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Abstract

A graph labeling is an assignment of integers to the vertices or edges, or both,
subject to certain conditions. Graph labelings were first introduced in the mid
1960s. In the intervening 50 years over 200 graph labelings techniques have been
studied in over 3000 papers. Finding out what has been done for any particular
kind of labeling and keeping up with new discoveries is difficult because of the sheer
number of papers and because many of the papers have appeared in journals that
are not widely available. In this survey I have collected everything I could find on
graph labeling. For the convenience of the reader the survey includes a detailed
table of contents and index.
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1 Introduction

Most graph labeling methods trace their origin to one introduced by Rosa [2136] in 1967,
or one given by Graham and Sloane [925] in 1980. Rosa [2136] called a function f a
β-valuation of a graph G with q edges if f is an injection from the vertices of G to the set
{0, 1, . . . , q} such that, when each edge xy is assigned the label |f(x)− f(y)|, the resulting
edge labels are distinct. Golomb [902] subsequently called such labelings graceful and
this is now the popular term. Alternatively, Buratti, Rinaldi, and Traetta [519] define
a graph G with q edges to be graceful if there is an injection f from the vertices of
G to the set {0, 1, . . . , q} such that every possible difference of the vertex labels of all
the edges is the set {1, 2, . . . , q}. Rosa introduced β-valuations as well as a number of
other labelings as tools for decomposing the complete graph into isomorphic subgraphs.
In particular, β-valuations originated as a means of attacking the conjecture of Ringel
[2117] that K2n+1 can be decomposed into 2n + 1 subgraphs that are all isomorphic to
a given tree with n edges. In 2020 Montgomery, Pokrovskiy, and Sudakov [1783] proved
Ringel’s conjecture for every sufficiently large n. Although an unpublished result of Erdős
says that most graphs are not graceful (see [925]), most graphs that have some sort of
regularity of structure are graceful. Sheppard [2326] has shown that there are exactly q!
gracefully labeled graphs with q edges. Rosa [2136] has identified essentially three reasons
why a graph fails to be graceful: (1) G has “too many vertices” and “not enough edges,”
(2) G “has too many edges,” and (3) G “has the wrong parity.” The disjoint union of
trees is a case where there are too many vertices for the number of edges. An infinite class
of graphs that are not graceful for the second reason is given in [462]. As an example
of the third condition Rosa [2136] has shown that if every vertex has even degree and
the number of edges is congruent to 1 or 2 (mod 4) then the graph is not graceful. In
particular, the cycles C4n+1 and C4n+2 are not graceful. Knuth [1383] has observed the
more general condition that in any graceful labeling of a graph with the number of edges
congruent to 1 or 2 (mod 4), the number of vertices with an odd degree and an odd
label is always odd. Knuth [1383] proved by way a computer search that all cubic graphs
on 4, 6, 8, 10, 12, or 14 vertices, except 2K4 and 3K4, which was proved by Kotzig, are
graceful. He conjectures that that every connected cubic graph is graceful.

Acharya [22] proved that every graph can be embedded as an induced subgraph of
a graceful graph and a connected graph can be embedded as an induced subgraph of a
graceful connected graph. Acharya, Rao, and Arumugam [42] proved: every triangle-
free graph can be embedded as an induced subgraph of a triangle-free graceful graph;
every planar graph can be embedded as an induced subgraph of a planar graceful graph;
and every tree can be embedded as an induced subgraph of a graceful tree. Sethuraman,
Ragukumar, and Slater [2288] show that every tree can be embedded in a graceful tree (see
also [2287]) and pose a related open problem toward settling the Graceful Tree Conjecture.
Rao and Sahoo [2097] proved that every connected graph can be embedded as an induced
subgraph of an Eulerian graceful graph thereby answering a question originally posed by
Rao and mentioned by Acharya and Arumugum in [28]. As a consequence they deduce
that the problems on deciding whether the chromatic of a graph number is less than or
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equal to k, for k ≥ 3, and deciding whether the clique number of a graph is greater than
or equal to k, for k ≥ 3 are NP-complete even for Eulerian graceful graphs.

Sethuraman and Ragukumar [2286] provided an algorithm that generates a graceful
tree from a given arbitrary tree by adding a sequence of new pendent edges to the given
arbitrary tree thereby proving that every tree is a subtree of a graceful tree. They ask
the question: If G is a graceful tree and v is any vertex of G of degree 1, is it true that
G − v is graceful? If the answer is affirmative, then those additional edges of the input
arbitrary tree T introduced for constructing the graceful tree T by their algorithm could
be deleted in some order so that the given arbitrary tree T becomes graceful. This would
imply that the Graceful Tree Conjecture is true. These results demonstrate that there is
no forbidden subgraph characterization of these particular kinds of graceful graphs.

Harmonious graphs naturally arose in the study by Graham and Sloane [925] of mod-
ular versions of additive bases problems stemming from error-correcting codes. They
defined a graph G with q edges to be harmonious if there is an injection f from the
vertices of G to the group of integers modulo q such that when each edge xy is assigned
the label f(x) + f(y) (mod q), the resulting edge labels are distinct. When G is a tree,
exactly one label may be used on two vertices. They proved that almost all graphs are not
harmonious. Analogous to the “parity” necessity condition for graceful graphs, Graham
and Sloane proved that if a harmonious graph has an even number of edges q and the
degree of every vertex is divisible by 2k then q is divisible by 2k+1. Thus, for example, a
book with seven pages (i.e., the cartesian product of the complete bipartite graph K1,7

and a path of length 1) is not harmonious. Liu and Zhang [1607] have generalized this
condition as follows: if a harmonious graph with q edges has degree sequence d1, d2, . . . , dp
then gcd(d1, d2, . . . dp, q) divides q(q − 1)/2. They have also proved that every graph is a
subgraph of a harmonious graph. More generally, Sethuraman and Elumalai [2271] have
shown that any given set of graphs G1, G2, . . . , Gt can be embedded in a graceful or har-
monious graph. Determining whether a graph has a harmonious labeling was shown to
be NP-complete by Auparajita, Dulawat, and Rathore in 2001 (see [1433]).

In the early 1980s Bloom and Hsu [475], [476],[451], [477], [537] extended graceful
labelings to directed graphs by defining a graceful labeling on a directed graph D(V,E)
as a one-to-one map θ from V to {0, 1, 2, . . . , |E|} such that θ(y) − θ(x) mod (|E| + 1)
is distinct for every edge xy in E. Graceful labelings of directed graphs also arose in the
characterization of finite neofields by Hsu and Keedwell [1026], [1027]. Graceful labelings
of directed graphs was the subject of Marr’s 2007 Ph.D. dissertation [1710]. In [1710]
and [1711] Marr presents results of graceful labelings of directed paths, stars, wheels, and
umbrellas. Siqinbate and Feng [2412] proved that the disjoint union of three copies of a
directed cycle of fixed even length is graceful.

Over the past five decades in excess of 2800 papers have spawned a bewildering array
of graph labeling methods. Despite the unabated procession of papers, there are few
general results on graph labelings. Indeed, the papers focus on particular classes of
graphs and methods, and feature ad hoc arguments. In part because many of the papers
have appeared in journals not widely available, frequently the same classes of graphs
have been done by several authors and in some cases the same terminology is used for
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different concepts. In this article, we survey what is known about numerous graph labeling
methods. The author requests that he be sent preprints and reprints as well as corrections
for inclusion in the updated versions of the survey.

Earlier surveys, restricted to one or two labeling methods, include [445], [471], [1393],
[811], and [813]. The book edited by Acharya, Arumugam, and Rosa [27] includes a
variety of labeling methods that we do not discuss in this survey. In 2002 Eshghi [735]
wrote a 65 page paper providing an introduction to graceful graphs. The relationship
between graceful digraphs and a variety of algebraic structures including cyclic difference
sets, sequenceable groups, generalized complete mappings, near-complete mappings, and
neofields is discussed in [475] and [476]. The connection between graceful labelings and
perfect systems of difference sets is given in [448]. The computational complexity of the
gracefulness of a graph is not known, but the complexity of finding a harmonious labeling
of a graph is in the NP-class [147]. Labeled graphs serve as useful models for a broad
range of applications such as: coding theory, x-ray crystallography, radar, astronomy,
circuit design, communication network addressing, data base management, secret sharing
schemes, models for constraint programming over finite domains, [472], [473], [2552],
[2040], [2430], [2431], [180], [179], [228], [2418], [1739], and network passwords–see [2768],
[2534], [2767], [2769], [2191], [2588], and [2905] for details. According to Wang, B. Yao, and
M. Yao [2771], graph labelings are used for incorporating redundancy in disks, designing
drilling machines, creating layouts for circuit boards, and configuring resistor networks.

Terms and notation not defined below follow that used in [567] and [811].
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2 Graceful and Harmonious Labelings

2.1 Trees

The Ringel-Kotzig conjecture (GTC) that all trees are graceful has been the focus of many
papers. Kotzig [1031] has called the effort to prove it a “disease.” Among the trees known
to be graceful are: caterpillars [2136] (a caterpillar is a tree with the property that the
removal of its endpoints leaves a path); trees with at most 4 end-vertices [1031], [2910]
and [1251]; trees with diameter at most 5 [2910] and [1022]; symmetrical trees (i.e., a
rooted tree in which every level contains vertices of the same degree) [449], [1935], [2180];
rooted trees where the roots have odd degree and the lengths of the paths from the root
to the leaves differ by at most one and all the internal vertices have the same parity [536];
rooted trees with diameter D where every vertex has even degree except for one root and
the leaves in level bD/2c [335]; rooted trees with diameter D where every vertex has even
degree except for one root and the leaves, which are in level bD/2c [335]; rooted trees
with diameter D where every vertex has even degree except for one root, the vertices in
level bD/2c − 1, and the leaves which are in level bD/2c [335]; the graph obtained by
identifying the endpoints any number of paths of a fixed length except for the case that
the length has the form 4r + 1, r > 1 and the number of paths is of the form 4m with
m > r [2200]; regular bamboo trees [2200] (a rooted tree consisting of branches of equal
length the endpoints of which are identified with end points of stars of equal size); and
olive trees [1902], [11] (a rooted tree consisting of k branches, where the ith branch is
a path of length i); Bahls, Lake, and Wertheim [323] proved that spiders for which the
lengths of every path from the center to a leaf differ by at most one are graceful. (A
spider is a tree that has at most one vertex (called the center) of degree greater than 2.)
Jampachon, Nakprasit, and Poomsa-ard [1093] provide graceful labelings for some classes
of spiders. Panpa and Poomsa-ard [1891] showed that all spider graphs with at most four
legs of lengths greater than one admit graceful labeling. In [1761], [1762], [1884], [1763],
and [1885] Panda and Mishra and Panda, Mishra, and Dash give graceful labelings for
some new classes of trees with diameter six. Pradhan and Kumar [2010] proved that all
combs Pn �K1 with perfect matching are graceful. In [2702] Varadhan and Guruswamy
give a method for combining caterpillars in a specific way such that the resulting tree is
graceful. Venkatesh1 and Balasubramanian [2701] also create graceful trees by recursively
merging caterpillars. In July of 2020 Gnang [895] posted a paper with a proof on arXiv
of the Graceful Tree Conjecture.

Motivated by Horton’s work [1020], in 2010 Fang [747] used a deterministic back-
tracking algorithm to prove that all trees with at most 35 vertices are graceful. In 2011
Fang [748] used a hybrid algorithm that involved probabilistic backtracking, tabu search-
ing, and constraint programming satisfaction to verify that every tree with at most 31
vertices is harmonious. In [1690] Mahmoudzadeh and Eshghi treat graceful labelings of
graphs as an optimization problem and apply an algorithm based on ant colony opti-
mization metaheuristic to different classes of graphs and compare the results with those
produced by other methods.
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Aldred, Širáň and Širáň [121] have proved that the number of graceful labelings of
Pn grows at least as fast as (5/3)n. They mention that this fact has an application to
topological graph theory. One such application was provided by Goddyn, Richter, and
and Širáň [897] who used graceful labelings of paths on 2s + 1 vertices (s ≥ 2) to obtain
22s cyclic oriented triangular embeddings of the complete graph on 12s+ 7 vertices. The
Aldred, Širáň and Širáň bound was improved by Adamaszek [50] to (2.37)n with the aid
of a computer. Cattell [548] has shown that when finding a graceful labeling of a path
one has almost complete freedom to choose a particular label i for any given vertex v. In
particular, he shows that the only cases of Pn when this cannot be done are when n ≡ 3
(mod 4) or n ≡ 1 (mod 12), v is in the smaller of the two partite sets of vertices, and
i = (n− 1)/2. In [2757] Wang enumerated the nonequivalent graceful trees and obtained
a closed formula for the number.

Using an algorithm to run through all n! graceful graphs on n + 1 vertices Anick
[173] proves that the average number of graceful labelings grows superexponentially. He
provides a simple criterion to predict which trees have an exceptionally large number of
graceful labelings and gives evidence that trees with an exceptionally small number of
graceful labelings fall into two already known families of caterpillar graphs. Over the full
set of graceful labelings for a given n, Anick shows that the distribution of vertex degrees
associated with each label is very close to Poisson, with the exception of labels 0 and n.
A graph is said to be k-ubiquitously graceful (also called k-rotatable) if for every vertex
there is a graceful labeling which assigns that vertex the label k. He also gives two new
families of trees that are not k-ubiquitously graceful and includes questions suggested by
his results.

In [736] and [737] Eshghi and Azimi discuss a programming model for finding graceful
labelings of large graphs. The computational results show that the models can easily
solve the graceful labeling problems for large graphs. They used this method to verify
that all trees with 30, 35, or 40 vertices are graceful. Stanton and Zarnke [2469] and Koh,
Rogers, and Tan [1394], [1395], [1398] gave methods for combining graceful trees to yield
larger graceful trees. In [2790] Wang, Yang, Hsu, and Cheng generalized the constructions
of Stanton and Zarnke and Koh, Rogers, and Tan for building graceful trees from two
smaller given graceful trees. Rogers in [2130] and Koh, Tan, and Rogers in [1397] provide
recursive constructions to create graceful trees. Burzio and Ferrarese [520] have shown
that the graph obtained from any graceful tree by subdividing every edge is also graceful.
and trees obtained from a graceful tree by replacing each edge with a path of fixed length
is graceful.

The binomial tree B0 consists of a single vertex. The binomial tree Bk consists of
two binomial trees Bk−1 that are linked together: the root of one is the leftmost child of
the root of the other. Ragukumara and Sethuraman [2049] proved that all binomial trees
are graceful. Sethuraman and Murugan [2283] introduced a new method of combining
graceful trees called the recursive attachment method and showed that the recursively
attached tree Ti = Ti−1⊕TAi−1 is graceful for i ≥ 1, where the base tree T0 is a caterpillar
and the attachment tree TAi−1 is any caterpillar. Here Ti−1 ⊕ TAi−1 represents a tree
obtained by attaching a copy of TAi−1 at each vertex of degree at least two in Ti−1, for
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i ≥ 1. Sethuraman and Murugan [2285] proved that any acyclic graph can be embedded
in an unicyclic graceful graph.

It 1999 Broersma and Hoede [504] proved that an equivalent conjecture for the grace-
ful tree conjecture is that all trees containing a perfect matching are strongly graceful
(graceful with an extra condition also called an α-labeling–see Section 3.1). Wang, Yang,
Hsu, and Cheng [2790] showed that there exist infinitely many equivalent versions of the
graceful tree conjecture (GTC). They verify these equivalent conjectures of the graceful
tree conjecture are true for trees of diameter at most 7.

In 1979 Bermond [445] conjectured that lobsters are graceful (a lobster is a tree with
the property that the removal of the endpoints leaves a caterpillar). Morgan [1784] has
shown that all lobsters with perfect matchings are graceful. Krop [1435] proved that a
lobster that has a perfect matching that covers all but one vertex (i.e., that has an almost
perfect matching) is graceful. Ghosh [890] used adjacency matrices to prove that three
classes of lobsters are graceful. Broersma and Hoede [504] proved that if T is a tree
with a perfect matching M of T such that the tree obtained from T by contracting the
edges in M is caterpillar, then T is graceful. Superdock [2546] used this result to prove
that all lobsters with a perfect matching are graceful. Mishra and Panda [1760] have
given graceful labelings for certain lobsters. Sathiamoorthy, Natarajan, Ayyaswamy, and
Janakiraman [2190] proved that the splitting graph of a caterpillar is graceful.

A Skolem sequence of order n is a sequence s1, s2, . . . , s2n of 2n terms such that, for each
k ∈ {1, 2, . . . , n}, there exist exactly two subscripts i(k) and j(k) with si(k) = sj(k) = k
and |i(k) − j(k)| = k. A Skolem sequence of order n exists if and only if n ≡ 0 or 1
(mod 4). Morgan [1785] has used Skolem sequences to construct classes of graceful trees.
Morgan and Rees [1786] used Skolem and Hooked-Skolem sequences to generate classes
of graceful lobsters.

Mishra and Panigrahi [1764] and [1889] found classes of graceful lobsters of diameter
at least five. They show other classes of lobsters are graceful in [1765] and [1766]. In
[2274] Sethuraman and Jesintha [2274] explores how one can generate graceful lobsters
from a graceful caterpillar while in [2278] and [2279] (see also [1115]) they show how to
generate graceful trees from a graceful star. More special cases of Bermond’s conjecture
have been done by Ng [1850], by Wang, Jin, Lu, and Zhang [2758], Abhyanker [10], and
by Mishra and Panigrahi [1765]. Renuka, Balaganesan, Selvaraju [2113] proved spider
trees with n legs of even length t and odd n ≥ 3 and lobsters for which each vertex of the
spine is adjacent to a path of length two are harmonious.

A tree in which all internal vertices have degrees r+1 except one, is called an full r-ary
tree. A uniform full r-ary tree is a full r-ary tree in which all of its leaves are at the same
level. A tree that is obtained from copies of a full r-ary tree by identifying each vertex
of a fixed path with each vertex of the tree of degree r is called a uniform-distant tree.
Suparta and Ariawan [2545] gave methods for constructing graceful classes of caterpillars,
lobsters, and uniform trees that generalize results in [1795] and [2606].

Barrientos [356] defines a y-tree as a graph obtained from a path by appending an edge
to a vertex of a path adjacent to an end point. He proves that graphs obtained from a
y-tree T by replacing every edge ei of T by a copy of K2,ni

in such a way that the ends of
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ei are merged with the two independent vertices of K2,ni
after removing the edge ei from

T are graceful.
Sethuraman and Jesintha [2275], [2276], and [2277] (see also [1115]) proved that rooted

trees obtained by identifying one of the end vertices adjacent to either of the penultimate
vertices of any number of caterpillars having equal diameter at least 3 with the property
that all the degrees of internal vertices of all such caterpillars have the same parity are
graceful. They also proved that rooted trees obtained by identifying either of the penul-
timate vertices of any number of caterpillars having equal diameter at least 3 with the
property that all the degrees of internal vertices of all such caterpillars have the same
parity are graceful. In [2275], [2276], and [2277] (see also [1115] and [1127]) Sethuraman
and Jesintha prove that all rooted trees in which every level contains pendent vertices and
the degrees of the internal vertices in the same level are equal are graceful. Kanetkar and
Sane [1322] show that trees formed by identifying one end vertex of each of six or fewer
paths whose lengths determine an arithmetic progression are graceful.

Chen, Lü, and Yeh [575] define a firecracker as a graph obtained from the concatenation
of stars by linking one leaf from each. They also define a banana tree as a graph obtained
by connecting a vertex v to one leaf of each of any number of stars (v is not in any of the
stars). They proved that firecrackers are graceful and conjecture that banana trees are
graceful. Before Sethuraman and Jesintha [2281] and [2280] (see also [1115]) proved that
all banana trees and extended banana trees (graphs obtained by joining a vertex to one
leaf of each of any number of stars by a path of length of at least two) are graceful, various
kinds of bananas trees had been shown to be graceful by Bhat-Nayak and Deshmukh [457],
by Murugan and Arumugam [1803], [1801] and by Vilfred [2734].

Consider a set of caterpillars, having equal diameter, in which one of the penultimate
vertices has arbitrary degree and all the other internal vertices including the other penul-
timate vertex is of fixed even degree. Jesintha and Sethuraman [1129] call the rooted tree
obtained by merging an end-vertex adjacent to the penultimate vertex of fixed even degree
of each caterpillar a arbitrarily fixed generalized banana tree. They prove that such trees
are graceful. From this it follows that all banana trees are graceful and all generalized
banana trees are graceful.

Zhenbin [2913] has shown that graphs obtained by starting with any number of identi-
cal stars, appending an edge to exactly one edge from each star, then joining the vertices
at which the appended edges were attached to a new vertex are graceful. He also shows
that graphs obtained by starting with any two stars, appending an edge to exactly one
edge from each star, then joining the vertices at which the appended edges were attached
to a new vertex are graceful. In [1128] Jesintha and Sethuraman use a method of Hrnciar
and Havier [1022] to generate graceful trees from a graceful star with n edges.

Aldred and McKay [120] used a computer to show that all trees with at most 26
vertices are harmonious. That caterpillars are harmonious has been shown by Graham
and Sloane [925]. In a paper published in 2004 Krishnaa [1429] claims to proved that all
trees have both graceful and harmonious labelings. However, her proofs were flawed.

Vietri [2728] utilized a counting technique that generalizes Rosa’s graceful parity con-
dition and provides constraints on possible graceful labelings of certain classes of trees.
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He expresses doubts about the validity of the graceful tree conjecture. In [2716] Vietri
introduced a family of homogeneous polynomials (mod 2), one for every degree, having as
many variables as the number of vertices, for any fixed graph; a so-called “graceful poly-
nomial” that vanishes (mod 2) that may be useful for proving that the related graph is
non-graceful (the degree 1 case dates back to Rosa’s work). He also classified graphs whose
graceful polynomials vanish for degrees 2 to 4, thereby obtaining some new non-graceful
graphs.

Using a variant of the Matrix Tree Theorem, Whitty [2811] specifies an n× n matrix
of indeterminates whose determinant is a multivariate polynomial that enumerates the
gracefully labeled (n + 1)-vertex trees. Whitty also gives a bijection between gracefully
labelled graphs and rook placements on a chessboard on the Möbius strip. In [519] Buratti,
Rinaldi, and Traetta use graceful labelings of paths to obtain a result on Hamiltonian cycle
systems.

In [501] Brankovic and Wanless describe applications of graceful and graceful-like
labelings of trees to several well known combinatorial problems including complete graph
decompositions, the Oberwolfach problem, and coloring. They also discuss the connection
between α-labeling of paths and near transversals in Latin squares and show how spectral
graph theory might be used to further the progress on the graceful tree conjecture.

Arkut, Arkut, and Basak [179] and Basak [228] proposed an efficient method for
managing Internet Protocol (IP) networks by using graceful labelings of the nodes of
the spanning caterpillars of the autonomous sub-networks to assign labels to the links in
the sub-networks. Graceful labelings of trees also have been used in multi protocol label
switching (MPLS) routing platforms in IP networks [180], [2415], and [2588].

Despite the efforts of many, the graceful tree conjecture remains open even for trees
with maximum degree 3. More specialized results about trees are contained in [445], [471],
[1393], [1672], [530], [1250], and [2137]. In [706] Edwards and Howard provide a lengthy
survey paper on graceful trees. Robeva [2128] provides an extensive survey of graceful la-
belings of trees in her 2011 undergraduate honors thesis at Stanford University. Alfalayleh,
Brankovic, Giggins, and Islam [122] survey results related to the graceful tree conjecture
as of 2004 and conclude with five open problems. Alfalayleh et al.: say “The faith in
the [graceful tree] conjecture is so strong that if a tree without a graceful labeling were
indeed found, then it probably would not be considered a tree.” In his Princeton Univer-
sity senior thesis Superdock [2546] provided an extensive survey of results and techniques
about graceful trees. He also obtained some specialized results about the gracefulness of
spiders and trees with diameter 6. Arumugam and Bagga [191] discuss computational
efforts aimed at verifying the graceful tree conjecture and we survey recent results on
generating all graceful labelings of certain families of unicyclic graphs. Sethuraman and
Murugan [2284] construct a graceful unicyclic graph G from every graceful tree T with
V (G) = V (T ) such that the graceful labeling of G is derived from the graceful labeling of
T .
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2.2 Cycle-Related Graphs

Cycle-related graphs have been a major focus of attention. Rosa [2136] showed that the
n-cycle Cn is graceful if and only if n ≡ 0 or 3 (mod 4) and Graham and Sloane [925]
proved that Cn is harmonious if and only if n is odd. Wheels Wn = Cn + K1 are both
graceful and harmonious – [795], [1018], and [925]. As a consequence we have that a
subgraph of a graceful (harmonious) graph need not be graceful (harmonious). The n-
cone (also called the n-point suspension; the 1-cone is the wheel; the 2-cone is also called
a double cone of Cm) Cm +Kn has been shown to be graceful when m ≡ 0 or 3 (mod 12)
by Bhat-Nayak and Selvam [463]. When n is even and m is 2, 6 or 10 (mod 12) Cm +Kn

violates the parity condition for a graceful graph. Bhat-Nayak and Selvam [463] also prove
that the following cones are graceful: C4 +Kn, C5 +K2, C7 +Kn, C9 +K2, C11 +Kn and
C19 +Kn. The helm Hn is the graph obtained from a wheel by attaching a pendent edge
at each vertex of the n-cycle. Helms have been shown to be graceful [212] and harmonious
[894], [1618], [1619] (see also [1607], [2263], [1605], [654], and [2064]). Koh, Rogers, Teo,
and Yap, [1396] define a web graph as one obtained by joining the pendent points of a
helm to form a cycle and then adding a single pendent edge to each vertex of this outer
cycle. They asked whether such graphs are graceful. This was proved by Kang, Liang,
Gao, and Yang [1326]. Yang has extended the notion of a web by iterating the process
of adding pendent points and joining them to form a cycle and then adding pendent
points to the new cycle. In his notation, W (2, n) is the web graph whereas W (t, n) is the
generalized web with t n-cycles. Yang has shown that W (3, n) and W (4, n) are graceful
(see [1326]), Abhyanker and Bhat-Nayak [12] have done W (5, n) and Abhyanker [10] has
done W (t, 5) for 5 ≤ t ≤ 13. Gnanajothi [894] has shown that webs with odd cycles are
harmonious. Seoud and Youssef [2263] define a closed helm as the graph obtained from a
helm by joining each pendent vertex to form a cycle and a flower as the graph obtained
from a helm by joining each pendent vertex to the central vertex of the helm. They prove
that closed helms and flowers are harmonious when the cycles are odd. A gear graph is
obtained from the wheel Wn by adding a vertex between every pair of adjacent vertices of
the n-cycle. In 1984 Ma and Feng [1675] proved all gears are graceful while in a Master’s
thesis in 2006 Chen [576] proved all gears are harmonious. Liu [1618] has shown that
if two or more vertices are inserted between every pair of vertices of the n-cycle of the
wheel Wn, the resulting graph is graceful. Sethuraman and Sankar [2291] showed that the
subdivisions of wheels are graceful for even values of n ≥ 4. Liu [1616] has also proved
that the graph obtained from a gear graph by attaching one or more pendent edges to
each vertex between the vertices of the n-cycle is graceful. Pradhan and Kumar [2010]
proved that graphs obtained by adding a pendent edge to each pendent vertex of hairy
cycle Cn�K1 are graceful if n ≡ 0 (mod 4m). They further provide a rule for determining
the missing numbers in the graceful labeling of Cn � K1 and of the graph obtained by
adding pendent edges to each pendent vertex of Cn �K1.

