP3) =
⌊
n+6t−6

2

⌋
.

Given a graph G on n vertices, a spanning subgraph that is a linear forest is called
a path cover. An m-path cover of G is a spanning forest F such that all components
of F are paths and F has at most m components. We say a graph G is m-path cover
saturated if G does not contain an m-path cover but connecting any two nonadjacent
vertices with an edge creates an m-path cover. The notion of an m-path cover saturated
graph is one natural extension of Hamiltonian path saturated graphs to forest saturated
graphs. Dudek et al. in [DKW03] established a lower bound on the saturation number of
m-path cover saturated graphs.

Theorem 31. [DKW03] Let n and m be positive integers such that n > m + 1. Every
m-path cover saturated graph on n vertices contains at least 3n

2
− 3(m+ 1) edges.

Problem 13. Determine the saturation number for m-path-cover-saturated graphs pre-
cisely.

In addition, A. Jambulapati and R. Faudree ([JF16]) used results on Hamiltonian path
saturated graphs to bound the saturation number for forests Pn ∪ P2 in graphs of order
n+ 2.

Theorem 32. For n > 28, 3n
2
− 4 6 sat(n+ 2, Pn ∪ P2) 6 3n

2
+ 14.

4.3 Additional Topics

A degree monotone path is one in which the sequence of degrees of the vertices is monotonic
when listed in the order in which they appear on the path. The number of vertices on a
longest degree monotone path in graph G is denoted by mp(G). A graph G is monotone

the electronic journal of combinatorics (2021), #DS19 20



path saturated if mp(G) < mp(G+ e) for every e ∈ G. In [CLZ15], Caro et al. use h(n, k)
to denote the least number of edges in a graph G on n vertices such that mp(G) < k but
k 6 mp(G+ e) for every e ∈ G.

Theorem 33. [CLZ15] For n > 3, k > 3, and n 6 h(n, k).

If k is odd, then h(n, k) 6 n(3k−1)
12

for n ≡ 0 mod 3(k − 1)/2.

If k is even, then h(n, k) 6 n(3k+8)(k−2)
4(3k−4)

for n ≡ 0 mod (3k − 4)/2.

The authors obtain exact values for h(n, k) for k = 3, 4. The end of their paper lists
eight open problems, one of which is below.

Problem 14. Determine h(n, 5) exactly. In particular, is it true that h(n, 5) = 7n(1+o(1))
6

?

One last observation is that a number of results have emerged concerning tree satu-
ration in connected or unicyclic graphs. These results generally appear as lemmas and
are used as tools in pursuit of larger goals such as finding sat(n, Pk) for smaller values
of n or for establishing the saturation spectrum of trees (see Section 8). For example,
in [DW04b], there are a number of results on unicyclic Pk-saturated graphs. Results on
connected Pk-saturated graphs can be found in [DKW06, Ash11] and [GTWZ12, BD18].

5 Hypergraphs

We now consider F -saturated graphs where F is a hypergraph. All of the results in this
section, except one (Theorem 42), assume the graphs are k-uniform (all edges are of size
k). Thus, unless stated otherwise, all graphs referenced in this section are k-uniform
hypergraphs.

5.1 Complete hypergraphs

We introduce the following notation. Consider a vertex partition S1 ∪ . . . ∪ Sp of V (F )
where |Si| = si. For k 6 p, let W k

s1,...,sp
denote the k-uniform hypergraph consisting of

all k-tuples that intersect k different parts (and call this the weak generalization of a
complete graph). Let Sks1,...,sp denote the k-uniform hypergraph consisting of all k-tuples
that intersect at least two parts (and call this the strong generalization of a complete
graph). When W k

1,1,...,1 = Sk1,1,...,1, we use Kk
n.

An early generalization of Theorem 1 was given by B. Bollobás [Bol65].

Theorem 34. [Bol65]

sat(n,Kk
p ) = sat(n,W k

1,...,1) = sat(n, Sk1,...,1) =

(
n

k

)
−
(
n− p+ k

k

)
where p counts the number of classes in the partition. Furthermore, there exists a unique
extremal graph.
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Bollobás achieved this as the result of introducing a powerful weight inequality, the
simplest version of which is given in the introduction as Theorem 3. This inequality is an
extension of the Lubell-Yamamoto-Meshalkin inequality, itself an extension of Sperner’s
Lemma from 1928. Importantly, N. Alon [Alo85] generalized Bollobás’ weight inequality;
in fact, it is a special case of a corollary to his main result.

P. Erdős, Z. Furedi, and Zs. Tuza [EFT91] consider the saturation problem for families
of hypergraphs with a fixed number of edges. Among these are the graphs Sk1,k.

Theorem 35. [EFT91] For n > 4, sat(n, S3
1,3) = b (n−1)2

4
c. Moreover, there are two or

one extremal hypergraphs according as n is odd or even.

They also determined the asymptotic behavior of the function for the graph Sk1,k for
n > k > 2. O. Pikhurko [Pik00] went further.

Theorem 36. [Pik00] Let m > k > 2. Then

m− k
2

(
n

k − 1

)
> sat(n, Sk1,m−1) >

m− k
2

(
n

k − 1

)
−O(nk−4/3).

Later, Pikhurko [Pik04] posed the following.

Conjecture 4. [Pik04] For l 6 k − 1 and l +m > k,

sat(n, Skl,m) =
m+ 2l − k − 1

2(k − 1)!
nk−1 + o(nk−1).

5.2 Asymptotics

With the thought of extending Theorem 2 to hypergraphs, Zs. Tuza [Tuz86] (more read-
ily available in [Tuz88]) conjectured that for any k-uniform hypergraph F , sat(n, F ) =
O(nk−1). This was positively confirmed.

Theorem 37. [Pik99a] For any finite family F of k-uniform hypergraphs, we have

sat(n,F) = O(nk−1).

More generally, we can ask the following.

Question 4. [Pik04] Does sat(n,F) = O(nk−1) for any infinite family of k-uniform
hypergraphs?

In light of the irregularity of the sat-function, which is discussed more fully in Section
14, Pikhurko asked: does there exist a finite family F of k-uniform hypergraphs, k > 3,
for which the ratio sat(n,F)

nk−1 does not tend to any limit? N. Behague [Beh18] answered in
the affirmative.

Theorem 38. [Beh18] For all k > 3 there exists a family F of four k-regular hypergraphs

such that lim
n→∞

sat(n,F)

nk−1
does not converge.
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It remains an open question whether the statement of the Theorem above holds if the
family of k-regular hypergraphs is replaced by a single k-regular hypergraph.

Conjecture 5. [Pik99b] The limit lim
n→∞

sat(n, F )

nk−1
exists for every k-regular hypergraph

F .

For a hypergraph F and edges E,E ′ ∈ F , the density of an edge E, denoted by D(E),
is the largest natural number D such that there is an E ′, E 6= E ′ with |E ∩ E ′| > D.
The local density of the hypergraph F , D(F ), is min{D(E) : E ∈ F}. Zs. Tuza [Tuz92]
conjectured the following.

Conjecture 6. [Tuz92] For a hypergraph F there exists a constant c depending on F such
that sat(n, F ) = cnD(F ) +O(nD(F )−1).

5.3 Berge-F Saturated Hypergraphs

For a graph F = (V,E), a hypergraph H on vertex set V is called Berge-F if there is a
bijection φ : E(F )→ E(H) such that e ⊆ φ(e) for all e ∈ E(F ).

A hypergraph G is Berge-F -saturated if G contains no Berge-F subgraph but adding
any edge to G creates a copy of a Berge-F subgraph. The saturation number for Berge-F
hypergraphs is the least number of edges in a Berge-F -saturated hypergraph. Generally,
the host graph is required to be a k-uniform hypergraph; thus, we use the notation
sat(n,Bergek-F ) to emphasize this assumption.

Results on Berge-F -saturated graphs first appeared in the work of S. English, P. Gor-
don, N. Graber, A. Mehutku, and E. Sullivan [EGG+19]. English et al. established
sat(n,Bergek-F ) precisely when F is a K3, a matching and for certain stars. In addition,
the authors establish upper bounds when F is a cycle and both upper and lower bounds
when F is a path. A subset of results are summarized below. The main result, on paths,
references the constant am,k, determined by the k-uniformity and the number of vertices
in the path Pm. This constant plays a similar role as the constant am in Theorem 27 on
the saturation number of trees in graphs.

Theorem 39. [EGG+19]

• For all n > k(l − 1), sat(n,Bergek-lK2) = l − 1.

• For all n > k + 1, sat(n,Bergek-K3) = dn−1
k−1
e.

• If k > m− 1 and n < p(k − (p− 2)) + (p− 2), then sat(n,Bergek-Cp) 6 dn−p+2
k−p+2

e.

• If k = p− 2 and n > m2, then sat(n,Bergek-Cp) 6 bn−1
p−2
c(p− 1) + (n−1)mod(p−2)

k−2
.

• If k 6 m − 3, l = max{m/2 + 1, k + 1} and n > l2, then sat(n,Bergek-Cp) 6
bn−1
l−1
c
(
l
k

)
+ ((n− 1) mod(l − 1))

(
l

k−1

)
.
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• Let k > 3 and k 6= 5. Let m > 10, and n > (k − 1)am,k + k − 1. Then,

1

k − 1
(n− b n− k − 2

(k − 1)am,k + 1
c)− k − 2 6 sat(n,Bergek-Pm)

and

sat(n,Bergek-Pm) 6 d 1

k − 1
(n− b n

(k − 1)am,k + 1
c)e

where am,k, a constant depending on m and k, is the minimum number of edges of
a k-uniform Berge-Pm saturated linear tree on at least k + 1 vertices.

At present, there do not exist lower bounds for cycles or any results for complete
graphs beyond K3. The authors conjecture that the upper bound for sat(n,Bergek-Pm)
is the correct one.

Conjecture 7. [EGG+19] Let k > 3, m > 10, and n > (k − 1)a
(k)
m . Then

sat(n,Bergek-Pm) 6 d 1

k − 1
(n− b n

(k − 1)am,k + 1
c)e.

The result on stars in Theorem 39 required that the number of end-vertices on the
star be one more than the regularity of the host hypergraph. A more general result by
B. Austhof and S. English [AE19] on stars soon followed.

Theorem 40. [AE19] For all k > 3, l ∈ N, and sufficiently large n,

sat(n,Bergek-K1,`) = mina∈[n],(a−1
k−1)6l−2

{⌈
(l − 1)(n− a)

k

⌉
+

(
a

k

)}
.

Austhof et al. [AE19] achieve these bounds by using linear k-uniform hypergraphs (a
linear hypergraph satisfies the property that |e1 ∩ e2| 6 1 for all edges e1 and e2) that
are nearly d-regular, meaning every vertex has degree either d or d− 1 and fewer than k
have the latter quality. It is not trivial that such hypergraphs exists for all numbers of
vertices, so Austhof et al. [AE19] also prove following lemma:

Lemma 1. [AE19] Let d > 1 and k > 2. Then, for sufficiently large n, there exists a
nearly d-regular k-uniform hypergraph on n vertices.

Since sat(n,Bergek-F ) is known precisely only when F is a star or K3, it is natural
to consider other graphs.

Problem 15. Determine sat(n,Bergek-F ) for F � K1,l and F � K3.

English et al. [EGG+19] conjectured that for any fixed family of graphs F we have
sat(n,Bergek-F ) = O(n). This conjecture has been confirmed in several instances. En-
glish et al. [EGMT19] showed the conjecture holds for all graphs F when the uniformity
of the hypergraph, k is 3, 4, or 5. Gerbner et al. [GPTV21] demonstrated the conjecture
holds for complete multipartite graphs and graphs with the property that there exist two
vertices of the smallest degree that are adjacent. The general conjecture remains open.

the electronic journal of combinatorics (2021), #DS19 24



Conjecture 8. [EGG+19] For any fixed finite family of graphs F , sat(n,Bergek-F) =
O(n).

English et al. [EGMT19] extended Conjecture 8 to hypergraph-based Berge hyper-
graphs. The authors show using paths that, if correct, the conjecture is best possible.

Conjecture 9. [EGMT19] Let 3 6 r 6 k be integers and let F (r) be any r-uniform
hypergraph. Then,

sat(n,Bergek-F (r)) = O(nr−1).

Theorem 41. [EGMT19] Let 3 6 r 6 k < l be integers and let G be a k-uniform

Berge-P
(r)
l -saturated hypergraph of order n. Then

|E(G)| = Θ(nr−1).

All previous results concern Berge-F saturation in k-uniform hypergraphs; Theorem
42 does not make this restriction. For Berge-F saturation in arbitrary hypergraphs,
saturation numbers are known.

Theorem 42. [AW19] Let F be a graph with no isolated vertices, and let n > |V (F )|.
Let H be a hypergraph on n vertices that is not necessarily k-uniform. Then the minimum
number of edges in a Berge-F saturated hypergraph H is |E(F )| if F is a star on at least
4 edges and |E(F )| − 1 otherwise.

M. Axenovich and C. Winter [AW19] suggested that, in the context of hypergraphs,
a vertex version of saturation could be investigated.

Problem 16. [AW19] Investigate the properties of graphs saturated in that they are F-
free, but for all hyperedges e and vertices v /∈ e, replacing e with e∪{v} creates a hypergraph
that is not F-free.

5.4 A few specific problems

5.4.1 Hamiltonian Saturation

For 1 6 ` < k, an `-overlapping Hamiltonian cycle in a k-uniform n-vertex hypergraph
G, denoted C

(k,`)
n , is a subgraph of G in which, for some cyclic ordering of V (G), every

edge consists of k consecutive vertices and every two consecutive edges (in the natural
ordering of the edges induced by the ordering of the vertices) share exactly ` vertices.

Using this terminology, C
(2,1)
n denotes the classic Hamiltonian cycle in a graph. In the

special case that ` = k − 1, the subgraph C
(k,k−1)
n is often called a Hamiltonian chain or

a closed Hamiltonian chain. A hypergraph that contains an `-overlapping Hamiltonian
cycle as a subgraph is called `-Hamiltonian Observe that a necessary condition for H to
be `-Hamiltonian is for n to be divisible by k − `. Analogous terminology and notation
can be defined for an `-overlapping Hamiltonian path.

A k-uniform hypergraph H is called `-Hamiltonian saturated, for 1 6 ` 6 k − 1, if
H is not `-Hamiltonian but for every e ∈ Hc the k-graph H + e is such. For n divisible
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by k− `, let sat(n,C
(k,`)
n ) be the smallest number of edges in an `-Hamiltonian saturated

k-uniform hypergraph on n vertices. Analogous notation and terminology applies to edge
minimal k-uniform hypergraphs containing no `-overlapping Hamiltonian path. Results
on sat(n,C

(2,1)
n ) and sat(n, P

(2,1)
n ) can be found in Section 3 and Section 4, respectively.

Investigation of `-overlapping Hamiltonian cycle (and path) saturation initially focused
on the specific case where ` = k−1 [KK99, Kat06, DZK10, DZ12] with results for general `
coming later [Ż13, RZ13, RZ16]. Most of the results focus on saturation with respect to

cycles. Results on sat(n, P
(k,k−1)
n ) can be found in [DZK10, DZ12].

A lower bound for sat(n,C
(k,`)
n ) was quickly established via a simple counting argument

based on the maximum number of `-intersecting edges of a given edge.

Theorem 43. [KK99, DZK10, RZ13] For integers 1 6 ` < k, sat(n,Ck,`
n ) = Ω(n`).

The bound above also applies to `-overlapping Hamiltonian path saturated graphs.
As precise results for sat(n,C

(k,`)
n ) (and sat(n, P

(k,`)
n )) appear to be very difficult, the

emphasis is on establishing the correct order of magnitude.

Conjecture 10. [Kat06, RZ13] For all k > 2 and 1 6 ` < k, sat(n,Ck,`
n ) = O(n`).

Results in several particular cases have been established.

Theorem 44. • [DZK10] For every n > 12, sat(n,C
(3,2)
n ) 6 O(n5/2).

• [RZ16] sat(n,C4,2
n ) = O(n14/5).

• [RZ16] For ` ∈ {2
3
k, 3

4
k} (and appropriately divisible k), sat(n,Ck,`

n ) = O(n`+1).

• [DZK10, DZ12] Let k > 4. Then sat(n,C
(k,k−1)
n ) = O(nk−1/2).

The best nontrivial general upper bound which we now state is obtained via specialized
construction methods refined from [Ż13, RZ13].

Theorem 45. [RZ16] For all k > 3 and 2 6 ` < k, sat(n,C
(k,`)
n ) = O(n(k+`)/2).

5.4.2 Triangular family

Let Tk denote the family which consists of all k-uniform hypergraphs with three edges
E1, E2, E3 such that E1∆E2 ⊆ E3, where ∆ denotes the symmetric difference. We call Tk
a triangular family.

Theorem 46. [Pik04] Let k > 3 be fixed. Then

n−O(log n) 6 sat(n, Tk) 6 n− k + 1.

And, for k = 3 equality holds on the right.

Conjecture 11. [Pik04] In Theorem 46 equality holds on the right.
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5.4.3 Intersecting hypergraphs

We will call a k-uniform hypergraph F intersecting (sometimes called disjoint-edges-free)
if for every pair of edges of F the intersection of the pair is non-empty. (Some authors
call such graphs k-cliques, however we refrain from doing so in light of how we wish to
use this term elsewhere in this survey.) We say that such a graph is maximal if it cannot
be extended to another intersecting hypergraph by adding a new edge and possibly new
vertices. P. Erdős and L. Lovász [EL75] first investigated the minimum number and
maximum number of edges in a maximal intersecting k-uniform hypergraph. In light of
the topic of this survey, we are most interested in the minimum number of edges in a
maximal intersecting k-uniform hypergraph, m(k). Note that the function is independent
of n for n sufficiently large.

Erdős and Lovász [EL75] gave a lower bound on m(k) of 8k
3
− 3, while Z. Füredi gave

an upper bound of 3k2/4 whenever k = 2n for an integer n that is the order of a projective
plane. We know from J.C. Meyer [Mey74] that trivially m(1) = 1 and m(2) = 3, and that
m(3) = 7. S. Dow, D. Drake, Z. Füredi, and J. Larson [DDFL85] improved the previously
mentioned lower bound and gave the following.

Theorem 47. [DDFL85] For all k > 4, m(k) > 3k.

This result together with the upper bound of Füredi gives m(4) = 12.

Problem 17. Determine the value of m(k) for k > 4.

5.4.4 Disjoint-union-free

We say that a k-uniform hypergraph F is disjoint-union-free if all disjoint pairs of elements
of F have distinct unions; that is, if for all E1, E2, E3, E4 ∈ E(F ), E1 ∩E2 = E3 ∩E4 = ∅
and E1 ∪ E2 = E3 ∪ E4 implies that {E1, E2} = {E3, E4}. Should this implication fail,
we say E1, E2, E3, E4 form a forbidden union. Let Dk denote the family of k-uniform
hypergraphs such that each hypergraph is a set of 4 edges forming a forbidden union.
(Note that D2

∼= C4 and in this case we refer the reader to Section 3.)
P. Dukes and L. Howard [DH08] gave the following.

Theorem 48. [DH08]

sat(n,D3) =
n2

12
+O(n).

They also suggested the following.

Problem 18. [DH08] Determine sat(n,Dk) for k > 3.

5.4.5 Weak Saturation in Multipartite Hypergraphs

Both of the subtopics of weak saturation and saturation in which the host graph is not Kn

are given more comprehensive discussion later in Section 10 and Section 6, respectively;
however, we include a hypergraph analog here. Recall that for k 6 p, W k

s1,...,sp
denotes the
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k-uniform hypergraph consisting of all k-tuples that intersect k different parts. In this
variant, the host graph, H, is a k-partite, k-uniform hypergraph where each partite set
has n vertices and each edge intersects each partite set. The target graph is W k

s1,s2,...,sk

where 1 6 si 6 n for all i. The fewest number of edges in a host hypergraph, H, such that
it is possible to order the edges of the W k(n, n, . . . , n)−H such that the addition of each
new edge, one after another, creates a new copy of the target graph, W k

s1,s2,...,sk
is denoted

by w-satk(H,W
k
s1,s2,...,sk

). This idea in the context of multipartite k-regular hypergraphs
was introduced by Balogh et al. [BBMR12] where a special case was proved. Moshkovitz
and Shapiro [MS15] established the value in general using a multipartite version of the
Two Families Theorem [Alo85]. A more detailed calculation shows that the magnitude of
the saturation number in this case is determined by n and the size of the smallest partite
set in the target graph.