Abhyanker [10] has investigated various unicyclic (that is, graphs with exactly one
cycle) graphs. He proved that the unicyclic graphs obtained by identifying one vertex of
C4 with the root of the olive tree with 2n branches and identifying an adjacent vertex on
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C4 with the end point of the path P2n−2 are graceful. He showed that if one attaches any
number of pendent edges to these unicyclic graphs at the vertex of C4 that is adjacent
to the root of the olive tree but not adjacent to the end vertex of the attached path, the
resulting graphs are graceful. Likewise, Abhyanker proved that the graph obtained by
deleting the branch of length 1 from an olive tree with 2n branches and identifying the
root of the edge deleted tree with a vertex of a cycle of the form C2n+3 is graceful. He
also has a number of results similar to these. In [321] Bagga, Fotso, Max, and Arumugam
investigate the gracefulness of unicyclic graphs with pendent caterpillars at two adjacent
vertices of the cycle, and pendent edges at some other vertices of the cycle. In [322] Bagga
and Heinz give some properties of graceful graphs obtained by adding pendent edges at
each vertex of a cycle.

Delorme, Maheo, Thuillier, Koh, and Teo [658] and Ma and Feng [1674] showed that
any cycle with a chord is graceful. This was first conjectured by Bodendiek, Schumacher,
and Wegner [480], who proved various special cases. In 1985 Koh and Yap [1399] gener-
alized this by defining a cycle with a Pk-chord to be a cycle with the path Pk joining two
nonconsecutive vertices of the cycle. They proved that these graphs are graceful when
k = 3 and conjectured that all cycles with a Pk-chord are graceful. This was proved for
k ≥ 4 by Punnim and Pabhapote in 1987 [2041]. Chen [581] obtained the same result
except for three cases which were then handled by Gao [941]. In 2005, Sethuraman and
Elumalai [2270] defined a cycle with parallel Pk-chords as a graph obtained from a cycle
Cn (n ≥ 6) with consecutive vertices v0, v1, . . . , vn−1 by adding disjoint paths Pk, (k ≥ 3),
between each pair of nonadjacent vertices v1, vn−1, v2, vn−2, . . . , vi, vn−i, . . . , vα, vβ where
α = bn/2c − 1 and β = bn/2c + 2 if n is odd or β = bn/2c + 1 if n is even. They
proved that every cycle Cn (n ≥ 6) with parallel Pk-chords is graceful for k = 3, 4, 6, 8,
and 10 and they conjecture that the cycle Cn with parallel Pk-chords is graceful for all
even k. Xu [2833] proved that all cycles with a chord are harmonious except for C6 in the
case where the distance in C6 between the endpoints of the chord is 2. The gracefulness
of cycles with consecutive chords has also been investigated. For 3 ≤ p ≤ n − r, let
Cn(p, r) denote the n-cycle with consecutive vertices v1, v2, . . . , vn to which the r chords
v1vp, v1vp+1, . . . , v1vp+r−1 have been added. Koh and Punnin [1388] and Koh, Rogers, Teo,
and Yap [1396] have handled the cases r = 2, 3 and n − 3 where n is the length of the
cycle. Goh and Lim [901] then proved that all remaining cases are graceful. Moreover,
Ma [1677] has shown that Cn(p, n−p) is graceful when p ≡ 0, 3 (mod 4) and Ma, Liu, and
Liu [1678] have proved other special cases of these graphs are graceful. Ma also proved
that if one adds to the graph Cn(3, n − 3) any number ki of paths of length 2 from the
vertex v1 to the vertex vi for i = 2, . . . , n, the resulting graph is graceful. Chen [581] has
shown that apart from four exceptional cases, a graph consisting of three independent
paths joining two vertices of a cycle is graceful. This generalizes the result that a cycle
plus a chord is graceful. Liu [1615] has shown that the n-cycle with consecutive vertices
v1, v2, . . . , vn to which the chords v1vk and v1vk+2 (2 ≤ k ≤ n−3) are adjoined is graceful.

For the cycle Cn : v1v2v3 · · · vnv1 and a cycle with a Ck− chord Venkatesh and Sivagu-
runathan [2725] let Cn,k denote the graph obtained from Cn by adding a cycle Ck of
length k between the non-adjacent vertices v2 and vn. They define a cycle with a par-
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allel Ck chord as the graph obtained from a cycle Cn by adding a cycle Ck of length k
between every pair of non-adjacent vertices (v2, vn), (v3, vn−1), . . . , (va, vb) where a = bn

2
c,

b = bn
2
c+ 2, if n is even and a = bn

2
c, b = bn

2
c+ 3, if n is odd. They proved that Cn,4 and

C+
n,4 are graceful for n ≡ 0 (mod 4) and that C+

n,6 is graceful for all odd values of n ≥ 5.
In [655] Deb and Limaye use the notation C(n, k) to denote the cycle Cn with k cords

sharing a common endpoint called the apex. For certain choices of n and k there is a
unique C(n, k) graph and for other choices there is more than one graph possible. They
call these shell-type graphs and they call the unique graph C(n, n − 3) a shell. Notice
that the shell C(n, n − 3) is the same as the fan Fn−1 = Pn−1 + K1. Kuppusamy and
Guruswamy [1446] show that the subdivision graph of K2,n is graceful for n ≥ 1 and the
subdivision graph of the shell graph C(n, n − 3) is graceful for n ≥ 4. Deb and Limaye
define a multiple shell to be a collection of edge disjoint shells that have their apex in
common. A multiple shell is said to be balanced with width w if every shell has order
w or every shell has order w or w + 1. Deb and Limaye [655] have conjectured that
all multiple shells are harmonious, and have shown that the conjecture is true for the
balanced double shells and balanced triple shells. Yang, Xu, Xi, and Qiao [2859] proved
the conjecture is true for balanced quadruple shells. Liang [1586] proved the conjecture is
true when each shell has the same order and the number of copies is odd. Jeba Jesintha
and Hilda [1117] define a shell-butterfly graph as a one-point union of two shells of any
order with two pendent edges at the apex. They prove that certain shell-butterfly graphs
are harmonious. Jeba Jesintha and Ezhilarasi Hilda [1116] proved butterfly graphs with
one shell of order m and the other shell of order 2m+ 1 are graceful and double shells in
which each shell has the same order are graceful. Jeba Jesintha and Hilda [1121] define
a bow graph as a double shell in which each shell has arbitrary order. A bow graph in
which each shell has the same order is called a uniform bow graph. They prove that all
uniform bow graphs are graceful. Jeba Jesintha and Ezhilarasi Hilda [1123] proved that
shell-butterfly graphs are graceful.

Sethuraman and Dhavamani [2267] use H(n, t) to denote the graph obtained from the
cycle Cn by adding t consecutive chords incident with a common vertex. If the common
vertex is u and v is adjacent to u, then for k ≥ 1, n ≥ 4, and 1 ≤ t ≤ n− 3, Sethuraman
and Dhavamani denote by G(n, t, k) the graph obtained by taking the union of k copies
of H(n, k) with the edge uv identified. They conjecture that every graph G(n, t, k) is
graceful. They prove the conjecture for the case that t = n− 3.

For i = 1, 2, . . . , n let vi,1, vi,2, . . . , vi,2m be the successive vertices of n copies of C2m.
Sekar [2200] defines a chain of cycles C2m,n as the graph obtained by identifying vi,m and
vi+1,m for i = 1, 2, . . . , n − 1. He proves that C6,2k and C8,n are graceful for all k and all
n. Barrientos [359] proved that all C8,n, C12,n, and C6,2k are graceful.

Truszczyński [2601] studied unicyclic graphs and proved several classes of such graphs
are graceful. Among these are what he calls dragons. A dragon is formed by joining
the end point of a path to a cycle (Koh, et al. [1396] call these tadpoles; Kim and Park
[1376] call them kites). This work led Truszczyński to conjecture that all unicyclic graphs
except Cn, where n ≡ 1 or 2 (mod 4), are graceful. Guo [940] has shown that dragons
are graceful when the length of the cycle is congruent to 1 or 2 (mod 4). Lu [1671] uses
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C
+(m,t)
n to denote the graph obtained by identifying one vertex of Cn with one endpoint of

m paths each of length t. He proves that C
+(1,t)
n (a tadpole) is not harmonious when a+ t

is odd and C
+(2m,t)
n is harmonious when n = 3 and when n = 2k+1 and t = k−1, k+1 or

2k−1. In his Master’s thesis, Doma [684] investigates the gracefulness of various unicyclic
graphs where the cycle has up to 9 vertices. Guruswamy and Varadhan [942] proved that
any acyclic graph can be embedded in a unicyclic graceful graph. Because of the immense
diversity of unicyclic graphs, a proof of Truszczyński’s conjecture seems out of reach in
the near future.

Cycles that share a common edge or a vertex have received some attention. Murugan
and Arumugan [1802] have shown that books with n pentagonal pages (i.e., n copies of
C5 with an edge in common) are graceful when n is even and not graceful when n is odd.
Lu [1671] uses Θ(Cm)n to denote the graph made from n copies of Cm that share an edge
(an n page book with m-polygonal pages). He proves Θ(C2m+1)2n+1 is harmonious for all
m and n; Θ(C4m+2)4n+1 and Θ(C4m)4n+3 are not harmonious for all m and n. Xu [2833]
proved that Θ(Cm)2 is harmonious except when m = 3. (Θ(Cm)2 is isomorphic to C2(m−1)

with a chord “in the middle.”) Nurvazly and Sugeng [1879] proved that Θ(C3)n graphs
(n copies of C3 that share an edge) have graceful labelings.

A kayak paddle KP (k,m, l) is the graph obtained by joining Ck and Cm by a path of
length l. Litersky [1603] proves that kayak paddles have graceful labelings in the following
cases: k ≡ 0 mod 4, m ≡ 0 or 3 (mod 4); k ≡ m ≡ 2 (mod 4) for k ≥ 3; and k ≡ 1 (mod
4), m ≡ 3 (mod 4). She conjectures that KP (4k + 4, 4m + 2, l) with 2k < m is graceful
when l ≤ 2m if l is even and when l ≤ 2m + 1 if l is odd; and KP (10, 10, l) is graceful
when l ≥ 12. The cases are open: KP (4k, 4m+ 1, l);KP (4k, 4m+ 2, l);KP (4k+ 1, 4m+
1, l);KP (4k + 1, 4m+ 2, l);KP (4k + 2, 4m+ 3, l);KP (4k + 3, 4m+ 3, l).

Let C
(t)
n denote the one-point union of t cycles of length n. Bermond, Brouwer, and

Germa [446] and Bermond, Kotzig, and Turgeon [448]) proved that C
(t)
3 (that is, the

friendship graph or Dutch t-windmill) is graceful if and only if t ≡ 0 or 1 (mod 4) while

Graham and Sloane [925] proved C
(t)
3 is harmonious if and only if t 6≡ 2 (mod 4). Koh,

Rogers, Lee, and Toh [1389] conjecture that C
(t)
n is graceful if and only if nt ≡ 0 or 3

(mod 4). Yang and Lin [2851] have proved the conjecture for the case n = 5 and Yang,
Xu, Xi, Li, and Haque [2857] did the case n = 7. Xu, Yang, Li and Xi [2837] did the
case n = 11. Xu, Yang, Han and Li [2838] did the case n = 13. Qian [2048] verifies this
conjecture for the case that t = 2 and n is even and Yang, Xu, Xi, and Li [2858] did the
case n = 9. Figueroa-Centeno, Ichishima, and Muntaner-Batle [763] have shown that if
m ≡ 0 (mod 4) then the one-point union of 2, 3, or 4 copies of Cm admits a special kind
of graceful labeling called an α-labeling (see Section 3.1) and if m ≡ 2 (mod 4), then the
one-point union of 2 or 4 copies of Cm admits an α-labeling. Bodendiek, Schumacher,
and Wegner [486] proved that the one-point union of any two cycles is graceful when the
number of edges is congruent to 0 or 3 modulo 4. (The other cases violate the necessary

parity condition.) Shee [2320] has proved that C
(t)
4 is graceful for all t. Seoud and Youssef

[2261] have shown that the one-point union of a triangle and Cn is harmonious if and
only if n ≡ 1 (mod 4) and that if the one-point union of two cycles is harmonious then
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the number of edges is divisible by 4. The question of whether this latter condition is
sufficient is open. Figueroa-Centeno, Ichishima, and Muntaner-Batle [763] have shown
that if G is harmonious then the one-point union of an odd number of copies of G using
the vertex labeled 0 as the shared point is harmonious. Sethuraman and Selvaraju [2297]
have shown that for a variety of choices of points, the one-point union of any number of
non-isomorphic complete bipartite graphs is graceful. They raise the question of whether
this is true for all choices of the common point.

Another class of cycle-related graphs is that of triangular cacti. The block-cutpoint
graph of a graph G is a bipartite graph in which one partite set consists of the cut vertices
of G, and the other has a vertex bi for each block Bi of G. A block of a graph is a maximal
connected subgraph that has no cut-vertex. A triangular cactus is a connected graph all of
whose blocks are triangles. A triangular snake is a triangular cactus whose block-cutpoint-
graph is a path (a triangular snake is obtained from a path v1, v2, . . . , vn by joining vi and
vi+1 to a new vertex wi for i = 1, 2, . . . , n−1). Rosa [2138] conjectured that all triangular
cacti with t ≡ 0 or 1 (mod 4) blocks are graceful. (The cases where t ≡ 2 or 3 (mod 4)
fail to be graceful because of the parity condition.) Moulton [1793] proved the conjecture
for all triangular snakes. A proof of the general case (i.e., all triangular cacti) seems
hopelessly difficult. Liu and Zhang [1607] gave an incorrect proof that triangular snakes
with an odd number of triangles are harmonious whereas triangular snakes with n ≡ 2
(mod 4) triangles are not harmonious. Xu [2834] subsequently proved that triangular
snakes are harmonious if and only if the number of triangles is not congruent to 2 (mod
4).

A double triangular snake consists of two triangular snakes that have a common path.
That is, a double triangular snake is obtained from a path v1, v2, . . . , vn by joining vi and
vi+1 to a new vertex wi for i = 1, 2, . . . , n−1 and to a new vertex ui for i = 1, 2, . . . , n−1.
Xi, Yang, and Wang [2830] proved that all double triangular snakes are harmonious.

A hexagonal snake is obtained from a path p1, p2, p3, . . . , pn by joining pi, pi+1 to new
vertices xi and yi respectively and adding edges xiyi for i = 1, 2, . . . , n − 1 and replac-
ing every edge with a 6-cycle; an alternate hexagonal snake is obtained from a path
p1, p2, p3, . . . , pn by joining pi, pi+1 to new vertices xi and yi (alternatively) and adding
edges xiyi, where 1 ≤ i ≤ n − 1 for even n and 1 ≤ i ≤ n − 2 for odd n and replacing
each alternate edge with a 6-cycle; a double hexagonal snake is obtained from two hexag-
onal snakes that share the n-path; a double alternate hexagonal snake is obtained from
two alternative hexagonal snakes that share the n-path. Pattabiraman, Loganathan, and
Rao [1910] provided graceful labelings for double hexagonal snakes, alternate hexagonal
snakes, odd alternate hexagonal snakes, and double alternate hexagonal snakes.

For any graph G defining G-snake analogous to triangular snakes, Sekar [2200] has
shown that Cn-snakes are graceful when n ≡ 0 (mod 4) (n ≥ 8) and when n ≡ 2 (mod
4) and the number of Cn is even. Gnanajothi [894, pp. 31-34] had earlier shown that
quadrilateral snakes are graceful. Grace [923] has proved that K4-snakes are harmonious.
Rosa [2138] has also considered analogously defined quadrilateral and pentagonal cacti
and examined small cases. Yu, Lee, and Chin [2891] showed that Q2-snakes and Q3-snakes
are graceful and, when the number of blocks is greater than 1, Q2-snakes, Q3-snakes and
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Q4-snakes are harmonious.
Barrientos [350] calls a graph a kCn-snake if it is a connected graph with k blocks whose

block-cutpoint graph is a path and each of the k blocks is isomorphic to Cn. (When n > 3
and k > 3 there is more than one kCn-snake.) If a kCn-snake where the path of minimum
length that contains all the cut-vertices of the graph has the property that the distance
between any two consecutive cut-vertices is bn/2c it is called linear. Barrientos proves
that kC4-snakes are graceful and that the linear kC6-snakes are graceful when k is even.
He further proves that kC8-snakes and kC12-snakes are graceful in the cases where the
distances between consecutive vertices of the path of minimum length that contains all
the cut-vertices of the graph are all even and that certain cases of kC4n-snakes and kC5n-
snakes are graceful (depending on the distances between consecutive vertices of the path
of minimum length that contains all the cut-vertices of the graph).

Badr [215] defines a linear cyclic snake (m, k)Cn as the graph consisting of k copies of
Cn with two non-adjecent vertices in common where every copy has m copies of Cn and
the block-cutpoint graph is not a path. He proves that the linear cyclic snakes (m, k)C4-
snake and (m, k)C8-snake are graceful and conjectures that all the linear cyclic snakes
(m, k)Cn-snakes are graceful for n ≡ 0 (mod 4 ) or n ≡ 3 (mod 4).

Several people have studied cycles with pendent edges attached. Frucht [795] proved
that any cycle with a pendent edge attached at each vertex (i.e., a crown) is graceful (see
also [1028]). If G has order n, the corona of G with H, G�H is the graph obtained by
taking one copy of G and n copies of H and joining the ith vertex of G with an edge to
every vertex in the ith copy of H. Barrientos [355] also proved: if G is a graceful graph
of order m and size m − 1, then G � nK1 and G + nK1 are graceful; if G is a graceful
graph of order p and size q with q > p, then (G ∪ (q + 1 − p)K1) � nK1 is graceful; and
all unicyclic graphs, other than a cycle, for which the deletion of any edge from the cycle
results in a caterpillar are graceful.

For a given cycle Cn with n ≡ 0 or 3 (mod 4) and a family of trees T = {T1, T2, . . . , Tn},
let ui and vi, 1 ≤ i ≤ n, be fixed vertices of Cn and Ti, respectively. Figueroa-Centeno,
Ichishima, Muntaner-Batle, and Oshima [768] provide two construction methods that gen-
erate a graceful labeling of the unicyclic graphs obtained from Cn and T by amalgamating
them at each ui and vi. Their results encompass all previously known results for unicyclic
graphs whose cycle length is 0 or 3 (mod 4) and considerably extend the known classes
of graceful unicyclic graphs. Khairunnisa and Sugeng [1361] let A(m,n) denote the graph
obtained from Cm by connecting each two adjacent vertices with Pn+1. They prove that
the graphs A(3,1) �Kr are graceful.

In [352] Barrientos proved that helms (graphs obtained from a wheel by attaching one
pendent edge to each vertex) are graceful. Grace [922] showed that an odd cycle with one
or more pendent edges at each vertex is harmonious and conjectured that C2n�K1, an even
cycle with one pendent edge attached at each vertex, is harmonious. This conjecture has
been proved by Liu and Zhang [1606], Liu [1618] and [1619], Hegde [980], Huang [1030],
and Bu [507]. Sekar [2200] has shown that the graph Cm � Pn obtained by attaching the
path Pn to each vertex of Cm is graceful. For any n ≥ 3 and any t with 1 ≤ t ≤ n, let
C+t
n denote the class of graphs formed by adding a single pendent edge to t vertices of
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a cycle of length n. Ropp [2135] proved that for every n and t the class C+t
n contains a

graceful graph. Gallian and Ropp [811] conjectured that for all n and t, all members of
C+t
n are graceful. This was proved by Qian [2048] and by Kang, Liang, Gao, and Yang

[1326]. Of course, such graphs are just a special case of the aforementioned conjecture
of Truszczyński that all unicyclic graphs except Cn for n ≡ 1 or 2 (mod 4) are graceful.
Sekar [2200] proved that the graph obtained by identifying an endpoint of a star with a
vertex of a cycle is graceful. Lu [1671] shows that the graph obtained by identifying each
vertex of an odd cycle with a vertex disjoint copy of C2m+1 is harmonious if and only if
m is odd. Sudha [2482] proved that the graphs obtained by starting with two or more
copies of C4 and identifying a vertex of the ith copy with a vertex of the i+ 1th copy and
the graphs obtained by starting with two or more cycles (not necessarily of the same size)
and identifying an edge from the ith copy with an edge of the i + 1th copy are graceful.
Sudha and Kanniga [2489] proved that the graphs obtained by identifying any vertex of
Cm with any vertex of degree 1 of Sn where n = d(m− 1)/2e are graceful.

For a given cycle Cn with n ≡ 0 or 3 (mod 4) and a family of trees T = {T1, T2, . . . , Tn},
let ui and vi, 1 ≤ i ≤ n, be fixed vertices of Cn and Ti, respectively. Figueroa-Centeno,
Ichishima, Muntaner-Batle, and Oshima [768] provide two construction methods that gen-
erate a graceful labeling of the unicyclic graphs obtained from Cn and T by amalgamating
them at each ui and vi. Their results encompass all previously known results for unicyclic
graphs whose cycle length is 0 or 3 (mod 4) and considerably extend the known classes
of graceful unicyclic graphs.

Solairaju and Chithra [2440] defined three classes of graphs obtained by connecting
copies of C4 in various ways. Denote the four consecutive vertices of ith copy of C4

by vi,1, vi,2, vi,3, vi4 . They show that the graphs obtained by identifying vi,4 with vi+1,2

for i = 1, 2, . . . , n − 1 is graceful; the graphs obtained by joining vi,4 with vi+1,2 for
i = 1, 2, . . . , n − 1 by an edge is graceful; and the graphs obtained by joining vi,4 with
vi+1,2 for i = 1, 2, . . . , n− 1 with a path of length 2 is graceful.

Venkatesh [2721] showed that for positive integers m and n divisible by 4 the graphs
obtained by appending a copy of Cn to each vertex of Cm by identifying one vertex of Cn
with each vertex of Cm is graceful.

2.3 Product Related Graphs

Graphs that are cartesian products and related graphs have been the subject of many
papers. That planar grids, Pm × Pn (m,n ≥ 2), (some authors use G � H to denote the
Cartesian product of G and H) are graceful was proved by Acharya and Gill [36] in 1978
although the much simpler labeling scheme given by Maheo [1687] in 1980 for Pm × P2

readily extends to all grids. Liu, T. Zou, Y. Lu [1613] proved Pm×Pn×P2 is graceful. In
1980 Graham and Sloane [925] proved ladders, Pm×P2, are harmonious when m > 2 and
in 1992 Jungreis and Reid [1266] showed that the grids Pm × Pn are harmonious when
(m,n) 6= (2, 2). A few people have looked at graphs obtained from planar grids in various
ways. Kathiresan [1344] has shown that graphs obtained from ladders by subdividing
each step exactly once are graceful and that graphs obtained by appending an edge to
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each vertex of a ladder are graceful [1346]. Barrientos and Minion [386] showed that a
graceful graph is obtained when every step of a ladder is subdivided an even number of
times. In addition, they proved that when each edge of a ladder is subdivided exactly
once, the resulting graph is graceful.

Acharya [25] has shown that certain subgraphs of grid graphs are graceful. Lee [1487]
defines a Mongolian tent as a graph obtained from Pm × Pn, n odd, by adding one extra
vertex above the grid and joining every other vertex of the top row of Pm × Pn to the
new vertex. A Mongolian village is a graph formed by successively amalgamating copies
of Mongolian tents with the same number of rows so that adjacent tents share a column.
Lee proves that Mongolian tents and villages are graceful. A Young tableau is a subgraph
of Pm×Pn obtained by retaining the first two rows of Pm×Pn and deleting vertices from
the right hand end of other rows in such a way that the lengths of the successive rows
form a nonincreasing sequence. Lee and Ng [1511] have proved that all Young tableaus
are graceful. Lee [1487] has also defined a variation of Mongolian tents by adding an extra
vertex above the top row of a Young tableau and joining every other vertex of that row
to the extra vertex. He proves these graphs are graceful. In [2439] and [2438] Solairaju
and Arockiasamy prove that various families of subgraphs of grids Pm × Pn are graceful.
Sudha [2482] proved that certain subgraphs of the grid Pn×P2 are graceful. Knuth [1383]
proved that Kn × P3 is graceful if and only if n ≤ 6.

Prisms are graphs of the form Cm × Pn. These can be viewed as grids on cylinders.
In 1977 Bodendiek, Schumacher, and Wegner [480] proved that Cm×P2 is graceful when
m ≡ 0 (mod 4). According to the survey by Bermond [445], Gangopadhyay and Rao
Hebbare did the case that m is even about the same time. In a 1979 paper, Frucht [795]
stated without proof that he had done all Cm × P2. A complete proof of all cases and
some related results were given by Frucht and Gallian [798] in 1988.

In 1992 Jungreis and Reid [1266] proved that all Cm × Pn are graceful when m and
n are even or when m ≡ 0 (mod 4). They also investigated the existence of a stronger
form of graceful labeling called an α-labeling (see Section 3.1) for graphs of the form
Pm × Pn, Cm × Pn, and Cm × Cn (see also [813]).

Yang and Wang have shown that the prisms C4n+2×P4m+3 [2856], Cn×P2 [2854], and
C6×Pm (m ≥ 2) (see [2856]) are graceful. Singh [2394] proved that C3×Pn is graceful for
all n. In their 1980 paper Graham and Sloane [925] proved that Cm × Pn is harmonious
when n is odd and they used a computer to show C4×P2, the cube, is not harmonious. In
1992 Gallian, Prout, and Winters [816] proved that Cm × P2 is harmonious when m 6= 4.
In 1992, Jungreis and Reid [1266] showed that C4×Pn is harmonious when n ≥ 3. Huang
and Skiena [1032] have shown that Cm × Pn is graceful for all n when m is even and for
all n with 3 ≤ n ≤ 12 when m is odd. Abhyanker [10] proved that the graphs obtained
from C2m+1 × P5 by adding a pendent edge to each vertex of an outer cycle is graceful.

Torus grids are graphs of the form Cm × Cn (m > 2, n > 2). Very little success has
been achieved with these graphs. The graceful parity condition is violated for Cm × Cn
when m and n are odd and the harmonious parity condition [925, Theorem 11] is violated
for Cm × Cn when m ≡ 1, 2, 3 (mod 4) and n is odd. In 1992 Jungreis and Reid [1266]
showed that Cm×Cn is graceful when m ≡ 0 (mod 4) and n is even. A complete solution
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to both the graceful and harmonious torus grid problems will most likely involve a large
number of cases.

There has been some work done on prism-related graphs. Gallian, Prout, and Winters
[816] proved that all prisms Cm × P2 with a single vertex deleted or single edge deleted
are graceful and harmonious. The Möbius ladder Mn is the graph obtained from the
ladder Pn×P2 by joining the opposite end points of the two copies of Pn. In 1989 Gallian
[810] showed that all Möbius ladders are graceful and all but M3 are harmonious. Ropp
[2135] has examined two classes of prisms with pendent edges attached. He proved that
all Cm×P2 with a single pendent edge at each vertex are graceful and all Cm×P2 with a
single pendent edge at each vertex of one of the cycles are graceful. Ramachandran and
Sekar [2077] proved that the graph obtained from the ladder Ln (Pn × P2) by identifying
one vertex of Ln with any vertex of the star Sm other than the center of Sm is graceful.

Another class of cartesian products that has been studied is that of books and
“stacked” books. The book Bm is the graph Sm × P2 where Sm is the star with m edges.
In 1980 Maheo [1687] proved that the books of the form B2m are graceful and conjectured
that the books B4m+1 were also graceful. (The books B4m+3 do not satisfy the graceful
parity condition.) This conjecture was verified by Delorme [657] in 1980. Maheo [1687]
also proved that Ln×P2 and B2m×P2 are graceful. Both Grace [921] and Reid (see [815])
have given harmonious labelings for B2m. The books B4m+3 do not satisfy the harmo-
nious parity condition [925, Theorem 11]. Gallian and Jungreis [815] conjectured that the
books B4m+1 are harmonious. Gnanajothi [894] has verified this conjecture by showing
B4m+1 has an even stronger form of labeling – see Section 4.1. Liang [1582] also proved
the conjecture. In 1988 Gallian and Jungreis [815] defined a stacked book as a graph of
the form Sm×Pn. They proved that the stacked books of the form S2m×Pn are graceful
and posed the case S2m+1 × Pn as an open question. The n-cube K2 ×K2 × · · · ×K2 (n
copies) was shown to be graceful by Kotzig [1416]—see also [1687]. Although Graham
and Sloane [925] used a computer in 1980 to show that the 3-cube is not harmonious (see
also [1890]), Ichishima and Oshima [1059] proved that the n-cube Qn has a stronger form
of harmonious labeling called an α-labeling (see Section 3.1) for n ≥ 4.

In 1986 Reid [2110] found a harmonious labeling for K4×Pn. In 2003 Petrie and Smith
[1920] investigated graceful labelings of graphs as an exercise in constraint programming
satisfaction. They determined that Kn × P2 is graceful for n = 3, 4 and 5; K4 × P3 is
graceful; K4 ×C3 is graceful; (Cn ∪Cn) +K1 (double wheel) is graceful for n = 4 and 5;
and (C3 ∪C3) +K1 is not graceful. That K3 ×K3 is not graceful follows from the parity
condition given in the introduction. Using significantly better methods in 2010, Smith and
Puget obtained the results about graceful labelings for Km×K1, Km×Pn, and Km×Cn
given in Table 1. Their labeling for K5×P2 and K6×P3 are the unique graceful labelings
for those graphs. Redl [2109] proved that K4 × Pn is graceful for n = 1, 2, 3, 4, and 5
using a constraint programming approach and asked if all graphs of the form K4×Pn are
graceful

Vaidya, Kaneria, Srivastav, and Dani [2644] proved that Pn ∪ Pt ∪ (Pr × Ps) where
t < min{r, s} and Pn ∪ Pt ∪Kr,s where t ≤ min{r, s} and r, s ≥ 3 are graceful. Kaneria,
Vaidya, Ghodasara, and Srivastav [1318] proved Kmn ∪ (Pr × Ps) where m,n, r, s > 1;

the electronic journal of combinatorics (2019), #DS6 21



(Pr×Ps)∪Pt where r, s > 1 and t 6= 2; and Kmn ∪ (Pr×Ps)∪Pt where m,n, r, s > 1 and
t 6= 2 are graceful.

The composition G1[G2] is the graph having vertex set V (G1)× V (G2) and edge set
{(x1, y1), (x2, y2)| x1x2 ∈ E(G1) or x1 = x2 and y1y2 ∈ E(G2)}. The symmetric product
G1 ⊕ G2 of graphs G1 and G2 is the graph with vertex set V (G1) × V (G2) and edge
set {(x1, y1), (x2, y2)| x1x2 ∈ E(G1) or y1y2 ∈ E(G2) but not both}. Seoud and Youssef
[2262] have proved that Pn ⊕K2 is graceful when n > 1 and Pn[P2] is harmonious for all
n. They also observe that the graphs Cm ⊕ Cn and Cm[Cn] violate the parity conditions
for graceful and harmonious graphs when m and n are odd.

2.4 Complete Graphs

The questions of the gracefulness and harmoniousness of the complete graphs Kn have
been answered. In each case the answer is positive if and only if n ≤ 4 ([902], [2390], [925],
[451]). Both Rosa [2136] and Golomb [902] proved that the complete bipartite graphs Km,n

are graceful while Graham and Sloane [925] showed they are harmonious if and only if m or
n = 1. Aravamudhan and Murugan [178] have shown that the complete tripartite graph
K1,m,n is both graceful and harmonious while Gnanajothi [894, pp. 25–31] has shown
that K1,1,m,n is both graceful and harmonious and K2,m,n is graceful. Some of the same
results have been obtained by Seoud and Youssef [2257] who also observed that when m,n,
and p are congruent to 2 (mod 4), Km,n,p violates the parity conditions for harmonious
graphs. Beutner and Harborth [451] give graceful labelings for K1,m,n, K2,m,n, K1,1,m,n

and conjecture that these and Km,n are the only complete multipartite graphs that are
graceful. They have verified this conjecture for graphs with up to 23 vertices via computer.

Beutner and Harborth [451] also show that Kn−e (Kn with an edge deleted) is graceful
only if n ≤ 5; any Kn− 2e (Kn with two edges deleted) is graceful only if n ≤ 6; and any
Kn − 3e is graceful only if n ≤ 6. They also determine all graceful graphs of the form
Kn −G where G is K1,a with a ≤ n− 2 and where G is a matching Ma with 2a ≤ n.

The windmill graph K
(m)
n (n > 3) consists of m copies of Kn with a vertex in common.

A necessary condition for K
(m)
n to be graceful is that n ≤ 5 – see [1396]. Bermond [445]

has conjectured that K
(m)
4 is graceful for all m ≥ 4. The gracefulness of K

(m)
4 is equivalent

to the existence of a (12m+ 1, 4, 1)-perfect difference family, which are known to exit for
m ≤ 1000 (see [1032], [5], [2797], and [863]). Bermond, Kotzig, and Turgeon [448] proved

that K
(m)
n is not graceful when n = 4 and m = 2 or 3, and when m = 2 and n = 5.

In 1982 Hsu [1025] proved that K
(m)
4 is harmonious for all m. Graham and Sloane [925]

conjectured that K
(2)
n is harmonious if and only if n = 4. They verified this conjecture

for the cases that n is odd or n = 6. Liu [1605] has shown that K
(2)
n is not harmonious

if n = 2apa11 · · · pass where a, a1, . . . , as are positive integers and p1, . . . , ps are distinct odd

primes and there is a j for which pj ≡ 3 (mod 4) and aj is odd. He also shows that K
(3)
n

is not harmonious when n ≡ 0 (mod 4) and 3n = 4e(8k + 7) or n ≡ 5 (mod 8). Koh,

Rogers, Lee, and Toh [1389] and Rajasingh and Pushpam [2065] have shown that K
(t)

m,n ,
the one-point union of t copies of Km,n, is graceful. Sethuraman and Selvaraju [2293] have
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proved that the one-point union of graphs of the form K2,mi
for i = 1, 2, . . . , n, where the

union is taken at a vertex from the partite set with exactly 2 vertices is graceful if at most
two of the mi are equal. They conjecture that the restriction that at most two of the
mi are equal is not necessary. Sudha [2483] proved that two or more complete bipartite
graphs having one bipartite vertex set in common are graceful. Mitra and Bhoumik [1768]
proved that K2n,2n �K2 is graceful.

Koh, Rogers, Lee, and Toh [1396] introduced the notation B(n, r,m) for the graph
consisting of m copies of Kn with a Kr in common (n ≥ r). (We note that Guo [941] has
used the notation B(n, r,m) to denote the graph obtained by joining opposite endpoints
of three disjoint paths of lengths n, r and m.) Bermond [445] raised the question: “For

which m,n, and r is B(n, r,m) graceful?” Of course, the case r = 1 is the same as K
(m)
n .

For r > 1, B(n, r,m) is graceful in the following cases: n = 3, r = 2, m ≥ 1 [1390];
n = 4, r = 2, m ≥ 1 [657]; n = 4, r = 3, m ≥ 1 (see [445]), [1390]. Seoud and Youssef
[2257] have proved B(3, 2,m) and B(4, 3,m) are harmonious. Liu [1604] has shown that
if there is a prime p such that p ≡ 3 (mod 4) and p divides both n and n − 2 and
the highest power of p that divides n and n − 2 is odd, then B(n, 2, 2) is not graceful.
Smith and Puget [2431] has shown that up to symmetry, B(5, 2, 2) has a unique graceful
labeling; B(n, 3, 2) is not graceful for n = 6, 7, 8, 9, and 10; B(6, 3, 3) and B(7, 3, 3) are
not graceful; and B(5, 3, 3) is graceful. Combining results of Bermond and Farhi [447]
and Smith and Puget [2431] show that B(n, 2, 2) is not graceful for n > 5. Lu [1671]
obtained the following results: B(m, 2, 3) and B(m, 3, 3) are not harmonious when m ≡ 1
(mod 8); B(m, 4, 2) and B(m, 5, 2) are not harmonious when m satisfies certain special
conditions; B(m, 1, n) is not harmonious when m ≡ 5 (mod 8) and n ≡ 1, 2, 3 (mod 4);
B(2m+ 1, 2m, 2n+ 1) ∼= K2m +K2n+1 is not harmonious when m ≡ 2 (mod 4).

More generally, Bermond and Farhi [447] have investigated the class of graphs con-
sisting of m copies of Kn having exactly k copies of Kr in common. They proved such
graphs are not graceful for n sufficiently large compared to r. Barrientos [356] proved that
the graph obtained by performing the one-point union of any collection of the complete
bipartite graphs Km1,n1 , Km2,n2 , . . . , Kmt,nt , where each Kmi,ni

appears at most twice and
gcd(n1, n2, . . . , nt) = 1, is graceful.

Sethuraman and Elumalai [2269] have shown that K1,m,n with a pendent edge attached
to each vertex is graceful and Jirimutu [1256] has shown that the graph obtained by
attaching a pendent edge to every vertex of Km,n is graceful (see also [148]). In [2282]
Sethuraman and Kishore determine the graceful graphs that are the union of n copies of
K4 with i edges deleted for 1 ≤ i ≤ 5 and with one edge in common. The only cases that
are not graceful are those graphs where the members of the union are C4 for n ≡ 3 (mod
4) and where the members of the union are P2. They conjecture that these two cases are
the only instances of edge induced subgraphs of the union of n copies of K4 with one edge
in common that are not graceful.

Renuka, Balaganesan, Selvaraju [2113] proved the graphs obtained by joining a vertex
of K1,m to a vertex of K1,n by a path are harmonious. Sethuraman and Selvaraju [2299]
have shown that union of any number of copies of K4 with an edge deleted and one edge
in common is harmonious.
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Clemens, Coulibaly, Garvens, Gonnering, Lucas, and Winters [627] investigated the
gracefulness of the one-point and two-point unions of graphs. They show the following
graphs are graceful: the one-point union of an end vertex of Pn and K4; the graph obtained
by taking the one-point union of K4 with one end vertex of Pn and the one-point union of
the other end vertex of Pn with the central vertex of K1,r; the graph obtained by taking
the one-point union of K4 with one end vertex of Pn and the one-point union of the other
end of Pn with a vertex from the partite set of order 2 of K2,r; the graph obtained from
the graph just described by appending any number of edges to the other vertex of the
partite set of order 2; the two-point union of the two vertices of the partite set of order 2
in K2,r and two vertices from K4; and the graph obtained from the graph just described
by appending any number of edges to one of the vertices from the partite set of order 2.

A Golomb ruler is a marked straightedge such that the distances between different
pairs of marks on the straightedge are distinct. If the set of distances between marks is
every positive integer up to and including the length of the ruler, then ruler is a called
a perfect Golomb ruler. Golomb [902] proved that perfect Golomb rulers exist only for
rulers with at most 4 marks. Beavers [426] examines the relationship between Golomb
rulers and graceful graphs through a correspondence between rulers and complete graphs.
He proves that Kn is graceful if and only if there is a perfect Golomb ruler with n marks
and Golomb rulers are equivalent to complete subgraphs of graceful graphs.

2.5 Disconnected Graphs

There have been many papers dealing with graphs that are not connected. For any graph
G the graph mG denotes the disjoint union of m copies of G. In 1975 Kotzig [1415]
investigated the gracefulness of the graphs rCs. When rs ≡ 1 or 2 (mod 4), these graphs
violate the gracefulness parity condition. Kotzig proved that when r = 3 and 4k > 4, then
rC4k has a stronger form of graceful labeling called α-labeling (see §3.1) whereas when
r ≥ 2 and s = 3 or 5, rCs is not graceful. In 1984 Kotzig [1417] once again investigated
the gracefulness of rCs as well as graphs that are the disjoint union of odd cycles. For
graphs of the latter kind he gives several necessary conditions. His paper concludes with
an elaborate table that summarizes what was then known about the gracefulness of rCs.
M. He [968] has shown that graphs of the form 2C2m and graphs obtained by connecting
two copies of C2m with an edge are graceful. Cahit [533] has shown that rCs is harmonious
when r and s are odd and Seoud, Abdel Maqsoud, and Sheehan [2223] noted that when r
or s is even, rCs is not harmonious. Seoud, Abdel Maqsoud, and Sheehan [2223] proved
that Cn ∪ Cn+1 is harmonious if and only if n ≥ 4. They conjecture that C3 ∪ C2n is
harmonious when n ≥ 3. This conjecture was proved when Yang, Lu, and Zeng [2852]
showed that all graphs of the form C2j+1 ∪ C2n are harmonious except for (n, j) = (2, 1).
As a consequence of their results about super edge-magic labelings (see §5.2) Figueroa-
Centeno, Ichishima, Muntaner-Batle, and Oshima [767] have that Cn ∪C3 is harmonious
if and only if n ≥ 6 and n is even. Renuka, Balaganesan, Selvaraju [2113] proved that for
odd n Cn ∪ P3 and Cn �Km ∪ P3 are harmonious. Youssef [2873] has shown that if G is
harmonious then mG is harmonious for all odd m.
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In 1978 Kotzig and Turgeon [1420] proved that mKn is graceful if and only if m = 1
and n ≤ 4. Liu and Zhang [1607] have shown that mKn is not harmonious for n odd and
m ≡ 2 (mod 4) and is harmonious for n = 3 and m odd. They conjecture that mK3 is
not harmonious when m ≡ 0 (mod 4). Bu and Cao [508] give some sufficient conditions
for the gracefulness of graphs of the form Km,n ∪ G and they prove that Km,n ∪ Pt and
the disjoint union of complete bipartite graphs are graceful under some conditions.

Recall a Skolem sequence of order n is a sequence s1, s2, . . . , s2n of 2n terms such
that, for each k ∈ {1, 2, . . . , n}, there exist exactly two subscripts i(k) and j(k) with
si(k) = sj(k) = k and |i(k)− j(k)| = k. (A Skolem sequence of order n exists if and only if
n ≡ 0 or 1 (mod 4)). Abrham [14] has proved that any graceful 2-regular graph of order
n ≡ 0 (mod 4) in which all the component cycles are even or of order n ≡ 3 (mod 4),
with exactly one component an odd cycle, can be used to construct a Skolem sequence
of order n + 1. Also, he showed that certain special Skolem sequences of order n can be
used to generate graceful labelings on certain 2-regular graphs.

The graph Hn obtained from the cycle with consecutive vertices u1, u2, . . . , un (n ≥ 6)
by adding the chords u2un, u3un−1, . . . , uαuβ, where α = (n − 1)/2 for all n and β =
(n − 1)/2 + 3 if n is odd or β = n/2 + 2 if n is even is called the cycle with parallel
chords. In Elumalai and Sethuraman [712] prove the following: for odd n ≥ 5, Hn ∪Kp,q

is graceful; for even n ≥ 6 and m = (n − 2)/2 or m = n/2 Hn ∪ K1,m is graceful; for
n ≥ 6, Hn ∪ Pm is graceful, where m = n or n − 2 depending on n ≡ 1 or 3 (mod 4) or
m ≡ n−1 or n−3 depending on n ≡ 0 or 2 (mod 4). Elumali and Sethuraman [714] proved
that every n-cycle (n ≥ 6) with parallel chords is graceful and every n-cycle with parallel
Pk-chords of increasing lengths is graceful for n = 2 (mod 4) with 1 ≤ k ≤ (bn/2c − 1).

In 1985 Frucht and Salinas [799] conjectured that Cs ∪ Pn is graceful if and only
if s + n ≥ 6 and proved the conjecture for the case that s = 4. The conjecture was
proved by Traetta [2595] in 2012 who used his result to get a complete solution to the
well known two-table Oberwolfach problem; that is, given odd number of people and two
round tables when is it possible to arrange series of seatings so that each person sits next
to each other person exactly once during the series. The t-table Oberwolfach problem
OP(n1, n2, . . . , nt) asks to arrange a series of meals for an odd number n =

∑
ni of people

around t tables of sizes n1, n2, . . . , nt so that each person sits next to each other exactly
once. A solution to OP(n1, n2, . . . , nt) is a 2–factorization of Kn whose factors consists of t
cycles of lengths n1, n2, . . . , nt. The λ–fold Oberwolfach problem OPλ(n1, n2, . . . , nt) refers
to the case where Kn is replaced by λKn. Traetta used his proof of the Frucht and Salinas
conjecture to provide a complete solutions to both OP (2r + 1, 2s) and OP (2r + 1, s, s),
except possibly for OP (3, s, s). He also gave a complete solution of the general λ–fold
Oberwolfach problem OPλ(r, s).

Seoud and Youssef [2264] have shown that K5 ∪ Km,n, Km,n ∪ Kp,q (m,n, p, q ≥
2), Km,n∪Kp,q ∪Kr,s (m,n, p, q, r, s ≥ 2, (p, q) 6= (2, 2)), and pKm,n (m,n ≥ 2, (m,n) 6=
(2, 2)) are graceful. They also prove that C4 ∪ K1,n (n 6= 2) is not graceful whereas
Choudum and Kishore [602], [1381] have proved that Cs ∪K1,n is graceful for s ≥ 7 and
n ≥ 1. Lee, Quach, and Wang [1527] established the gracefulness of Ps ∪K1,n. Seoud and
Wilson [2256] have shown that C3∪K4, C3∪C3∪K4, and certain graphs of the form C3∪Pn
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and C3∪C3∪Pn are not graceful. Abrham and Kotzig [19] proved that Cp∪Cq is graceful
if and only if p+ q ≡ 0 or 3 (mod 4). Zhou [2917] proved that Km ∪Kn (n > 1,m > 1) is
graceful if and only if {m,n} = {4, 2} or {5, 2}. Knuth [1383] used a computer to show
that K5∪K2 has a unique graceful labeling up to a complement. (C. Barrientos has called
to my attention that K1∪Kn is graceful if and only if n = 3 or 4.) Shee [2319] has shown
that graphs of the form P2∪C2k+1 (k > 1), P3∪C2k+1, Pn∪C3, and Sn∪C2k+1 all satisfy
a condition that is a bit weaker than harmonious. Bhat-Nayak and Deshmukh [458] have
shown that C4t ∪K1,4t−1 and C4t+3 ∪K1,4t+2 are graceful. Section 3.1 includes numerous
families of disconnected graphs that have a stronger form of graceful labelings.

For m = 2p + 3 or 2p + 4, Wang, Liu, and Li [2783] proved the following graphs are
graceful: Wm ∪ Kn,p and Wm,2m+1 ∪ Kn,p; for n ≥ m, Wm,2m+1 ∪ K1,n; for m = 2n + 5,
Wm,2m+1 ∪ (C3 + Kn). If Gp is a graceful graph with p edges, they proved W2p+3 ∪ Gp is
graceful.

In considering graceful labelings of the disjoint unions of two or three stars Se with
e edges Yang and Wang [2855] permitted the vertex labels to range from 0 to e + 1 and
0 to e + 2, respectively. With these definitions of graceful, they proved that Sm ∪ Sn is
graceful if and only if m or n is even and that Sm ∪ Sn ∪ Sk is graceful if and only if at
least one of m,n, or k is even (m > 1, n > 1, k > 1).

Seoud and Youssef [2260] investigated the gracefulness of specific families of the form
G∪Km,n. They obtained the following results: C3 ∪Km,n is graceful if and only if m ≥ 2
and n ≥ 2; C4 ∪Km,n is graceful if and only if (m,n) 6= (1, 1); C7 ∪Km,n and C8 ∪Km,n

are graceful for all m and n; mK3 ∪ nK1,r is not graceful for all m,n and r; Ki ∪ Km,n

is graceful for i ≤ 4 and m ≥ 2, n ≥ 2 except for i = 2 and (m,n) = (2, 2); K5 ∪ K1,n

is graceful for all n; K6 ∪ K1,n is graceful if and only if n is not 1 or 3. Youssef [2875]
completed the characterization of the graceful graphs of the form Cn ∪Kp,q where n ≡ 0
or 3 (mod 4) by showing that for n > 8 and n ≡ 0 or 3 (mod 4), Cn ∪Kp,q is graceful for
all p and q (see also [354]). Note that when n ≡ 1 or 2 (mod 4) certain cases of Cn ∪Kp,q

violate the parity condition for gracefulness.
For i = 1, 2, . . . ,m let vi,1, vi,2, vi,3, vi,4 be a 4-cycle. Yang and Pan [2850] define Fk,4

to be the graph obtained by identifying vi,3 and vi+1,1 for i = 1, 2, . . . , k − 1. They prove
that Fm1,4 ∪ Fm2,4 ∪ · · · ∪ Fmn,4 is graceful for all n. Pan and Lu [1883] have shown that
(P2 +Kn) ∪K1,m and (P2 +Kn) ∪ Tn are graceful.

Barrientos [354] has shown the following graphs are graceful: C6∪K1,2n+1;
⋃t
i=1Kmi,ni

for 2 ≤ mi < ni; and Cm ∪
⋃t
i=1Kmi,ni

for 2 ≤ mi < ni,m ≡ 0 or 3 (mod 4), m ≥ 11. In
[1302] Kaneria, Makadia, and Viradia proved that the union of three grid graphs,

⋃3
l=1

(Pml
× Pnl

), is graceful, the union of finitely many copies of Pm × Pn is graceful, and
provided two new graceful labeling for Pm × Pn.