Theorem 49. [MS15] Let H be a k-partite, k-uniform hypergraph where each partite set
has n vertices and each edge intersects each partite set. For all integers 1 6 s1 6 s2 6
· · · 6 sk 6 n, w-satk(H,W

k
s1,s2,...,sk

) = nk − qn where qn is the number of k-tuples x ∈ [n]k

such that x(i) > pi for every 1 6 i 6 d, where x(i) is the ith smallest element in the sorted
k-tuple x.

6 Host graphs other than Kn

Note that in our definition of an F -saturated graph in the introduction, we allowed G to
be any subgraph of Kn. We now consider F -saturated graphs where G is restricted to
being a subgraph of some graph other than Kn.

More formally, let J be an n-vertex graph. We say that G ⊆ J is an F -saturated graph
of J if G is F -free (i.e. has no subgraph isomorphic to F ), but for every edge e not in
E(G) but in E(J) the graph G+ e does contain a copy of F . We define the following:

sat(J, F ) = min{|E(G)| : V (G) = V (J), E(G) ⊆ E(J), and G is an
F -saturated graph of J},

Sat(J, F ) = {G : V (G) = V (J), E(G) ⊆ E(J), |E(G)| = sat(n, F ), and G is an
F -saturated graph of J}.

Thus, sat(Kn, F ) and Sat(Kn, F ) are by definition sat(n, F ) and Sat(n, F ), respec-
tively. Of course, we are interested in determining sat(J, F ) and Sat(J, F ) for various
choices of J and F . There has been quite a proliferation in the varieties of problems
studied recently. Some of this proliferation was expansion to partite graphs of more and
more parts, but one particularly interesting extension was to the Erdős-Rényi random
graph, by Korándi and Sudakov [KS17].

The first types of problems considered in other host graphs were in multipartite graphs.
Let J(n1,...,np) be an n-vertex p-partite graph with ni vertices in the ith class. Let F(r1,...,rp)

be a p-partite graph with ri 6 ni vertices in the ith class. Then G ⊆ J(n1,...,np) is an
F(r1,...,rp)-saturated graph of J(n1,...,np) if G has no copy of F(r1,...,rp) with ri vertices in the
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ith class, but G + e has a copy of F(r1,...,rp) for any edge e joining vertices from distinct
classes and contained in J(n1,...,np). The difference between this definition and the previ-
ous one is that this is “sensitive” with respect to the partition. Analogously, we define
sat(J(n1,...,np), F(r1,...,rp)) and Sat(J(n1,...,np), F(r1,...,rp)). Thus, the presence of parentheses
in the subscript indicates that we are considering the partition “sensitive” problem, the
absence of parentheses indicates we are considering the more general problem.

Problems of this type were first proposed in [EHM64]. Here the authors conjectured
a value for sat(K(n1,n2), K(r1,r2)), where K(n1,...,np) denotes the complete p-partite graph
with ni vertices in the ith class. Their conjectured value was established to be correct
by B. Bollobás ([Bol67b], [Bol67a]) and W. Wessel ([Wes66],[Wes67]). We thus have the
following.

Theorem 50. Let 2 6 r1 6 n1 and 2 6 r2 6 n2, then

sat(K(n1,n2), K(r1,r2)) = n1n2 − (n1 − r1 + 1)(n2 − r2 + 1)

and Sat(K(n1,n2), K(r1,r2)) consists of one graph, the n1 by n2 bipartite graph consisting of
all edges incident with a fixed set of size r1− 1 of the n1-set and all edges incident with a
fixed set of size r2 − 1 of the n2-set.

Also, N. Alon [Alo85] reproved Theorem 50, generalizing it to complete k-uniform
graphs in a k-partite setting – Alon’s generalization is a consequence of an extremal prob-
lem on sets which was proved using multilinear techniques (exterior algebra). Unaware of
some of these results, D. Bryant and H.-L. Fu [BF02] considered K2,2-saturated graphs of
Kn1,n2 (which is the same as K(2,2)-saturated graphs of K(n1,n2)), showing how to construct
such graphs (not just those of minimum size) using design theory. Another generalization
of Theorem 50 can be found in the results on layered graphs of O. Pikhurko, for these we
refer the reader to his Ph.D. thesis [Pik99b] (cf. page 14).

E. Sullivan and P. Wenger [SW17] extended the results of Theorem 50 to tripartite
graphs.

Theorem 51. [SW17] For positive integers l,m, p, n1, n2, n3 with p < m 6 l 6 n3 6 n2 6
n1,

sat(Kn1,n2,n3 , Kl,m,p) 6 2(m− 1)(n1 + n2 + n3) + (l−m)(n2 + 2n3)− 3l(m− 1) + 3m− 3

For n3 sufficiently larger than l and n1 sufficiently larger than n3, they conjecture that
this is the exact value.

Conjecture 12. [SW17] For positive integers l,m, p, n1, n2, n3 with p < m 6 l, n3 6
n2 6 n1, and n3 sufficiently large compared with l, and n1 sufficiently large compared with
n3,

sat(Kn1,n2,n3 , Kl,m,p) = 2(m− 1)(n1 + n2 + n3) + (l−m)(n2 + 2n3)− 3l(m− 1) + 3m− 3.
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Sullivan and Wenger also find the saturation numbers for balanced and nearly-balanced
tripartite graphs in sufficiently larger tripartite graphs, that is, specific cases of the above
problems where the forbidden graph is such that l = m = n, l = m = n + 1, or l = m =
n+ 2 [SW17].

Balanced bipartite graphs have also been considered as the host graph rather than the
forbidden subgraph. W. Gan, D. Korándi, and B. Sudakov’s [GKS15] discovered a result
analogous to the first theorem reported in the survey in this section, which Chakraborti,
Chen, and Hasabnis [CCH21] improved upon. Gan, Korándi, and Sudakov found a lower
bound for the balanced bipartite saturation number for all cases, and Chakraborti, Chen,
and Hasabnis [CCH21] found the asymptotic value.

Theorem 52. [CCH21] There exists some N depending on s and t such that n > N
implies

sat(Kn,n, Ks,t) > (s+ t− 2)n− (t− 1)(t− 2)− b(s− 1)2

4
c;

[GKS15] Let 1 6 s 6 t both be fixed, and let n > t. Then,

sat(Kn,n, Ks,t) > (s+ t− 2)n− (s+ t− 2)2.

Chakraborti, Chen, and Hasabnis’s [CCH21] work resolved a conjecture of Moshkovitz
and Shapira [MS15].

M. Ferrara, M. Jacobsen, F. Pfender, and P. Wenger [FJPW16] took this further, with
balanced multipartite graphs of more than two parts. Notation-wise, instead of writing
Kn,n,...,n, we write Kn

k , if there are k parts. They found a first result, with the forbidden
configuration being triangles.

Theorem 53. [FJPW16] If k > 4 and n > 100, then

sat(Kn
k , K3) = min{2kn+ n2 − 4k − 1, 3kn− 3n− 6}.

More recently, A. Girão, T. Kittipassorn, and K. Popielarz [GaKP19] extended this
to all complete graphs. Their proof and result involves a function α(k, r). If we consider
some k-partite subgraph G ⊆ Kn

k that is Kr saturated within the host graph Kn
k , and

an independent set of vertices X with exactly one vertex from each part, α(k, r) is the
minimum number of edges between X and X in G, over all G and X [GaKP19].

Theorem 54. [GaKP19] With α(k, r) defined as above,

sat(Kn
k , Kr) = α(k, r)n+ o(n).

The function α(k, r) is the most interesting thing to study from here, and the authors
([GaKP19]) discovered the following about it already.

k(2r − 4) 6 α(k, r) 6

{
(k − 1)(4r − k − 6) for r 6 k 6 2r − 3.

(k − 1)(2r − 3) for k > 2r − 3.

They find some small specific cases also, mentioned in their paper, but classes of values
for α(k, r) that remain unknown are stated by the following problem.
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Problem 19. [GaKP19] Determine α(k, r) for k > 2r − 2 and r ≡ 1, 3 mod 6.

The problem of determining sat(Kn1,n2 , Pt), where Pt is the path of order t, was
considered by A. Dudek and A. P. Wojda [DW04a]. They determined the saturation
number precisely for t 6 6 and for t > 6 they determined the value of the function under
the added constraint that the graph contains no isolated vertices for n1, n2 sufficiently
large.

Problem 20. [DW04a] Determine sat(Kn1,n2 , C2t) for t > 2, where C2t denotes the cycle
of order 2t.

Some attention has also been given to determining sat(Qn, Q2), where Qi denotes
the i-dimensional hypercube. S.-Y. Choi and P. Guan [CG08] give an asymptotic upper
bound of (1

4
+ ε)n2n−1. Anthony Santolupo (a former undergraduate student of the fourth

author) conjectured that sat(Qn, Q2) is asymptotically 1
4
n2n−1. Johnson and Pinto [JP17]

disproved this conjecture working on the larger problem of sat(Qn, Qm). Their upper
bound was then improved by N. Morrison, J. Noel, and A. Scott [MNS17].

Theorem 55. [JP17] [MNS17] Let m > 2 be fixed. Then

(
(m+ 1)

2
− o(1)) · 2n

[JP17]︷︸︸︷
6 sat(Qn, Qm)

[MNS17]︷︸︸︷
6 (1 + o(n)) · 72m2 · 2n.

Morrison, Noel, and Scott pose the following question, doubting the tightness of John-
son and Pinto’s lower bound.

Question 5. [MNS17] For fixed m > 2, does the limit

lim
n→∞

sat(Qn, Qm)

2n

exist?

Until [MNS17], only smaller-order hypercubes were considered as forbidden configu-
rations in hypercubes. Morrison, Noel, and Scott, drawing inspiration from study of an
analogous problem for the Turán function, also propose extending this to even cycles.

Problem 21. [MNS17] For t > 2 and n > log2(2t), determine sat(Qn, C2t).

Following another type of problem initiated in the study of Turán’s extremal number,
Korándi and Sudakov [KS17] studied the saturation number in the Erdős-Rényi random
graph. They started by looking at complete graphs as the forbidden configuration, and
A. Mohammadian and B. Tayfeh-Rezaie [MTR18] expanded on this by studying stars as
the forbidden configuration.

Theorem 56. [KS17] Let 0 < p < 1 be a constant probability and let s > 3 be an integer.
Then,

sat(G(n, p), Ks) = (1 + o(1))n log 1
1−p (n)

with high probability.
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Theorem 57. [MTR18] Let 0 < p < 1 be a constant probability and let s > 2 be an
integer. Then,

sat(G(n, p), K1,s) =
(s− 1)n

2
− (1 + o(1))(s− 1) log 1

1−p (n)

with high probability.

This leaves us with a natural following problem.

Problem 22. Determine sat(G(n, p), F ) for F other than Ks and K1,s.

Finally, around the time of the first publication of this survey, the notion of minimal
saturated matrices was introduced by A. Dudek, O. Pikhurko and A. Thomason [DPT13].
We omit introducing the required definitions and terminology here, and we refer the reader
to [DPT13] for these and their results.

7 Colorings

7.1 Ramsey-minimal saturated graphs

We say F arrows a t-tuple (F1, . . . , Ft) of graphs if any t-coloring of E(F ) contains a
monochromatic Fi-subgraph of color i for some i ∈ [t] and we denote this F → (F1, . . . , Ft).
A graph G is (F1, . . . , Fk)-Ramsey-minimal if G → (F1, . . . , Fk) but for any proper sub-
graph G′ of G, G′ 9 (F1, . . . , Fk). Let satt(n,Rmin(F1, . . . , Fk)) denote the family of all
(F1, . . . , Fk)-Ramsey-minimal graphs.

The motivation for this subsection is the following conjecture due to D. Hanson and
B. Toft [HT87].

Conjecture 13. [HT87] Let r = r(Kt1 , . . . , Ktk) be the classical Ramsey number. Then

satt(n,Rmin(Kt1 , . . . , Ktk)) =

(
r − 2

2

)
+ (r − 2)(n− r + 2).

Notice that Conjecture 13 reduces to Theorem 1 in the case where either k = 1 or
t2 = · · · = tk = 2. G. Chen, M. Ferrara, R. Gould, C. Magnant, and J. Schmitt [CFG+11]
confirmed this conjecture in the smallest open instance, that is, for t1 = t2 = 3 so long as
n > 56.

A natural and obvious generalization to their problem is the following.

Problem 23. Let F1, . . . , Fk be graphs, each with at least one edge. Determine
sat(n,Rmin(F1, . . . , Fk)).

A first result in this more general direction was given in Chen et al. [CFG+11], who
determined the saturation number for the family Rmin(K3, T3), where T3 is the (unique)
tree on three vertices.

M. Ferrara, J. Kim and E. Yeager [FKY14] provided a solution to Problem 23 in the
case where each Fi is of the form miK2.
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Theorem 58. [FKY14] If m1, . . . ,mk > 1 and n > 3(m1 + · · ·+mk − k), then

sat(n,Rmin(m1K2, . . . ,mkK2)) = 3(m1 + · · ·+mk − k).

Note that when k = 1, we are left with the theorem on matchings given by [Mad73,
KT86] in Section 4.

Now let Tk denote the family of all trees on k vertices. M. Rolek and Z.-X. Song [RS18]
found the saturation number for the family Rmin(K3, T4) for sufficiently large n (whereas
the smaller case of Rmin(K3, T3) is covered by the above-mentioned result of [CFG+11]
since T3 consists of only the one graph).

Theorem 59. [RS18] For n > 18, sat(n,Rmin(K3, T4)) = b5n
2
c.

They also obtained the following.

Theorem 60. [RS18] For any integer k > 5 and n > 2k + (dk/2e + 1)dk/2e − 2, there
exist constants c = (1

2
dk

2
e+ 3

2
)k − 2 and C = 2k2 − 6k + 3

2
− dk

2
e(k − 1

2
dk

2
e − 1) such that(

3

2
+

1

2

⌈
k

2

⌉)
n− c 6 sat(n,Rmin(K3, Tk)) 6

(
3

2
+

1

2

⌈
k

2

⌉)
n+ C.

Z.-X. Song and J. Zhang [SZ20] (see also [Zha19]) furthered the study of (Kt, Tk)-
Ramsey-minimal saturated graphs by generalizing the bounds proven for (Kt, Tk) in [RS18]
to larger values of t and k.

Theorem 61. [SZ20] Let t, k ∈ N with t > 4 and k > max{6, t}. There exists a constant
`(t, k) such that, for all n ∈ N with n > (t− 1)(k − 1) + 1, then

sat(n,Rmin(Kt, Tk)) >
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− `(t, k).

Theorem 62. [SZ20] Let t, k ∈ N with t ∈ {4, 5, 6, 7} and k > max{3, 4t − 14}. There
exists a constant c(t, k) such that, for all n ∈ N with n > (t− 1)(k − 1) + 1, then

sat(n,Rmin(Kt, Tk)) >
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− c(t, k).

Song and Zhang also found upper bounds for certain values of n and t.

Theorem 63. [SZ20] For each t ∈ {4, 5} and k > 3 and n > (2t−3)(k−1)+dk/2e dk/2e−
1, then

sat(n,Rmin(Kt, Tk)) 6
(

4t− 9

2
+

1

2

⌈
k

2

⌉)
n− C(t, k),

where

C(t, k) =
1

2
(t2 + t− 5)k2 − (2t2 + 2t− 11)k − (t− 2)(t− 19)

2
− 1

2

⌈
k

2

⌉
((2t− 3)(k − 1)−

⌈
k

2

⌉
).
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This leaves the question of tightening these bounds for all values of t and k.

Problem 24. Determine sat(n,Rmin(Kt, Tk)) for t > 3 and k > 4.

H.M. Davenport [Dav18] took inspiration from the work on (K3, T4)-Ramsey-minimal
saturated graphs: Davenport found the saturation number for Rmin(K3, K1,3). Note that
T4 = {P4, K1,3}.

Theorem 64. [Dav18] For all n > 13, sat(n,Rmin(K3, K1,3)) = 3n− 4.

Davenport furthered this result to stars of any order to obtain bounds for t > 4 and
n sufficiently large.

Theorem 65. [Dav18] For all integers t > 4 and n > 4t+2, there exists c = c(t) such that
sat(n,Rmin(K3, K1,t)) =

(
3
2

+ t
2

)
n+c. Furthermore, t− t

⌊
k
2

⌋
+bk

2
c2−6 6 c 6 t2 +3t−3.

7.2 Rainbow coloring

An edge-coloring of a graph F is rainbow if every edge of F receives a different color.
Let <(F ) denote the set of all rainbow-colored copies of F . A t-edge colored graph G is
<t(F )-saturated if G does not contain a rainbow copy of F but for any edge e ∈ G and
any color i ∈ [t], the addition of e in color i to G produces a rainbow copy of F . We write
sat(n,<t(F )) to denote the minimum number of edges in a t-edge-colored <t(F )-saturated
graph of order n.

The line of investigation of <t(F )-saturated graphs was initiated by M. Barrus, M. Fer-
rara, J. Vandenbussche and P. Wenger [BFVW17], who provided bounds for matchings
and paths, as well as the asymptotic behavior for stars. They also conjectured that
sat(n,<t(Kk)) = Θ(n log n). This conjecture was proven independently by M. Ferrara et
al. [FJL+20], D. Korándi [Kor18], and A. Girão, D. Lewis and K. Popielarz [GaLP20].

Theorem 66. [FJL+20],[Kor18],[GaLP20] For any integers t and k with t >
(
r
2

)
,

sat(n,<t(Kk)) = Θ(n log n).

For a given tree T , Barrus et al. [BFVW17] proved that sat(n,<t(T )) = O(n). More
specifically, we have the following.

Theorem 67. [BFVW17] Let H be a connected k-vertex graph with k > 5. If H has a
vertex v with d(v) = 1 whose neighbor v′ does not have degree k−1, there are two vertices
u and u′ in V (H)\{v, v′} that are not adjacent, and t >

(
k−1

2

)
, then

sat(n,<t(H)) 6

⌈
n

k − 1

⌉(
k − 1

2

)
.

These authors also proved that for t sufficiently large, sat(n,<t(mK2)) = O(1), but it
would be interesting to have a precise value.

Problem 25. Determine precisely sat(n,<t(mK2)) for m > 2.
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Girão, Lewis, and Popielarz [GaLP20] established the magnitudes for the function for
various different structures of graphs, which notably includes the findings on complete
graphs.

Theorem 68. [GaLP20] Let F be a connected graph of order at least 3. Then, for every
t > e(F ), sat(n,<t(F )) equals:

1. Θ(n2), if F is a star.

2. Θ(n log n), if F has a conical vertex but is not a star.

3. Θ(n log n), if every edge of F is in a triangle.

4. Θ(n), if F contains a nonpendant edge that does not belong to a triangle.

5. Θ(n), if F is a Kk with a rotated edge, for some even k > 4.

Girão, Lewis and Popielarz [GaLP20] made the following conjecture when the palate
of colors is infinite.

Conjecture 14. [GaLP20] For any graph F , when the palate of colors is infinite the
number of edges in an <∞(F )-saturated graph is O(n).

In addition to the well-structured graphs considered thus far, various authors have
considered this problem for paths, resulting in the following statements.