Wang and Li [2781] use St(n) to denote the star Kn,1, Fn to denote the fan Pn �K1,
and Fm,n to denote the graph obtained by identifying the vertex of Fm with degree m
and the vertex of Fn with degree n. They showed: for all positive integers n and p and
m ≥ 2p + 2, Fm ∪ Kn,p and Fm,2m ∪ Kn,p are graceful; Fm ∪ St(n) is graceful; and
Fm,2m∪St(n) and Fm,2m∪Gr are graceful. In [2787] Wang, Wang, and Li gave a sufficient
condition for the gracefulness of graphs of the form (P3 + Km) ∪ G and (C3 + Km) ∪ G.
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Wei, Wang, and Sun [2804] provided graceful labelings for the unions of some families of
wheels related graphs and complete bipartite graphs. They also gave graceful labelings for
some graphs of the form G∪(C3 +Km)∪Sn where G is wheel related. In [2892] Yu, Wang,
and Song proved the following graphs are graceful: Kn,m ∪ (K2 +Kn), Kn,m ∪ (P3 +Kn),
Kn,m ∪ (P1 + P2n+2), and Kn,m ∪K1,2n. They proved the gracefulness of such graphs for
a variety of cases when G involves stars and paths. More technical results like these are
given in [2789], [2788], and [539].

2.6 Joins of Graphs

A number of classes of graphs that are the join of graphs have been shown to be graceful
or harmonious. Koh, Rogers, and Lim [1390] proved G + H is graceful if G is a graceful
tree and H is one of Kn, Pn ∪K1, or a star. Koh, Phoon, and Soh [1386] point out that
previous versions of this survey incorrectly stated that Acharya [22] proved that if G is a
connected graceful graph, then G + Kn is graceful. Redl [2109] showed that the double
cone Cn +K2 is graceful for n = 3, 4, 5, 7, 8, 9, 11. That Cn +K2 is not graceful for n ≡ 2
(mod 4) follows that Rosa’s parity condition. Redl asks what other double cones are
graceful. Bras, Gomes, and Selman [229] showed that double wheels (Cn ∪ Cn) + K1 are
graceful. Koh, Phoon, and Soh [1386] prove that K3 +Kn is graceful. Reid [2110] proved
that Pn+Kt is harmonious. Sethuraman and Selvaraju [2298] and [2206] have shown that
Pn +K2 is harmonious. They ask whether Sn + Pn or Pm + Pn is harmonious. As stated
in an earlier section, wheels are of the form Cn + K1 and are graceful and harmonious.
In 2006 Chen [576] proved that multiple wheels nCm + K1 are harmonious for all n 6≡ 0
mod 4. She believes that the n 6≡ 0 (mod 4) case is also harmonious. Chen also proved
that if H has at least one edge, H + K1 is harmonious, and if n is odd, then nH + K is
harmonious.

For n ≥ t+ 2 and t ≥ 1, Koh, Phoon, and Soh [1387] use P (n, t) to denote the graph
of order n consisting of a path of length t and n− (t+ 1) isolated vertices. For n ≥ 2t+ 1
and t ≥ 1, they use I(n, t) to denote the disjoint union of tK2 and Kn−2t. They proved:
Kp + P (n, t) is graceful for all p ≥ 1, n ≥ t + 2 and t ≥ 1; Kp + I(n, t) is graceful for all
p ≥ 1, n ≥ 2t + 1 and t ≥ 1; and for s, t ∈ {1, 2}, P (m, s) + P (n, t) is graceful for all
m ≥ s + 2 and n ≥ t + 2. In [1387] Koh, Phoon, and Soh ask “What can be said about
the gracefulness of Cm + P (n, t) where n ≥ t + 2” and is “Is P (m, s) + P (n, t) always
graceful for all m ≥ s + 2, n ≥ t + 2, where s ≥ 3 or t ≥ 3?” In [1386] they state as
problems about graceful graphs: Cm + Pn (m ≥ 3, n ≥ 3); Cm +Cn (m ≥ 3, n ≥ 3) and
K1,p + P (n, t) and prove that C3 + P (n, t) is graceful for all n ≥ t + 2, where 1 ≤ t ≤ 3
and C5 + P (n, 1) is graceful for all n ≥ 3.

Shee [2319] has proved Km,n + K1 is harmonious and observed that various cases of
Km,n + Kt violate the harmonious parity condition in [925]. Liu and Zhang [1607] have
proved that K2 + K2 + · · · + K2 is harmonious. Youssef [2873] has shown that if G is
harmonious then Gm is harmonious for all odd m. He asks the question of whether G is
harmonious implies Gm is harmonious when m ≡ 0 (mod 4). Yuan and Zhu [2894] proved
that Km,n + K2 is graceful and harmonious. Gnanajothi [894, pp. 80–127] obtained the
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following: Cn+K2 is harmonious when n is odd and not harmonious when n ≡ 2, 4, 6 (mod
8); Sn+Kt is harmonious; and Pn+Kt is harmonious. Balakrishnan and Kumar [337] have
proved that the join of Kn and two disjoint copies of K2 is harmonious if and only if n is
even. Ramı́rez-Alfonśın [2082] has proved that if G is graceful and |V (G)| = |E(G)| = e
and either 1 or e is not a vertex label then G+Kt is graceful for all t. Sudha and Kanniga
[2486] proved that the graph Pm +Kn is graceful.

Seoud and Youssef [2262] have proved: the join of any two stars is graceful and har-
monious; the join of any path and any star is graceful; and Cn + Kt is harmonious for
every t when n is odd. They also prove that if any edge is added to Km,n the resulting
graph is harmonious if m or n is at least 2. Deng [660] has shown certain cases of Cn+Kt

are harmonious. Seoud and Youssef [2259] proved: the graph obtained by appending any
number of edges from the two vertices of degree n ≥ 2 in K2,n is not harmonious; dragons
Dm,n (i.e., an endpoint of Pm is appended to Cn) are not harmonious when m+ n is odd;
and the disjoint union of any dragon and any number of cycles is not harmonious when
the resulting graph has odd order. Youssef [2872] has shown that if G is a graceful graph
with p vertices and q edges with p = q + 1, then G+ Sn is graceful.

Sethuraman and Elumalai [2273] have proved that for every graph G with p vertices
and q edges the graph G+K1+Km is graceful when m ≥ 2p−p−1−q. As a corollary they
deduce that every graph is a vertex induced subgraph of a graceful graph. Balakrishnan
and Sampathkumar [338] ask for which m ≥ 3 is the graph mK2 +Kn graceful for all n.
Bhat-Nayak and Gokhale [462] have proved that 2K2 +Kn is not graceful. Youssef [2872]
has shown that mK2 + Kn is graceful if m ≡ 0 or 1 (mod 4) and that mK2 + Kn is not
graceful if n is odd and m ≡ 2 or 3 (mod 4). Ma [1676] proved that if G is a graceful tree
then, G+K1,n is graceful. Amutha and Kathiresan [148] proved that the graph obtained
by attaching a pendent edge to each vertex of 2K2 +Kn is graceful.

Wu [2822] proves that if G is a graceful graph with n edges and n + 1 vertices then
the join of G and Km and the join of G and any star are graceful. Wei and Zhang [2803]
proved that for n ≥ 3 the disjoint union of P1 +Pn and a star, the disjoint union of P1 +Pn
and P1 + P2n, and the disjoint union of P2 + Kn and a graceful graph with n edges are
graceful. More technical results on disjoint unions and joins are given in [2802], [2803],
[2805], [2801], and [539].

2.7 Miscellaneous Results

It is easy to see that P 2
n is harmonious [922] while a proof that P 2

n is graceful has been
given by Kang, Liang, Gao, and Yang [1326]. (P k

n , the kth power of Pn, is the graph
obtained from Pn by adding edges that join all vertices u and v with d(u, v) = k.) This
latter result proved a conjecture of Grace [922]. Seoud, Abdel Maqsoud, and Sheehan
[2223] proved that P 3

n is harmonious and conjecture that P k
n is not harmonious when

k > 3. The same conjecture was made by Fu and Wu [802]. However, Youssef [2882] has
proved that P 4

8 is harmonious and P k
n is harmonious when k is odd. Yuan and Zhu [2894]

proved that P 2k
n is harmonious when 1 ≤ k ≤ (n− 1)/2. Selvaraju [2202] has shown that

P 3
n and the graphs obtained by joining the centers of any two stars with the end vertices
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of the path of length n in P 3
n are harmonious.

Cahit [533] proves that the graphs obtained by joining p disjoint paths of a fixed
length k to single vertex are harmonious when p is odd and when k = 2 and p is even.
Gnanajothi [894, p. 50] has shown that the graph that consists of n copies of C6 that
have exactly P4 in common is graceful if and only if n is even. For a fixed n, let vi1, vi2, vi3
and vi4 (1 ≤ i ≤ n) be consecutive vertices of n 4-cycles. Gnanajothi [894, p. 35] also
proves that the graph obtained by joining each vi1 to vi+1,3 is graceful for all n and the
generalized Petersen graph P (n, k) is harmonious in all cases (see also [1532]). Recall
P (n, k), where n ≥ 5 and 1 ≤ k ≤ n, has vertex set {a0, a1, . . . , an−1, b0, b1, . . . , bn−1}
and edge set {aiai+1 | i = 0, 1, . . . , n − 1} ∪ {aibi | i = 0, 1, . . . , n − 1} ∪ {bibi+k | i =
0, 1, . . . , n − 1} where all subscripts are taken modulo n [2800]. The standard Petersen
graph is P (5, 2).) Redl [2109] has used a constraint programming approach to show that
P (n, k) is graceful for n = 5, 6, 7, 8, 9, and 10. In [2715] and [2726] Vietri proved that
P (8t, 3) and P (8t + 4, 3) are graceful for all t. He conjectures that the graphs P (8t, 3)
have a stronger form a graceful labeling called an α-labeling (see §3.1). The gracefulness
of the generalized Petersen graphs is an open problem. Shao, Deng, Li, and Vese [2317]
provide an backtracking algorithm that finds graceful labelings for all generalized Petersen
graphs P (n, k) with n ≤ 75 within several seconds. The algorithm strongly outperforms
the standard backtracking algorithm.

Rao and Sahoo [2097] prove that every connected graph can be embedded as an induced
subgraph in an Eulerian graceful graph. They also show that for an integer k ≥ 3, the
problems of deciding whether the chromatic number is less than or equal to k and whether
the clique number is greater than or equal to k are NP-complete even for Eulerian graceful
graphs. Sethuraman, Ragukumar, and Slater [2289] proved that any tree with m edges
can be embedded in a graceful tree with less than 4m edges and in a graceful planar
graph. A conjecture in the graph theory book by Chartrand and Lesniak [567, p. 266]
that graceful graphs with arbitrarily large chromatic numbers do not exist was shown to
be false by Acharya, Rao, and Arumugam [42] (see also Mahmoody [1689]).

In [362] zeke Barrientos calculates the number of non-isomorphic harmoniously labeled
graphs with n edges and at most n vertices. He provides harmonious labelings for certain
unicyclic graphs obtained via the corona product and triangular grids obtained via edge
amalgamation of copies of C3 in such a way that each copy of a cycle shares at most
two edges with other copies. Moreover, he uses the edge-switching technique on C4t to
generate unicyclic graphs with strongly felicitous labelings (see §4.4).

Bača and Youssef [320] investigated the existence of harmonious labelings for the
corona graphs of a cycle and a graph G. They proved that if G+K1 is strongly harmonious
(that is, a harmonious labeling f for which the edge labels induced by f(x)+f(y) for each
edge xy are 1, . . . , q. with the 0 label on the vertex of K1, then Cn�G is harmonious for
all odd n ≥ 3. By combining this with existing results they have as corollaries that the
following graphs are harmonious: Cn � Cm for odd n ≥ 3 and m 6≡ 2 (mod 3); Cn �Ks,t

for odd n ≥ 3; and Cn �K1,s,t for odd n ≥ 3.
Sethuraman and Selvaraju [2292] define a graph H to be a supersubdivision of a graph

G, if every edge uv of G is replaced by K2,m (m may vary for each edge) by identifying
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u and v with the two vertices in K2,m that form the partite set with exactly two mem-
bers. Sethuraman and Selvaraju prove that every supersubdivision of a path is graceful
and every cycle has some supersubdivision that is graceful. They conjecture that every
supersubdivision of a star is graceful and that paths and stars are the only graphs for
which every supersubdivision is graceful. Barrientos [356] disproved this latter conjecture
by proving that every supersubdivision of a y-trees is graceful (recall a y-tree is obtained
from a path by appending an edge to a vertex of a path adjacent to an end point). Bar-
rientos asks if paths and y-trees are the only graphs for which every supersubdivision is
graceful. This seems unlikely to be the case. The conjecture that every supersubdivision
of a star is graceful was proved by Kathiresan and Amutha [1348]. In [2296] Sethuraman
and Selvaraju prove that every connected graph has some supersubdivision that is grace-
ful. They pose the question as to whether this result is valid for disconnected graphs.
Barrientos and Barrientos [367] answered this question by proving that any disconnected
graph has a supersubdivision that admits an α-labeling (see §3.1). They also proved that
every supersubdivision of a connected graph admits an α-labeling. Sekar and Ramachan-
dren proved that an arbitrary supersubdivision of disconnected graph is graceful [2201]
and supersubdivisions of ladders are graceful [2079]. Sethuraman and Selvaraju also asked
if there is any graph other than K2,m that can be used to replace an edge of a connected
graph to obtain a supersubdivision that is graceful.

Sethuraman and Selvaraju [2292] call superdivision graphs of G where every edge uv
of G is replaced by K2,m and m is fixed an arbitrary supersubdivision of G. Barrientos
and Barrientos [367] answered the question of Sethuraman and Selvaraju by proving that
any graph obtained from K2,m by attaching k pendent edges and n pendent edges to the
vertices of its 2-element stable set can be used instead of K2,m to produce an arbitrary
supersubdivision that admits an α-labeling (a stable set S consists of a set of vertices such
that there is not an edge vivj for all pairs vi, vj in S).

Kathiresan and Sumathi [1356] affirmatively answer the question posed by Sethuraman
and Selvaraju in [2292] of whether there are graphs different from paths whose arbitrary
supersubdivisions are graceful.

For a graph G Ambili and Singh [146] call the graph G∗ a strong supersubdivision of
G if G∗ is obtained from G by replacing every edge ei of G by a complete bipartite graph
Kri,si . A strong supersubdivision G∗ of G is said to be an arbitrary strong supersubdivision
if G∗ is obtained from G by replacing every edge ei of G by a complete bipartite graph
Kr,si (r is fixed and si may vary). They proved that arbitrary strong supersubdivisions
of paths, cycles, and stars are graceful. They conjecture that every arbitrary strong
supersubdivision of a tree is graceful and ask if it is true that for any non-trivial connected
graph G, an arbitrary strong supersubdivision of G is graceful?

In [2295] Sethuraman and Selvaraju present an algorithm that permits one to start
with any non-trivial connected graph and successively form supersubdivisions that have
a strong form of graceful labeling called an α-labeling (see §3.1 for the definition).

Kathiresan [1345] uses the notation Pa,b to denote the graph obtained by identifying
the end points of b internally disjoint paths each of length a. He conjectures that Pa,b is
graceful except when a is odd and b ≡ 2 (mod 4) and proves the conjecture for the case
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that a is even and b is odd. Liang and Zuo [1592] proved that the graph Pa,b is graceful
when both a and b are even. Daili, Wang and Xie [650] provided an algorithm for finding
a graceful labeling of P2r,2 and showed that a P2r,2(2k+1) is graceful for all positives r and
k. Sekar [2200] has shown that Pa,b is graceful when a 6= 4r + 1, r > 1, b = 4m, and
m > r. Yang (see [2853]) proved that Pa,b is graceful when a = 3, 5, 7, and 9 and b is odd
and when a = 2, 4, 6, and 8 and b is even (see [2853]). Yang, Rong, and Xu [2853] proved
that Pa,b is graceful when a = 10, 12, and 14 and b is even. Yan [2843] proved P2r,2m is
graceful when r is odd. Yang showed that P2r+1,2m+1 and P2r,2m (r ≤ 7, and r = 9) are
graceful (see [2134]). Rong and Xiong [2134] showed that P2r,b is graceful for all positive
integers r and b. Kathiresan also shows that the graph obtained by identifying a vertex
of Kn with any noncenter vertex of the star with 2n−1 − n(n− 1)/2 edges is graceful.

For a family of graphs G1(u1, u2), G2(u2, u3), . . . , Gm(um, um+1) where ui and ui+1 are
vertices in Gi Cheng, Yao, Chen, and Zhang [585] define a graph-block chain Hm as the
graph obtained by identifying ui+1 of Gi with ui+1 of Gi+1 for i = 1, 2, . . . ,m. They
denote this graph by Hm = G1(u1, u2)⊕G2(u2, u3)⊕· · ·⊕Gm(um, um+1). The case where
each Gi has the form Pai,bi they call a path-block chain. The vertex u1 is called the initial
vertex of Hm. They define a generalized spider S∗m as a graph obtained by starting with
an initial vertex u0 and m path-block graphs and join u0 with each initial vertex of each
of the path-block graphs. Similarly, they define a generalized caterpillar T ∗m as a graph
obtained by starting with m path-block chains H1, H2, . . . , Hm and a caterpillar T with
m isolated vertices v1, v2, . . . , vm and join each vi with the initial vertex of each Hi. They
prove several classes of path-block chains, generalized spiders, and generalized caterpillars
are graceful.

The graph Tn with 3n vertices and 6n − 3 edges is defined as follows. Start with a
triangle T1 with vertices v1,1, v1,2 and v1,3. Then Ti+1 consists of Ti together with three
new vertices vi+1,1, vi+1,2, vi+1,3 and edges vi+1,1vi,2, vi+1,1vi,3, vi+1,2vi,1, vi+1,2vi,3, vi+1,3vi,1,
vi+1,3vi,2. Gnanajothi [894] proved that Tn is graceful if and only if n is odd. Sekar [2200]
proved Tn is graceful when n is odd and Tn with a pendent edge attached to the starting
triangle is graceful when n is even.

In [430] and [2306] Begam, Palanivelrajan, Gunasekaran, and Hameed give graceful
labelings for graphs constructed by combining theta graphs (that is, a collection of edge
disjoint paths that have common endpoints) with paths and stars. Khatun and Abu
Nayeem [1363] prove that the zero divisor graph of the commutative ring of integers
modulo n is graceful if n = pq, 4p or 9p, where p and q are prime numbers.

The torch graph On is defined by V (On) = {vi | 1 ≤ i ≤ n + 4}, E(On) =
{vivn+1 | 2 ≤ i ≤ n − 2} ∪ {vivn+3 | 2 ≤ i ≤ n − 2} ∪ {v1vi | 2 ≤ i ≤ n + 4} ∪
{vn−1vn, vnvn+2, vnvn+4, vn+1vn+3}. Manulang and Sugeng [1698] showed that the torch
graph is graceful.

For a graph G, the splitting graph of G, S ′(G), is obtained from G by adding for each
vertex v of G a new vertex v

′
so that v

′
is adjacent to every vertex that is adjacent to v.

Sekar [2200] has shown that S ′(Pn) is graceful for all n and S ′(Cn) is graceful for n ≡ 0, 1
(mod 4). Vaidya and Shah [2667] proved that the square graph of a bistar, the splitting
graph of a bistar, and the splitting graph of a star are graceful graphs.
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In [2487] Sudha and Kanniga proved that fans and the splitting graph of a star are
graceful. Sudha and Kanniga [2488] proved that the following graphs are graceful: arbi-
trary supersubdivisions of wheels; combs (Pn�K1); double fans (Pn�K2); (Pm∪Pn)�K1;
and graphs obtained by starting with two star graphs Sm and Sn and identifying some
of the pendent vertices of each. Sudha and Kanniga [2489] proved that the graphs ob-
tained from Pn � K1 by identifying the center of a Sn with the endpoint of a pendent
edge attached to the endpoint of Pn are graceful; and the graphs obtained from a fan
Pn �K1 by deleting a pendent edge attached to an endpoint of Pn are graceful. Sunda
[2482] provided some results on graphs obtained by connecting copies of Km,n in certain
ways. Sudha and Kanniga [2485] proved that the graphs obtained by joining the vertices
of a path to any number isolated points are graceful. They also proved that the arbitrary
supersubdivision of all the edges of helms, combs (Pn �K1) and ladders (Pn × P2) with
pendent edges at the vertices of degree 2 by a complete bipartite graphs K2,m are graceful.

The duplication of an edge e = uv of a graph G is the graph G′ obtained from G by
adding an edge e′ = u′v′ such that N(u) = N(u′) and N(v) = N(v′). The duplication of
a vertex of a graph G is the graph G′ obtained from G by adding a new vertex v′ to G
such that N(v′) = N(v). Kaneria, Vaidya, Ghodasara, and Srivastav [1318] proved the
duplication of a vertex of a cycle, the duplication of an edge of an even cycle, and the
graph obtained by joining two copies of a fixed cycle by an edge are graceful.

For a graph G and a vertex v of G, a vertex switching Gv is the graph obtained from G
by removing all edges incident to v and adding edges joining v to every vertex not adjacent
to v in G. Boxwala and Vashishta [497] show that the graph obtained by switching an
arbitrary vertex of Cn (n > 3), the duplication of an arbitrary vertex on the rim of a
wheel with an even number of vertices, and the mirror graph of a path are graceful. Jeba
Jesintha and Subashini [1130] proved that the path union of vertex switching of even
cycles in increasing order is graceful.

The join sum of complete bipartite graphs < Km1,n1 , . . . , Kmt,nt > is the graph ob-
tained by starting with Km1,n1 , . . . , Kmt,nt and joining a vertex of each pair Kmi,ni

and
Kmi+1,ni+1

to a new vertex vi where 1 ≤ i ≤ k − 1. The path union of a graph G is the
graph obtained by adding an edge from n copies G1, G2, . . . , Gn of G from Gi to Gi+1 for
i = 1, . . . , n − 1. We denote this graph by P (n · G). Kaneria, Makadia, and Meghpara
[1298] proved the following graphs are graceful: the graph obtained by joining C4m and
C4n by a path of arbitrary length; the path union of finite many copies of C4n; and C4n

with twin chords. Kaneria, Makadia, Jariya, and Meghpara [1297] proved that the join
sum of complete bipartite graphs, the star of complete bipartite graphs, and the path
union of a complete bipartite graphs are graceful.

Given connected graphs G1, G2, . . . , Gn, Kaneria, Makadia, and Jariya [1296] define a
cycle of graphs C(G1, G2, . . . , Gn) as the graph obtained by adding an edge joining Gi to
Gi+1 for i = 1, . . . , n − 1 and an edge joining Gn to G1. (The resulting graph can vary
depending on which vertices of the Gis are chosen.) When the n graphs are isomorphic to
G the notation C(n ·G) is used. Kaneria et al. proved that C(2t ·C4n) and C(2t ·Kn,n) are
graceful. In [1299] and [1301] Kaneria, Makadia, and Meghpara prove that the following

graphs are graceful: C(2t ·Km,n); C(C4n1 , C4n2 , . . . , C4nt) when t is even and
∑ t

2
i=1 ni =
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∑t
i= t

2
ni; C(2t ·Pm×Pn); the star of Pm×Pn; and the path union of t copies of Pm×Pn.

Kaneria, Viradia, Jariya, and Makadia [1319] proved the cycle graph C(t ·Pn) is graceful.
The star of graphs G1, G2, . . . , Gn, denoted by S(G1, G2, . . . , Gn), is the graph ob-

tained by identifying each vertex of K1,n, except the center, with one vertex from each of
G1, G2, . . . , Gn. The case that G1 = G2 = · · · = Gn = G is denoted by S(n ·G). In [1310]
and [1311] Kaneria, Meghpara, and Makadia proved the following graphs are graceful:
S(t · Km,n); S(t · Pm × Pn); the barycentric subdivision of Pm × Pn (that is, the graph
obtained from Pm × Pn by inserting a new vertex in each edge); the graph obtained by
replacing each edge of K1,t by Pn; the graph obtained by identifying each end point of
K1,n with a vertex of Km,n; and the graph obtained by identifying each end point of K1,n

with a vertex of Pm × Pn. In [1309] Kaneria, Meghpara, and Makadia proved that the
star of K1,n is a graceful tree.

Kaneria and Makadia [1287] and [1288] proved the following graphs are graceful: (Pm×
Pn)∪ (Pr × Ps); C2f+3 ∪ (Pm × Pn)∪ (Pr × Ps), where f = 2(mn+ rs)− (m+ n+ r+ s);
the tensor product of Pn and P3; the tensor product of Pm and Pn for odd m and n; the
star of C4n; the t−supersubdivision of Pm × Pn; and the graph obtained by joining C4n

and a grid graph with a path.
The graph P t

n is obtained by identifying one end point from each of t copies of Pn. The
graph P t

n(G1, G2, . . . , Gtn) obtained by replacing each edge of P t
n, except those adjacent

to the vertex of degree t, by the graphs G1, G2, . . . , Gtn is called the one point path union
of G1, G2, . . . , Gtn. The case where G1 = G2 = · · · = Gtn = H is denoted by P t

n(tn ·H)
. In [1310] and [1311] Kaneria, Meghpara, and Makadia proved P t

n and P t
n(tn ·Km,r) are

graceful. In [1308] Kaneria and Meghpara proved P t
n (tn ·Pr×Ps), P t

n(tn ·K1,m), S(t ·C4n),
and P t

n(tn · C4m) are graceful.
Kanneria and Makadia [1289] define a step grid graph as the graph obtained by starting

with paths Pn, Pn, Pn−1, . . . , P2 (n ≥ 3) arranged vertically parallel with the vertices in
the paths forming horizontal rows and edges joining the vertices of the rows. In [1289] and
[1290] they prove the following graphs are graceful: step grid graphs; one point union for
a path of step grid graphs; cycles of step grid graphs; stars of step grid graphs; t−super
subdivisions of the step grid graphs; open stars of step grid graphs; one point unions of
paths of step grid graphs; and graphs obtained by joining C4m and step grid graphs with
a path of arbitrary length.

For n even [1291] Kaneria and Makadia [1291] define a double step grid graph
of size n (denoted by DStn) as the graph obtained by starting with paths
Pn, Pn, Pn−2, Pn−4, . . . , P4, P2 arranged vertically parallel with the vertices in the paths
forming horizontal rows and edges joining the vertices of the rows. They prove the follow-
ing graphs are graceful: double step grid graphs; path unions of copies of DStn; cycles of
r ≡ 0, 3 (mod 4) copies of double step grid graphs; and stars of double step grid graphs.

In [1303] Kaneria, Makadia and Viradia prove the following graphs are graceful: open
stars of double step grid graphs; one point union of paths of double step grid graphs
Pn

t(tn ·DStm); graphs obtained by joining C4m and a double step grid graph with a path
of arbitrary length; and graphs obtained by starting with a cycle Cm

+ (m ≡ 2 mod 4)
with chords that form a triangle with an edge of the cycle and joining Cm

+ and a double
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step grid graph with a path of arbitrary length.
For even n > 2 Kaneria and Makadia [1292] define a plus graph of size n (denoted by

Pln) as the graph obtained by starting with paths P2, P4, . . . , Pn−2, Pn, Pn, Pn−2, . . . , P4, P2

arranged vertically parallel with the vertices in the paths forming horizontal rows and
edges joining the vertices of the rows. They prove plus graphs, path unions of copies of
Pln, cycles of r ≡ 0, 3 (mod 4) copies of Pln, and stars of plus graphs are graceful. In
[1293] Kaneria and Makadia prove the following graphs are graceful: open stars of plus
graphs; graphs obtained by joining C4m and a plus graph with a path of arbitrary length;
graphs obtained from cycles Cm

+ (m ≡ 2 (mod 4)) with twin chords that form a triangle
with an edge of the cycle by joining Cm

+ and a plus graph with a path of arbitrary length.
Kaneria and Makadia [1294] define a swastik graph as the graph obtained from four

copies of C4n (n > 1) with vertices Vi,j ( i = 1, 2, 3, 4, j = 1, 2, . . . , 4n) and identifying
V1,4t and V2,1, V2,4t and V3,1, V3,4t and V4,1, and V4,4t and V1,1. They proved that path
unions of swastik graphs of the same size, cycles of r ≡ 0, 3 (mod 4) copies of swastik
graphs of the same size, and the star of swastik graphs are graceful. In [1295] Kaneria and
Makadia prove the following graphs are graceful: open stars of swastik graphs; one point
unions for paths of swastik graphs; graphs obtain by joining C4m and a swastik graph
with a path of arbitrary length; graphs obtained from cycles Cm (m ≡ 2 (mod 4)) with
twin chords that form a triangle with an edge by joining Cm �K1 and a swastik graph
with a path of arbitrary length.

In [1282] and [1281] Kaneria and Jariya define a smooth graceful graph as a bipartite
graph G with q edges with the property that for all positive integers l there exists a map
g : V −→ {0, 1, . . . , b q−1

2
c, b q+1

2
c+l, b q+3

2
c+l, . . . , q+l} such that the induced edge labeling

map g? : E −→ {1 + l, 2 + l, . . . , q + l} defined by g?(e) = |g(u) − g(v)| is a bijection.
Note that by taking l = 0 a smooth graceful labeling is a graceful labeling. Kaneria and
Jariya proved the following graphs are smooth graceful: Pn; C4n; K2,n; Pm × Pn; and the
graph obtained by joining a cycle C4m+2 with twin chords to C4n. They also proved that
the graph obtained by joining C4m to Wn with a path is graceful. They proved that K1,n

is semi smooth graceful, the star of K1,n is graceful, the path union of a smooth graceful
tree is graceful, and the star of a smooth graceful tree is a graceful tree.

Kaneria, Makadia and Viradia [1304] proved the following: the star of a semi
smooth graceful graph is graceful; Km,n, P (t · H) are semi smooth graceful where H
is a semi smooth graceful graph; step grid graphs; and the cycle graphs C(t · H) are
smooth graceful, when t ≡ (mod 4), H is a semi smooth; Ct(m · Cn), P t(k · T ),
< Cn1 , Pn2 , Cn3 , . . . , Pn2t , Cn2t+1 >, < Km1,n1 , Pr1 , Km2,n2 , Pr2 , . . . , Prt−1 , Kmt,nt >,
< Pn1 × Pm1 , Pr1 , Pn2 × Pm2 , . . . , Prt−1 , Pnt × Pmt > are graceful when T is semi smooth
graceful tree.

Kaneria and Meghpara [1307] prove that Bm,n, the splitting graphs S ′(Bm,n) and
S ′(Pn) are semi smooth graceful and if graphs obtained by joining semi smooth graceful
graph and B2

m,n by an arbitrary path is graceful.
A komodo dragon is formed by attaching a path to a vertex of degree 3 in a cycle with

a chord and attaching star graphs to the end points of the path. A komodo dragon with
many tails is formed by attaching many paths of length two to an endpoint of the path
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in a komodo dragon. In [2307] and [2309] Shahul Hameed, Palanivelrajan, Gunasekaran
and Raziya Begam provide graceful labelings of various komodo dragon graphs and their
extensions. In [2308] and [2310] Shahul Hameed et al. investigated the gracefulness of
classes of graphs constructed by combining some subdivisions of certain theta graphs with
stars.

For a bipartite graph G with partite sets X and Y let G′ be a copy of G and X ′

and Y ′ be copies of X and Y . Lee and Liu [1504] define the mirror graph, M(G), of G
as the disjoint union of G and G′ with additional edges joining each vertex of Y to its
corresponding vertex in Y ′. The case that G = Km,n is more simply denoted by M(m,n).
They proved that for many cases M(m,n) has a stronger form of graceful labeling (see
§3.1 for details).

The total graph T (Pn) has vertex set V (Pn)∪E(Pn) with two vertices adjacent when-
ever they are neighbors in Pn. Balakrishnan, Selvam, and Yegnanarayanan [339] have
proved that T (Pn) is harmonious.

For any graph G with vertices v1, . . . , vn and a vector m = (m1, . . . ,mn) of positive
integers the corresponding replicated graph, Rm(G), of G is defined as follows. For each
vi form a stable set Si consisting of mi new vertices i = 1, 2, . . . , n (a stable set S consists
of a set of vertices such that there is not an edge vivj for all pairs vi, vj in S); two
stable sets Si, Sj, i 6= j, form a complete bipartite graph if each vivj is an edge in G
and otherwise there are no edges between Si and Sj. Ramı́rez-Alfonśın [2082] has proved
that Rm(Pn) is graceful for all m and all n > 1 (see §3.4 for a stronger result) and that
R(m,1,...,1)(C4n), R(2,1,...,1)(Cn) (n ≥ 8) and,R(2,2,1,...,1)(C4n) (n ≥ 12) are graceful.

For any permutation f on 1, . . . , n, the f -permutation graph on a graph G, P (G, f),
consists of two disjoint copies of G, G1 and G2, each of which has vertices labeled
v1, v2, . . . , vn with n edges obtained by joining each vi in G1 to vf(i) in G2. In 1983 Lee
(see [1570]) conjectured that for all n > 1 and all permutations on 1, 2, . . . , n, the permu-
tation graph P (Pn, f) is graceful. Lee, Wang, and Kiang [1570] proved that P (P2k, f) is
graceful when f = (12)(34) · · · (k, k + 1) · · · (2k − 1, 2k). They conjectured that if G is a
graceful nonbipartite graph with n vertices, then for any permutation f on 1, 2, . . . , n, the
permutation graph P (G, f) is graceful. Fan and Liang [746] have shown that if f is a per-
mutation in Sn where n ≥ 2(m− 1) + 2l then the permutation graph P (Pn, f) is graceful
if the disjoint cycle form of f is

∏l−1
k=0(m+ 2k,m+ 2k + 1), and if n ≥ 2(m− 1) + 4l the

permutation graph P (Pn, f) is graceful the disjoint cycle form of f is
∏l−1

k=0(m+ 4k,m+
4k + 2)(m + 4k + 1,m + 4k + 3). For any integer n ≥ 5 and some permutations f in
S(n), Liang and Y. Miao, [1589] discuss gracefulness of the permutation graphs P (Pn, f)
if f = (m,m+1,m+2,m+3,m+4), (m,m+2)(m+1,m+3), (m,m+1,m+2,m+4,m+
3), (m,m+1,m+4,m+3,m+2), (m,m+2,m+3,m+4,m+1), (m,m+3,m+4,m+2,m+1)
and (m,m+ 4,m+ 3,m+ 2,m+ 1). In [1591] Liang, Zhang, Xu, Ye, Fan, and Ge prove
the permutation graphs P (Pn, f) where f is one of the permutations (12345), (2345),
(234), (123456) and (23)(45) are graceful. Some families of graceful permutation graphs
are given in [1497], [1584], and [949].

In [433] Bell provided methods to combine graceful bipartite graphs to create new
graceful graphs. These methods unify and generalize some well-known results in the
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graceful labeling literature. She also found a new class of graceful trees.
A graph (p, q)-graph G(V,E) is said to be (k, d)-hooked Skolem graceful if there exists

a bijection f from V (G) to {1, 2, . . . , p− 1, p+ 1} such that the induced edge labeling gf
from E to {k, k+d, . . . , k+(n−1)d} defined by gf (uv) = |f(u)−f(v)| for all uv in E is also
bijective. Such a labeling f is called a (k, d)-hooked Skolem graceful labeling of G. Note
that when k = d = 1, this notion coincides with that of hooked Skolem graceful labeling of
the graph G. In [1917] Pereira, Singh, and Arumugam present some preliminary results on
(k, d)-hooked Skolem graceful graphs and prove that nK2 is (2, 1)-hooked Skolem graceful
if and only if n ≡ 1 or 2 (mod 4).

Gnanajothi [894, p. 51] calls a graph G bigraceful if both G and its line graph are
graceful. She shows the following are bigraceful: Pm; Pm × Pn; Cn if and only if n ≡ 0, 3
(mod 4); Sn; Kn if and only if n ≤ 3; and Bn if and only if n ≡ 3 (mod 4). She also shows
that Km,n is not bigraceful when n ≡ 3 (mod 4). (Gangopadhyay and Hebbare [822]
used the term “bigraceful” to mean a bipartite graceful graph.) Murugan and Arumugan
[1800] have shown that graphs obtained from C4 by attaching two disjoint paths of equal
length to two adjacent vertices are bigraceful.

Several well-known isolated graphs have been examined. Graceful labelings have been
found for the Petersen graph [795], the cube [839], the icosahedron and the dodecahedron.
Graham and Sloane [925] showed that all of these except the cube are harmonious. Winters
[2816] verified that the Grőtzsch graph (see [491, p. 118]), the Heawood graph (see [491,
p. 236]), and the Herschel graph (see [491, p. 53]) are graceful. Graham and Sloane [925]
determined all harmonious graphs with at most five vertices. Seoud and Youssef [2261]
did the same for graphs with six vertices.

In 2009 Zak [2897] defined the following generalization of harmonious labelings. For a
graph G(V,E) and a positive integer t ≥ |E| a function h from V (G) to Zt (the additive
group of integers modulo t) is called a t-harmonious labeling of G if h is injective for
t ≥ |V | or surjective for t < |V |, and h(u) + h(v) 6= h(x) + h(y) for all distinct edges
uv and xy. The smallest such t for which G has a t-harmonious labeling is called the
harmonious order of G. Obviously, a graph G(V,E)with |E| ≥ |V | is harmonious if and
only if the harmonious order of G is |E|. Zak determines the harmonious order of complete
graphs, complete bipartite graphs, even cycles, some cases of P k

n , and 2nK3. He presents
some results about the harmonious order of the Cartesian products of graphs, the disjoint
union of copies of a given graph, and gives an upper bound for the harmonious order of
trees. He conjectures that the harmonious order of a tree of order n is n+o(n). Hegde and
Murthy [991] proved Zak’s conjecture [2897] using the value sets of polynomials, which
partially proves the cordial tree conjecture by Hovey [1021] that all trees of order less
than a prime p are p-cordial. (See Section 3.7.)

A graceful labeling of Pn is said to be an (a, b;n)-graceful labeling if one endpoint is
labeled a and the other labeled b. A conjecture made in Gvozdjak’s PhD Thesis [944]
on the Oberwolfach Problem in 2004 is: “An (a, b;n)-graceful labeling of Pn exists if
and only if the integers a, b, n satisfy (1) b − a has the same parity as n(n + 1)/2; (2)
0 < |b− a| ≤ (n+ 1)/2 and (3) n/2 ≤ a+ b ≤ 3n/2.” In [2906] Zhang, Zhang, and Wang
showed that the conjecture is true for every n whenever it is true for n ≤ 4a+ 1 and a is
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a fixed value. Moreover, they proved that the conjecture is true for a = 0, 1, 2, 3, 4, 5, 6.
For a graph with e edges Vietri [2727] generalizes the notion of a graceful labeling by

allowing the vertex labels to be real numbers in the interval [0, e]. For a simple graph
G(V,E) he defines an injective map γ from V to [0, e] to be a real-graceful labeling of G
provided that

∑
2γ(u)−γ(v) + 2γ(v)−γ(u) = 2e+1 − 2−e − 1, where the sum is taken over all

edges uv. In the case that the labels are integers, he shows that a real-graceful labeling is
equivalent to a graceful labeling. In contrast to the case for graceful labelings, he shows
that the cycles C4t+1 and C4t+2 have real-graceful labelings. He also shows that the non-
graceful graphs K5, K6, and K7 have real-graceful labelings. With one exception, his
real-graceful labels are integers.

The gamma-number (or gracefulness) of a graph G, denoted by γ (G), is the smallest
positive integer n for which there exists an injective function f : V (G) → {0, 1, . . . , n}
such that each uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting edge labels are
distinct. The strong gamma-number of a graph G, denoted by γs (G), is defined to be
the smallest positive integer n such that γ (G) = n with the additional property that
there exists an integer λ so that min {f (u) , f (v)} ≤ λ < max {f (u) , f (v)} for each
uv ∈ E (G). The strong gamma-number is defined to be +∞, otherwise. Ichishima and
Oshima [1063] proved that if G is a bipartite graph, then γ (mG) ≤ mγ (G) + m − 1
for any positive integer m. They also show that γs (G) < +∞ and γs (G) ≤ 2γ (G) + 1
for any bipartite graph G. Moreover, they provide a sharp upper bound for γ (G ∪H)
in terms of γ (G) and γs (H) when G and H are graphs such that H is bipartite, and
give formulas for the gamma-number of certain forests. In addition to these, they present
strong gamma-number analogues to the gamma-number results and determine the exact
values of the gamma-number and strong gamma-number for all cycles.

A graph G with m vertices and n edges, is said to be prime graceful if there is an
injection φ from the vertices of G to {1, 2, . . . , k} where k = min{2m, 2n} such that
gcd(φ(vi), φ(vj)) = 1 and the induced injective function φ∗ from the edges of G to
{1, 2, . . . , k−1} defined by φ∗(vivj) = |φ(vi)−φ(vj)|, the resulting edge labels are distinct.
In [2207] Selvarajan and Subramoniam proved paths, cycles, stars, friendship graphs, bis-
tars, C4 ∪ Pn, Km,2, and Km,2 ∪ Pn have prime graceful labelings.

A number of authors have investigated the gracefulness of the directed graphs obtained
from copies of directed cycles ~Cm that have a vertex in common or have an edge in
common. A digraph D(V,E) is said to be graceful if there exists an injection f : V (G)→
{0, 1, . . . , |E|} such that the induced function f ′ : E(G) → {1, 2, . . . , |E|} that is defined
by f ′(u, v) = (f(v) − f(u)) (mod |E| + 1) for every directed edge uv is a bijection. The

notations n · ~Cm and n − ~Cm are used to denote the digraphs obtained from n copies of
~Cm with exactly one point in common and the digraphs obtained from n copies of ~Cm
with exactly one edge in common. Du and Sun [696] proved that a necessary condition

for n− ~Cm to be graceful is that mn is even and that n · ~Cm is graceful when m is even.
They conjectured that n · ~Cm is graceful for any odd m and even n. This conjecture was
proved by Jirimutu, Xu, Feng, and Bao in [1263]. Xu, Jirimutu, Wang, and Min [2835]

proved that n − ~Cm is graceful for m = 4, 6, 8, 10 and even n. Feng and Jirimutu (see

[2909]) conjectured that n− ~Cm is graceful for even n and asked about the situation for
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odd n. The cases where m = 5, 7, 9, 11, and 13 and even n were proved Zhao and Jirimutu
[2908]. The cases for m = 15, 17, and 19 and even n were proved by Zhao et al. in [2907],
and [2413]. Zhao, Siqintuya, and Jirimutu [2909] proved that a necessary condition for

n − ~Cm to be graceful is that nm is even. Hegde and Kumudashi [988] show that the
symmetric digraph on the double cycle constructed from an m-cycle by replacing each
edge xy by a pair of arcs, (x, y) and (y, x), is graceful for all m.

In a 1985 paper Bloom and Hsu [477] say a directed graph D with e edges has a graceful
labeling θ if for each vertex v there is a vertex labeling θ that assigns each vertex a distinct
integer from 0 to e such that for each directed edge (u, v) the integers θ(v)−θ(u) mod (e+1)
are distinct and nonzero. They conjectured that digraphs whose underlying graphs are
wheels and that have all directed edges joining the hub and the rim in the same direction
and all directed edges in the same direction are graceful. This conjecture was proved in
2009 by Hegde and Shivarajkumar [1003]. Yao, Yao, and Cheng [2864] investigated the
gracefulness for many orientations of undirected trees with short diameters and proved
some directed trees do not have graceful labelings. Hegde and Kumudashi [989] established
the gracefulness of the directed graph that is an orientation of the planar grid graph
Pm × Pn in which each cell is a unicycle of length four. A graceful difference labeling
of a directed graph G with vertex set V is a bijection f : V → {1, . . . , |V |} such that,
when each arc uv is assigned the difference label f(v)− f(u), the resulting arc labels are
distinct. Hertz and Picouleau [1010] conjectured that all disjoint unions of circuits have a
graceful difference labeling, except in two particular cases. They provided partial results
that support this conjecture. A survey of results on graceful digraphs by Feng, Xu, and
Jirimutu is given in [753]. Marr [1711] and [1710] summarizes previously known results on
graceful directed graphs and presents some new results on directed paths, stars, wheels,
and umbrellas.

2.8 Summary

The results and conjectures discussed above are summarized in the tables following. The
letter G after a class of graphs indicates that the graphs in that class are known to be
graceful; a question mark indicates that the gracefulness of the graphs in the class is an
open problem; we put a question mark after a “G” if the graphs have been conjectured
to be graceful. The analogous notation with the letter H is used to indicate the status of
the graphs with regard to being harmonious. The tables impart at a glimpse what has
been done and what needs to be done to close out a particular class of graphs. Of course,
there is an unlimited number of graphs one could consider. One wishes for some general
results that would handle several broad classes at once but the experience of many people
suggests that this is unlikely to occur soon. The Graceful Tree Conjecture alone has
withstood the efforts of scores of people over the past four decades. Analogous sweeping
conjectures are probably true but appear hopelessly difficult to prove. I thank Don Knuth
for his correspendence about the results of Smith and Puget [2431] in Table 1 regarding
the gracefulness Km ×K, Km × Pn, and Km × Cn.
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Table 1: Summary of Graceful Results

Graph Graceful
trees G if ≤ 35 vertices [747]

G if symmetrical [449]
G if at most 4 end-vertices [1031]
G with diameter at most 5 [1022]
G? Ringel-Kotzig
G caterpillars [2136]
G firecrackers [575]
G bananas [2281], [2280]
G? lobsters [445]

cycles Cn G iff n ≡ 0, 3 (mod 4) [2136]

wheels Wn G [795], [1018]

helms (see §2.2) G [212]

webs (see §2.2) G [1326]

gears (see §2.2) G [1675]

cycles with Pk-chord (see §2.2) G [658], [1674], [1399], [2041]

Cn with k consec. chords (see §2.2) G if k = 2, 3, n− 3 [1388], [1396]

unicyclic graphs G? iff G 6= Cn, n ≡ 1, 2 (mod 4) [2601]

P k
n G if k = 2 [1326]

C
(t)
n (see §2.2) n = 3 G iff t ≡ 0, 1 (mod 4)

[446], [448]
G? if nt ≡ 0, 3 (mod 4) [1389]
G if n = 6, t even [1389]
G if n = 4, t > 1 [2320]
G if n = 5, t > 1 [2851]
G if n = 7 and t ≡ 0, 3 (mod 4) [2857]
G if n = 9 and t ≡ 0, 3 (mod 4) [2858]
G if t = 2 n 6≡ 1 (mod 4) [2048], [486]
G if n = 11 [2837]

Continued on next page
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Table 1 – Continued from previous page
Graph Graceful
triangular snakes (see §2.2) G iff no. blocks ≡ 0, 1 (mod 4) [1793]

K4-snakes (see §2.2) ?

quadrilateral snakes (see §2.2) G [894], [2048]

crowns Cn �K1 G [795]

Cn � Pk G [2200]

grids Pm × Pn G [36]

prisms Cm × Pn G if n = 2 [798], [2854]
G if m even [1032]
G if m odd and 3 ≤ n ≤ 12 [1032]
G if m = 3 [2394]
G if m = 6 see [2856]
G if m ≡ 2 (mod 4), n ≡ 3 (mod 4) [2856]

Km × Pn G if (m,n) = (4, 2), (4, 3), (4, 4), (4, 5),
(5, 2), (5, 3), (6, 3), (4, 6), (4, 7), (4, 8)
not G if (3, 3), (m, 2) m = 6, 7, 8, 9, 10,
11,12
not G? for (m, 2) with m > 12 [2431]

Km × Cn G if (m,n) = (4, 3), (3, 4), (4, 4), (4, 5),
(3, 6), (4, 6)
not G for (m,n) = (6, 3) [2431]

Km �K1 G if m = 3, 4, 5, 6, 7, 8, 9
not G if m = 10, 11, 12, 13, 14, 15
not G? if m > 15 [2431]

Km,n �K1 G [1256]

Km ∪Kn (m,n > 1) G iff {m,n} = {4, 2} or {5, 2}⋃t
i=1 Kmi,ni

G 2 ≤ mi < ni [354]

torus grids Cm × Cn G if m ≡ 0 (mod 4), n even [1266]
Continued on next page
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Table 1 – Continued from previous page
Graph Graceful

not G if m,n odd (parity condition)

vertex-deleted Cm × Pn G if n = 2 [816]

edge-deleted Cm × Pn G if n = 2 [816]

Möbius ladders Mn (see §2.3) G [810]

stacked books Sm × Pn n = 2, G iff m 6≡ 3 (mod 4) [1687],
(see §2.3) [657], [815]

G if m even [815]

n-cube K2 ×K2 × · · · ×K2 G [1416]
Kn × P3 G iff n ≤ 6 [1383]

K4 × Pn G if n = 2, 3, 4, 5 [1920]

Kn G iff n ≤ 4 [902], [2390]

Km,n G [2136], [902]

K1,m,n G [178]

K1,1,m,n G [894]

windmills K
(m)
n (n > 3) (see §2.4) G if n = 4,m ≤ 1000 [1032],[5],[2797],[863]

G? if n = 4,m ≥ 4 [445]
not G if n = 4,m = 2, 3 [445]
not G if (m,n) = (2, 5) [448]
not G if n > 5 [1396]

B(n, r,m) r > 1 (see §2.4) G if (n, r) = (3, 2), (4, 3) [1390], (4,2) [657]
G (n, r,m) = (5, 2, 2) [2431]
not G for (n, 2, 2) for n > 5 [447], [2431]

mKn (see §2.5) G iff m = 1, n ≤ 4 [1420]
Cm ∪ Pn G iff m+ n ≥ 6 [2595]

Cm ∪ Cn G iff m+ n ≡ 0, 3 (mod 4) [19]

Continued on next page
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Table 1 – Continued from previous page
Graph Graceful
Cn ∪Kp,q for n > 8 G iff n ≡ 0, 3 (mod 4) [2875]

G C6 ×K1,2n+1 [354]
G C3 ×Km,n iff m,n ≥ 2 [2260]
G C4 ×Km,n iff (m,n) 6= (1, 1)[2260]
G C7 ×Km,n [2260]
G C8 ×Km,n [2260]

Ki ∪Km,n G [354]⋃t
i=1 Kmi,ni

G 2 ≤ mi < ni [354]

Cm ∪
⋃t
i=1 Kmi,ni

G 2 ≤ mi < ni,
m ≡ 0 or 3 (mod 4), m ≥ 11 [354]

G+Kt G for connected graceful G [22]

double cones Cn +K2 G for n = 3, 4, 5, 7, 8, 9, 11, 12
not G for n ≡ 2 (mod 4) [2109]

t-point suspension Cn +Kt G if n ≡ 0 or
3 (mod 12) [463]
not G if t is even and
n ≡ 2, 6, 10 (mod 12)
G if n = 4, 7, 11 or 19 [463]
G if n = 5 or 9 and t = 2 [463]

P 2
n (see §2.7) G [1496]

Petersen P (n, k) (see §2.7) G for n = 5, 6, 7, 8, 9, 10 [2109],
(n, k) = (8t, 3) [2715]

Table 2: Summary of Harmonious Results

Graph Harmonious
trees H if ≤ 31 vertices [748]

H? [925]
H caterpillars [925]
? lobsters

Continued on next page
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Table 2 – Continued from previous page
Graph Harmonious

cycles Cn H iff n is odd [925]

wheels Wn H [925]

helms (see §2.2) H [894], [1619]

webs (see §2.2) H if cycle is odd

gears (see §2.2) H [576]

cycles with Pk-chord (see §2.2) ?