Theorem 69. [BFVW17]

1. sat(n,<t(P`)) > n− 1, ` > 4.[BFVW17]

2. sat(n,<t(P4)) = n− 1, t > 8.[BFVW17]

3. sat(n,<t(P`)) 6
⌈

n
`−1

⌉
, t >

(
`−1

2

)
.[BFVW17]

4. sat(n,<t(P`)) 6
⌈

n
`−1

⌉
(
(
`−2

2

)
+ 4), ` > 5 and t > 2`− 5. [CMT20]

While Barrus et al. [BFVW17] have determined bounds for rainbow matchings, van
Oostendorp has determined bounds for rainbow matchings in the Kn,n-setting.

Theorem 70. [vO16] If n > m, then 2m 6 sat(Kn,n,<t(mK2)) 6 4(m− 1).

In [BJR20], N. Bushaw, D. Johnston, and P. Rombach consider a slightly different
rainbow saturation number that is analogous to the rainbow extremal number found
in P. Keevash, D. Mubayi, B. Sudakov and J. Verstraëte [KMSV07]. Instead of what
is considered above, one limits colorings to proper colorings, i.e. so that no two same
colored edges are incident to the same vertex. Such a graph G is referred to as an F -
proper-rainbow-saturated graph, if for all proper colorings of G there is no rainbow copy
of F in G, but for all proper colorings of G + e there is a rainbow F . Bushaw et al.
[BJR20] found lower bounds for the minimum number of edges in such a graph when F
is a complete graph, as well as the orders of magnitudes when F is P4 or C4.
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8 Edge Spectra

Investigations of extremal numbers and saturation numbers led naturally to more general
questions about saturated graphs such as whether there even exist H-saturated graphs
with m edges for m in the interval [sat(n,H), ex(n,H)]. Hence the following definition.

The edge spectrum for H-saturated graphs, denoted by ES(n,H), is defined as the set
of values of m for which there exists an H-saturated graph on n vertices and m edges.
This appears in the literature also as the saturation spectrum of H.

The study of the edge spectrum of graphs began with results on ES(n,K3) [BCF+95a,
Sid93], followed by results on ES(n,K4) ([Ami10, AFG12]), and a complete description
of ES(n,Kp) by K. Amin [Ami10] and K. Amin, J. Faudree, R. Gould and E. Sidorowicz
[AFGS13]. The result was obtained by finding the saturation number and extremal num-
ber for Kp-saturated graphs that are not (p− 1)-partite and then demonstrating that all
integer values between these two numbers are possible. It is an easy calculation to see
that the edge spectrum has gaps near sat(n,Kp) and ex(n,Kp).

Theorem 71. [AFGS13, Ami10] Let p, q, r and n be integers such that p > 3, n > 3p+4,
and n = (p− 1)q + r, where 0 6 r < p− 1. Then there exists a Kp-saturated graph G on
n vertices and size m if and only if G is a complete (p− 1)-partite graph or m satisfies

(p− 1)n− p(p− 1)

2
− 2 6 m 6

n2(p− 2)

2(p− 1)
− n

p− 1
+
r(r + 2)

2(p− 1)
− r

2
+ 1.

For stars, the edge spectrum includes every integer value between sat(n,K1,k) and
ex(n,K1,k) [FFG+17, BD18]; however, gaps exist for all other graphs for which the edge
spectrum has been studied. Paths have received the most study ([GTWZ12, FFG+17,
BD18, GHJT19]). The authors of [FFG+17, BD18] independently demonstrated that
ES(n, Pk) contains all integer values from sat(n, Pk) to near the extremal number, where
[BD18] has a better bound on the upper end of this interval.

Theorem 72. [BD18] Let ε > 0, and let k and n be integers with k > k0(ε) and n > ak,
where ak is defined as in [KT86]. Then for any integer m such that sat(n, Pk) 6 m 6
ex(n, Pk)− (

√
2 + ε)k3/2.

The authors of [BD18, GHJT19] demonstrated that ES(n, Pk) must have a gap just
below the extremal number. In [BD18], the authors determine the size of the second
largest Pk-saturated graphs on n vertices. In [GHJT19], the strategy is to show that
every graph with sufficiently large average degree and sufficiently large minimum degree
must contain certain trees as subgraphs. Consequently, the result in [GHJT19] implies a
gap in the edge spectrum for paths and for a number of other types of trees.

Theorem 73. [GHJT19] Let k > 6. Let Tk be a k-vertex path, broom, or non-star tree
with a vertex adjacent to at least

⌊
k−1

2

⌋
leaves. Let n ≡ 0 (mod k − 1) and m ∈ Z such

that 1 6 m 6
⌊
k−3

2

⌋
− 1. There is no Tk-saturated graph on n vertices with n

k−1

(
k−1

2

)
−m

edges.
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The edge spectrum of several small specific graphs have been studied. The edge
spectrum of K4 − e is completely known, begun in [FG18] and completed by [GHM18].
ES(n,K4 − e) has gaps both above the saturation number and below the extremal num-
ber. The edge spectrum for Kt − e remains open. The edge spectrum for two particular
brooms was determined in [Tho16], where some partial results for the edge spectrum of
general brooms can be found.

9 Saturation Games

Saturation games are yet another area of study in minimum graph saturation that have
roots in the study of the extremal number. The original saturation game studied by
Z. Füredi, D. Reimer, and A. Seress [FRS91] is based on Hajnal’s triangle-free game,
where two players alternate turns drawing edges in an empty graph on a given number
of vertices, where the player that completes a triangle loses. Without other constraints,
the players realize an extremal graph. In saturation games, the game instead leads to
a saturated graph somewhere between the saturation number and the extremal number.
The first saturation game was studied by Füredi, Reimer, and Seress [FRS91], and vari-
ants have been spun by other authors. Eventually, D. Hefetz, M. Krivelevich, A. Naor,
and M. Stojaković [HKNS16] proposed playing saturation games for any monotone graph
property, of which subgraph inclusion would be just one.

9.1 The Triangle-Free Game

To put a saturation twist on the triangle-free game, Füredi, Reimer, and Seress describe
a game that proceeds as follows: starting with the empty graph on n vertices, two players
alternate turns drawing one edge. Neither player is allowed to draw an edge that com-
pletes a triangle. The game ends when the players have drawn a triangle-saturated graph.
The game’s score is the number of edges, and it is of course bounded by the saturation
and extremal numbers. A player named Max, who typically goes first, tries to maximize
the score, while the name Min is given to the other player, who tries to minimize it.
This game can be played for any forbidden subgraph F , and the game saturation number,
written as g-sat(n, F ), is the score resulting from ideal play from each player.

Füredi et al. [FRS91] proved the following result:

Theorem 74. [FRS91]

g-sat(n,K3) >
n log2(n)

2
− 2n log2(log2(n)) +O(n).

This result is a consequence of a simple strategy by Max to ensure that the graph
contains a matching of size bn

2
c and another result from the same paper.

the electronic journal of combinatorics (2021), #DS19 37



Theorem 75. [FRS91] If a maximal triangle-free graph contains a matching of size v,
then it contains at least

v log2(v)− 4v log2(log2(v)) + Θ(n)

edges.

It is interesting to note that this game actually motivated the study of the function
sat∆(n,F) (where F = {K3}, originally); see Section 2.

Füredi, Reimer, and Seress reports a result that Erdős claimed in private communica-
tion, the proof of which has been lost. No alternate proof has been created either, leaving
us with the problem of discovering one.

Conjecture 15. (claimed result of Erdős reported in [FRS91])

g-sat(n,K3) 6
n2

5

The work of [FRS91] remains open to improvement. The game saturation number for
the original saturation game remains unknown.

Problem 26. Determine g-sat(n,K3).

C. Biró, P. Horn, and J. Wildstrom [BHW16] revived the study of the triangle-free
game, and it was these authors that originated the term game saturation number. They
obtained a lower bound for g-sat(n,K3) by following Max’s strategy of creating copies of
C5. Their work does not improve on the lower bound of [FRS91], but it reveals a strategy:
to search for unavoidable configurations that lead to a desired ending, and essentially find
the game saturation number equivalent of the few T copies generalization. Their work
leaves us with the following theorem.

Theorem 76. [BHW16] In the triangle-avoiding saturation game, Max can always, re-
gardless of Min’s actions, play so as to create bn−2

11
c disjoint copies of C5.

The authors also give us an upper bound for the game saturation number:

Theorem 77. [BHW16]

g-sat(n,K3) 6
26n2

121
+ o(n2).

9.2 Other forbidden graphs

D. Cranston, W. Kinnersley, S. O, and D. West [CKOW13] first generalized the saturation
game to other forbidden subgraphs. Also, instead of making Max the first player to
move, investigating either player starting. These authors focus on the P3-saturation game,
and they call the game saturation number for this graph the game matching number, as
maximal matchings end the game. Analogously to alternate host graphs in the usual
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setting (see Section 6), in a host graph G � Kn, we write g-sat(G,F). First off, it turns
out that the choice of starting player makes little difference to the outcome of this game,
although this does not hold true for many other games. Pursuant to their notation, a
caret is added, and ˆg-sat(n,F) indicates the game saturation number in the version of
the game where Min starts.

Theorem 78. [CKOW13] For any graph G and vertex v ∈ V (G),

1. |g-sat(G,P3)− ˆg-sat(n, P3)| 6 1,

2. g-sat(G,P3) > g-sat(G− v, P3), and

3. ˆg-sat(G,P3) > ˆg-sat(G− v, P3).

Notice that the last two items tell us that the game matching number is monotone
with respect to inclusion in the vertex set. Newer scholarship, discussed in a later sub-
section, extends games to any forbidden monotone property.

[CKOW13] gives a condition for the game matching number to simply be the size of
the maximum matching.

Theorem 79. [CKOW13] Let G be a graph on n vertices with a maximum matching M ,
which has size m, and let u, u′, v, v′ ∈ V (G). If uv ∈ E(G) implies u′v′ ∈ E(G) whenever
uu′, vv′ ∈M , then g-sat(G,P3) = ˆg-sat(G,P3) = m.

This nice condition leads to a cleaner corollary, that follows from the definition of a
graph cartesian product.

Corollary 1. [CKOW13] For n > 1 and any graph H, Max can force a perfect matching
in Kn,n�H regardless of who plays first.

Moving on from our look into the game matching number, Spiro [Spi19] studies the
problem where the forbidden subgraphs are odd cycles of order at least nine.

Theorem 80. [Spi19] For k > 4,

(
1

4
− 1

4k2
)n2 + o(n2) 6 g-sat(n, C2k+1) 6 (

1

4
− 1

206k4
)n2 + o(n2),

where C2k+1 is the family of all odd cycles with length at most 2k + 1.

Theorem 80 does not include C5 and C3 in the family, but this is because Spiro
discoverd an even broader result. A quadratic lower bound is possible for any family of
non-bipartite graphs that contains both C3 and C5.

Theorem 81. [Spi19] For any family C of non-bipartite graphs with {C3, C5} ⊆ C,

g-sat(n, C) > 6

25
n2 + o(n2).
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Note that although this may look like an improvement on the first theorem of this sec-
tion, it does not apply to the original triangle saturation game since C5 must be included as
a forbidden configuration as well. Spiro [Spi19] attacked the problem by dividing the game
into phases where Min’s best strategy is different than in the other phases of the game,
building off of the thinking of [BHW16]. Just like Biró, Horn, and Wildstrom[BHW16],
Spiro [Spi19] finds results limited to the opening, leaving uncertainty in the endgame.

Finally, Spiro leaves us with some suggestions to extend the research of his paper.

Conjecture 16. [Spi19] For all k > 1, there exists a constant ck > 0 such that

g-sat(n, C2k+1) 6 (
1

4
− ck)n2 + o(n2).

Conjecture 17. [Spi19] For all k > 2 and n sufficiently large,

g-sat(n, C2k−1) 6 g-sat(n, C2k+1).

We arrive at a problem inspired by surprising results: as shown by Carraher, Kinnersly,
Reiniger, and West [CKRW17], and Spiro [Spi19], the inclusion of C3 in the family of all
odd cycles, O, makes a big difference to the game saturation number.

Theorem 82. [CKRW17] For k > 1,

g-sat(n,O) = b1
4
n2c = ex(n, C2k+1).

Theorem 83. [Spi19] For k > 1,

g-sat(n,O \ {C3}) 6 2n− 2.

The question arises from the natural wonder if the inclusion of other odd cycles in this
family is similarly as important.

Question 6. [Spi19] What is the order of magnitude of g-sat(n,O \ {C5}), where k > 1?

Spiro has one more result, which is a bit narrower, focusing on one cycle at a time
rather than omitting all or nearly all odd cycles. For any one odd cycle C5 or larger
omitted, the game saturation number is quadratic in n. We direct the reader to Spiro’s
paper [Spi19], which is more specific.

Moving on, Lee and Riet [LR15] prove several precise, specific results using various
trees and paths as the forbidden configurations, building off of [CKOW13]. Building off
that same paper, Carraher, Kinnersley, Reiniger, and West [CKRW17] studied similar
topics, extending them to Min starting the game. We begin with the most basic results.

Theorem 84. [LR15] For all n > 5,

1.
4n

5
− 14

5
6 g-sat(n, P4) 6

4n

5
+ 1.
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2.
n− 1 6 g-sat(n, P5) 6 n+ 2.

Theorem 85. [CKRW17] For n > 6,

g-sat(n, Tn) = ˆg-sat(n, Tn) =

(
n− 2

2

)
+ 1.

Smaller cases are resolved as well. Cases where n 6 3 are trivial, and in the cases of
n = 4 and n = 5, Max has an advantage starting since g-sat(5, T5) = 6 and g-sat(4, T4) =
3, but ˆg-sat(n, Tk) follows the pattern as above in those cases [CKRW17]. The authors
invite the reader to note that Max is able to push these two cases all the way to the
extremal number.

For more results involving trees and stars, we direct the reader to [LR15], [CKRW17].
Carraher et al. have a complete, precise result for K1,3, as follows.

Theorem 86. [CKRW17] For positive integer n,

g-sat(n,K1,3) =

{
n if n ∈ {3, 7} ∪ 2N \ {2}
n− 1 otherwise,

ˆg-sat(n,K1,3) =

{
n− 1 if n ∈ {1} ∪ 2N \ {4}
n otherwise.

Finally, Lee and Riet introduced another variant of the game: Max is permitted to
skip a turn (but, naturally Min does not gain what would be an overwhelming advantage).
For this game saturation number, we write satg−P (n,F).

Theorem 87. [LR15] For all n > k,

n(k − 2)

4
6 satg−P (n, Pk) 6

n(k − 1)

2
.

Problem 27. [LR15] Investigate satg−P (n,F).

Carraher et al. [CKRW17] also studied the P4-saturation game in the complete bipar-
tite host graph, and determined the game saturation numbers exactly.

Theorem 88. [CKRW17] For m > n > 2,

g-sat(Km,n, P4) =


n when n is even

m when n is odd but m is even

m+ bn
2
c when mn is odd,

ˆg-sat(Km,n, P4) =


m when n 6 2

m+ bn
2
c when n > 2 and mn is even

m+ bn
2
c − 1 when n > 2 and mn is odd.

This is the first example we’ve seen of when the score of the game depends a lot on
who plays first.
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9.3 Further generalization to properties

A further generalization is to saturation with respect to other properties, such as connec-
tion number or chromatic number. D. Hefetz, M. Krivelevich, A. Naor, and M. Stojaković
[HKNS16] devise notation for this: the saturation game starting of the empty graph on
n vertices where the players, an edge minimizer and and edge maximizer, must avoid a
monotone graph property P , is simply written (n,P). For example, if G is the graph the
players are building at any point in the process, the game of Füredi, Reimer, and Seress
would be written as (n,K3 ⊆ G). For the game (n,P), the game saturation number here
will be written g-sat(n,P), with the Min-first variant written analogously. We present a
few quick looks into some properties that have been studied.

9.3.1 Connection number

Hefetz et al. first proved some results on the vertex connection number version of the
saturation game.

Theorem 89. [HKNS16] For all k > 5 and sufficiently large n,

g-sat(n,Ck) >

(
n

2

)
− (k − 1)(2k − 4)(n− (k − 1)(2k − 3))

where Ck is the property of being k-vertex connected and spanning.

They also have a result where the subtracted term is linear in k but polynomial in n
rather than polynomial in k and linear in n.

Theorem 90. [HKNS16] For all positive integers k and sufficiently large n,

g-sat(n,Ck) >

(
n

2

)
− 5kn3/2

where Ck is the property of being k-vertex connected and spanning.

9.3.2 Chromatic number

Colorability saturation games were studied by J. Carraher. W. Kinnersley, B. Reiniger
and D. West [CKRW17], Hefetz et al. [HKNS16], and R. Keusch [Keu18]. This area
of study is about g-sat(n, χ>k); the players are forbidden edges that would make the
resulting graph require k+1 or more colors for a proper (vertex) coloring. It is important
to note that the final graph in this game is always k-partite. For the 3-coloring version,
Hefetz et al.[HKNS16] partition the vertices of the graph the players are building into
3 sets (although not necessarily the parts of the graph that make it tripartite): the
“top,” the vertices that are the same color as some (fixed) arbitrary vertex, “middle,”
the neighborhood of the top, and “bottom,” which is everything else. Min’s strategy is
heavily influenced by the desire to prevent an edge from being drawn between vertices
that are (at that moment) in the bottom set. For this version of the game, they find that
although Max can push the score almost to the extremal number, but Min can keep the
score smaller by a non-negligible fraction.
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Theorem 91. [HKNS16]

g-sat(n, χ>3) 6
21n2

64
+O(n).

[HKNS16] also extended this work to all k, with the following result.

Theorem 92. [HKNS16] There exists a real number C such that

g-sat(n, χ>3) > (1− C log k/k)

(
n

2

)
holds for every positive integer k and sufficiently large n.

9.3.3 Hamiltonicity

Finally, Hefetz et al. [HKNS16] suggest a new property for game study, Hamiltonicity.
They use the symbol H to mean the property of admitting a Hamiltonian cycle, but for
consistency, we will write the game saturation number for this case as g-sat(n,Cn). The
saturation number for Hamiltonicity is known, due to [LJZY97]. In light of this, Hefetz
et al. [HKNS16] conjecture the following.

Conjecture 18. [HKNS16]
g-sat(n,Cn) = Θ(n2).

10 Weak saturation

We now discuss the related notion of weakly saturated graphs. To do so, we first introduce
some definitions and terminology.

Let kF (G) count the number of copies of F in G; if F = Kp we will write kp(G) in
place of kKp(G). We say that an n-vertex graph G is weakly F -saturated if there is a
nested sequence of graphs G = G0 ⊂ G1 ⊂ . . . ⊂ Gl = Kn such that Gi has exactly
one more edge than Gi−1 for 1 6 i 6 l and kF (G0) < kF (G1) < . . . < kF (Gl). That
is, G is weakly F -saturated if we can add the missing edges of G one at a time and
each edge we add creates at least one new copy of F . Of course, we are interested in
the minimum size of a weakly F -saturated n-vertex graph, w-sat(n, F ). Corresponding
to this, an n-vertex graph that is weakly F -saturated and has w-sat(n, F ) edges is said
to be a member of W -sat(n, F ). The notion of weak saturation appears to have been
introduced by B. Bollobás [Bol68]. In his paper he states that the problem of determining
the saturation number for k-uniform hypergraphs with k > 3 motivated the concept.

We first note that w-sat(n, F ) 6 sat(n, F ) as any F -saturated graph is also weakly
F -saturated. Of course, the first instance of the problem considered is when F = Kp.
Bollobás [Bol68] showed that for 3 6 p < 7 we have w-sat(n,Kp) = sat(n,Kp) (see
Theorem 1). Bollobás also conjectured that equality holds for at least some larger values
of p, and later conjectured [Bol78] (see page 362) that equality holds for all p. The
conjecture was confirmed by L. Lovász [Lov77] using flats of matroids representable over
fields.
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Theorem 93. For integers n and p, we have w-sat(n,Kp) = sat(n,Kp).

This result is of interest since the corresponding result in Turán extremal theory was
such a key result, but it is also of great interest because of the many different proofs and
mathematical tools used in the proofs. The different proofs found later included P. Frankl
[Fra82], N. Alon [Alo85] and J. Yu [Yu93]. All of these proofs came from extremal results
on pairs of families of sets with certain interesting properties that were then applied
to obtain proofs of the conjecture of Bollobás on weakly Kp-saturated graphs. (For a
statement of this more general result and discussion on how it implies the conjecture, see
[GGL95] page 1274.)

Bollobás’ conjecture was also proved via two additional and different methods of
G. Kalai in [Kal84] and [Kal85]. The first proof, which we give below, is based on the
fact that an embedding of a weakly Kp-saturated graph G in Rp−2 with vertices in gen-
eral position is rigid (continuous deformation of adjacent vertices preserving distance also
preserves distance for all vertices). This, along with the fact that a graph G of order n
with less than (p− 2)n−

(
p−1

2

)
edges embedded in Rp−2 is flexible (not rigid), completes

the proof.
To give G. Kalai’s proof we need a few definitions. Given a graph G on vertex set

{1, 2, . . . , n}, a d-embedding G(v) of G is a sequence of n points in Rd, v = (v1, v2, . . . , vn),
together with the line segments [vi, vj], for {i, j} ∈ E(G). We say that G(v) is rigid if
any continuous deformation (v1(t), v2(t), . . . , vn(t)) of (v1, v2, . . . , vn) that preserves the
distance between every pair of adjacent vertices, preserves the distance between any pair
of vertices. G(v) is flexible if it is not rigid.

Proof of Theorem 93 as given by G. Kalai [Kal84]:
Suppose G is a weakly Kp-saturated graph, with G = G0 ⊂ G1 ⊂ · · · ⊂ Gl = Kn such

that Gi has exactly one more edge than Gi−1 for 1 6 i 6 l and kp(G0) < kp(G1) < · · · <
kp(Gl). We first show that every embedding of G into Rp−2, such that the vertices are in
general position, is rigid. Suppose that v1, v2, . . . , vn are n points in general position in
Rp−2, and consider G(v). Note that Gl(v) = Kn(v) is rigid. Assume Gi+1(v) is rigid, and
suppose that Gi = Gi+1−e, where e = {µ, ν} belongs to a Kp of Gi+1. Every embedding of
Kp−e in Rp−2, with vertices in general position, is rigid. Thus, any continuous deformation
of Gi(v) preserves the distance between vµ and vν , and so is a continuous deformation
of Gi+1(v). By the assumption the deformation preserves the distances between any two
vertices of Gi(v). Repeated application of this argument shows that G(v) = G0(v) is
rigid.

Now we take advantage of the fact that if G is a graph of order n and fewer than
(p− 2)n−

(
p−1

2

)
edges, then G(v) is flexible. �

The second proof [Kal85] introduced the notion of hyperconnectivity in matroids.
Kalai defined a matroid Hn

k on the set of edges of the complete graph on n vertices. A
graph G on the same vertex set is k-hyperconnected if the set of its edges span Hn

k . Kalai
showed that the rank of Hn

p−2 equals (p−2)n−
(
p−1

2

)
and that Kp corresponds to a circuit

in Hn
p−2. Now, let e be any non-edge in a (weakly) Kp-saturated graph G. Since the

addition of e yields a copy of Kp, the edges of G span e and consequently the entire
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matroid. That is, G must be (p − 2)-hyperconnected. Thus such a graph has at least
(p−2)n−

(
p−1

2

)
edges. The ideas introduced here were later used by O. Pikhurko [Pik01c],

see Theorem 95.
In fact, we know even more — that is, we know that equality also holds for the

complete k-uniform hypergraph [Lov77], [Fra82], [Kal84], [Kal85], [Alo85].
However, it is not the case that equality always holds! For instance, sat(n,C4) =

b3n−5
2
c (see Section 3) while w-sat(n,C4) = n (note that for n odd Cn is weakly C4-

saturated and for n even the graph obtained from Cn−1 by appending an edge is weakly
C4-saturated). It is also interesting to note that while there exists a unique K3-saturated
graph of minimum size, this is not the case for weakly K3-saturated graphs. Here, the
set of all n-vertex trees comprise W -sat(n,K3). This pattern repeats itself for many
graphs. This gives an indication that, here too, the determination of w-sat(n, F ) might
be challenging. In addition, Zs. Tuza [Tuz88] points out that the behavior of w-sat(n, F )
and sat(n, F ) differ significantly if F is relatively sparse.

Question 7. [Tuz88] Are there necessary and/or sufficient conditions for w-sat(n, F ) to
equal sat(n, F )?

Let Hk(p, q) denote the family of all k-uniform hypergraphs with p vertices and q
edges. Tuza [Tuz88] conjectured that w-sat(n,Hk(k + 1, q)) =

(
n−k−2+q

q−2

)
. (Note that as

Hk(k + 1, k + 1) consists only of the complete k-uniform hypergraph on k + 1 vertices,
this instance of the conjecture is solved by Theorem 93.) As a first step towards this
conjecture, P. Erdős, Z. Füredi, and Zs. Tuza [EFT91] gave the following result.

Theorem 94. [EFT91] For n > k > 2, w-sat(n,Hk(k + 1, 3)) = n− k + 1.

They left open the problem of determining W -sat(n,Hk(k + 1, 3)), but this was later
solved by O. Pikhurko [Pik01b]. In a different paper [Pik01c], Pikhurko made further
progress. To state these results we must introduce a new type of graph.

Let sequences k = (k1, . . . , kt) of nonnegative integers and P1, . . . , Pt of disjoint sets
of sizes p = (p1, . . . , pt) be given. Define [t] = {1, . . . , t} and, for I ⊆ [t], we write kI in
place of

∑
i∈I ki and PI in place of ∪i∈IPi; also, we assume k0 = 0, P0 = ∅, etc. Then the

pyramid ∆ = ∆(p; k) is the k-graph, k = k[t], on P = P[t] such that E is an edge of ∆ if
and only if, for every i ∈ [t], we have |E ∩ P[i]| > k[i].

Theorem 95. [Pik01c] Suppose we are given two non-empty sequences p = (p1, . . . , pt)
and k = (k1, . . . , kt) of integers such that pi > ki > 1 for i ∈ [t]. Then

w-sat(n,∆(p; k)) =
∑
k′

(
n− p[t] + kt

k′t+1

)∏
i∈[t]

(
pi + ki−1 − ki

k′i

)
, n > p[t],

where the summation is taken over all sequences of nonnegative integers
k′ = (k′1, . . . , k

′
t+1) such that k′[t+1] = k[t] and, for some i ∈ [t], k′[i] > k[i−1].

Now, let us examine the many cases covered by this theorem. First, for t = 1 the
graph ∆(p; k) is the k-uniform complete hypergraph on p vertices. Thus, this theorem
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confirms Bollobás’ conjecture in the case k = 2 and its generalization for k > 3. In the
case of k = 2, i.e. graphs, it gives a new result for split graphs (consider ∆(p1, p2; 1, 1).
And, Theorem 95 confirms Tuza’s conjecture as the only graph in Hk(k + 1, q) is the
pyramid graph ∆(k − q + 1, q; k − q + 1, q − 1).

In [Pik01b] Pikhurko gives a construction of an Hk(p, q)-saturated graph which he
conjectures to be minimum. This conjecture remains open.

R. Faudree, R. Gould, and M. Jacobson [FGJ13] deal with sparse graphs, which is one
set of cases where w-sat(n,F) and sat(n,F) act very differently.

Theorem 96. [FGJ13] Let F be a graph on p vertices with q edges, and with δ(F ) = δ.
Then

1.

q − 1 +
(δ − 1)(n− p)

2
6 w-sat(n, F ) 6 (δ − 1)n+

(p− 1)(p− 2δ)

2

for any n > p.

2.
δn

2
− n

δ + 1
6 w-sat(n, F ) 6 (δ − 1)n+

(p− 1)(p− 2δ)

2

for sufficiently large n.

Faudree, Gould, and Jacobson [FGJ13] also determine w-sat(n, F ) when F is K5 − e
and K2,3. Shortly thereafter, R. Faudree and R. Gould [FG14] determine the value of
w-sat(n, F ) when F consists of disjoint copies of (usually) the same graph. This includes:
k(K5 − 2K2), k(K1,t), k(Kp), k(Cl), and others, where k(F ) denotes the disjoint union of
k copies of the graph F . In a set of two papers [CP16], [CP19], the authors Y. Cui and
L. Pu extend the results of Faudree et al. and answer some of the problems they posed.
Cui and Pu determined the value of w-sat(n, F ) when F is k(Kp − 2K2), k(Kp − K1,m)
[CP16] and K2,p, KptKq [CP19]. Together these authors leave us to consider the following
problem.

Problem 28. Investigate w-sat(n, k(Kp − sK2)).

We now turn to a beautiful method introduced in 2012 by J. Balogh, B. Bollobás,
R. Morris and O. Riordan [BBMR12]. The method is a dimension argument and is
reminiscent of the linear algebra method developed and used for many other combinatorial
arguments. The statement we give here is not the full statement, but is sufficient for our
purposes.

Lemma 2. [J. Balogh, B. Bollobás, R. Morris, O. Riordan [BBMR12]] Let F be a graph
and let W be a vector space. Suppose that there exists a set {he : e ∈ E(Kn)} ⊆ W
such that for every copy F ′ of F there are nonzero scalars {ce,F ′ : e ∈ E(F ′)} such that∑

e∈E(F ′) ce,F ′he = 0. Then

w-sat(n, F ) > dim(span{he : e ∈ E(H)}).
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To make use of this lemma to prove a lower bound, which is most often the more
difficult bound to obtain, one must assign vectors to edges so that those on copies of
F satisfy a particular dependence relation. Further, in order for this lower bound to be
worthy of our consideration, the set of vectors should also have a large span. As noted
by G. Kronenberg, T. Martins, and N. Morrison [KMM21], what this lemma does is that
it turns the problem of computing a lower bound for the weak saturation number into a
constructive problem.

The method allowed for the consideration of one of the most natural of questions that
had gone unanswered for so long: what is w-sat(n,Kt,t)? When G is a spanning graph,
an exact value is given by G. Kronenberg, T. Martins, and N. Morrison [KMM21].

First they show that the graph Gn, which consists of an independent set of size t− 1
joined toKt∪(n−2t+1)K1, is a spanning weaklyKt,t-saturated graph and thus provides an
upper bound on w-sat(n,Kt,t). To find lower bound for a spanning graph in W -sat(n,Kt,t)
that implements an application of Theorem 2 they construct a family of vectors {he :
e ∈ E(Kn)} in a vector space such that: (1) for any copy F of Kt,t in Kn, the vectors
{he : e ∈ E(F )} have a non-trivial dependence; (2) the subset of vectors {he : e ∈ E(Gn)}
are linearly independent.

Theorem 97. [KMM21] Let t > 2 and n > 3t− 3. If G is a spanning graph and weakly
Kt,t-saturated, then

|E(G)| = (t− 1)(n+ 1− t/2).

As a consequence of Theorem 97, they also obtain the following.

Corollary 2. [KMM21] Let t > 2 and n > 3t − 3. If G is a spanning graph and weakly
Kt,t+1-saturated, then

|E(G)| = (t− 1)(n+ 1− t/2) + 1.

Kronenberg et al. also prove the following.

Theorem 98. [KMM21] Let 2 6 s < t and n > 4t. If G is a spanning graph and weakly
Ks,t-saturated, then

|E(G)| = n(s− 1) + c(s, t),

where c(s, t) is an integer depending only on s and t.

Kronenberg, Martins and Morrison generalize the spanning graph Gn providing a
graph that is weakly Kt,...,t-saturated and leave us with the problem of determining
whether this is optimal. They also pose the following.

Question 8. [KMM21] What is the minimum number of edges in a weakly Kt1,...,tk-
saturated spanning graph?
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10.1 Host graphs other than Kn

Let H be a host graph. We say that an n-vertex graph G is weakly F -saturated if there
is a nested sequence of graphs G = G0 ⊂ G1 ⊂ · · · ⊂ Gl = H such that Gi has exactly
one more edge than Gi−1 for 1 6 i 6 l and kF (G0) < kF (G1) < · · · < kF (Gl). That is,
G is weakly F -saturated if we can add the missing edges of G in H one at a time and
each edge we add creates at least one new copy of F . Of course, we are interested in the
minimum size of a weakly F -saturated graph in H, w-sat(H,F ). Corresponding to this,
an n-vertex graph that is weakly F -saturated and has w-sat(H,F ) edges is said to be a
member of W -sat(H,F ).

Morrison, Noel, and Scott studied saturation in the hypercube, and when studying
weak-saturation, found results for a more general type of graph: the grid graph. Useful
in establishing their results, Morrison et al. make use of a generalization of Theorem 2.

Theorem 99. [MNS17] For n > m > 1,

w-sat(Qn, Qm) = (m− 1))2n −
m−2∑
i=0

(m− 1− i)
(
d

i

)
.

Morrison, Noel, and Scott [MNS17] define a new parameter, w-sat∗(H,F ), which is
the weak saturation number in the host graph H with the forbidden configuration F , but
where the only graphs that may be considered must be spanning subgraphs; this is the
minimum number of edges of a spanning subgraph G ⊂ H that is F -free such that there
exists an ordering of E(H)\E(G) where adding the edges to G in that order creates a new
copy of F each time. This is relevant to this hypercube saturation problem because clearly
no higher-dimensional hypercube could be created by the addition of an edge incident at
a vertex with no other edges incident at it yet.

Theorem 100. [MNS17] For k > r > 2 and n > m > 1,

w-sat∗(P n
k , P

m
r ) =

n∑
j=0

n−j∑
i=0

(m− 1 + i)

(
n

j

)(
n− j
i

)
(k − j(r − 2)i

−
m−2∑
j=0

n−j∑
i=0

(m− 1− j)
(
n

j

)(
n− j
i

)
(k − r + 1)j(r − 2)i

where 00 = 1.

Morrison and Noel also obtained an exact expression in the hypercube host graph for
weak saturation with stars [MN18].

Theorem 101. [MN18] If d > r, then

w-sat(Qn, K1,r+1) = r2r+1 +
r−1∑
j=1

(
d− j − 1

r − j

)
j2j−1.
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Also, Morrison and Noel provide a generalized result for the graph Pa1� . . .�Pad .

Theorem 102. [MN18] For d > r > 1 and ai > 2 for all i, we have that
w-sat(P1� . . .�Pd, K1,r+1) equals

∑
S⊆{i:ai is defined},|S|6r−1

(
∏
i∈S

(ai − 2))((r − |S|)2r−|S|−1) +

r−|S|−1∑
j=1

(
d− |S| − j − 1

r − |S| − j

)
j2j−1).

One of the implications of the work of Moshkovitz and Shapira [MS15] is to weakly
Kt,t-saturated subgraphs of Km,m. They use a skew version of Bollobás set-pair method
discussed in the Introduction. Kronenberg, Martins, and Morrison [KMM21] generalized
their result (and proof) to the case of weakly Ks,t-saturated subgraphs of K`,m.

Theorem 103. [MS15], [KMM21] Let 2 6 s 6 `,t 6 m. Then

w-sat(K`,m, Ks,t) = (m+ `− s+ 1)(s− 1) + (t− s)2.

Kronenberg, Martins, and Morrison point out a connection to the complete graph
setting.

Corollary 3. [KMM21] When t > 2, n > 3t− 3, and `,m > 2 such that `+m = n,

w-sat(n,Kt,t) = w-sat(K`,m, Kt,t) +

(
t

2

)
.

D. Korándi and B. Sudakov [KS17] began the study of weak saturation in Erdős-
Rényi random graphs. Let G(n, p) denote the Erdős-Rényi random graph on n vertices,
with each pair of vertices having probability p that an edge will link them. Korándi and
Sudakov’s main result is as follows.

Theorem 104. [KS17] Let p ∈ (0, 1) be a constant probability and let s > 3 be an integer.
Then,

w-sat(G(n, p), Ks) = (s− 2)n−
(
s− 1

2

)
with high probability as n tends to infinity.

Korándi and Sudakov give the following problem.

Problem 29. [KS17] Determine the exact probability range when w-sat(G(n, p), Ks) =
(s− 2)n−

(
s−1

2

)
.

M. Bidgoli, A. Mohammadian, B. Tayfeh-Rezaie, and M. Zhukovksi [BMTRZ20] found
a threshold function to address this question. They proved that there is a threshold
probability, and established bounds.
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Theorem 105. [BMTRZ20] Let s > 3 be a fixed integer. Also, let

qs(n) = n−
2
s+1

(ln(n)
2

(s−2)(s+1) )

and let

cs = [2(1− 1

s+ 1
)(s− 2)!]

2
(s+1)(s−2) .

There exists some probability a such that

w-sat(G(n, p), Ks) = (s− 2)n−
(
s− 1

2

)
with high probability whenever p > a, and

w-sat(G(n, p), Ks) 6= (s− 2)n−
(
s− 1

2

)
with high probability whenever p < a.

Furthermore, csqs(n) < a < n−
1

2s−3 (ln(n))2.

10.2 Asymptotics

When exact determination of the function w-sat(n, F ) is unknown, we may turn to the
following result of Zs. Tuza [Tuz92] for an estimation. Prior to stating the estimation,
we must introduce a graph invariant which as Tuza points out is a ‘local’ parameter of
the graph F . This is in contrast to the chromatic number, a global parameter, which
controls the asymptotic behavior of the extremal number as told to us by the theorem of
Erdős-Stone-Simonovits.

We assume that F is a k-uniform hypergraph with at least two edges. For an edge
E ∈ E(F ) the sparseness of an edge s(E) is the smallest natural number s for which there
is an E∗ ⊆ E with |E∗| = s + 1 such that E∗ ⊆ E ′ ∈ E(F ) implies E ′ = E (i.e. a set
which uniquely determines the edge); if E is a subset of some other edge of F , then we put
s(F ) := |F |. The local sparseness of the hypergraph F s(F ) is the min{s(E) : E ∈ E(F )}.
Note that 1 6 s(F ) 6 k − 1 for all k-uniform hypergraphs.

Theorem 106. [Tuz92] For every k-uniform hypergraph F , w-sat(n, F ) = Θ(ns(F )).

Tuza suggests that this statement might be refined, and thus offers the following.

Conjecture 19. [Tuz92] For some positive constant c = c(F ), we have

w-sat(n, F ) = cns(F ) +O(ns(F )−1).

The results in [Alo85] yield w-sat(n, F ) = cn+ o(n) in the case of s(F ) = 1.
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10.3 Other results

When F is the set of all minimal forbidden subgraphs of some hereditary property P ,
some results for w-sat(n,F) have been obtained. Such hereditary properties include k-
degeneracy and bounded maximum degree. For results of this type, we refer the reader to
work by G. Semanǐsin [Sem97], M. Borowiecki and E. Sidorowicz [BS02], and E. Sidorow-
icz [Sid07].

11 Bootstrap Percolation

Sometimes, papers on weak saturation will also have results on a mechanism called boot-
strap percolation, which we formally introduce here. A bootstrap percolation on a graph
G is a sequence of functions (ηt) where η : V (G) → {0, 1}, and ηt is determined entirely
by ηt−1: if and only if its (neighborhood) parameter r or more neighbors of a vertex v
map to 1 by ηt−1, or if v maps to 1 itself under that function, then v maps to 1 under ηt.
Thus, the entire sequence is determined by the initial state η0 and the graph G. Weak
saturation is a form of edge bootstrap percolation. A bootstrap percolation is defined
to be spanning (or it spans the graph), or it is said to percolate if every vertex eventu-
ally maps to 1. A vertex, or site is “occupied,” “active,” or “infected” if and only if it
maps to 1, and likewise “empty,” “vacant,” “passive,” “inactive,” or “healthy” otherwise.
Bootstrap percolation is often studied in lattices, of which the hypercube is a special
case. A random bootstrap percolation refers to a bootstrap percolation where vertices are
randomly infected at the beginning with a given probability, independent of the status of
other vertices. Random bootstrap percolations are the norm to study, so the “random”
quality is often left unspecified.