Cn with k consec. chords ?
(see §2.2)

unicyclic graphs ?

P k
n H if k = 2 [922], k odd [2223], [2882]

H if k is even and
k/2 ≤ (n− 1)/2 [2894]

C
(t)
n (see §2.2) n = 3 H iff t 6≡ 2 (mod 4) [925]

H if n = 4, t > 1 [2320]

triangular snakes (see §2.2) H if number of blocks is odd [2834]
not H if number of blocks ≡ 2
(mod 4) [2834]

K4-snakes (see §2.2) H [923]

quadrilateral snakes (see §2.2) ?

crowns Cn �K1 H [922], [1606]

grids Pm × Pn H iff (m,n) 6= (2, 2) [1266]
prisms Cm × Pn H if n = 2,m 6= 4 [816]

H if n odd [925]
H if m = 4 and n ≥ 3 [1266]

Continued on next page
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Table 2 – Continued from previous page
Graph Harmonious

torus grids Cm × Cn, H if m = 4, n ≥ 3 [1266]
not H if m 6≡ 0 (mod 4),
n odd [1266]

vertex-deleted Cm × Pn H if n = 2 [816]

edge-deleted Cm × Pn H if n = 2 [816]

Möbius ladders Mn (see §2.3) H iff n 6= 3 [810]

stacked books Sm × Pn (see §2.3) n = 2, H if m even [921], [2110]
not H m ≡ 3 (mod 4), n = 2,
(parity condition)
H if m ≡ 1 (mod 4), n = 2 [894]

n-cube K2 ×K2 × · · · ×K2 H if and only if n ≥ 4 [1059]

K4 × Pn H [2110]

Kn H iff n ≤ 4 [925]

Km,n H iff m or n = 1 [925]

K1,m,n H [178]

K1,1,m,n H [894]

windmills K
(m)
n (n > 3) (see §2.4)

H if n = 4 [1025]
m = 2, H? iff n = 4 [925]
not H if m = 2, n odd or 6 [925]
not H for some cases m = 3 [1605]

B(n, r,m) r > 1 (see §2.4) (n, r) = (3, 2), (4, 3) [2257]

mKn (see §2.5) H n = 3, m odd [1607]
not H for n odd and
m ≡ 2 (mod 4) [1607]

nG H when G is harmonious and
Continued on next page
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Graph Harmonious

n odd [2873]

Gn H when G is harmonious and
n odd [2873]

Cm ∪ Pn ?

fans Fn = Pn +K1 H [925]

nCm +K1 n 6≡ 0 mod 4 H [576]

double fans Pn +K2 H [925]

t-point suspension Pn +Kt of Pn H [2110]

Sm +K1 H [894], [558]

t-point suspension Cn +Kt of Cn H if n odd and t = 2 [2110], [894]
not H if n ≡ 2, 4, 6 (mod 8)
and t = 2 [894]

Petersen P (n, k) (see §2.7) H [894], [1532]
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3 Variations of Graceful Labelings

3.1 α-labelings

In 1966 Rosa [2136] defined an α-labeling (or α-valuation) as a graceful labeling with
the additional property that there exists an integer k so that for each edge xy either
f(x) ≤ k < f(y) or f(y) ≤ k < f(x). (Other names for such labelings are balanced,
interlaced, and strongly graceful.) It follows that such a k must be the smaller of the two
vertex labels that yield the edge labeled 1. Also, a graph with an α-labeling is necessarily
bipartite and therefore can not contain a cycle of odd length. Wu [2825] has shown that a
necessary condition for a bipartite graph with n edges and degree sequence d1, d2, . . . , dp
to have an α-labeling is that the gcd(d1, d2, . . . , dp, n) divides n(n− 1)/2. Barrientos and
Minion [385] proved that any tree of size n and excess ε is a spanning tree of a graph of
size n+ ε that admits an α-labeling.

For a path with consecutive vertices v1, v2, . . . , vn a triangular tree is the tree obtained
identifying each vi to an end vertex of the path Pi. Barrientos [361] proved that all
triangular trees admit an α-labeling. He also presented several ways to combine this type
of trees to construct new trees and unicyclic graphs that can α-labeled.

A common theme in graph labeling papers is to build up graphs that have desired
labelings from pieces with particular properties. In these situations, starting with a
graph that possesses an α-labeling is a typical approach. (See [558], [922], [575], and
[1266].) Moreover, Jungreis and Reid [1266] showed how sequential labelings of graphs
(see Section 4.1) can often be obtained by modifying α-labelings of the graphs.

Graphs with α-labelings have proved to be useful in the development of the theory of
graph decompositions. Rosa [2136], for instance, has shown that if G is a graph with q
edges and has an α-labeling, then for every natural number p, the complete graph K2qp+1

can be decomposed into copies of G in such a way that the automorphism group of the
decomposition itself contains the cyclic group of order p. In the same vein El-Zanati
and Vanden Eynden [721] proved that if G has q edges and admits an α-labeling then
Kqm,qn can be partitioned into subgraphs isomorphic to G for all positive integers m and
n. Although a proof of Ringel’s conjecture that every tree has a graceful labeling has
withstood many attempts, examples of trees that do not have α-labelings are easy to
construct (one example is the subdivision graph of K1,3 — see [2136]). Kotzig [1414] has
shown however that almost all trees have α-labelings. Sethuraman and Ragukumar [2286]
have proved that every tree is a subtree of a graph with an α-labeling.

As to which graphs have α-labelings, Rosa [2136] observed that the n-cycle has an α-
labeling if and only if n ≡ 0 (mod 4) whereas Pn always has an α-labeling. Other familiar
graphs that have α-labelings include caterpillars [2136], the n-cube [1413], Möbius ladders
Mn when n is odd (see §2.3) for the definition) [1899], B4n+1 (i.e., books with 4n + 1
pages) [815], C2m ∪ C2m and C4m ∪ C4m ∪ C4m for all m > 1 [1415], C4m ∪ C4m ∪ C4n for
all (m,n) 6= 1, 1) [738], Pn×Qn [1687], K1,2k ×Qn [1687], C4m ∪C4m ∪C4m ∪C4m [1461],
C4m ∪ C4n+2 ∪ C4r+2, C4m ∪ C4n ∪ C4r when m+ n ≤ r [19], C4m ∪ C4n ∪ C4r ∪ C4s when
m ≥ n+r+s [15], C4m∪C4n∪C4r+2∪C4s+2 when m ≥ n+r+s+1 [15], ((m+1)2 +1)C4

the electronic journal of combinatorics (2019), #DS6 46



for all m [2916], k2C4 for all k [2916], and (k2 + k)C4 for all k [2916]. Abrham and Kotzig
[17] have shown kC4 has an α-labeling for 4 ≤ k ≤ 10 and that if kC4 has an α-labeling
then so does (4k + 1)C4, (5k + 1)C4, and (9k + 1)C4. Eshghi [731] proved that 3C4k and
5C4k have an α-labeling for all k. In [738] Eshghi and Carter show several families of
graphs of the form C4n1 ∪ C4n2 ∪ · · · ∪ C4nk

have α-labelings.
In [734] Eshghi provides an integer programming model and a Tabu search algorithm

to generate α-labelings of the quadratic graphs mC4k) where 6 ≥ m ≥ 10 and 2 ≥ k ≥ 10.
(See also [740].) The computational complexity of the gracefulness of a graph is not
known, but the complexity of finding a harmonious labeling of a graph is in the NP-class
[147]. Research on programming models for finding graceful labelings of graphs can be
found in [730], [740], [739], [1460], [2154], [736], [2109], [2431], [1686], and [2302].

In [147] Amini and Eshghi gave a new mathematical integer programming model for
the graph labeling graphs of the form mCn (some authors use the notation Q(m,n)).
The advantages of this model are linearity and the existence of an objective function.
They also gave two constraint programming models and a meta-heuristics algorithm that
generate feasible graceful labeling and α-labeling for special classes of quadratic graphs.
Their results include: mC4k with 1 ≤ 11 and less than 1000 vertices has an α-labeling
with the exception of 3C4; 12C4k has α-labeling for 1 ≤ k ≤ 19; and 13C4k has α-labeling
for 1 ≤ k ≤ 13. In [739] and [2154] Eshghi and Salarrezaei proved that 7C4k has an
α-labeling for all k. Lakshmi and Vangipuram [1460] proved that 4C4k is graceful.

In [387], Barrientos and Minion investigated series-parallel operations with graphs that
admit α-labelings. They provided necessary conditions on the graphs G1 and G2 to obtain
a new α-labeled graph G through each of these operations. As consequence of the series
operation, they proved that the one-point union of three or four copies of Kn,n has an
α-labeling, and that any tree with maximum degree four that can be decomposed into
copies of the path of length eleven has an α-labeling when the distance between any pair
of vertices of degree four is even. They also showed that any graph of order n+ 1 and size
n with an α-labeling is an induced subgraph of a graph of order n + 3 and size 2n + 1.
Additionally, they presented an α-labeling for any graph of the form K2,n × Pm.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [763] have shown that if m ≡ 0
(mod 4) then the one-point union of 2, 3, or 4 copies of Cm admits an α-labeling, and
if m ≡ 2 (mod 4) then the one-point union of 2 or 4 copies of Cm admits an α-labeling.
They conjecture that the one-point union of n copies of Cm admits an α-labeling if and
only if mn ≡ 0 (mod 4).

Pei-Shan Lee [1486] proved that C6×P2t+1 and gear graphs have α-labelings. He raises
the question of whether C4m+2 × P2t+1 has an α-labeling for all m. Brankovic, Murch,
Pond, and Rosa [499] conjectured that all trees with maximum degree three and a perfect
matching have an α-labeling.

In his 2001 Ph. D. thesis Selvaraju [2202] investigated the one-point union of complete
bipartite graphs. He proves that the one-point unions of the following forms have an
α-labeling: Km,n1 and Km,n2 ; Km1,n1 , Km2,n2 , and Km3,n3 where m1 ≤ m2 ≤ m3 and
n1 < n2 < n3; Km1,n, Km2,n, and Km3,n where m1 < m2 < m3 ≤ 2n.

Zhile [2916] uses Cm(n) to denote the connected graph all of whose blocks are Cm and
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whose block-cutpoint-graph is a path. He proves that for all positive integers m and n,
C4m(n) has an α-labeling but Cm(n) does not have an α-labeling when m is odd.

Abrham and Kotzig [19] have proved that Cm ∪ Cn has an α-labeling if and only if
both m and n are even and m + n ≡ 0 (mod 4). Kotzig [1415] has also shown that
C4 ∪C4 ∪C4 does not have an α-labeling. He asked if n = 3 is the only integer such that
the disjoint union of n copies of C4 does not have an α-labeling. This was confirmed by
Abrham and Kotzig in [18]. Eshghi [730] proved that every 2-regular bipartite graph with
3 components has an α-labeling if and only if the number of edges is a multiple of four
except for C4 ∪C4 ∪C4. In [733] Eshghi gives more results on the existence of α-labelings
for various families of disjoint union of cycles.

Jungreis and Reid [1266] investigated the existence of α-labelings for graphs of the
form Pm × Pn, Cm × Pn, and Cm × Cn (see also [813]). Of course, the cases involving
Cm with m odd are not bipartite, so there is no α-labeling. The only unresolved cases
among these three families are C4m+2 × P2n+1 and C4m+2 × C4n+2. All other cases result
in α-labelings.

Let v1,j, v2,j, . . . , vm,j be the consecutive vertices of the jth copy of Pm in Pm×Pn. An
elementary transformation of Pm×Pn is the graph obtained by replacing the edge vi,jvi+1,j

by the new edge vi−x,jvi+1+x,j. A graph is said to be a grid-like graph if it is obtained
through a sequence of elementary transformations. In [388] Barrientos and Minion proved
the exitence of an α-labeling for any grid-like graph. As consequence of this result, they
showed that the graphs C4t × Pn ∪ Pn and C4t × Pn ∪ Pt−1 × Pn admit α-labelings.

Balakrishman [333] uses the notation Qn(G) to denote the graph P2×P2×· · ·×P2×G
where P2 occurs n− 1 times. Snevily [2434] has shown that the graphs Qn(C4m) and the
cycles C4m with the path Pn adjoined at each vertex have α-labelings. He [2435] also has
shown that compositions of the form G[Kn] (see §2.3 for the definition) have an α-labeling
whenever G does (see §2.3 for the definition of composition). Balakrishman and Kumar
[336] have shown that all graphs of the form Qn(G) where G is K3,3, K4,4, or Pm have an
α-labeling. Balakrishman [333] poses the following two problems. For which graphs G
does Qn(G) have an α-labeling? For which graphs G does Qn(G) have a graceful labeling?

Rosa [2136] has shown that Km,n has an α-labeling (see also [351]). In [1062] Ichishima
and Oshima proved that if m, s and t are integers with m ≥ 1, s ≥ 2, and t ≥ 2, then
the graph mKs,t has an α-labeling if and only if (m, s, t) 6= (3, 2, 2). Barrientos [351] has
shown that for n even the graph obtained from the wheel Wn by attaching a pendent edge
at each vertex has an α-labeling. In [358] Barrientos shows how to construct graceful
graphs that are formed from the one-point union of a tree that has an α-labeling, P2, and
the cycle Cn. In some cases, P2 is not needed. Qian [2048] has proved that quadrilateral
snakes have α-labelings. Yu, Lee, and Chin [2891] showed that Q3-and Q3-snakes have
α-labelings. Fu and Wu [802] showed that if T is a tree that has an α-labeling with partite
sets V1 and V2 then the graph obtained from T by joining new vertices w1, w2, . . . , wk to
every vertex of V1 has an α-labeling. Similarly, they prove that the graph obtained from T
by joining new vertices w1, w2, . . . , wk to the vertices of V1 and new vertices u1, u2, . . . , ut
to every vertex of V2 has an α-labeling. They also prove that if one of the new vertices of
either of these two graphs is replaced by a star and every vertex of the star is joined to
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the vertices of V1 or the vertices of both V1 and V2, the resulting graphs have α-labelings.
Fu and Wu [802] further show that if T is a tree with an α-labeling and the sizes of the
two partite sets of T differ by at most 1, then T × Pm has an α-labeling. Zhao, Ma, and
Yao [2911] proved that a class of super lobster trees have α-labelings. Ghosh [890] uses
various methods of joining graceful graphs and graphs with α-labelings to obtain some
classes of graceful lobsters.

Selvaraju and G. Sethurman [2206] prove that the graphs obtained from a path Pn
by joining all the pairs of vertices u, v of Pn with d(u, v) = 3 and the graphs obtained by
identifying one of vertices of degree 2 of such graphs with the center of a star and the
other vertex the graph of degree 2 with the center of another star (the two stars needs
need not have the same size) have α-labelings. They conjecture that the analogous graphs
where 3 is replaced with any t with 2 ≤ t ≤ n− 2 have α-labelings.

Makadia, Karavadiya, and Kanerian [1693] proved that the graph obtained by merging
t consecutive vertices of two cycle C4r and C4s has an α-labeling when t ≤ 2min{r, s}.
They also proved that if G1 has an α-labeling and G2 is graceful then there exists a
graceful labeling of the graph obtained by joining G1 and G2 by any path. Moreover, if
both G1 and G2 have α-labelings then there exists an α-labeling of the graph obtained by
joining G1 and G2 by any path. Let Cn1 , Cn2 , . . . , Cnk

be a collection of cycles where each
ni ≡ 0 (mod 4). In [386], Barrientos and Minion say that a graph G is the coalescence of
these cycles if for every 2 ≤ i ≤ k, the first ti vertices of Cni

are identfied with the last ti
vertices of Pni−1

, where ti ≤ ni/2 .
Lee and Liu [1504] investigated the mirror graph M(m,n) of Km,n (see §2.3 for the

definition) for α-labelings. They proved: M(m,n) has an α-labeling when n is odd or
m is even; M(1, n) has an α-labeling when n ≡ 0 (mod 4); M(m,n) does not have an
α-labeling when m is odd and n ≡ 2 (mod 4), or when m ≡ 3 (mod 4) and n ≡ 4 (mod
8).

Barrientos and Minion [377] proved that the Cartesian product of two α-trees is an
α-tree when both trees admit α-labelings and their stable sets are balanced. (A stable set
S consists of a set of vertices such that there is not an edge vivj for all pairs vi, vj in S).
In addition, they present a tree that has the property that when any number of pendent
vertices are attached to the vertices of any subset of its smaller stable set the resulting
graph is an α-tree. They also prove of an α-labeling of three types of graphs obtained by
connecting, sequentially, any number of paths of equal size.

Barrientos [352] defines a chain graph as one with blocks B1, B2, . . . , Bm such that for
every i, Bi and Bi+1 have a common vertex in such a way that the block-cutpoint graph
is a path. He shows that if B1, B2, . . . , Bm are blocks that have α-labelings then there
exists a chain graph G with blocks B1, B2, . . . , Bm that has an α-labeling. He also shows
that if B1, B2, . . . , Bm are complete bipartite graphs, then any chain graph G obtained by
concatenation of these blocks has an α-labeling.

The symmetric product G1 ⊕ G2 of G1 and G2 is the graph with vertex set V (G1) ×
V (G2) and edge set {(u1, v1)(u2, v2)} where u1u2 is an edge in G1 or v1v2 is an edge in G2

but not both u1u2 is an edge in G1 and v1v2 is an edge in G2. A snake of length n > 1 is a
packing of n congruent geometrical objects, called cells, such that the first and the last cell
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each has only one neighbor and all n− 2 cells in between have exactly two neighbors. In
[372] Barrientos and Minion define a snake polyomino as a snake with square cells. They
prove that given two graphs of sizes m and n with α-labelings, the graph that results
from the edge amalgamation (identification of two edges) of the edges of weight 1 and n,
also has an α-labeling. They use that result to prove the existence of α-labelings of snake
polyominoes and hexagonal chains. The result about snake polyominoes partially answers
the question of Acharya. In [373], they prove that the third power of a caterpillar admits
an α-labeling and that the symmetric product G⊕ 2K1 has an α-labeling when G does.
In addition they prove that G∪Pm is graceful provided that G admits an α-labeling that
does not assign the integer λ + 2 as a label, where λ is its boundary value. They ask if
all triangular chains are graceful.

In [379] Barrientos and Minion proved that under certain conditions, the union Cr∪G
of the cycle Cr and a caterpillar G admits a graceful labeling when r is odd, and an
α-labeling when r is even. They also proved the existence of an α-labeling for any tree
obtained by connecting with a path of length two the central vertices of Gi and Gi+1, where
Gi is a caterpillar of diameter 2d with bipartite sets Ai and Bi such that |Ai| = |Bi| + 1
and Ai contains the vertices of maximum eccentricity in Gi.

Let T1, T2, . . . , Ts be trees. A chain tree obtained by identifying, for every 1 ≤ i ≤ s−1,
a vertex of Ti with a vertex of Ti+1. In [380], Barrientos and Minion prove that if every Ti
admits an α-labeling, then there exists a chain tree that also admits an α-labeling. Let T
be a tree of size n and v be a fixed vertex of T . The tree T+r

v is obtained by connecting,
with a path of length r, two copies of T , by identifying the end-point of this path with
the vertices v of each copy of T . They give necessary conditions for the existence of an
α-labeling for a tree T+2

v , where v is any of the vertices labeled λ, λ−1, . . . , λ− deg(v)−1
by an α-labeling with boundary value λ that assigns the labels λ+1, λ+2, . . . , λ+ deg(v)
to leaves of T . In addition they proved that T+4

v has an α-labeling if there exists an α-
labeling f of T , with boundary value λ, such that f(v) = λ− 1. In [380], Barrientos and
Minion prove the following.The tree ⊕(T1, T2, T3, T4) obtained by connecting to a new
vertex w, the vertices labeled n in T1 and T3 and the vertices labeled n/2 in T2 and T4,
where Ti is an α-labeled tree of even size n that has partite sets of cardinality n/2 and
n/2 + 1. If G is a graph of order m and size n, with m < n, that admits an α-labeling,
and H is any graceful graph of size t − 1, then tG ∪ H is a graceful graph. For every
m ≥ n, m ≥ 3, n ≥ 2, and t ≥ 2, tKm,n ∪ Lt−1 admits an α-labeling where Lt−1 is any
linear forest of size t− 1. If G is a graph of order m and size n, with m < n, that admits
an α-labeling, then tG ∪ Lt−1 also admits an α-labeling when Lt−1 is a linear forest of
size t − 1. As a consequence of this result they prove that tG ∪ Pt admits an α-labeling
provided that G does.

Barrientos [384] showed that all lobsters constructed with k copies of any caterpillar of
diameter four by connecting the central vertices of all pairs of consecutive copies with an
edge have an α-labeling. Additionally, he proved that any chain-tree formed by caterpillars
and this type of lobsters admits an α-labeling. Barrientos and Minion [388] say that a tree
is regular when the cardinalities of its stable sets are equal or differ by one. They prove
if S and T are regular trees that admit α-labelings then S × T also admits an α-labeling.
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They use this result to prove that S × T admits a sequential labeling (see Section 4.1)
as well as a harmonious labeling. They define a fence as the tree obtained by connecting
an internal vertex of Pni

with an internal vertex of Pni+1
by a path of length li for every

1 ≤ i ≤ t. They prove the existence of an α-labeling for any fence constructed with t
copies of Pn, where li = 2. They define a 2-link fence as the graph obtained by connecting
with an edge, two vertices of the ith copy of Pn, with the corresponding two vertices of
the (i + 1)th copy of Pn. They prove that all such graphs admit α-labelings. In [384]
Barrientos says that a fence is irregular if two consecutive copies of Pn are connected by
one or two pairs of corresponding vertices. He proved that all irregular fences have an
α-labeling provided that all their Eulerian subgraphs have size divisible by four. In [389]
Barrientos and Minion study subfamilies of 2-link fences, a subfamily of column-convex
polyominoes, and a subfamily of irregular cyclic-snakes. They prove that under certain
conditions, an α-labelings of these graphs can be transformed into harmonious labelings.

Barrientos and Minion [390] provided new families of harmoniously labeled graphs
built on α-labeled tress. Among them are P k

n , the join of G and tK1 where G has a
restrictive type of harmonious labeling and its order is different of its size by at most one,
Km,n ∪K1,m−1, and G∪T where G is a unicyclic graph and T is a tree built with α-trees.
They also showed that almost all trees admit harmonious labelings.

In [383] Barrientos and Minion extend the concept of vertex amalgamation as follows.
The k-vertex amalgamation of G1 and G2 is the graph obtained by identifying k indepen-
dent vertices of G1 with k independent vertices of G2. A t-fold of a graph G is obtained
using t-copies of G, where the ith copy of G is k-vertex amalgamated with the (i + 1)th
copy of G. They prove that if G admits an α-labeling, then any t-fold of G admits an
α-labeling. They consider a more general version of this construction for the case where G
is a tree. They also introduce a new family of trees that admit α-labelings; in particular,
they prove that any tree of diameter 2n formed by identifying the end-vertices of four
caterpillars admits an α-labeling.

Fronček, Kingston, and Vezina [786] generalized snake polyomino graphs by intro-
ducing straight simple polyominal caterpillars and proving that they also admit an alpha
labeling. This implies that every straight simple polyominal caterpillar with n edges
decomposes the complete graph K2kn+1 for any positive integer k. In [781] Fronček in-
troduced a similar family of graphs called full hexagonal caterpillars and prove that they
admit an alpha labeling. This implies that every full hexagonal caterpillar with n edges
decomposes the complete graph K2kn+1 for any positive integer k.

Golomb [903] introduced polyominoes in 1953 in a talk to the Harvard Mathematics
Club. Polyominoes are planar shapes made by connecting a certain number of equal-sized
squares, each joined together with at least one other square along an edge.

A graph G = (V (G), E(G)) is even graceful if there exists an injection f from the
set of vertices V (G) to {0, 1, 2, 3, 4, . . . , 2|E(G)|} such that when each edge uv is as-
signed the label |f(u)− f(v)|, the resulting edge labels are 2, 4, 6, . . . , 2|E(G)|. Elsonbaty
and Mohamed [716] use even graceful labelings to give a new proof for necessary and
sufficient conditions for the gracefulness of cycles. They extend this technique to odd
graceful and super Fibonacci graceful labelings of cycle graphs. The polar grid graph
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Pm,n consists of n copies of Cm numbered from the inner most cycle to the outer cycle
as C(1)m, . . . , C

(n)m and m copies of paths Pn+1 intersected at the center vertex v0 num-
bered as P (1)n+1, . . . , P

(m)n+1 In [717] Elsonbaty and Daoud provided edge even graceful
labelings for various classes of Pm × Cn. El Dean [2898] obtained an edge even graceful
labeling for Y -trees, double stars Bn,m, 〈K1,2n : K1,2m〉, P2n−1 �K2m, K2 + Pn, the cycle
v1, v2, . . . , v2n with a chord from v1 to vn, P2 � Cn, flags, and flowers. Zeen El Deen and
Omar [2899] gave sufficient conditions for Km,n to have an edge even graceful labeling.
They also provided edge even graceful labelings of the join of K1 with stars, wheels, and
sunflowers, and the join of K2 with stars and wheels. For results on Fibonacci trees see
[1392].