Addressing intuition, it is indeed the case in any graph, with any neighborhood pa-
rameter r, that the probability that a random bootstrap percolation is spanning is strictly
increasing with p, the probability of a vertex being initially infected. Weak saturation has
been reimagined as a bootstrap process on the edges of graphs, and is sometimes written
about in the language of bootstrap percolation, often using the words r-bond bootstrap
percolation, which translates to weak saturation with stars, and H-bootstrap percolation,
which is weak saturation with a graph H, in that whenever a new copy of H can be made,
it is. In both of these cases, however, the edges are not necessarily added one at a time,
although this is irrelevant to most results.

Bootstrap percolation was first coined as a term by J. Chalupa, P. Leath, and G. Reich
[CLR79], who studied the Bethe lattice to inform research on metamagnets. In the original
model, sites could become uninfected, making it more like Conway’s Game of Life than
bootstrap percolation as in this survey. Bootstrap percolation as a topic was studied in
a computer science setting as well [AL88]. Finally, J. Balogh, B. Bollobás, and R. Morris
[BBM12] point out that a sociological modeling of mass decision-making is relevant to
bootstrap percolation [Gra78]. In this particular model, each site is a potential mob
member, and the assumption is that the more mob-ready the people around someone
are, the more mob-ready they will become themselves. This model proposed the idea
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of different vertices having different individual neighborhood parameters, to take into
account that some people will more readily join a mob than others, but a process like
that has not been studied.

11.1 Threshold and Critical Probabilities

We start by introducing the founding works of bootstrap percolation. J. Balogh and
B. Bollobás [BB06] studied the threshold functions of random bootstrap percolations.
Specifically, they seek a function Φ for each graph G and parameter r that gives the
probability that a random bootstrap percolation with probability p is spanning. When
unable, they seek thresholds probability functions p0 and p1: a lower threshold p0 where,
with high probability, such a random bootstrap percolation is not spanning, and an up-
per threshold p1, where, with high probability, such a random bootstrap percolation is
spanning.

Theorem 107. [BB06] For bootstrap percolation on G ∼= P n
2
∼= {0, 1}n ∼= Qn, with

neighborhood parameter r = 2, 2−2
√
n

150n2 is a lower threshold function, and 5000·2−2
√
n

n2 is an
upper threshold function.

Balogh and Bollobás [BB06] used initially spanned subcubes of the hypercube to
prove their thresholds. This result shows us the order of the threshold functions in the

commonly-studied hypercube; they are both Θ(2
√
n

n2 ).

Instead of the threshold probabilities, the critical probability, where the probability
that a vertex will be initially infected is such that the probability that the ensuing boot-
strap percolation is spanning is 0.5, has also been studied. J. Balogh, B. Bollobás, and
R. Morris [BBM09] write this as p 1

2
; and in general write P (G, r, p) for the probability

that a random initially infected set percolates (completely) in a graph G with parameter r
and probability p, and then that pα(G, r) = inf{p : P (G, r, p) > α}. Confusingly, p 1

2
= pc

is also sometimes termed a threshold. Balogh, Bollobás, and Morris [BBM09] extended
this to the 3-dimensional case; in P 3

n , and with neighborhood parameter r = 3.

Theorem 108. [BBM09] Let λ ≈ 0.4039.

pc(P
3
n , 3) =

λ+ o(1)

ln lnn
.

This is a smaller case of a more general result, with λ defined in r and d, where d is
the dimension of the grid; the case above uses λ(3, 3). This more general result is due to
J. Balogh, B. Bollobás, H. Duminil-Copin, and R. Morris [BBDCM12]. First, a definition
for λ(d, r) is necessary. First, let

βk(u) =
1− (1− u)k +

√
1 + (4u− 2)(1− u)k + (1− u)2k

2
.

Using that, let
gk(w) = − ln(βk(1− e−w)).
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Finally, for 2 6 r 6 d, let

λ(d, r) =

∫ ∞
0

gr−1(zd−r+1)dz.

Now, we can state the theorem.

Theorem 109. [BBDCM12] For 2 6 r 6 d,

pc(P
d
n , r) = (

λ(d, r) + o(1)

lnr−1(n)
)d−r+1

where lna indicates the natural logarithm iterated a times; ln1(n) = ln(n) and lna+1(n) =
ln(lna(n)).

They used cartesian products of grids to set up their proof by induction on r.

Balogh, Bollobás, and Morris [BBM10] examined the asymptotics of bootstrap perco-
lation in grids. First, we need an equation of theirs.

∞∑
k=0

(−1)kλk

2k2−kk!
= 0 (2)

The smallest positive root of Equation (2) is λ ≈ 1.16577.

Theorem 110. [BBM10] For sufficiently large d and λ as above,

16λ

d2
(1 +

log2 d√
d

)2−2
√
d 6 pc(P

d
2 , 2) 6

16λ

d2
(1 +

5(log2 d)2

√
d

)2−2
√
d.

Here, log2 indicates not iterated evaluation of the logarithm but simply the base 2
logarithm. They also present a more specific result, where r = 2:

Theorem 111. [BBM10] Let n = n(d) be a function with 1 6 log2(n) 6 d as d → ∞.
Then, with λ ≈ 1.166 as above,

pc(P
d
n , 2) = (4λ+ o(1))(

n

d(n− 1)
)2(2−2

√
d log2(n)).

J. Balogh and B. Pittel [BP07] used Markov chains and modeling with differential
equations to find threshold results for r-neighbor bootstrap percolation in the random d-
regular graph on n vertices, which they write as Gn,d. Their work uses a concept applied
to this narrow situation with the following definition:

p∗ = 1− infy∈(0,1)
y

P(Bin(d− 1, 1− y) < r)
,

where Bin(d − 1, 1 − y) is the binomially distributed random variable with parameters
d− 1 and 1− y. p still refers to the probability that a vertex was initially infected.
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Theorem 112. [BP07] Suppose that 2 6 k < d − 1. Let ω = ω(n) → ∞ slowly enough
that log(ω(n)) = o(log(n)).

1. If p > p∗ + ωn−1/2, then with high probability as n grows, a set of size pn percolates
in Gn,d.

2. If p 6 p∗ − ωn−1/2, then with high probability as n grows, a set of size pn does not
percolate in Gn,d.

Balogh and Pittel questioned whether the general number of vertices that remain
uninfected can be determined in the G(n, d) setting.

Theorem 113. [BP07]

1. Suppose p − p∗ > n−ε, where ε = ε(n) → 0 and ε log(n) → ∞. Then, with high
probability as n grows, the number of vertices that remain uninfected in Gn,d is

O((p− p∗)−3/2).

2. Let p 6 p∗ − ωn−σ, where σ = 1
2d+10

, and let ω = ω(n) → ∞ slowly enough that
log(ω(n)) = o(log(n)). Then, with high probability as n grows, a set of size pn will
not percolate in Gn,d.

11.2 Minimum percolating sets

A natural problem with a more saturation-like flavor is the study of the smallest possi-
ble percolating set. Balogh and Bollobás introduced this topic with a conjecture which
N. Morrison and J. Noel [MN18] proved. This topic uses m(G, r) to indicate the smallest
possible percolating set in a graph G using neighborhood parameter r.

Theorem 114. [MN18] Proving the conjecture of [BB06], let r > 3 be fixed. Then, as
d→∞,

m(Qd, r) = (
1

r
+ o(1))

(
d

r − 1

)
.

M. Przykucki and T. Shelton [PS19] provide another basic result, giving the smallest
percolating set in any grid.

Theorem 115. [PS19] For all integer n, d > 1, m(P d
n , d) = nd−1.

Balogh, Bollobás, Morris, and Riordan use a different generalization of hypercubes,
a sort of rook graph that they write Kd

n. To avoid possible confusion with balanced
complete bipartite graphs, we will write ∗Kd

n to mean the rook graph which has the same
vertex set as P d

n . For vertices u and v, uv is an edge not only if they differ in exactly 1
coordinate any amount, not just a difference of 1. They introduce generalizations of ∗Kd

n

and P d
n to the hypergraph setting; K(n, d, t, r), which has the same vertex set as ∗Kd

n,
and its hyperedges are all sets S = I1 × · · · × Id where r of the sets Ij are of size t and
the remaining d− r of them are singletons. P(n, d, t, r) is defined similarly, except the r
non-singleton sets are intervals in the grid. Note briefly that P(n, d, t, r) ⊂ K(n, d, t, r).
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Theorem 116. [BBMR12] For every n > t > 2 and d > r > 1,

m(K(n, d, t, r)) = m(P(n, d, t, r)) =
r−1∑
s=0

(
d

s

)
(t− 1)d−s(n+ 1− t)s.

The reader may have noticed that a bootstrap percolation with parameter r functions
similarly to weak saturation with a star of r+ 1 points, the only essential difference being
that in weak saturation, only one vertex is “added” at a time (by being connected as part
of a star), but all applicable vertices are infected at once in the bootstrap process on the
vertices. Morrison and Noel [MN18] point out an important link between m(G, r) and
w-sat(G,K1,r+1).

Lemma 3. [MN18]

m(G, r) >
w-sat(G,K1,r+1)

r
.

It was this that allowed them to prove their results in both weak saturation and
r-neighbor bootstrap percolation.

As mentioned at the beginning of the subsection, Morrison and Noel proved the suspi-
cion of Balogh, Bollobás, Morris, and Riordan. They propose several questions to follow
up on their results.

Question 9. [MN18] For fixed r > 4, does

lim
d→∞

m(Qd, r)− dr−1

r!

dr−2

converge? If so, what is the limit?

Question 10. [MN18] For fixed r > 4, is it true that

m(Qd, r) = 2r−1 + d
r−1∑
j=1

(
d− j − 1

r − j

)
j2j−1

r
e

for sufficiently large d?

Morrison and Noel furnish an exact result as well for r = 3:

Theorem 117. [MN18] For d > 3, m(Qd, 3) = dd(d+3)
6
e+ 1.

Indeed, even just the next case is open:

Problem 30. [MN18] Determine m(Qd, 4) for all d > 4.

Problem 31. [MN18] Determine m(Qd, r) for all d > 4 and r > 4.

L. Hambardzumyan, H. Hatami, and Y. Qian [HHQ20] study weak saturation, but it
can be linked by Morrison and Noel’s bridge [MN18]. Their results and proof are outlined
in detail below, with r-bond bootstrap percolation.
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11.3 Bootstrap Percolation on Edges and Graphs

Morrison and Noel’s bridge shows how bootstrap percolation and weak saturation are
closely related. In fact, sometimes a process is studied that is effectively weak saturation,
which is called in general H-bootstrap percolation. By this process, wherever in some
graph, there is a copy of H − e for any edge e, that edge is added to the graph. A special
case of this, termed r-bond bootstrap percolation, is defined as the bootstrap process on
edges where, when r adjacent edges to an edge are infected, it becomes infected; this
is K1,r+1-bootstrap percolation. The only way these processes are different from weak
saturation is that the definition we use of weak saturation describes an ordering of edges
to be added in, but in these processes, the ordering does not matter. We may as well
be adding many edges at once. What sets these apart from study on weak saturation is
that the focus of study is on topics more related to bootstrap percolation, such as critical
probabilities, especially in random graphs.

The results and proofs use a common characteristic of the configuration H that per-
colates. The symbol λ, in the context of H-bootstrap percolation, is defined as follows.

λ =
|E(H)| − 2

|V (H)| − 2
.

Balogh, Boolobás, and Morris [BBM12] found bounds on the critical probability for
Kr-bootstrap percolation, which Bartha and Kolesnik [BK21] improved on.

Theorem 118. [BK21] For r > 5,

pc(n,Kr) = Θ(n−1/λ).

The result of Balogh, Bolobás, and Morris included a bound for when r = 4, on
the order O(nn

−1/λ log(n)). The same authors also bounded pc(n,K4); it is Θ((n log n)− 1
2
).

Some simple results bounding the critical probability are known, specifically on cycles,
graphs with leaves, and r-clique trees, which have stars at the center with mutually disjoint
copies of Kr at each vertex. These are due again to [BBM12].

Finally, we have some open problems, all due to Balogh, Bollobás, and Morris.

Problem 32. [BBM12] Determine limn→∞
log(pc(n,H))

logn
for every graph H.

Problem 33. [BBM12] Characterize graphs H for which the probability p that H perco-
lates in G(n, p) has a sharp threshold.

Problem 34. [BBM12] Determine pc(n,Ks,t), up to a poly-logarithmic factor.

Problem 35. [BBM12] Find bounds for pc(n,G(k, 1
2
)) which hold with high probability as

k →∞.

the electronic journal of combinatorics (2021), #DS19 56



11.3.1 Weak Saturation, Bootstrap Percolation, and the Polynomial Method

L. Hambardzumyan, H. Hatami, and Y. Qian [HHQ20] used the polynomial method
and algebraic techniques to study r-bond bootstrap percolation, which is also applica-
ble to weak saturation with stars. The parameter they study, the smallest percolating
set of edges, me(G, r), to mirror the analogous parameter for vertices, is the same as
w-sat(G,K1,r+1).

Before we examine the proof, we need a key definition.

Definition 1. Let r be a non-negative integer, let G be a graph, and let c : E(G) → R
be a proper edge coloring of G. Let W r

G,c be the vector space consisting of functions
Φ : E(G) → R that meet the following requirement: there exists a set of univariate
polynomials {pv ∈ R[x] : v ∈ V (G)} such that

1. ∀v ∈ V (G), deg(pv) 6 r − 1;

2. ∀uv ∈ E(G), pu(cuv) = pv(cuv) = Φ(uv).

Then, the set of polynomials {pv : v ∈ V (G)} is said to recognize Φ.

Let’s now state the theorem and investigate the proof:

Theorem 119. [HHQ20] Let c : E(G)→ R be a proper edge coloring of a graph G, and
let r > 0 be an integer. Then,

me(G, r) = w-sat(G,K1,r+1)) > dim(W r
G,c).

The theorem gives a lower bound for weak saturation number with stars of any size
in any host graph from only a proper edge coloring of the host graph. By Morrison
and Noel’s [MN18] bridge, mentioned above, we can adapt this to a statement about
r-neighbor bootstrap percolation.

Corollary 4. [HHQ20]
dim(W r

G,c)

r
6 m(G, r)

with W r
G,c defined as above for any graph G with non-negative integer r equipped with a

proper edge coloring c : E(G)→ R.

Proof of Theorem 119: [HHQ20] Let F ⊆ E(G) be a percolating set for the r-bond
bootstrap process in G. The idea is that if Φ ∈ W r

G,c satisfies Φ(e) = 0 for all e ∈ E(G),
then Φ ≡ 0, which implies

W r
G,c ∩ {Φ : E(G)→ R |Φ(e) = 0∀e ∈ F} = {0},

which implies

dim(W r
G,c) 6 |E(G)| − dim({Φ : E(G)→ R |Φ(e) = 0∀e ∈ F}),
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= |E(G)| − (|E(G)| − |F |) = |F |

which is the lower bound that was sought. Since F is a percolating set, there must be ele-
ments of F in every nontrivial component of G. By the definition of W r

G,c, Φ(e1) = Φ(e2)
for any pair of neighboring edges, so in fact all edges in the same component must have
the same image under Φ. Since ∃e : e ∈ F and e ∈ H for every nontrivial compo-
nent H ⊆ G, every edge of G must map to 0 under Φ if F is a percolating set, which
means Φ[E(G)] = 0 and so Φ ≡ 0. Then dim(W r

G,c) 6 |E(G)| since it is a subspace of
{Φ|Φ : E(G)→ R}, which has dimension |E(G)|. {Φ : E(G)→ R |Φ(e) = 0∀e ∈ F} has
dimension |E(G)| − |F | since a basis for it would be the set of characteristic functions for
each edge (mapping each edge to 0 except one of them), of which there are |E(G)| − |F |.
This is the example the authors use to show the bound is sharp.�

If there are no edges with r−1 or more other coincident edges, there could be no non-
trivial percolation r-bond bootstrap percolation and so it is appropriate that the lower
bound turns out to be the indeterminate form 0, as there is no way to guarantee solutions
to the equation pv = 0 for any v ∈ V (G), since even with a proper edge coloring, there
may not be enough colors for the domain of pv = 0. This is why r does not need to be
given an upper bound for which the theorem is valid. Otherwise, of course, if there is
an edge with r − 1 or more coincident edges, then the proper edge coloring c must have
|c[E(G)]| > r, and the Nullstellensatz guarantees that finding such set of polynomials
that recognize Φ is possible.

What the polynomial method gives us in this proof is the helpful assurance that this
lower bound is not always 0; whenever there exist such univariate polynomials, the lower
bound is nonzero.

The authors used this process to find the smallest percolating sets for cartesian prod-
ucts of cycles and paths, tori and grids, respectively.

11.4 Percolation Time

One aspect of bootstrap percolation that we have not examined is the number of time
steps that it would take for percolation to play out. This is one of the aspects of bootstrap
percolation that makes it different than just weak saturation with stars or weak saturation
with vertices instead of edges; many things can happen at once (instead of just one edge
being added at a time with weak saturation), and the number of steps is an interesting part
to study. Przykucki and Shelton [PS19] examined this aspect. In bootstrap percolation,
the closure of a set of vertices with parameter r is the set of all vertices that are eventually
infected by the r-neighbor bootstrap percolation starting from that set, denoted 〈A〉r for
A ⊆ V (G) in a graph G. The percolation time for a set A is written T (A). Przykucki
and Shelton write md(n) to indicate min{T (A) : 〈A〉d = P d

n , |A| = nd−1}.

Theorem 120. [PS19] Where G ∼= P d
n
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1. mG,1(n) = dn
2
e,

2. mG,2(n) = n− 1, and

3. for all d > 3,
dn

2
+O(1) 6 mG,d(n) 6 (d+ 2)n2 + n.

Based on numerical simulations, the authors expect that mP dn ,d
(n) = Θ(n2) for d > 3.

Question 11. [PS19] Is mP dn ,d
(n) = Θ(n2) for d > 3?

They also wonder about tori Tdn.

Question 12. [PS19] What is the value of mTdn,d for d > 3?

12 Few Copies of H in an F -saturated graph

A generalization of the extremal number, ex(n, F ), introduced by N. Alon and C. Shikhel-
man [AS16], counts the maximum number of copies of a graph H in an n-vertex F -free
graph. Observe that when H = K2 this count is ex(n, F ). Motivated by Alon and Shikhel-
man [AS16], J. Kritschgau, A. Methuku, M. Tait, and C. Timmons [KMTT20] investigated
the analogous generalization of the saturation number.

We write sat(n,H, F ) for the minimum number of copies of the graph H in an n-
vertex F -saturated graph. Thus, sat(n, F ) = sat(n,K2, F ) and if F ⊆ H, then trivially
sat(n,H, F ) = 0.

This initial paper by Kritschgau et al. [KMTT20] contains 16 theorems and propo-
sitions, most of which concern various combinations of complete graphs and cycles and
would be a good place for the interested reader to begin. Unlike the classic saturation
number, the generalized saturation number is not necessarily bounded above by a lin-
ear function of n, (Theorem 121), though for complete graphs a linear bound does hold
(Proposition 1).

Theorem 121. [KMTT20] Let s > 5 and r 6 2s − 4 in the case that r is even, or
r 6 4s−4

3
in the case that r is odd. Then, sat(n,Cr, Ks) = Θ(nbr/2c).

Proposition 1. [KMTT20] Let n > 1 and r > 2 be integers. For any graph F , there is
a constant C = C(r, F ) such that sat(n,Kr, F ) < Cn.

It is an easy observation that a sufficiently large complete bipartite graph is C2k+1-
saturated and contains no odd cycle; thus, sat(n,C2r+1, C2s+1) = 0 for integers r, s and n
sufficiently large. Kritschgau et al. [KMTT20] proved sat(n,C3, Ck) = 0 for any k > 5
and sufficiently large n. Following this, Timmons [Tim19] constructed Cr-free graphs that
are C2k-saturated for any odd r > 5 giving the following Theorem.

Theorem 122. [Tim19] For any odd integer r > 5 and any 2k > r+5, sat(n,Cr, C2k) = 0
for all n > 2kr.
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Curiously, this leaves the case of sat(n,C3, C4) still unresolved. Additionally, instances
where the target cycle, Crr is even are not well understood. Some general bounds and
some results on small order cases can be found in [KMTT20].

Problem 36. [KMTT20] Determine if sat(n,C3, C4) > 0 for infinitely many n.

Problem 37. [KMTT20] Determine if sat(n,C4, C6) > 0 for infinitely many n.

Upper and lower bounds for sat(n,Kr, Ks) were established in [KMTT20] along with
a conjecture that has already been settled in the affirmative by D. Chakraborti and P.-
S. Loh [CL20].

Theorem 123. [KMTT20, CL20] For every s > r > 2, there exists a constant nr,s such
that for all n > nr,s, we have sat(n,Kr, Ks) = (n − s + 2)

(
s−1
r−1

)
+
(
s−2
r

)
. Moreover, there

exists a constant cr,s > 0, such that the only Ks-saturated graph with up to sat(n,Kr, Ks)−
cr,s many copies of Kr is Ks−2 +Kn−s+2.

The previous theorem requires n to be sufficiently large; for ‘small’ n the value of
sat(n,Kr, Ks) remains open. The second statement also raises the question of the range
of values for sat(n,Kr, Ks).

Problem 38. [CL20] For 3 6 r < s and all values of n, determine the exact value of
sat(n,Kr, Ks).

Problem 39. [CL20] For 3 6 r < s, determine the range of possible numbers of copies
of Kr in an n-vertex Ks-saturated graph.

Several results for specific small-order cases can be found in [KMTT20]; the one below,
in particular, has motived results analogous to that of [Day17] in Section 2.

Theorem 124. [KMTT20] For n > 7, sat(n,K3, K4) = n − 2. Furthermore, the only
n-vertex K4-saturated graph with n−2 triangles is the join of an edge and an independent
set of n− 2 vertices.

Observe that the unique extremal graph from the previous theorem has minimum
degree 2. Motivated by this observation and building on the work relating minimum
degree and saturation number by [Day17], C. Timmons, B. Cole, A. Curry, and D. Davini
[TCCD20] began investigating the minimum number of copies of a graph H in an F -
saturated n-vertex graph with minimum degree t, denoted satt(n,H, F ). A selection of
the many results on satt(n,Kr, Ks) from [TCCD20] follow.

Theorem 125. [TCCD20] For n > 14, sat4(n,K3, K4) = 2n− 4. For t > 4 and n > 2t,
satt(n,K3, K4) 6 2n+ 2t− 12.

Conjecture 20. [TCCD20] For an integer t > 4, there is an integer nt such that for all
n > nt, satt(n,K3, K4) = 2n+ 2t− 12.
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In the case that t = 4, Cole et al. have identified the unique family of extremal graphs
and conjectured a similar type of extremal family for a general t. They also established
an upper bound for arbitrary t, Kr and Ks; no general lower bound exists.

Theorem 126. [TCCD20] Let 3 6 r < s and t > 2(s − 2) + 1 be integers. For n >
2(s − 2) + 2t, satt(n,Kr, Ks) 6

(
s−2
r−1

)
2r−1n + Cs,r,t where Cs,r,t is a constant depending

only on s, r, and t.

At the end of a paper on rainbow saturation appearing in Section 7, N. Bushaw,
D. Johnston, and P. Rombach [BJR20] defined a generalized rainbow saturation number
to be the minimum number of copies of the graph F in any rainbow H-saturated graph
and suggested the following problem.

Problem 40. [BJR20] Determine the minimum number of copies of the graph F in any
rainbow H-saturated graph.

13 Induced Saturation

This section considers generalizations of classical graph saturation to saturation on in-
duced graphs. A natural first attempt would be to say a graph G is F -induced saturated
if G contains no induced copy of F but the addition of any edge gives an induced copy
of F in G. Unfortunately, this definition has the problem that there exist target graphs
F and values of n such that every n-vertex graph G either fails to be induced-F -free or
contains an edge e ∈ G such that G + e has no induced copy of F. (A simple example is
F = K1,3 and n = 4.)

As as way around this issue, R. Martin and J. Smith [MS12] adopted the use of
trigraphs.

A trigraph T is a quadruple (V (T ), Eb(T ), Ew(T ), Eg(T )) where V (T ) is the vertex
set and the other three sets form a partition of

(
V (T )

2

)
into a set of black edges (Eb(T )), a

set of white edges (Ew(T )), and a set of gray edges (Eg(T )). These are viewed as edges
in T , nonedges in T and potential edges of T , respectively.

Observe that if Eg(T ) = ∅, then T is a graph.
A realization of a trigraph T is any graph G with vertex set V (T ) such that E(G) =

Eb(T ) ∪ S, where S ⊆ Eg(T ). Intuitively, a realization of T is a graph obtained from T
by starting with the edge set of T (black edges) and adding any subset of the gray edges
to form G.

A trigraph T is F -induced-saturated if no realization of T contains F as an induced
subgraph, but F occurs as an induced subgraph of some realization whenever any black
or white edge is changed to gray.

The induced saturation number of F with respect to n, indsat(n, F ), is defined to be
the minimum number of gray edges in an n-vertex trigraph that is F -induced-saturated.
It should be clear that given any graph F , the n-vertex trigraph T such that all edges
are gray contains a realization of F provided |V (F )| 6 |V (T )|; thus, indsat(n, F ) is
well-defined.

the electronic journal of combinatorics (2021), #DS19 61



Moreover, if indsat(n, F ) = 0, it follows that there does indeed exist an F -induced-
saturated graph on n vertices. To be clear, such a graph would have the property that
it contains no induced copy of F but adding any new edge or deleting any existing edge
would result in a graph containg an induced copy of F. In this case, it makes sense to
look for F -induced-saturated graphs with a minimum number of edges. S. Beherens, C.
Erbes, M. Santana, D. Yager, and E. Yeager defined the parameter indsat∗(n, F ) to be
the minimum number of edges in an F -induced-saturated graph under the condition that
indsat(n, F ) = 0.

Martin and Smith, who began the investigation into induced saturation in [MS12],
established several foundational results. For example, indsat(n, F ) 6 sat(n, F ) for any
graph F and positive integers n > |V (F )| since, given graph G ∈ Sat(n, F ), replacing all
edges of G with gray edges forms an F -induced-saturated trigraph T. Since cliques are
always induced, indsat(n,Kp) = sat(n,Kp). Finally, they used F ∼= Kp − e to establish
that there are some F for which indsat(n, F ) 6= sat(n, F ).

Perhaps because it is an easy observation that there exist Pk-induced-saturated graphs
for k = 2, 3, paths have received much attention, with the first result from Martin et al.

Theorem 127. [MS12] For all n > 4, indsat(n, P4) = dn+1
3
e.

Observe that this result establishes that there do not exist P4-induced-saturated graphs
which raised the question of whether there exist Pk-induced-saturated graphs for paths
on more than 4 vertices. The combined work of E. Räty [R2̈0], E.-K. Cho, I. Choi, and
B. Park [CCP21], M. Bonamy, C. Groenland, N. Morrison and A. Scott [BGMS20], and
V. Dvor̆ák [Dvo20] showed that there are induced Pk-saturated graphs for k > 5.

Räty begun work on this problem by mapping a graph to a finite field of order 16 to
prove the result for k = 6. Cho, Choi, and Park extended Räty’s method to all paths
on 3k vertices after observing that the Petersen graph is induced P6-saturated. This
observation prompted Dvor̆ák to construct induced P6-saturated for all n > 6 with larger
graphs that resemble the Petersen graph. Bonamy, Groenland, Morrison, and Scott used
brute-force to find induced P5-saturated graphs, none of which are as small or structured
as the Petersen-like graphs of Dvor̆ák might lead one to expect.

Theorem 128. [R2̈0] [CCP21] [BGMS20] [Dvo20] For all integers k > 2 with k 6= 4,
there exists an induced Pk-saturated graph.

Problem 41. Investigate indsat(n,F) for F 6= Pk.

Another interesting problem is if Dvor̆ák’s Petersen graph-like constructions are edge-
minimal for any n. Here are examples of Dvor̆ák’s constructions, directly from the paper:
[Dvo20]
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The leftmost of these is induced P6-saturated; the next is induced P7-saturated, and the
last is induced P8-saturated. Notice that graphs of this type that are induced Pk-saturated
can be constructed by starting with a clique on k − 1 vertices, removing a cycle, adding
exactly one pendant vertex adjacent to each vertex of what was the clique, and then
linking the pendant vertices with a cycle in the order of the cycle among their neighbors
that was deleted at the beginning. These graphs have (k−1)(k−2)

2
+ k − 1 edges.

Question 13. Is indsat∗(2(k − 1), Pk) = (k−1)(k−2)
2

+ k − 1 for k > 6?

Thanks to Behrens et al. [BES+16], we know the graphs K1,n, nK2, C3, C4, C2k−1,
C ′2k and C̃2k have induced saturation number zero for n > 2 and k > 3, meaning that
induced saturated graphs exist for all of those as forbidden configurations. Axenovich
and Csikos [AC19] introduced two new classes of graphs such that for a graph F in one
of these classes, there exists an F -induced-saturated graph G that is a Cartesian product
of cliques. The first, F(n) with n > 3, is all graphs F with a cut vertex v of degree n+ 1
such that F −v has n+1 connected components, each of which is an induced subgraph of
n

� Kk for some k 6 n− 1. The other is J (n), graphs J that can be obtained as the union

of graphs F ′′ and T such that F ′′ is an induced subgraph of
n

� Kk for some k 6 n−1, T is
the union of n+ 1 paths Pn+2 that all intersect at an endpoint, and |V (F ′′)∩V (T )| = V ′,
where V ′ is the set of leaves of T [AC19].

Now, knowing that a graph F of one of these types has indsat(n, F ) = 0, a natural
next step is to determine indsat∗(n, F ). Behrens et al. have proven bounds for many of
these, and solved the smallest case of K1,3 for n ≡ 0, 1 mod 3.

Problem 42. [AC19] Determine indsat∗(n, F ) for F chosen from the above classes of
graphs.

C. Tennenhouse [Ten16], on the other hand, studied induced saturation as formulated
in the first paragraph of this section. Given a target graph F and a parent graph G, we
say G is F -induced-saturated if G has no induced copy of F but the addition of any edge
e ∈ G to G results in an induced copy of F . Unlike the earlier formulations where edges
were added or deleted, in this formulation edges can only be added but never removed,
to create the forbidden configuration. Also, recall that one is not guaranteed such a
graph G exists. Thus, the work in [Ten16] consists mostly of establishing the existence
of induced F -saturated graphs under this definition. The author finds examples of F -
induced-saturated graphs when F consists of certain path, cycles and K1,3. In particular,
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Tennenhouse used an infinite family of cubic hamiltonian graphs discovered by Lederberg,
Coxeter, and Frucht, denoted as [x,−x]a, to show that there exist induced P9+6k-saturated
graph for any integer k > 0. As for other values of k, Tennenhouse gives examples of
graphs that are Pk-induced saturated up to k = 30. Results for cycles and K1,3 follow.

Theorem 129. [Ten16] If k > 3 and n > 3(k−2), then there exists a (non-edge-removing)
induced Ck-saturated graph of order n.

The lower bound for n is due to Tennenhouse’s construction. Joining arbitrarily large
cliques to the graph creates a new non-removing induced saturated graph on arbitrarily
many more vertices.

Question 14. [Ten16] Does there exist an induced Ck-saturated graph of order n when
n < 3(k − 2)?

Theorem 130. [Ten16] For all n > 12, there is a graph on n vertices that is (non-edge-
removing) induced K1.3-saturated

14 Irregularity of the sat-function

The function sat(n,F), in general, is not monotone with respect to n or F . Turán’s
extremal function is monotone with respect to n and F . That is, for F ′ ⊆ F and F ′ ⊆ F
the following inequalities hold for every n.

ex(n, F ′) 6 ex(n, F ) (3)

ex(n,F) 6 ex(n,F ′) (4)

ex(n,F) 6 ex(n+ 1,F) (5)

If we replace ex by sat in each of the above inequalities, then for F ′ ⊆ F and F ′ ⊆ F
we need not have a true statement. Prior to giving examples that illustrate when these
inequalities fail, we note that the failure to be monotone makes proving statements about
sat(n,F) difficult. In particular, inductive arguments generally do not work — this may
also be due to the non-uniqueness of the extremal graphs; for example, see the result
on K2,2 [Oll72] or [Che11]. The failure to be monotone also may explain the scarcity
of results for sat(n,F), but in the authors’ collective opinion makes the function an
interesting study.

To see that the sat-function is not, in general, monotone with respect to subgraphs,
consider the ‘irregular pair’ as given by O. Pikhurko [Pik04], and that answered a question
of Zs. Tuza [Tuz92] about the existence of a connected spanning subgraph F ′ of subgraph
F . Let F ′ = K1,m and F = K1,m + e, where e joins two vertices in the m-set. Then
sat(n, F ) 6 n − 1 as K1,n−1 serves as an extremal graph. However, sat(n, F ′) is strictly
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larger for n large enough as seen by Theorem 25. Even in the class of trees, this monotone
property fails at a very high level, and was observed in Section 4 (see [FFGJ09a]).

To see that the sat-function is not, in general, monotone with respect to subfamilies,
consider F = {K1,m, K1,m + e} and F ′ = {K1,m + e}. Then sat(n,F) = sat(n,K1,m) >
n − 1, but sat(n,F ′) 6 n − 1. (Note that for any F ′ ⊂ F, F, F ′ ∈ F then sat(n,F) =
sat(n,F \ F ).)

To see that the sat-function is not, in general, monotone in n, consider when F = P4.
By a result in [KT86], we have sat(2k − 1, P4) = k + 1 > sat(2k, P4) = k.

As a result of this ‘irregularity’, Zs. Tuza [Tuz86] (more readily available in [Tuz88])
made the following conjecture.

Conjecture 21. [Tuz86],[Tuz88] For every graph F , the limit limn→∞
sat(n,F )

n
exists.

Some progress towards settling this conjecture has been made, both in the positive and
negative direction. However, the conjecture still remains open. We first give statements
in the positive direction.

Theorem 131. [TT91] Let F be a graph. If lim infn→∞
sat(n,F )

n
< 1, then limn→∞

sat(n,F )
n

exists and is equal to 1− 1
p
, for some positive integer p.

A characterization of graphs for which limn→∞
sat(n,F )

n
= 1− 1

p
for any given p is given

in terms of connected components. Unfortunately, this characterization ‘grows’ with p.
In the characterization tree components of F play a role. Thus, Tuza gave the following
problem.

Question 15. [Tuz88] Which trees T satisfy limn→∞
sat(n,T )

n
< 1?

Towards the negative direction of settling Conjecture 21, O. Pikhurko [Pik99a] showed

that there exists an infinite family F of graphs for which limn→∞
sat(n,F)

n
does not exist.

Later, in [Pik04] he improved this to show that for every integer m > 4 there exists a

family F consisting of m graphs (i.e. a family of size m) for which limn→∞
sat(n,F)

n
does

not exist, and suggested that his approach might be altered to yield a smaller family.
Indeed, D. Chakraborti and P.-S. Loh [CL20] found a smaller family.

Theorem 132. [CL20] There exist infinitely many families F containing three graphs

such that limn→∞
sat(n,F)

n
does not exist.

In light of these results, one might ask the following.

Question 16. [CL20] Does there exist a singleton family of graphs F = {F} such that

limn→∞
sat(n,F)

n
does not exist?

An affirmative answer is equivalent to disproving Conjecture 21.
Their work also extends into the few H copies generalization. See Section 12 for more

details and relevant definitions.
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Theorem 133. [CL20] There exist infinitely many families F containing exactly three
graphs such that limn→∞ sat(n,Kp,F) does not exist.

Theorem 134. [CL20] For all r > 5, there exists a graph F such that sat(n,Cr, F ) = 0
for infinitely many n and also sat(n,Cr, F ) > 0 for infinitely many n.

N. Behague [Beh18] shows how the work on Tuza’s conjecture can be generalized to
hypergraphs.

Theorem 135. [Beh18]

1. For all k > 2 there exists a family F of k-uniform hypergraphs and a constant ck ∈ N
such that

sat(n,F) =

{
O(n) if ck|n
Ω(nk−1) if ck - n

2. ck = 2 is an option for any k.

The irregular behavior this shows is that sat(n,F) does not necessarily have a limit
as n grows large for any family F .

Behague also generalizes Pikhurko’s results to hypergraphs.

Theorem 136. [Beh18] For all r > 3, there exists a family F of four k-uniform hyper-

graphs such that limn→∞
sat(n,F)
nk−1 does not exist.

This result makes progress towards the following generalization of Conjecture 21 due
to O. Pikhurko [Pik99b].

Conjecture 22. [Pik99b] For every k-uniform hypergraph F , the limit limn→∞
sat(n,F )
nk−1

exists.

N. Behague (see Section 5 of [Beh18]) proposes a graph that might serve as a coun-
terexample to this conjecture.

We now make some additional comments unrelated to Conjecture 21.
In Section 7 we encounter the following notions. An edge-coloring of a graph F is

rainbow if every edge of F receives a different color. Let <(F ) denote the set of all
rainbow-colored copies of F . A t-edge colored graph G is <t(F )-saturated if G does not
contain a rainbow copy of F but for any edge e ∈ G and any color i ∈ [t], the addition
of e in color i to G produces a rainbow copy of F . We write sat(n,<t(F )) to denote the
minimum number of edges in a t-edge-colored <t(F )-saturated graph of order n. Ferrara
et al. [FJL+20] find that sat(n,<t(F )) is not monotone with respect to inclusion as a
subgraph in F . These authors investigate other notions of monotonicity with respect to
<t(F )-saturated graphs.

Lastly, we mention that G. Semanǐsin [Sem97] has given certain instances under which
the sat-function is monotone and uses these to prove some inequalities and estimations.
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15 Graphs with directed edges

We now briefly focus our attention on graphs with directed edges. (Our focus is brief as
the number of results is fairly limited. We restrict our attention to graphs; the only result
for hypergraphs that we are aware of is given in [Pik99a],[Pik99b].)

Investigation in this direction began with Zs. Tuza [Tuz86] (he presented further results
and a summary of earlier results in the more readily available [Tuz88]). We begin with
some definitions found in [Pik99b]. Let C be a class of objects, with a binary relation ⊆.
A member G of the class C is F -admissible if, for every F ∈ F , G does not contain F as
a sub-object. Then we denote the family of maximal F -admissible objects of order n by
SAT (n,F). G, of order n, is called F -saturated if G ∈ SAT (n,F), and if, in addition, G
has minimum size, we say it has size sat(n,F).

O. Pikhurko [Pik99b] (cf. Section 4) asked if the order estimates given above (see
Theorem 2 and Theorem 37) remain valid for the class of directed graphs. That is, for
directed graphs do we have sat(n,F) = O(n)? He pointed out that, in general, the answer
is no. As an immediate consequence to the main result of Z. Füredi, P. Horak, C. Pareek,
and X. Zhu [FHPZ98], we have that sat(n,C3) > O(n log n) (where C3 has directed edges
12, 23 and 31); that is, the order estimate is super-linear! The results of these authors do
not provide an upper bound (their constructions contain copies of C3), and so we pose
the following.

Problem 43. In the class of directed graphs determine a good upper bound for sat(n,C3).

O. Pikhurko [Pik99b] did show that the order estimates do remain valid under certain
conditions. He considered the class of cycle-free directed graphs. A graph is cycle-free if
it does not contain a cycle, in other words, there is no alternating sequence of vertices
and edges (x1, e1, x2, e2, . . . , xl, el, xl+1 = x1) such that xixi+1 = ei. So within the class
of cycle-free directed graphs, a graph G is F -saturated if it contains no F ∈ F but the
addition of any directed edge creates a copy of some F ∈ F or a directed cycle.