Wu ([2824] and [2826]) has given a number of methods for constructing larger grace-
ful graphs from graceful graphs. Let G1, G2, . . . , Gp be disjoint connected graphs. Let
wi be in Gi for 1 ≤ i ≤ p. Let w be a new vertex not in any Gi. Form a new
graph ⊕w(G1, G2, . . . , Gp) by adjoining to the graph G1 ∪ G2 ∪ · · · ∪ Gp the edges
ww1, ww2, . . . , wwp. In the case where each of G1, G2, . . . , Gp is isomorphic to a graph G
that has an α-labeling and each wi is the isomorphic image of the same vertex in Gi, Wu
shows that the resulting graph is graceful. If f is an α-labeling of a graph, the integer
k with the property that for any edge uv either f(u) ≤ k < f(v) or f(v) ≤ k < f(u)
is called the boundary value or critical number of f . Wu [2824] has also shown that if
G1, G2, . . . , Gp are graphs of the same order and have α-labelings where the labelings for
each pair of graphs Gi and Gp−i+1 have the same boundary value for 1 ≤ i ≤ n/2, then
⊕w(G1, G2, . . . , Gp) is graceful. In [2822] Wu proves that if G has n edges and n + 1
vertices and G has an α-labeling with boundary value λ, where |n − 2λ − 1| ≤ 1, then
G× Pm is graceful for all m.

Given graceful graphs H and G with at least one having an α-labeling Wu and Lu
[2827] define four graph operations on H and G that when used repeatedly or in turns
provide a large number of graceful graphs. In particular, if both H and G have α-labelings,
then each of the graphs obtained by the four operations on H and G has an α-labeling.

Ajitha, Arumugan, and Germina [133] use a construction of Koh, Tan, and Rogers
[1398] to create trees with α-labelings from smaller trees with graceful labelings. These
in turn allows them to generate large classes of trees that have a type of called edge-
antimagic labelings (see §6.1). Shiue and Lu [2372] prove that the graph obtained from
K1,k by replacing each edge with a path of length 3 has an α-labeling if and only if k ≤ 4.
In [2722] Venkatesh and Bharathi recursively construct new trees starting with caterpillars
that admit α-lableings.

Seoud and Helmi [2238] have shown that all gear graphs have an α-labeling, all dragons
with a cycle of order n ≡ 0 (mod 4) have an α-labeling, and the graphs obtained by
identifying an endpoint of a star Sm (m ≥ 3) with a vertex of C4n has an α-labeling.

Mavonicolas and Michael [1722] say that trees 〈T1, θ1, w1〉 and 〈T2, θ2, w2〉 with roots
w1 and w2 and |V (T1)| = |V (T2)| are gracefully consistent if either they are identical or
they have α-labelings with the same boundary value and θ1(w1) = θ2(w2). They use
this concept to show that a number of known constructions of new graceful trees using
several identical copies of a given graceful rooted tree can be extended to the case where
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the copies are replaced by a set of pairwise gracefully consistent trees. In particular,
let 〈T, θ, w〉 and 〈T0, θ0, w0〉 be gracefully labeled trees rooted at w and w0 respectively.
They show that the following four constructions are adaptable to the case when a set
of copies of 〈T, θ, w〉 is replaced by a set of pairwise gracefully consistent trees. When
θ(w) = |E(T )| the garland construction due to Koh, Rogers, and Tan [1391] gracefully
labels the tree consisting of h copies of 〈T,w〉 with their roots connected to a new vertex
r. In the case when θ(w) = |E(T )| and whenever uw ∈ E(T ) and θ(u) 6= 0, then
vw ∈ E(T ) where θ(u) + θ(v) = |E(T )|, the attachment construction of Koh, Tan and
Rogers [1398] gracefully labels the tree formed by identifying the roots of h copies of
〈T,w〉. A construction given by Koh, Tan and Rogers [1398] gracefully labels the tree
formed by merging each vertex of 〈T0, w0〉 with the root of a distinct copy of 〈T,w〉. When
θ0(w0) = |E(T0)|, let N be the set of neighbors of w0 and let x be the vertex of T at even
distance from w with θ(x) = 0 or θ(x) = |E(T )|. Then a construction of Burzio and
Ferrarese [520] gracefully labels the tree formed by merging each non-root vertex of T0

with the root of a distinct copy of 〈T,w〉 so that for each v ∈ N the edge vw0 is replaced
with a new edge xw0 (where x is in the corresponding copy of T ).

Snevily [2435] says that a graph G eventually has an α-labeling provided that there is
a graph H, called a host of G, which has an α-labeling and that the edge set of H can
be partitioned into subgraphs isomorphic to G. He defines the α-labeling number of G to
be Gα = min{t : there is a host H of G with |E(H)| = t|G|}. Snevily proved that even
cycles have α-labeling number at most 2 and he conjectured that every bipartite graph
has an α-labeling number. This conjecture was proved by El-Zanati, Fu, and Shiue [718].
There are no known examples of a graph G with Gα > 2. In [2435] Snevily conjectured
that the α-labeling number for a tree with n edges is at most n. Shiue and Fu [2370] proved
that the α-labeling number for a tree with n edges and radius r is at most dr/2en. They
also prove that a tree with n edges and radius r decomposes Kt for some t ≤ (r+1)n2 +1.

Ahmed and Snevily [103] investigated the claim that for every tree T there exists an
α-labeling of T , or else there exists a graph HT with an α-labeling such that HT can be
decomposed into two edge-disjoint copies of T . They proved this claim is true for the
graphs Cm,k obtained from K1,m by replacing each edge in K1,m with a path of length k.

A graph G with vertex set V and edge set E is called super edge-graceful if there
is a bijection f from E to {0,±1,±2, . . . ,±(|E| − 1)/2} when |E| is odd and from E to
{±1,±2, . . . ,±|E|/2} when |E| is even such that the induced vertex labeling f ∗ defined by
f ∗(u) =

∑
f(uv) over all edges uv is a bijection from V to {0,±1,±2, . . . ,±(|V | − 1)/2}

when |V | is odd and from V to {±1,±2, . . . ,±|V |/2} when |V | is even. Clifton and
Khodkar [628] proved that graphs formed by identifying the endpoint of a path Pn and
a vertex of a cycle (kites) with n ≥ 5 vertices, n 6= 6 are super edge-graceful. Khodkar,
Nolen, and Perconti [1368] proved that all complete bipartite graphs except for K2,2, K2,3,
and K1,n (n odd) are super edge-graceful. Khodkar [1370] and [1369] proved that all
complete tripartite graphs except K1,1,2 are super edge-graceful and that the union of
vertex disjoint 3-cycles is super edge-graceful. Lee, Su, and Wei [1550] provide a family
of trees of odd orders which are super edge-graceful.

For a tree T with m edges, the α-deficit αdef (T ) equals m−α(T ) where α(T ) is defined

the electronic journal of combinatorics (2019), #DS6 53



as the maximum number of distinct edge labels over all bipartite labelings of T . Rosa
and Siran [2139] showed that for every m ≥ 1, αdef (Cm,2) = bm/3c, which implies that
(Cm,2)α ≥ 2 for m ≥ 3. Ahmed and Snevily [103] define the graph C ′m,j as a comet-
like tree with a central vertex of degree m where each neighbor of the central vertex is
attached to j pendent vertices for 1 ≤ j ≤ (m − 1). For m ≥ 3 and 1 ≤ j ≤ (m − 1)
they prove: (C ′m,j)α ≤ 2; (C ′2k+1,j)α = 2 for 1 ≤ j ≤ 2k and conjecture if ∆T = (2k + 1),
then αdef (T ) ≤ k. Ahmed and Snevily [103] prove that for every comet T (that is, graphs
obtained from stars by replacing each edge by a path of some fixed length) there exists
an α-labeling of T , or else there exists a graph HT with an α-labeling such that HT can
be decomposed into two edge-disjoint copies of T . This is particularly noteworthy since
comets are known to have arbitrarily large α-deficits.

Given two bipartite graphs G1 and G2 with partite sets H1 and L1 and H2 and L2,
respectively, Snevily [2434] defines their weak tensor product G1

⊗
G2 as the bipartite

graph with vertex set (H1 × H2, L1 × L2) and with edge (h1, h2)(l1, l2) if h1l1 ∈ E(G1)
and h2l2 ∈ E(G2). He proves that if G1 and G2 have α-labelings then so does G1

⊗
G2.

This result considerably enlarges the class of graphs known to have α-labelings. In [1628]
López and Muntaner-Batle gave a generalization of Snevily’s weak tensor product that
allows them to significantly enlarges the classes of graphs admitting α-labelings, near
α-labelings (defined later in this section), and bigraceful graphs.

The sequential join of graphs G1, G2, . . . , Gn is formed from G1 ∪ G2 ∪ · · · ∪ Gn by
adding edges joining each vertex of Gi with each vertex of Gi+1 for 1 ≤ i ≤ n − 1. Lee
and Wang [1559] have shown that for all n ≥ 2 and any positive integers a1, a2, . . . , an
the sequential join of the graphs Ka1 , Ka2 , . . . , Kan has an α-labeling.

In [811] Gallian and Ropp conjectured that every graph obtained by adding a single
pendent edge to one or more vertices of a cycle is graceful. Qian [2048] proved this
conjecture and in the case that the cycle is even he shows the graphs have an α-labeling.
He further proves that for n even any graph obtained from an n-cycle by adding one or
more pendent edges at some vertices has an α-labeling as long as at least one vertex has
degree 3 and one vertex has degree 2.

In [1901] Pasotti introduced the following generalization of a graceful labeling. Given a
graph G with e = dm edges, an injective function from V (Γ) to the set {0, 1, 2, . . . , d(m+
1) − 1} such that {|f(x) − f(y)| | [x, y] ∈ E(Γ)} = {1, 2, 3, . . . , d(m + 1) − 1} − {m +
1, 2(m + 1), . . . , (d − 1)(m + 1)} is called a d-divisible graceful labeling of G. Note that
for d = 1 and of d = e one obtains the classical notion of a graceful labeling and of
an odd-graceful labeling (see §3.6 for the definition), respectively. A d-divisible graceful
labeling of a bipartite graph G with the property that the maximum value on one of the
two bipartite sets is less than the minimum value on the other one is called a d-divisible
α-labeling of G. Pasotti proved that these new concepts allow to obtain certain cyclic
graph decompositions. In particular, if there exists a d-divisible graceful labeling of a
graph G of size e = dm then there exists a cyclic G-decomposition of K( e

d
+1)×2d and

that if there exists a d-divisible α-labeling of a graph Γ of size e then there exists a
cyclic G-decomposition of K( e

d
+1)×2dn for any integer n ≥ 1. She also it is proved the

following: paths and stars admit a d-divisible α-labeling for any admissible d; C4k admits
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a 2-divisible α-labeling and a 4-divisible α-labeling for any k ≥ 1; C2k admits a 2-divisible
labeling for any odd integer k > 1; and the ladder graph L2k has a 2-divisible α-labeling
if and only if k is even.

Pasotti [1901] generalized the notion of graceful labelings for graphs G with e =
d · m edges by defining a d-graceful labeling as an injective function f from V (G) to
{0, 1, 2, . . . , d(m+ 1)− 1} such that {|f(x)− f(y)| | xy ∈ E(G)} = {1, 2, . . . , d(m+ 1)−
1} − {m + 1, 2(m + 1), . . . , (d − 1)(m + 1)}. The case d = 1 is a graceful labeling and
the case that d = e is an odd-graceful labeling. A d-graceful α-labeling of a bipartite
graph is a d-graceful labeling with the property that the maximum value in one of the
two bipartite sets is less than the minimum value on the other bipartite set. Pasotti
[1901] proved that paths and stars have d-graceful α-labelings for all admissible d, ladders
Pn × P2 have a 2-graceful labeling if and only if n is even, and provided partial results
about cycles of even length. He showed that the existence of d-graceful labelings can be
used to prove that certain complete graphs have cyclic decompositions. Benini and Pasotti
[435] used d-divisible α-labelings to construct an infinite class of cyclic Γ-decompositions
of the complete multipartite graphs, where Γ is a caterpillar, a hairy cycle or a cycle. Such
labelings imply the existence of cyclic Γ-decompositions of certain complete multipartite
graphs. Riasat, Kanwal, and Javed [2115] give odd-graceful labelings for disjoint unions
of graphs consisting of generalized combs, ladders, stars, bistars, caterpillars and paths.

In [1900], Pasotti proved the existence of d-divisible α-labelings for C4k × Pm for any
integers k ≥ 1, m ≥ 2 for d = 2m − 1, 2(2m − 1) and 4(2m − 1). Benini and Pasotti
[436] proved that the generalized Petersen graph P8n,3 admits an α-labeling for any integer
n ≥ 1 confirming that the conjecture posed by A. Vietri in [2715] is true.

For any tree T (V,E) whose vertices are properly 2-colored Rosa and Širáň [2139] define
a bipartite labeling of T as a bijection f : V → {0, 1, 2, . . . , |E|} for which there is a k
such that whenever f(u) ≤ k ≤ f(v), then u and v have different colors. They define
the α-size of a tree T as the maximum number of distinct values of the induced edge
labels |f(u) − f(v)|, uv ∈ E, taken over all bipartite labelings f of T . They prove that
the α-size of any tree with n edges is at least 5(n+ 1)/7 and that there exist trees whose
α-size is at most (5n + 9)/6. They conjectured that minimum of the α-sizes over all
trees with n edges is asymptotically 5n/6. This conjecture has been proved for trees of
maximum degree 3 by Bonnington and Širáň [522]. For trees with n vertices and maximum
degree 3 Brankovic, Rosa, and Širáň [500] have shown that the α-size is at least b6n

7
c− 1.

In [499] Brankovic, Murch, Pond, and Rose provide a lower bound for the α-size trees
with maximum degree three and a perfect matching as a function of a lower bound for
minimum order of such a tree that does not have an α-labeling. Using a computer search
they showed that all such trees on less than 30 vertices have an α-labeling. This brought
the lower bound for the α-size to 14n/15, for such trees of order n. They conjecture that
all trees with maximum degree three and a perfect matching have an α-labeling. Heinrich
and Hell [1007] defined the gracesize of a graph G with n vertices as the maximum, over
all bijections f : V (G)→ {1, 2, . . . , n}, of the number of distinct values |f(u)− f(v)| over
all edges uv of G. So, from Rosa and Širáň’s result, the gracesize of any tree with n edges
is at least 5(n+ 1)/7.
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In [503] Brinkmann, Crevals, Mélot, Rylands, and Steffan define the parameter αdef
which measures how far a tree is from having an α-labeling as it counts the minimum
number of errors, that is, the minimum number of edge labels that are missing from the
set of all possible labels. Trees with an α-labeling have deficit 0. For a tree T = (V,E)
with bipartition classes V1 and V2 and a bipartite labeling f : V → {0, . . . , |V | − 1} the

edge parity of T is (
∑|E|

i=1 i) mod 2 = 1
2
(|V | − 1)|V |mod 2. So if f is an α-labeling this is

the sum of all edge labels modulo 2; it is 0 if |V | ≡ 0, 1 mod 4 and 1 if |V | ≡ 2, 3 mod 4.
The vertex parity is the parity of the number of vertices of odd degree with odd label.

Brinkmann et al. [503] proved: in a tree T with α-deficit 0 the edge parity and the
vertex parities are equal; and for all non-negative integers k and d and n ≥ k2 + k, the
number of trees T with n vertices, αdef(T ) = d and maximum degree n− k is the same.
Furthermore, they provide computer results on the α-deficit of all trees with up to 26
vertices; with maximum degree 3 and up to 36 vertices, with maximum degree 4 and up
to 32 vertices, and with maximum degree 5 and up to 31 vertices.

In [816] Gallian weakened the condition for an α-labeling somewhat by defining a
weakly α-labeling as a graceful labeling for which there is an integer k so that for each
edge xy either f(x) ≤ k ≤ f(y) or f(y) ≤ k ≤ f(x). Unlike α-labelings, this condition
allows the graph to have an odd cycle, but still places a severe restriction on the structure
of the graph; namely, that the vertex with the label k must be on every odd cycle. Gallian,
Prout, and Winters [816] showed that the prisms Cn × P2 with a vertex deleted have α-
labelings. The same paper reveals that Cn×P2 with an edge deleted from a cycle has an
α-labeling when n is even and a weakly α-labeling when n > 3.

In [374] and [378] Barrientos and Minion focused on the enumeration of graphs with
graceful and α-labelings, respectively. They used an extended version of the adjacency
matrix of a graph to count the number of labeled graphs. In [374] they count the number
of gracefully-labeled graphs of size n and order m, for all possible values of m. In [378]
they count the number of α-labeled graphs of size n and order m, for all possible values
of m, as well as those α-labeled graphs of size n with boundary value λ. They also count
the number of α-labeled graphs of size n, order m, and boundary value λ for all possible
values of m and λ.

A special case of α-labeling called strongly graceful was introduced by Maheo [1687]
in 1980. A graceful labeling f of a graph G is called strongly graceful if G is bipartite with
two partite sets A and B of the same order s, the number of edges is 2t + s, there is an
integer k with t− s ≤ k ≤ t+ s− 1 such that if a ∈ A, f(a) ≤ k, and if b ∈ B, f(b) > k,
and there is an involution π that is an automorphism of G such that: π exchanges A and
B and the s edges aπ(a) where a ∈ A have as labels the integers between t+ 1 and t+ s.
Maheo’s main result is that if G is strongly graceful then so is G×Qn. In particular, she
proved that (Pn ×Qn)×K2, B2n, and B2n ×Qn have strongly graceful labelings.

In 1999 Broersma and Hoede [504] conjectured that every tree containing a perfect
matching is strongly graceful. Yao, Cheng, Yao, and Zhao [2861] proved that this conjec-
ture is true for every tree with diameter at most 5 and provided a method for constructing
strongly graceful trees.

El-Zanati and Vanden Eynden [722] call a strongly graceful labeling a strong α-labeling.
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They show that if G has a strong α-labeling, then G× Pn has an α-labeling. They show
that Km,2 ×K2 has a strong α-labeling and that Km,2 × Pn has an α-labeling. They also
show that if G is a bipartite graph with one more vertex than the number of edges, and if
G has an α-labeling such that the cardinalities of the sets of the corresponding bipartition
of the vertices differ by at most 1, then G ×K2 has a strong α-labeling and G × Pn has
an α-labeling. El-Zanati and Vanden Eynden [722] also note that K3,3 ×K2, K3,4 ×K2,
K4,4×K2, and C4k×K2 all have strong α-labelings. El-Zanati and Vanden Eynden proved
that Km,2 × Qn has a strong α-labeling and that Km,2 × Pn has an α-labeling for all n.
They also prove that if G is a connected bipartite graph with partite sets of odd order
such that in each partite set each vertex has the same degree, then G×K2 does not have
a strong α-labeling. As a corollary they have that Km,n × K2 does not have a strong
α-labeling when m and n are odd.

An α-labeling f of a graph G is called free by El-Zanati and Vanden Eynden in [723]
if the critical number k (in the definition of α-labeling) is greater than 2 and if neither 1
nor k − 1 is used in the labeling. Their main result is that the union of graphs with free
α-labelings has an α-labeling. In particular, they show that Km,n, m > 1, n > 2, has a
free α-labeling. They also show that Qn, n ≥ 3, and Km,2 ×Qn, m > 1, n ≥ 1, have free
α-labelings. El-Zanati [personal communication] has shown that the Heawood graph has
a free α-labeling.

Wannasit and El-Zanati [2799] proved that if G is a cubic bipartite graph each of
whose components is either a prism, a Möbius ladder, or has order at most 14, then G
admits free α-labeling. They conjecture that every bipartite cubic graph admits a free
α-labeling.

In [1694] Makadia, Karavadiya, and Kaneria call a vertex v in a graph G with a
graceful labeling f a graceful center of G if f(v) = 0 or f(v) = |E(G)|. They say a graph
G is a universal graceful graph if for every v ∈ V (G), v is a graceful center for G with
respect to some graceful labeling of G. They call G a universal α-graceful graph if for
every v ∈ V (G), v is a graceful center for G with respect to some α-graceful labeling of
G. They define the ring sum of two graphs G1 and G2 denoted G1 ⊕ G2, as the graph
with vertex set (V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) − (E(G1) ∩ E(G2)). They
proved: any graph G that admits α-labeling has at least four graceful centers; if G is a
graceful graph, then G⊕K1,n is graceful; if G is a universal graceful graph, then G⊕K2 is
a graceful; if G1 is graceful and G2 has an α-labeling, then the ring sum G1⊕G2 with the
graceful center of G1 and the graceful center of G2 as a common vertex is a graceful; and
if G1 and G2 have α labelings, then the ring sum G1 ⊕ G2 with the two graceful centers
of G1 and G2 as a common vertex has an α labeling.

For connected bipartite graphs Grannell, Griggs, and Holroyd [926] introduced a la-
beling that lies between α-labelings and graceful labelings. They call a vertex labeling
f of a bipartite graph G with q edges and partite sets D and U gracious if f is a bijec-
tion from the vertex set of G to {0, 1, . . . , q} such that the set of edge labels induced by
f(u) − f(v) for every edge uv with u ∈ U and v ∈ D is {1, 2, . . . , q}. Thus a gracious
labeling of G with partite sets D and U is a graceful labeling in which every vertex in
D has a label lower than every adjacent vertex. They verified by computer that every
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tree of size up to 20 has a gracious labeling. This led them to conjecture that every tree
has a gracious labeling. For any k > 1 and any tree T Grannell et al. say that T has a
gracious k-labeling if the vertices of T can be partitioned into sets D and U in such a way
that there is a function f from the verticies of G to the integers modulo k such that the
edge labels induced by f(u)− f(v) where u ∈ U and v ∈ D have the following properties:
the number of edges labeled with 0 is one less than the number of verticies labeled with
0 and for each nonzero integer t the number of edges labeled with t is the same as the
number of verticies labeled with t. They prove that every nontrivial tree has a k-gracious
labeling for k = 2, 3, 4, and 5 and that caterpillars are k-gracious for all k ≥ 2. In [434]
Bell and Cummins provided new methods for combining certain families of gracefully
labeled graphs to produce new gracefully labeled graphs. If the constituent graphs have
a gracious labeling, then the methods presented produce a gracious labeling. They also
introduce new infinite families of gracious trees and new classes of graceful trees.

The same labeling that is called gracious by Grannell, Griggs, and Holroyd is called
a near α-labeling by El-Zanati, Kenig, and Vanden Eynden [720]. The latter prove that
if G is a graph with n edges that has a near α-labeling then there exists a cyclic G-
decomposition of K2nx+1 for all positive integers x and a cyclic G-decomposition of Kn,n.
They further prove that if G and H have near α-labelings, then so does their weak
tensor product (see earlier part of this section) with respect to the corresponding vertex
partitions. They conjecture that every tree has a near α-labeling.

Another kind of labelings for trees was introduced by Ringel, Llado, and Serra [2119]
in an approach to proving their conjecture Kn,n is edge-decomposable into n copies of
any given tree with n edges. If T is a tree with n edges and partite sets A and B, they
define a labeling f from the set of vertices to {1, 2, . . . , n} to be a bigraceful labeling of
T if f restricted to A is injective, f restricted to B is injective, and the edge labels given
by f(y)− f(x) where yx is an edge with y in B and x in A is the set {0, 1, 2, . . . , n− 1}.
(Notice that this terminology conflicts with that given in Section 2.7 In particular, the
Ringel, Llado, and Serra bigraceful does not imply the usual graceful.) Among the graphs
that they show are bigraceful are: lobsters, trees of diameter at most 5, stars Sk,m with
k spokes of paths of length m, and complete d-ary trees for d odd. They also prove that
if T is a tree then there is a vertex v and a nonnegative integer m such that the addition
of m leaves to v results in a bigraceful tree. They conjecture that all trees are bigraceful.

Table 3 summarizes some of the main results about α-labelings. α indicates that the
graphs have an α-labeling.
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Table 3: Summary of Results on α-labelings

Graph α-labeling
cycles Cn α iff n ≡ 0 (mod 4) [2136]

caterpillars α [2136]

n-cube α [1413]

books B2n, B4n+1 α [1687], [815]

Möbius ladders M2k+1 α [1899]

Cm ∪ Cn α iff m,n are even and
m+ n ≡ 0 (mod 4)[19]

C4m ∪ C4m ∪ C4m (m > 1) α [1415]

C4m ∪ C4m ∪ C4m ∪ C4m α [1415]

mKs,t (m ≥ 1, s, t ≥ 2) iff (m, s, t) 6= (3, 2, 2) [1062]

Pn ×Qn α [1687]

B2n ×Qn α [1687]

K1,n ×Qn α [1687]

Km,2 ×Qn α [722]

Km,2 × Pn α [722]

P2 × P2 × · · · × P2 ×G α when G = C4m, Pm, K3,3,
K4,4 [2434]

P2 × P2 × · · · × P2 × Pm α [2434]

P2 × P2 × · · · × P2 ×Km,m α [2434] when m = 3 or 4

G[Kn] α when G is α [2435]
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3.2 γ-Labelings

In 2004 Chartrand, Erwin, VanderJagt, and Zhang [559] define a γ-labeling of a graph G
of size m as a 1-1 function f from the vertices of G to {0, 1, 2, . . . ,m} that induces an edge
labeling f ′ defined by f ′(uv) = |f(u)−f(v)| for each edge uv. They define the following pa-
rameters of a γ-labeling: val(f) = Σf ′(e) over all edges e ofG; valmax(G) = max{ val(f) :
f is a γ-labeling of G}, valmin(G) = min{ val(f) : f is a γ − labeling of G}. Among
their results are the following:
valmin(Pn) = valmax(Pn) = b(n2 − 2)/2c; valmin(Cn) = 2(n − 1); for even n ≥ 4,
valmax(Cn) = n(n + 2)/2; for odd n ≥ 3, valmax(Cn) = (n − 1)(n + 3)/2; for odd
n, valmin(Kn) =

(
n+1

3

)
; for odd n, valmax(Kn) = (n2 − 1)(3n2 − 5n + 6)/24; for

even n, valmax(Kn) = n(3n3 − 5n2 + 6n − 4)/24; for every n ≥ 3, valmin(K1,n−1) =(bn+1
2
c

2

)
+
(dn+1

2
e

2

)
; valmax(K1,n−1) =

(
n
2

)
for a connected graph of order n and size

m, valmin(G) = m if and only if G is isomorphic to Pn; if G is maximal outerplanar
of order n ≥ 2, valmin(G) ≥ 3n − 5 and equality occurs if and only if G = P 2

n ; if
G is a connected r-regular bipartite graph of order n and size m where r ≥ 2, then
valmax(G) = rn(2m− n+ 2)/4.