Theorem 137. [Pik99b] In the class of cycle-free directed graphs sat(n,F) = O(n) for
any family F of cycle-free graphs.

In addition, M. Jacobson and C. Tennenhouse [JT12] considered sat(n, F ) and showed
that SAT (n, F ) is non-empty for any F . They also give values and estimates for sat(n, Pk),
where all arcs of Pk point in the ‘same direction’. Similar results were given earlier by
S. van Aardt, J. Dunbar, M. Frick, and O. Oellermann [vAFDO09].

16 Saturation in partially ordered sets

A partially ordered set (or poset) consists of a set P and a binary relation 6 which is
reflexive, transitive, and antisymmetric and is denoted P = (P,6). A poset P ′ = (P ′,6′)
is a subposet of P = (P,6) if there exists an injective function f : P ′ → P such that for
every u′, v′ ∈ P ′ if u′ 6′ v′ then f(u′) 6 f(v′) in P .
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The n-dimensional Boolean Lattice, Bn, will denote the poset (2[n],⊆) where [n] =
{1, 2, · · · , n} and the elements of 2[n] are ordered by inclusion. If a subposet F of Bn does
not contain some poset P as a subposet, we say that F is P-free.

Let P and Q be subposets of Bn where we think of P as the host poset and Q as the
target poset. We say P is Q-semisaturated if for every S ∈ 2[n]−P , the poset P ∪S (with
order inherited from Bn) contains additional copies of Q. We say P is Q-saturated if P is
semi-saturated and Q-free.

Let s-sat(Bn,Q) denote the smallest size of |P | for P ⊆ Bn such that P = (P,⊆) is
Q-semi-saturated. Let sat(Bn,Q) denote the smallest size of |P | such that P = (P,⊆) is
Q-saturated.

The definitions and properties presented in this subsection could be translated into the
language of hypergraphs provided edges of cardinality 0 and 1 are allowed. The notation
and language used in this section is quite different from that used in the cited papers for
several reasons. The use of the modifier weak is used many different ways in the papers
referenced here; for this survey we have reserved its use to that in Section 10. Also, we
rephrase the notion of inheriting a k-Sperner property in the more tradition language of
saturation theory for the sake of simplification.

16.1 Saturation and Semisaturation in Posets

The study of saturation on posets began by D. Gerbner, B. Keszegh, N. Lemons, C.
Palmer, D. Pálvölgyi, and B. Patkós ([GKL+13]) and focused on the saturation numbers
and semi-saturation numbers of chains and flat antichains.

Let Pk+1 denote a (k+ 1)-element chain (i.e. a set of k+ 1 elements any two of which
are comparable). The authors found several basic results that set the stage for more to
come.

Theorem 138. [GKL+13] For integers 6 6 k 6 n, s-sat(Bn,Pk+1) = O( log(k)
k

2k).

Theorem 139. [GKL+13] For nonnegative integers k, c, n,

2
k
2
−1 6 s-sat(Bn,Pk+1) 6 sat(Bn,Pk+1) 6 2k−1 whenever k 6 n and n sufficiently

large.

The authors conjectured that for all k, limn→∞ satBn(n,Pk+1) = 2k−1. In [MNS14],
N. Morrison, J. Noel and A. Scott proved that the conjecture is correct for k 6 5, but for
k > 6, limn→∞ satBn(n,Pk+1) < 2k−1.

The authors extended this to find the following theorem:

Theorem 140. [MNS14] There exists an ε > 0 such that for all k,

lim
n→∞

sat(Bn,Pk+1) = 2(1+o(1))ck

where c is some constant in the interval [1
2
, 1− ε]

The precise value of c is an open question.
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Question 17. [MNS14] What is the constant c ∈ [1
2
, 1− ε] such that

lim
n→∞

sat(Bn,Pk+1) = 2(1+o(1))ck?

Pk+1-semisaturated graphs have a similar asymptotic behavior, answering another
basic question of [GKL+13].

Theorem 141. [MNS14] For integer k,

lim
n→∞

s− satBn(n,Pk+1) = 2(1/2+o(1))k.

Observe that P2-saturated families are maximal antichains and it is in this way that
Pk+1-saturated families were initially studied, particularly motivated by the Flat An-
tichain Theorem. A flat anti-chain is an anti-chain in which all members of the family
have cardinality ` or `+1. The Flat Anti-Chain Theorem says that for every anti-chain of
2[n], there exists a flat anti-chain of the same cardinality. In [GHK+09] using our present
terminology, the authors address the question of the minimum size of a flat P2-saturated
family where ` = 2. The authors provided a lower bound and determined all anti-chains
in which this bound holds. In [GKL+13] the authors build on this work producing the
following theorem.

Theorem 142. [GHK+09] [GKL+13] Let F be an anti-chain such that F ⊆
(

[n]
2

)
∪
(

[n]
3

)
.

Then (
n

2

)
−
⌈

(n+ 1)2

8

⌉
6 |F| 6

(
3

8
− o(1)

)
n2.

16.2 Induced Saturation in Posets

A poset P ′ = (P ′,6′) is an induced subposet of P = (P,6) if there exists an injective
function f : P ′ → P such that for every u′, v′ ∈ P ′, u′ 6′ v′ in P ′ if and only if f(u′) 6 f(v′)
in P . If a subposet P of Bn does not contain some poset Q as an induced subposet, we
say that P is induced-Q-free. We say P is induced-Q-saturated if P is Q-free and for
every S ∈ 2[n] − P , the poset P ∪ S (with order inherited from Bn) contains additional
induced copies of Q. Note that if the target poset, Q, is not itself an induced subposet of
Bn, then the only induced-Q-saturated poset is Bn itself. Let indsat(Bn,Q) denote the
smallest size of |P | such that P = (P,⊆) is induced-Q-saturated.

The notion of induced saturation and posets occurred later by Ferrara et al. [FKK+17].
However, since any two members of a chain are comparable, the saturation number and
the induced saturation number for chains must be the same. In [FKK+17], the authors
establish several upper and lower bounds for various posets of 4 or fewer elements (Figure
16.2). Some lower bounds were recently improved [MSW20]. In addition, the Ferrara et
al. make several conjectures.

Theorem 143. [FKK+17, MSW20]
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V2 Λ D2 N ./

• If n > 2, then indsat(Bn,V2) = indsat(Bn,Λ) = n+ 1.

• If n > 3, then dlog2 ne 6 indsat(Bn, ./) 6
(
n
2

)
+ 2n− 1.

• If n > 2, then d
√
ne 6 indsat(Bn,D2) = n+ 1.

• Let Ak+1 be an antichain of k + 1 elements. If n > k > 3 and n sufficiently large,
then(
1− 1

log2 k

)
kn

log2 k
6 indsat(Bn,Ak+1) 6 (n− 1)k −

(
1

2
log2 k +

1

2
log2 log2 k +O(1)

)
.

Conjecture 23. [FKK+17]

• indsat(Bn, ./) = Θ(n2).

• For n > 2, indsat(Bn,D2) = Θ(n).

• indsat(Bn,Ak+1) = kn(1 + o(1).

16.3 Poset Saturation with respect to Vapnik-Chervonenkis dimension

For a family F and a set X, let F|X = {F ∩ X : F ∈ F} be the projection of F onto
X. We say that F shatters X if F|X = 2X . The Vapnik-Chervonenkis dimension (or
VC-dimension) is the largest X shattered by F and is denoted by V C(F).

We say that F ⊂ 2[n] is d-VC-saturated if V C(F) < V C(F ′) for every F ′ ⊂ 2[n]

such that F ⊂ F ′ and V C(F) = d. We define satV C(n, d) to be the minimum size of
a d-VC-saturated family F ⊆ 2[n]. Observe that every subset of 2[n] is 0-VC-saturated;
hence satV C(n, 0) = 1. Dudley showed [Dud85] that satV C(n, 1) = n + 1. The authors of
[FKKP20] demonstrate that for larger values of d the saturation number is bounded by a
function of d.

Theorem 144. [FKKP20] For any d > 3, satV C(n, d−1) 6 4d for any n > 2d. Moreover,
if d is odd or d > 14, then 2d 6 satV C(n, d− 1) 6 1

2

(
2d
d

)
.

Problem 44. [FKKP20] Show that satV C(n, d− 1) 6 Cd for some C > 2.

17 Other Saturation Related Measures

In this section we consider the saturation function in relation to other functions in graph
theory.
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17.1 Saturation numbers and extremal numbers

As noted in the Introduction, P. Turán [Tur41] determined ex(n,Kp) and raised the
question of determining ex(n,W k

1, . . . , 1︸ ︷︷ ︸
p

). Despite a strong understanding of the function

ex(n, F ) for graphs (see [ES66]), his question remains unanswered for 3 6 k < p. In
the case k = 3, p = 4, Turán conjectured that ex(n,W 3

1,1,1,1) = (5
9

+ o(1))
(
n
3

)
— more

commonly known as Turán’s (3, 4)-conjecture.
In a series of papers O. Pikhurko [Pik99a] (cf. Section 3), [Pik01a] gave results that

could be thought of as generalizing Theorem 25. Note that the star on m + 1 vertices
is isomorphic to W 2

1,m. That is, Pikhurko first determined in [Pik99a] the asymptotic
behavior of sat(n,W 3

1,1,m). Pikhurko [Pik01a] also gave a constructive upper bound for
sat(n,W 4

1,1,1,m), while also considering the more general problem and giving a lower bound
sat(n,W k

1, . . . , 1︸ ︷︷ ︸
p−1<k

,m
) in terms of the extremal number. Specifically, we know that if Turán’s

(3, 4)-conjecture is true, then sat(n,W 4
1,1,1,m) = (m

9
+ o(1))

(
n
3

)
.

17.2 Saturation numbers and potential numbers

M. Ferrara and J. Schmitt [FS09] considered the following problem and related it to the
saturation number. For a given graph F , an integer sequence π is said to be potentially
F -graphic if there is some realization of π that contains F as a subgraph. Let σ(π) denote
the sum of the terms of π. Define σ(n, F ) to be the smallest integer m so that every n-term
graphic sequence π with σ(π) > m is potentially F -graphic. It is assumed that F has no
isolated vertices and that n is sufficiently large relative to |V (F )|. Define the quantities
u(F ) = |V (F )| − α(F ) − 1, and s(F ) = min{∆(H) : H ⊆ F, |V (H)| = α(F ) + 1}. The
following is an immediate consequence to Theorem 2 and the lower bound they establish
for σ(n, F ).

Theorem 145. [FS09] Let d be defined as in Theorem 2. Given a graph F , if there exists
an F ′ ⊆ F with 2u(F ′) + s(F ′) > 2u(F ) + d(F ), then for n sufficiently large we have

2(sat(n, F )) < σ(n, F ). (6)

In particular, this result holds if d(F ) = s(F ).

These authors believe that the conclusion of Theorem 145 holds in general, even though
the hypothesis does not. They conjecture the following.

Conjecture 24. Let F be a graph and let n be a sufficiently large integer. Then

2(sat(n, F )) < σ(n, F ).
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17.3 Saturation numbers and guessing numbers

In the guessing game on a graph G, each vertex is assigned one of s colors uniformly at
random. Then each vertex simultaneously guesses its assigned color using a predetermined
strategy that depends only on knowing the assigned colors of its neighbors. The players
win if every vertex correctly guesses its assigned color.

For a given number of colors, s, the guessing number of a graph G, denoted gn(G, s),
is the largest number a such that there exists a strategy for the guessing game on G
such that with probability at least 1

sn−a
every vertex guesses its assigned color (i.e. the

probability of winning is at least 1
sn−a

).
This formulation of the definition of the guessing number of a graph and much foun-

dational work appears in a paper by D. Christofides and K. Markström [CM11].
We say a graph G is (gns > a)-saturated if gns(G) < a but the addition of any edge

e ∈ G has the property that gns(G+e) > a. The saturation number sat(n, gns > a) is the
minimum number of edges over all graphs on n vertices that are (gns > a)-saturated. In
[MR20], J. Martin and P. Rombach defined and investigated the extremal and saturation
numbers of a graph with respect to guessing number. They find sat(n, gns > a) for a = 2
and a = n − 1, and demonstrate that for guessing number at least three the saturation
number is bounded by a constant.

Theorem 146. [MR20] Let a 6 2 and s be positive integers. For n > 2a + 1, we have
sat(n, gns > a+ 1) 6 a2 + 1.

The authors demonstrate that the guessing number of a graph is related to forbidden
subgraphs and thus the saturation number of a graph with respect to guessing number is
in fact the classic saturation number for a particular family of forbidden graphs. However,
the forbidden family is not, in general, known.

Theorem 147. [MR20] For every s ∈ N and a ∈ R, there exists a unique finite family of
minimal forbidden subgraphs Fs,a such that for any graph G,

gns(G) < a⇔ G is Fs,a-free.

18 A small potpourri

We collect here an assortment of burgeoning topics on the topic of saturation.

18.1 Saturation and (0, 1)-Matrices

Given a (0, 1)-matrix P , (0, 1)-matrix M is P -saturated if M does not contain a submatrix
that can be turned into P by changing some 1 entries to 0 entries, and changing an
arbitrary 0 into a 1 in M introduces such a submatrix. In order to avoid trivial cases, it is
customary to assume that if P is an r× s matrix and M is an m× n matrix, then r 6 m
and s 6 n. The fewest number of 1 entries in a P -saturated m× n matrix M is denoted
sat(Mm×n, P ). The numbers s-sat(Mm×n, P ) and ex(Mm×n, P ) can be defined similarly.
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This matrix version of saturation can be translated into the language of labeled bipartite
graphs with some additional ordering restrictions applied to the vertices.

While extremal problems on (0, 1)-matrices have been extensively studied, R. Brualdi
and L. Cao [BC21] initiated the study of saturation problems in (0, 1)-matrices though
using different terminology: “pattern avoiding” as opposed to saturation.

Theorem 148. [BC21] Let Ik be the k × k identity matrix and m,n > k. Then

sat(Mm×n, Ik) = ex(Mm×n, Ik) = (k − 1)(m+ n− (k − 1)).

In addition to finding the saturation number of the identity matrix exactly, several
structural properties of Ik-saturated matrices are described and Jk-saturated graphs are
investigated, where Jk is the matrix obtained from Ik by moving the top row to the bottom
row.

Theorem 149. [BC21] Let Jk be the k × k matrix obtain from the identity matrix by
moving the top row to the bottom row.
sat(Mm×n, J3) = ex(Mm×n, J3) = 2(m+ n− 2),
sat(Mm×n, Jk) 6 (k − 1)(m+ n− (k − 1)), for k > 3.

R. Fulek and B. Kaszegh [FK21] later established a lower bound for the saturation
number of Jk making progress on a conjecture by Brualdi and Cao.

Theorem 150. [FK21] sat(Mm×n, Jk) > (k − 2) max{m,n}+m+ n− 1− (k−2)(k−1)
2

.

Conjecture 25. [BC21] sat(Mm×n, Jk) = ex(Mm×n, Jk) = (k − 1)(m+ n− (k − 1)).

In [FK21], Fulek and Kaszegh establish many other general results. For example, un-
like ex(Mn×n, P ) which can have growth rates such as Θ(n3/2) or Θ(n log n), they demon-
strate that sat(Mn×n, P ) ∈ {Θ(1),Θ(n)} and find a particular P for which sat(Mn×n, P ) <
400. Thus, they also show that despite the two theorems above, the extremal numbers and
saturation numbers are not always the same. The authors completely characterize which
matrices have semisaturation numbers that grow linearly with n and which are constant.
There are several open questions at the end of the paper, with one example given below.

Question 18. [FK21] Do there exist matrices P other than I1 and the permutation matrix
associated with (25314) where sat(Mn×n, P ) = Θ(1)?

18.2 Saturation and k-Planar Drawings

A drawing D of a loopless, multigraph G in the plane is called k-planar if each edge in the
drawing is crossed at most k times. A drawing D is k-planar saturated if D is k-planar
but the addition of any edge results in a drawing that is no longer k-planar. S. Chaplick,
J. Rollin and T. Ueckerdt [CRU21] investigated the minimum number of edges in k-planar
saturated drawings for a variety of classes of k-planar graphs where different classes are
determined by restrictions on the nature of the drawing. For example, let I be the set
of k-planar drawings with the added restriction that incident edges are not allowed to
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cross (though an edge may cross itself) and let S be the set of k-planar drawings such
that no edge crosses itself. Let sat(n, k-planar(I ∩ S)) denote the least number of edges
in a k-planar saturated drawing on n vertices restricted to the set I ∩ S. Chaplick et al.
established a catalog of results of the type below, including constructing infinite families
of drawings achieving the given bounds.

Theorem 151. [CRU21] For infinitely many values of n,

sat(n, k-planar(S)) = sat(n, k-planar(I ∩ S)) =
2

k − 1
(n− 1).

Their technique depends upon the family having the property that deleting an edge
or vertex preserves its class. For families without this property the k-planar saturation
number is open.

Problem 45. [CRU21] Let H be all graphs that can be drawn in the plane such that
no two parallel edges are homotopic (when vertices are viewed as holes.) Determine
sat(n, k-planar(H)).

18.3 Unique Saturation

Given a graph F , a graph G is uniquely F -saturated if G is F -saturated and has the
additional property that adding any edge of the complement to G produces a unique copy
of F. The Kr-saturated graphs of minimum size consisting of an (r− 2)-clique joint to an
independent set of order n− r+ 2 (from [EHM64]) is also uniquely Kr-saturated. On the
other hand, P. Wenger [Wen10] proved no nontrivial uniquely Pk-saturated graphs exists
for k > 5. Hence, questions about uniquely F -saturated graphs focus on their existence.

J. Cooper, J. Lenz, T. LeSaulnier, P. Wenger and D. West [CLL+12] initiated the
study of uniquely saturated graphs by characterizing all uniquely Ck-saturated graphs for
k = 3 and k = 4. They also proved there exist an infinite number of uniquely C5-saturated
graphs.

Later, P. Wenger and D. West [WW17] characterized uniquely C5-saturated graphs,
proved there are no uniquely Ck-saturated graphs for k = 6, 7. Finally, they demonstrated
that there can exist only a finite number of uniquely Ck-saturated graphs for k > 8 and
they conjecture that there are none.

Theorem 152. [CLL+12, WW17] A summary of what is known about the family of
uniquely Ck-saturated graphs.

• For k = 3, the family consists of all stars and Moore graphs of diameter of which
there are only a finite number.

• For k = 4, there exist 10 graphs.

• For k = 5, all nontrivial members consist of edge disjoint triangles all of which share
a single vertex (so-called friendship graphs).
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• For k > 6, only finitely many can exist.

Conjecture 26. [WW17] For k > 8, there are no nontrivial uniquely Ck-saturated graphs.

L. Berman, G. Chappell, J. Faudree, J. Gimbel, and C. Hartman [BCF+16] proved that
the only tree T for which there exists an infinite family of uniquely T -saturated graphs
is when T is a balanced double star. They conjecture that double stars are the only
trees for which nontrivial uniquely T -saturated graphs exist. They prove the existence of
nontrivial uniquely double-star-saturated graphs but the conjecture below remains open.

Conjecture 27. [BCF+16] Let T be a tree. If there exists a nontrivial uniquely T -
saturated graph, then T is a double star.

Building on uniquely C3-saturated graphs, S. Hartke and D. Stolee [HS12] began in-
vestigating uniquely Kr-saturated graphs and observed that if G is uniquely Kr-saturated
and has a dominating vertex v, then G−v is uniquely Kr−1-saturated. To avoid this issue,
they define a graph to be r-primitive if it is uniquely Kr-saturated and has no dominating
vertex.

Using the technique of orbital branching, an exhaustive computer-aided search for
uniquely Kr-saturated graphs on n vertices for r 6 8 and n 6 20 found ten new primitive
uniquely Kr-saturated graphs, two of which were Cayley graphs [HS12]. With these
Cayley graphs as models, the authors constructed two new infinite families of uniquely
Kr-saturated graphs.

In the statement of the theorem below, for a finite group Γ and generating set S ⊆ Γ,
let G(Γ, S) be the undirected Cayley graph with vertex set Γ and edge set defined by
action from S. Let G(Γ, S) be the complement of Γ.

Theorem 153. [HS12]

• Let t > 2, n = 4t2 + 1, and r = 2t2 − t+ 1. Then, G(Zn, {1, 2t}) is r-primitive.

• Let t > 2, n = 9t2 − 3t + 1, and r = 3t2 − 2t + 1. Then, G(Zn, {1, 3t − 1, 3t}) is
r-primitive.

Question 19. [HS12] For each r > 3, are there a finite number of r-primitive uniquely
Kr-saturated graphs?

A. Gyárfás, S. Hartke and C. Viss [GHV18] generalized the notion of uniquely Kr-

saturated graphs to hypergraphs as follows. Let K
(k)
r denote the complete k-uniform

hypergraph on r vertices. For integers k, r, n, such that 2 6 k < r < n a k-uniform
hypergraph H on n vertices is uniquely K

(k)
r -saturated if H does not contain K

(k)
r but

adding to H any k-set that is not a hyperedge of H results in exactly one copy of K
(k)
r .

A uniquely K
(k)
r -saturated hypergraph is called primitive if it has no dominating vertex

meaning that for every vertex the hypergraph does not contain all
(
n−1
k−1

)
edges containing

that vertex.
In [GHV18] Gyárfás et al. describe two distinct approaches to constructing primitive

K
(k)
r -saturated hypergraphs for large ranges of n, an outcome remarkably different from
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the case when k = 2. They also prove that as when n− r is fixed and n is large enough,
there can exist no primitive uniquely K

(k)
r -saturated hypergraphs. For n − r = 1, the

authors determine precisely the range of n for which primitive uniquely K
(k)
r -saturated

hypergraphs exist. As part of the proof techniques appearing in the paper, the authors
establish interesting equivalences between primitive uniquely k-uniform hypergraphs and
both a type of complementary hypergraph and a class of τ -critical hypergraphs. Two
typical results are below.

Theorem 154. [GHV18]

• Let k > 4 be given. Then for any r such that k < r 6 2k−3, there exists a primitive
uniquely K

(k)
r -saturated hypergraph on n vertices for every n > r.

• Fix k > 2. Let ` = n − r > 1 be a fixed constant. Then no primitive uniquely
K

(k)
r -saturated hypergraph on n vertices exists if n is at least(

k + `

k − 1

)
+

(
k + `− 1

k − 1

)
.

The authors employed some computational techniques to determine whether primitive
uniquely K

(k)
r -saturated hypergraph on n vertices exist for certain specific choices of k, r

and n. A clear understanding in the case of K
(3)
4 -saturated hypergraphs remains open.

Question 20. [GHV18] Are there only finitely many primitive uniquely K
(3)
4 -saturated

hypergraphs?

18.4 Cover Saturation

Cover saturation combines semi-saturation with a stronger requirement that every edge
in the host graph be in some copy of the target graph. This idea was introduced by
D. Rorabaugh [Ror19] where the author proves several structural results and several re-
sults on specific classes of graphs. Unlike most saturation measures, the cover saturation
measure has some inherited properties (Theorem 155).

Recall that given a graph F , a graph G is F -semi-saturated if for any edge e ∈ G
the graph G + e contains additional copies of F . The requirement that G be F -free is
omitted. Rorabaugh defines a graph G as F -covered provided every edge of G is in a
subgraph of G isomorphic to F and G is F -cov-sat if G is both F -semi-saturated and
F -covered. Assuming |V (F )| 6 |V (G)|, the cov-sat number of F , denoted csat(n, F ) is
the minimum number of edges in an n-vertex F -cov-sat graph G.

Theorem 155. [Ror19] If G is F -covered then csat(n, F ) 6 csat(n,G) for all n > |V (G)|.

Most of the results in [Ror19] give values or bounds on the asymptotic cov-sat density

of F defined as csat(F ) = limn→∞
csat(n,F )

n
when the limit exists. The author demonstrates

that like the regular saturation number, the cov-sat number can grow no faster than some
constant multiple of n.

Theorem 156. [Ror19] For r > 3, csat(Kr) = r − 2
3
.

the electronic journal of combinatorics (2021), #DS19 76



18.5 Connectedness and Saturation

Let Fk be the family of k-connected graphs and let F ′k be the family of k-edge-connected
graphs. P. Wenger [Wen14] established the saturation number for Fk and demonstrated
that while the unique graph in Sat(n,Kk) is also a member of Sat(n,Fk) it is not unique.
In the theorem below a k-tree is any graph obtained from Kk by iteratively introducing
a new vertex whose neighborhood in the previous graph consists of k pairwise adjacent
vertices. A complete characterization of the graphs in Sat(n,Fk) remains open.

Theorem 157. [Wen14] Let Fk be the family of k-connected graphs. For n > k + 1,
sat(n,Fk) = (k − 1)n−

(
k
2

)
. Furthermore, every (k − 1)-tree on n vertices has this many

edges and is Fk-saturated.

Later, H. Lei, S. O, Y. Shi, D. West, and X. Zhu [LOS+19] proved both the saturation
number and the extremal number for F ′k. In addition, the authors characterize both
families of extremal graphs and give bounds on the spectral radius of F ′k-saturated graphs.
More on the spectral radius of a graph can be found in [KKKO20].

Theorem 158. [LOS+19] For n ∈ N and t =
⌊

n
k+1

⌋
, sat(n,F ′) = (k−1)(n−1)− t

(
k−1

2

)
.

In addition to results bounding the cov-sat number based on structural properties
(such as the existence of a bridge), the cov-sat number is calculated (or bounded) for
paths, cycles and stars. There are several open questions at the end of the paper. As
an example, the relationship between the cov-sat number and other saturation numbers
(semi-saturation number, saturation number, weak saturation number) have not been
investigated.
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Table 1: Notation

Notation Read as Definition or explanation

G the complement of G a graph G′ with V (G′) = V (G) and
E(G′) = E(K|V (G)|)\E(G). This may be
seen in other literature as Gc. The com-
plement T ′ of a trigraph T has V (T ′) =
V (T ), EB(T ′) = EW (T ), EW (T ′) =
EB(T ), and EG(T ′) = EG(T ).

⊆ is a subgraph or sub-
set of

-

⊂ is a proper subgraph
or subset of

-

Kn the complete graph
on n vertices

-

Pn the path on n vertices (so |E(Pn)| = n− 1)
Cn the cycle on n ver-

tices
-

Qn the hypercube in n
dimensions

-

Kn1,n2,...,nk - The complete k-partite graph with ni
vertices in the ith part.

Kk×n - The complete k-partite graph where
each part has n vertices; |V (Kn

k )| = nk.
This is sometimes written as in the lit-
erature as Kn

k .
δ(G) - The minimum degree over all vertices of

G. This can be shortened to simply δ.
∆(G) - The maximum degree over all vertices of

G. This can be shortened to simply ∆.
W k
s1,...,sp

the weak hypergraph
generalization of a
complete graph

The k-uniform hypergraph consisting of
all k-tuples that intersect exactly k dif-
ferent parts, where k 6 p and si = |Si|,
and Si is the ith part in a partition of
vertices.

Sks1,...,sp the strong hyper-
graph generalization
of a complete graph

The k-uniform hypergraph consisting of
all k-tuples that intersect at least 2 dif-
ferent parts, where k 6 p and si = |Si|,
and Si is the ith part in a partition of
vertices of the hypergraph.

Kk
p the instance when

W k
1,1,...,1 = Sk1,1,...,1

The k-uniform hypergraph consisting of
all possible k-tuples of p vertices.

Continued on next page
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Table 1 – Continued from previous page
Notation Read as Definition or explanation
Tn The family of all trees

of order n
-

Cn The family of all cy-
cles of order (and
size) n

-

C>n The family of all cy-
cles of order (and
size) at least n

-

G− e - For a graph G and an edge e ∈ G, V (G−
e) = V (G) and E(G) = E(G) \ {e}

G�H The graph cartesian
product of G and H

V (G�H) = V (G) × V (H) and E(G) =
{(u, v)(x, y) : u = x and vy ∈
E(H) or v = y and ux ∈ E(G)}

G+H the join of G and H V (G + H) = V (G) ∪ V (H) and E(G +
H) = E(G) ∪ E(H) ∪ {gh : g ∈
V (G) and h ∈ V (H)}. This is some-
times written in other literature as G ∨
H.

[t] a t-element integer
system

A set of t elements (where t ∈ Z). These
are usually used for coloring as a set of
t colors.

G(n, p) The Erdős-Rényi
random graph on
n vertices with
probability p

V (G(n, p)) = {1, 2, . . . , n} and each pair
of vertices i, j ∈ V (G(n, p)) has proba-
bility p to be an edge.

t the disjoint union -
kG the (generally dis-

joint) union of k
copies of G

-

P d
n the d dimensional

grid of size n
�i∈[d]Pn. This is also notated in other
literature as [n]d.

- G is F -saturated G does not contain any member of F as
a subgraph but the addition of any edge
between vertices of G creates a graph G′

that does contain a member of F as a
subgraph. When F = {F}, substitute
F for F .

sat(n,F) The saturation num-
ber

The minimum number of edges in a
graph on n vertices that is F -saturated.

Continued on next page
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Table 1 – Continued from previous page
Notation Read as Definition or explanation
Sat(n,F) - The set of graphs G (up to isomor-

phism) on n vertices that have |E(G)| =
sat(n,F)

ex(n,F) The extremal number The maximum number of edges in a
graph on n vertices that is F -saturated.

Ex(n,F) - The set of graphs G (up to isomor-
phism) on n vertices that have |E(G)| =
ex(n,F)

sat(H,F) The saturation num-
ber in H

The minimum number of edges in a
graph G with V (G) = V (H) and
E(G) ⊆ E(H) that does not contain a
member of F as a subgraph such that
G+ e contains a member of F as a sub-
graph when e ∈ E(H) \ E(G). In this
style, the typical saturation number is
expressed sat(Kn,F). sat(Kn

k , Kr) may
be seen in other literature as sat(n, k, r).
In other literature, the order of the ar-
guments may be reversed or interchange-
able, but it will always be as in this table
in the survey.

sat(n, J,F) - The minimum number of subgraphs Ji ⊆
G with Ji ∼= J over all G where G is an
F -saturated graph on n vertices. Note
that sat(n,K2,F) = sat(n,F).

s-sat(n,F) The semi-saturation
number

The minimum number of edges in a
graph G on n vertices such that adding
any edge e ∈ E(Kn) \ E(G) increases
the number of copies of members of F
as subgraphs. In the setting of an alter-
nate host graph, substitute the host H
for Kn. Just as with saturation number,
write S-Sat(n,F) for the set of graphs
with this quality. Note s-sat(n,F) 6
sat(n,F). This is also referred to in
other literature as strong saturation, in
contrast with weak saturation. Just
simply saturation is called this as well,
rarely, and so neither are used as such in
this paper.

Continued on next page
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Table 1 – Continued from previous page
Notation Read as Definition or explanation
w-sat(n,F) The weak saturation

number
The minimum number of edges in a
graph G on n vertices such that edges
ei ∈ E(Kn) \ E(G) can be added one
by one, each time increasing the num-
ber of copies of members of F contained
as subgraphs. In the setting of an alter-
nate host graph, substitute the host H
for Kn. Just as with saturation number,
write W -Sat(n,F) for the set of graphs
with this quality. Note w-sat(n,F) 6
s-sat(n,F) 6 sat(n,F).

u-sat(n,F) The unique satura-
tion number

The minimum number of edges in an F -
free graph G such that ∀e ∈ G, G + e
contains exactly one copy of a member
of the family F as a subgraph.

<(F ) - The set of all rainbow-colored copies of
a graph F

ES(n,F) the edge spectrum of
F

The set of all possible sizes of F -
saturated graphs.

- G is (F1, ..., Ft)-
saturated

There exists a coloring C of E(G) in
t colors 1, 2, ..., t such that there is no
monochromatic copy of Fi in color i :
1 6 i 6 t, but the addition of any
new edge with color i to G creates a
monochromatic Fi in color i

sat∆(n,F) - The minimum number of edges in an F -
saturated graph with maximum degree
at most ∆

satδ(n,F) - The minimum number of edges in an F -
saturated graph with minimum degree
at least δ

- a trigraph T A quadruple of sets, T =
(V (T ), EB(T ), EW (T ), EG(T )), where
V (T ) is the vertex set of T , EB(T )
contains the known black, or present
edges of T , EW (T ) contains the known
white, or absent edges of T , and EG(T )
contains the gray edges of T ; they could
be either black or white.

Continued on next page
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Table 1 – Continued from previous page
Notation Read as Definition or explanation
EB(T ) the black edges of a

trigraph T
-

EW (T ) the white edges of a
trigraph T

-

EG(T ) the gray edges of a
trigraph T

Note that if EG(T ) = ∅, T can be
thought of as a normal graph with
E(T ) = EB(T ) and E(T ) = EW (T )

- a realization of a tri-
graph T

A graph G with V (G) = V (T ) and, for
some S ⊆ EG(T ), E(G) = EB(T ) ∪ S

- T is induced F -
saturated

No realization of the trigraph T contains
a copy of F as an induced subgraph, but
changing any white or black edge to gray
results in some realization that does con-
tain a copy of F as an induced subgraph.
An induced subgraph copy of F in the
trigraph setting is one where both the
black and white edges are the same.

indsat(n, F ) the induced satura-
tion number

The minimum number of gray edges of
a trigraph T on n vertices such that T is
induced F -saturated

indsat∗(n, F ) - min{|E(G)| : |V (G)| =
n, G is induced F -saturated}; the
minimum number of edges in a graph
such that adding any edge in E(G) or
removing any edge in E(G) creates a
copy of F as an induced subgraph

indsat+(n, F ) - The minimum number of edges in an F -
free graph G such that the addition of
any edge creates a copy of F as an in-
duced subgraph. Notice indsat∗(n, F ) >
indsat+(n, F ).

F → (F1, ..., Ft) F arrows (F1, ..., Ft),
a t-tuple of graphs

Any t-coloring of E(F ) contains a
monochromatic Fi of color i : 1 6 i 6 t

- G is Ramsey-minimal G→ (F1, ..., Ft) and yet ∀G′ ⊂ G, G′ 9
(F1, ..., Ft)

Rmin(F1, ..., Ft) The family of all
(F1, ..., Ft) Ramsey-
minimal subgraphs

-

Continued on next page

the electronic journal of combinatorics (2021), #DS19 82



Table 1 – Continued from previous page
Notation Read as Definition or explanation
- <t(F )-saturated A graph G does not contain a rain-

bow (in t colors) copy of F but ∀e ∈
E(G), i ∈ [t], G + e contains a rainbow
copy of F when e is in color i

sat(n,<t(F )) - The minimum number of edges in a t-
edge-colored (<(F ), t-saturated graph of
order n

(n,P) the P saturation
game

A game starting in Kn in which two
players, one trying to prolong the game
and one trying to end the game, alter-
nate turns drawing edges until a graph
saturated relative to the property P is
reached.

Max the maximizer The player in Füredi, Reimer, and Ser-
ess’s F -free game and its variants who
tries to prolong the game, making the
number of edges in the final graph as
close to ex(n, F ) as possible. If not oth-
erwise noted, Max is assumed to play
first. Max is also known as Prolonger,
Maximizer, and Maxi.

Min the minimizer The player in Füredi, Reimer, and Ser-
ess’s F -free game and its variants who
tries to shorten the game, making the
number of edges in the final graph as
close to sat(n, F ) as possible. If not oth-
erwise noted, Min is assumed to play sec-
ond. Min is also known as Minimizer
and Mini.

satg(n, F ) the game saturation
number

The final number of edges in Füredi,
Reimer, and Seress’s F -free game after
optimal play from both players. Note
that satg(n, F ) ∈ ES(n, F ).

ˆsatg(n, F ) the Min-first game
saturation number

The final number of edges in Füredi,
Reimer, and Seress’s F -free game af-
ter optimal play from both players in
the game variant where Min plays first.
Note that ˆsatg(n, F ) ∈ ES(n, F ).

Continued on next page
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Table 1 – Continued from previous page
Notation Read as Definition or explanation
satg−P (n, F ) the move-optional

game saturation
number

The final number of edges in Füredi,
Reimer, and Seress’s F -free game after
optimal play from both players in the
game variant where Max can skip turns.
Note that satg(n, F ) ∈ ES(n, F ).

〈A〉r the closure of A with
parameter r

Where for some graph G, A ⊆ V (G), the
subset of vertices of G that are eventu-
ally infected by the r-neighbor bootstrap
percolation with A initially infected.

〈A〉r = G A percolates; or, A is
a percolating set

For a graph G, A ⊆ V (G) percolates
(or, is a percolating set) if every vertex
eventually becomes infected.

m(G, r) - The size of the minimum percolat-
ing set in a graph G undergoing r-
neighbor bootstrap percolation. Note
that m(G, r) > w-sat(G,K1,r+1)

r
.

T (A) the percolating time For a graph G, the number of time steps
for a set A ⊆ V (G) to infect every ver-
tex.

pa(G, r) - The probability that a vertex will be ini-
tially infected such that the probability
that the ensuing r-neighbor bootstrap
percolation on a graph G is spanning is
a. a = 1

2
is called the critical probability.

Berge-F - Given a graph F , a hypergraph H is
Berge-F if there exists an injection φ :
E(F )→ E(H) where for any e ∈ E(F ),
e ∈ φ(e). Informally, a hypergraph H is
Berge-F if it could be created by adding
vertices to the edges of F . A hypergraph
H is Berge-F -saturated if H does not
contain a Berge-F subhypergraph, but
the addition of any nontrivial hyperedge
creates a Berge-F subhypergraph in H.

sat(n,Bergek-F ) the Bergek-F satura-
tion number

The minimum number of hyperedges in
a Berge-F -saturated k-uniform hyper-
graph.
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[BP07] József Balogh and Boris G. Pittel. Bootstrap percolation on the random
regular graph. Random Structures Algorithms, 30(1-2):257–286, 2007.
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ceedings of the Berkeley conference in honor of Jerzy Neyman and Jack
Kiefer, Vol. II (Berkeley, Calif., 1983), Wadsworth Statist./Probab. Ser.,
pages 495–508. Wadsworth, Belmont, CA, 1985.

the electronic journal of combinatorics (2021), #DS19 89

https://arxiv.org/abs/2012.08631
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[FK13] Zoltán Füredi and Younjin Kim. Cycle-saturated graphs with minimum
number of edges. J. Graph Theory, 73(2):203–215, 2013.

[FK21] Radoslav Fulek and Balázs Keszegh. Saturation Problems about Forbidden
0-1 Submatrices. SIAM J. Discrete Math., 35(3):1964–1977, 2021.

[FKK+17] Michael Ferrara, Bill Kay, Lucas Kramer, Ryan Martin, Benjamin Reiniger,
Heather Smith, and Eric Sullivan. The saturation number of induced sub-
posets of the boolean lattice. arXiv:1701.03010, 2017.
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[R2̈0] Eero Räty. Induced saturation of P6. Discrete Math., 343(1):111641, 3, 2020.

[Ror19] Danny Rorabaugh. Graph cover-saturation. Graphs Combin., 35(5):1225–
1237, 2019.

[RS18] Martin Rolek and Zi-Xia Song. Saturation numbers for Ramsey-minimal
graphs. Discrete Math., 341(12):3310–3320, 2018.
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[Wes67] Walter Wessel. Über eine Klasse paarer Graphen. II. Bestimmung der Min-
imalgraphen. Wiss. Z. Techn. Hochsch. Ilmenau, 13:423–426, 1967.

[WW17] Paul S. Wenger and Douglas B. West. Uniquely cycle-saturated graphs. J.
Graph Theory, 85(1):94–106, 2017.

[Yu93] Jie Tai Yu. An extremal problem for sets: a new approach via Bezoutians.
J. Combin. Theory Ser. A, 62(1):170–175, 1993.
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