In another paper on γ-labelings of trees Chartrand, Erwin, VanderJagt, and Zhang
[560] prove for p, q ≥ 2, valmin(Sp,q) (that is, the graph obtained by joining the centers of
K1,p and K1,q by an edge)= (bp/2c+1)2+(bq/2c+1)2−(npbp/2c+1)2+(nqb(q+2)/2c+1)2),
where ni is 1 if i is even and ni is 0 if ni is odd; valmin(Sp,q) = (p2+q2+4pq−3p−3q+2)/2;
for a connected graph G of order n at least 4, valmin(G) = n if and only if G is a caterpillar
with maximum degree 3 and has a unique vertex of degree 3; for a tree T of order n at
least 4, maximum degree ∆, and diameter d, valmin(T ) ≥ (8n + ∆2 − 6∆ − 4d + δ∆)/4
where δ∆ is 0 if ∆ is even and δ∆ is 0 if ∆ is odd. They also give a characterization of all
trees of order n at least 5 whose minimum value is n+ 1.

Saduakdee and Khemmani [2173] investigated connected graphs having the unique
γ-min labeling. They determined the minimum value of a γ-labeling for some classes of
trees and showed that they have no unique γ-min labeling.

In [2172] Sanaka determined valmax(Km,n) and valmin(Km,n). In [518] Bunge, Chan-
tasartraaamee, El-Zanati, and Vanden Eynden generalized γ-labelings by introducing two
labelings for tripartite graphs. Graphs G that admit either of these labelings guarantee
the existence of cyclic G-decompositions of K2nx+1 for all positive integers x. They also
proved that, except for C3 ∪C3, the disjoint union of two cycles of odd length admits one
of these labelings.

3.3 Graceful-like Labelings

As a means of attacking graph decomposition problems, Rosa [2136] invented another
analogue of graceful labelings by permitting the vertices of a graph with q edges to assume
labels from the set {0, 1, . . . , q+1}, while the edge labels induced by the absolute value of
the difference of the vertex labels are {1, 2, . . . , q−1, q} or {1, 2, . . . , q−1, q+1}. He calls
these ρ̂-labelings. Frucht [797] used the term nearly graceful labeling instead of ρ̂-labelings.
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Frucht [797] has shown that the following graphs have nearly graceful labelings with edge
labels from {1, 2, . . . , q−1, q+1}: Pm∪Pn; Sm∪Sn; Sm∪Pn; G∪K2 where G is graceful;
and C3 ∪ K2 ∪ Sm where m is even or m ≡ 3 (mod 14). Seoud and Elsakhawi [2232]
have shown that all cycles are nearly graceful. Barrientos [350] proved that Cn is nearly
graceful with edge labels 1, 2, . . . , n− 1, n+ 1 if and only if n ≡ 1 or 2 (mod 4). Nurvazly
and Sugeng [1879] proved that Θ(C3)n graphs (n copies of C3 that share an edge) have ρ̂
labelings. Gao [828] shows that a variation of banana trees is odd-graceful and in some
cases has a nearly graceful labeling. (A graph G with q edges is odd-graceful if there is
an injection f from V (G) to {0, 1, 2, . . . , 2q− 1} such that, when each edge xy is assigned
the label |f(x)− f(y)|, the resulting edge labels are {1, 3, 5, . . . , 2q − 1}).

For a graph G with p vertices and q directed edges that are assigned distinct vertex
labels in {0, . . . , q} and distinct edge labels in {1, . . . , p} so that the label of the directed
edge from u to v is (f(v)− f(u)) mod(q+ 1) (this generalizes Rosa’s ρ-valuations. Knuth
[1383] has observed that there is a nice data structure for storing a graph or digraph in a
computer. He calls this a graceful data structure labeling.

In 1988 Rosa [2138] conjectured that triangular snakes with t ≡ 0 or 1 (mod 4) blocks
are graceful and those with t ≡ 2 or 3 (mod 4) blocks are nearly graceful (a parity
condition ensures that the graphs in the latter case cannot be graceful). Moulton [1793]
proved Rosa’s conjecture while introducing the slightly stronger concept of almost graceful
by permitting the vertex labels to come from {0, 1, 2, . . . , q−1, q+1} while the edge labels
are 1, 2, . . . , q− 1, q, or 1, 2, . . . , q− 1, q+ 1. More generally, Rosa [2138] conjectured that
all triangular cacti are either graceful or near graceful and suggested the use of Skolem
sequences to label some types of triangular cacti. Dyer, Payne, Shalaby, and Wicks [703]
verified the conjecture for two families of triangular cacti using Langford sequences to
obtain Skolem and hooked Skolem sequences with specific subsequences.

Seoud and Elsakhawi [2232] and [2233] have shown that the following graphs are
almost graceful: Cn;Pn + Km;Pn + K1,m;Km,n;K1,m,n;K2,2,m;K1,1,m,n; Pn × P3 (n ≥ 3);
K5 ∪K1,n;K6 ∪K1,n, and ladders.

For a graph G with p vertices, q edges, and 1 ≤ k ≤ q, Eshghi [732] defines a holey α-
labeling with respect to k as an injective vertex labeling f for which f(v) ∈ {1, 2, . . . , q+1}
for all v, {|f(u)− f(v)| | for all edges uv} = {1, 2, . . . , k − 1, k + 1, . . . , q + 1}, and there
exist an integer γ with 0 ≤ γ ≤ q such that min{f(u), f(v)} ≤ γ ≤ max{f(u), f(v)}. He
proves the following: Pn has a holey α-labeling with respect to all k; Cn has a holey α-
labeling with respect to k if and only if either n ≡ 2 (mod 4), k is even, and (n, k) 6= (10, 6),
or n ≡ 0 (mod 4) and k is odd.

Recall from Section 2.2 that a kCn-snake is a connected graph with k blocks whose
block-cutpoint graph is a path and each of the k blocks is isomorphic to Cn. In addition
to his results on the graceful kCn-snakes given in Section 2.2, Barrientos [354] proved that
when k is odd the linear kC6-snake is nearly graceful and that Cm∪K1,n is nearly graceful
when m = 3, 4, 5, and 6.

Yet another kind of labeling introduced by Rosa in his 1967 paper [2136] is a ρ-labeling.
(Sometimes called a rosy labeling ). A ρ-labeling (or ρ-valuation) of a graph is an injection
from the vertices of the graph with q edges to the set {0, 1, . . . , 2q}, where if the edge
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labels induced by the absolute value of the difference of the vertex labels are a1, a2, . . . , aq,
then ai = i or ai = 2q + 1 − i. Rosa [2136] proved that a cyclic decomposition of the
edge set of the complete graph K2q+1 into subgraphs isomorphic to a given graph G with
q edges exists if and only if G has a ρ-labeling. (A decomposition of Kn into copies of G
is called cyclic if the automorphism group of the decomposition itself contains the cyclic
group of order n.) It is known that every graph with at most 11 edges has a ρ-labeling
and that all lobsters have a ρ-labeling (see [546]).

In [385] Barrientos and Minion proved that a tree admits a ρ–labeling when the deletion
of some of its leaves results in a graceful tree. They use this result to prove the existence
of ρ-labeling for several families of trees such as lobsters and those of diameter up to
seven. Similarly, they showed that if T is any graceful tree of size n and k is an integer
such that 2k ≥ n + 1, then any tree of size n + 2k obtained attaching a path of length 2
to k distinct vertices of T has a ρ-labeling.

Donovan, El-Zanati, Vanden Eyden, and Sutinuntopas [685] prove that rCm has a ρ-
labeling (or a more restrictive labeling) when r ≤ 4. They conjecture that every 2-regular
graph has a ρ-labeling. Gannon and El-Zanati [823] proved that for any odd n ≥ 7, rCn
admits ρ-labelings. The cases n = 3 and n = 5 were done in [681] and [719]. Aguado,
El-Zanati, Hake, Stob, and Yayla [62] give a ρ-labeling of Cr ∪ Cs ∪ Ct for each of the
cases where r ≡ 0, s ≡ 1, t ≡ 1 (mod 4); r ≡ 0, s ≡ 3, t ≡ 3 (mod 4); and r ≡ 1,
s ≡ 1, t ≡ 3 (mod 4); (iv) r ≡ 1, s ≡ 2, t ≡ 3 (mod 4); (v) r ≡ 3, s ≡ 3, t ≡ 3 (mod 4).
Caro, Roditty, and Schőnheim [546] provide a construction for the adjacency matrix for
every graph that has a ρ-labeling. They ask the following question: If H is a connected
graph having a ρ-labeling and q edges and G is a new graph with q edges constructed
by breaking H up into disconnected parts, does G also have a ρ-labeling? Kézdy [1366]
defines a stunted tree as one whose edges can be labeled with e1, e2, . . . , en so that e1 and
e2 are incident and, for all j = 3, 4, . . . , n, edge ej is incident to at least one edge ek
satisfying 2k ≤ j − 1. He uses Alon’s “Combinatorial Nullstellensatz” to prove that if
2n+ 1 is prime, then every stunted tree with n edges has a ρ-labeling.

Jeba Jesintha and Ezhilarasi Hilda [1124] introduced a variation of Rosas ρ-labeling
as follows. A ρ?-labeling of a graph G is an injection from the vertices of the graph with
q edges to the set {0, 1, . . . , 2q}, where if the edge labels induced by the absolute value of
the difference of the vertex labels are e1, e2, . . . , eq, then ei = i or ei = 2q− i. They prove
that all paths and shell-butterfly graphs have a ρ?-labeling.

In [375] Barrientos and Minion proved the existence of ρ-labelings for some types of
forests that considerably reduce the number of trees that need to be studied to prove
Kotzig’s Conjecture that states that K2n+1 can be cyclically decomposed into 2n + 1
subgraphs isomorphic to a given tree with n edges. Among their results are the following.
If T1 and T2 admit α-labelings such that one of the end-vertices of the edge of weight 1
in T2 is a leaf, then T1 ∪T2 admits a ρ-labeling. If G1, G2, . . . , Gk is a collection of graphs
that admit α-labelings, where Gk is a caterpillar of size at least k−2, then

⋃k
i=1 Gi admits

a ρ-labeling. Let R denote the family that consists of all trees G such that G has a branch
H, (i.e., G−H is a tree) that is a caterpillar, where the excess of G−H is at most the
size of H. They prove that G admits a ρ-labeling when G ∈ R.
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Recall a kayak paddle KP (k,m, l) is the graph obtained by joining Ck and Cm by
a path of length l. Fronček and Tollefeson [792], [793] proved that KP (r, s, l) has a
ρ-labeling for all cases. As a corollary they have that the complete graph K2n+1 is de-
composable into kayak paddles with n edges.

In [778] Fronček generalizes the notion of an α-labeling by showing that if a graph G
on n edges allows a certain type of ρ-labeling), called α2-labeling, then for any positive
integer k the complete graph K2nk+1 can be decomposed into copies of G.

In their investigation of cyclic decompositions of complete graphs El-Zanati, Vanden
Eynden, and Punnim [725] introduced two kinds of labelings. They say a bipartite graph
G with n edges and partite sets A and B has a θ-labeling h if h is a one-to-one function from
V (G) to {0, 1, . . . , 2n} such that {|h(b)− h(a)| ab ∈ E(G), a ∈ A, b ∈ B} = {1, 2, . . . , n}.
They call h a ρ+-labeling of G if h is a one-to-one function from V (G) to {0, 1, . . . , 2n}
and the integers h(x)−h(y) are distinct modulo 2n+ 1 taken over all ordered pairs (x, y)
where xy is an edge in G, and h(b) > h(a) whenever a ∈ A, b ∈ B and ab is an edge in
G. Note that θ-labelings are ρ+-labelings and ρ+-labelings are ρ-labelings. They prove
that if G is a bipartite graph with n edges and a ρ+-labeling, then for every positive
integer x there is a cyclic G-decomposition of K2nx+1. They prove the following graphs
have ρ+-labelings: trees of diameter at most 5, C2n, lobsters, and comets (that is, graphs
obtained from stars by replacing each edge by a path of some fixed length). They also
prove that the disjoint union of graphs with α-labelings have a θ-labeling and conjecture
that all forests have ρ-labelings.

A σ-labeling of G(V,E) is a one-to-one function f from V to {0, 1, . . . , 2|E|} such
that {|f(u) − f(v)| | uv ∈ E(G)} = {1, 2, . . . , |E|}. Such a labeling of G yields cyclic
G-decompositions of K2n+1 and of K2n+2 − F , where F is a 1-factor of K2n+2. El-Zanati
and Vanden Eynden (see [61]) have conjectured that every 2-regular graph with n edges
has a ρ-labeling and, if n ≡ 0 or 3 (mod 4), then every 2-regular graph has a σ-labeling.
Aguado and El-Zanati [61] have proved that the latter conjecture holds when the graph
has at most three components.

Given a bipartite graph G with partite sets X and Y and graphs H1 with p vertices
and H2 with q vertices, Fronček and Winters [794] define the bicomposition of G and H1

and H2, G[H1, H2], as the graph obtained from G by replacing each vertex of X by a
copy of H1, each vertex of Y by a copy of H2, and every edge xy by a graph isomorphic to
Kp,q with the partite sets corresponding to the vertices x and y. They prove that if G is a
bipartite graph with n edges and G has a θ-labeling that maps the vertex set V = X ∪ Y
into a subset of {0, 1, 2, . . . , 2n}, then the bicomposition G[Kp, Kq] has a θ-labeling for
every p, q ≥ 1. As corollaries they have: if a bipartite graph G with n edges and at most
n+ 1 vertices has a gracious labeling (see §3.1), then the bicomposition graph G[Kp, Kq]
has a gracious labeling for every p, q ≥ 1, and if a bipartite graph G with n edges has a
θ-labeling, then for every p, q ≥ 1, the bicomposition G[Kp, Kq] decomposes the complete
graph K2npq+1.

In a paper published in 2009 [724] El-Zanati and Vanden Eynden survey “Rosa-type”
labelings. That is, labelings of a graph G that yield cyclic G-decompositions of K2n+1 or
K2nx+1 for all natural numbers x. The 2009 survey by Fronček [777] includes generaliza-
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tions of ρ- and α-labelings that have been used for finding decompositions of complete
graphs that are not covered in [724].

Blinco, El-Zanati, and Vanden Eynden [470] call a non-bipartite graph almost-bipartite
if the removal of some edge results in a bipartite graph. For these kinds of graphs G they
call a labeling f a γ-labeling of G if the following conditions are met: f is a ρ-labeling;
G is tripartite with vertex tripartition A,B,C with C = {c} and b ∈ B such that {b, c}
is the unique edge joining an element of B to c; if av is an edge of G with a ∈ A, then
f(a) < f(v); and f(c)−f(b) = n. (In § 3.2 the term γ-labeling is used for a different kind
of labeling.) They prove that if an almost-bipartite graph G with n edges has a γ-labeling
then there is a cyclic G-decomposition of K2nx+1 for all x. They prove that all odd cycles
with more than 3 vertices have a γ-labeling and that C3 ∪ C4m has a γ-labeling if and
only if m > 1. In [517] Bunge, El-Zanati, and Vanden Eynden prove that every 2-regular
almost bipartite graph other than C3 and C3 ∪ C4 have a γ-labeling.

In [470] Blinco, El-Zanati, and Vanden Eynden consider a slightly restricted ρ+-
labeling for a bipartite graph with partite sets A and B by requiring that there exists a
number λ with the property that ρ+(a) ≤ λ for all a ∈ A and ρ+(b) > λ for all b ∈ B.
They denote such a labeling by ρ++. They use this kind of labeling to show that if G is a
2-regular graph of order n in which each component has even order then there is a cyclic
G-decomposition of K2nx+1 for all x. They also conjecture that every bipartite graph has
a ρ-labeling and every 2-regular graph has a ρ-labeling.

Dufour [698] and Eldergill [708] have some results on the decomposition of complete
graphs using labeling methods. Balakrishnan and Sampathkumar [338] showed that for
each positive integer n the graph Kn + 2K2 admits a ρ-labeling. Balakrishnan [333] asks
if it is true that Kn+mK2 admits a ρ-labeling for all n and m. Fronček [776] and Fronček
and Kubesa [789] have introduced several kinds of labelings for the purpose of proving
the existence ofspecial kinds of decompositions of complete graphs into spanning trees.

For positive integers c and d, let Kc×d denote the complete multipartite graph with c
parts, each containing d vertices. Let G with n edges be the union of two vertex-disjoint
even cycles. In [2473] Su et al. use Rosa-type graph labelings to show that there exists
a cyclic G- decomposition of K(2n + 1) × t, K(n/2+1)×4t, K5×(n/2)t, and of K2nt for every
positive integer t. If n ≡ 0 (mod 4),then there also exists a cyclic G-decomposition of
Kn+1 × 2t, K(n/4)+1 × 8t, K9 × (n/4)t, and of K3×nt for every positive integer t.

For (p, q)-graphs with p = q + 1, Frucht [797] has introduced a stronger version of
almost graceful graphs by permitting as vertex labels {0, 1, . . . , q − 1, q + 1} and as edge
labels {1, 2, . . . , q}. He calls such a labeling pseudograceful. Frucht proved that Pn (n ≥ 3),
combs, sparklers (i.e., graphs obtained by joining an end vertex of a path to the center of
a star), C3 ∪ Pn (n 6= 3), and C4 ∪ Pn (n 6= 1) are pseudograceful whereas K1,n (n ≥ 3) is
not. Kishore [1381] proved that Cs ∪ Pn is pseudograceful when s ≥ 5 and n ≥ (s+ 7)/2
and that Cs ∪ Sn is pseudograceful when s = 3, s = 4, and s ≥ 7. Seoud and Youssef
[2264] and [2260] extended the definition of pseudograceful to all graphs with p ≤ q + 1.
They proved that Km is pseudograceful if and only if m = 1, 3, or 4 [2260]; Km,n is
pseudograceful when n ≥ 2, and Pm + Kn (m ≥ 2) [2264] is pseudograceful. They also
proved that if G is pseudograceful, then G ∪Km,n is graceful for m ≥ 2 and n ≥ 2 and
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G ∪ Km,n is pseudograceful for m ≥ 2, n ≥ 2 and (m,n) 6= (2, 2) [2260]. They ask if
G ∪K2,2 is pseudograceful whenever G is. Seoud and Youssef [2260] observed that if G
is a pseudograceful Eulerian graph with q edges, then q ≡ 0 or 3 (mod 4). Youssef [2875]
has shown that Cn is pseudograceful if and only if n ≡ 0 or 3 (mod 4), and for n > 8
and n ≡ 0 or 3 (mod 4), Cn ∪Kp,q is pseudograceful for all p, q ≥ 2 except (p, q) = (2, 2).
Youssef [2872] has shown that if H is pseudograceful and G has an α-labeling with k
being the smaller vertex label of the edge labeled with 1 and if either k + 2 or k − 1 is
not a vertex label of G, then G∪H is graceful. In [2876] Youssef shows that if G is (p, q)
pseudograceful graph with p = q + 1, then G ∪ Sm is Skolem-graceful (see Section 3.5 for
the definition). As a corollary he obtains that for all n ≥ 2, Pn ∪ Sm is Skolem-graceful
if and only if n ≥ 3 or n = 2 and m is even.

In [2881] Youssef generalizes his results in [2872] and provides new families of discon-
nected graphs that have α-labelings and pseudo α-labelings. (A pseudo α-labeling f is an
α-labeling for which there is an integer kj with the property that for each edge xy of the
graph either f(x) ≤ kj < f(y) or f(y) ≤ kj < f(x).)

For a graph G Ichishima, Muntaner-Batle, and Oshima [1043] defined the beta-number
of G, β(G), to be either the smallest positive integer n for which there exists an injective
function f from the vertices of G to {1, 2, . . . , n} such that when each edge uv is labeled
|f(u) − f(v)| the resulting set of edge labels is {c, c + 1, . . . , c + |E(G)| − 1} for some
positive integer c or +∞ if there exists no such integer n. They defined the strong
beta-number of G to be either the smallest positive integer n for which there exists an
injective function f from the vertices of G to {1, 2, . . . , n} such that when each edge uv is
labeled |f(u)− f(v)| the resulting set of edge labels is {1, 2, . . . , |E(G)|} or +∞ if there
exists no such integer n. They gave some necessary conditions for a graph to have a
finite (strong) beta-number and some sufficient conditions for a graph to have a finite
(strong) beta-number. They also determined formulas for the beta-numbers and strong
beta-numbers of Cn, 2Cn, Kn (n ≥ 2), Sm ∪ Sn, Pm ∪ Sn, and prove that nontrivial trees
and forests without isolated vertices have finite strong beta-numbers. In [1040] Ichishima,
López, Muntaner-Batte, and Oshima proved that if G is a bipartite graph and m is odd,
then β(mG) ≤ m|E(G)| + m − 1. If G has the additional property that G is a graceful
nontrivial tree, then β(mG) = m|V (G)|+m− 1. They also investigate the (strong) beta-
number of forests with components that are isomorphic to either paths or stars. They
propose new conjectures on the (strong) beta-number of forests. In [1058] Ichishima and
Oshima determine a formula for the (strong) beta-number of the linear forests Pm ∪ Pn.
As a corollary they provide a partial formula for the beta-number of the disjoint union
of multiple copies of the same linear forest. In [1045] Ichishima, Muntaner-Batle, Oshima
provide lower and upper bounds for β(G+nK1) when β(G) = |V (G)|−1 and formulas for
β(G+ nK1) and βs(G+ nK1)) when βs(G) = |V (G)| − 1. They also determine formulas
for β(G + K1,n) and βs(G + K1,n) when βs(G) = |V (G)| − 1. They conclude with two
problems.

For a graph G of order p and size q and every positive integer n Ichishima, Muntaner-
Batle, and Oshima [1048] proved if β(G) = p− 1, then there exists some positive integer
c such that q + np ≤ β(G+ nK1) ≤ c+ q + np− 1; if βs(G) = p− 1, then β(G+ nK1) =
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βs(G+ nK1) = q + np and G+ nK1 is graceful; and if q = p− 1 and βs(G) = p− 1, then
β(G+ Sn) = βs(G+ Sn) = (n+ 2)p+ n− 1. In particular, if T is a graceful tree of order
p then β(T + nK1) = βs(T + nK1) = (n + 1)p − 1. Moreover, T + nK1 and T + Sn are
graceful.

In [1051] Ichishima, Muntaner-Batle, and Oshima establish a lower bound for the
strong beta-number of an arbitrary galaxy (that is, a forest whose components are stars)
under certain conditions. They also determine formulas for the (strong) beta-number
and gracefulness of galaxies with three and four components. As corollaries, they provide
formulas for the beta-number and gracefulness of the disjoint union of multiple copies of
the same galaxies if the number of copies is odd. They pose some problems and conjecture.
In [1053] Ichishima and Muntaner-Batle determined formulas for the (strong) beta-number
and gracefulness of galaxies with five components. In [1055] Ichishima, Muntaner-Batle,
and Oshima determined formulas for the (strong) beta-number and gamma-number of
galaxies with five components. As a corollary of these results, they provide formulas for
the beta-number and gamma-number of the disjoint union of multiple copies of the same
galaxies if the number of copies is odd.

McTavish [1733] has investigated labelings of graphs with q edges where the vertex
and edge labels are from {0, . . . , q, q + 1}. She calls these ρ̃-labelings. Graphs that have
ρ̃-labelings include cycles and the disjoint union of Pn or Sn with any graceful graph.

Frucht [797] has made an observation about graceful labelings that yields nearly grace-
ful analogs of α-labelings and weakly α-labelings in a natural way. Suppose G(V,E) is a
graceful graph with the vertex labeling f . For each edge xy in E, let [f(x), f(y)] (where
f(x) ≤ f(y)) denote the interval of real numbers r with f(x) ≤ r ≤ f(y). Then the
intersection ∩[f(x), f(y)] over all edges xy ∈ E is a unit interval, a single point, or empty.
Indeed, if f is an α-labeling of G then the intersection is a unit interval; if f is a weakly
α-labeling, but not an α-labeling, then the intersection is a point; and, if f is a graceful
but not a weakly α-labeling, then the intersection is empty. For nearly graceful labelings,
the intersection also gives three distinct classes.

Let G(V,E) be a graph without isolated vertices and with q edges. The gracefulness
grac(G) of G is the smallest positive integer k for which there exists an injective function
f : V → {0, 1, 2, . . . , k} such that the edge induced function gf : E → {1, 2, . . . , k}
defined by gf (uv) = |f(u) − f(v)| for all edges uv is also injective. Let c(f) = max{i :
1, 2, . . . , i} are edge labels} and let m(G) = maxf{c(f)} where the maximum is taken
over all injective functions f from V to the nonnegative integers such that gf is also
injective. The measure m(G) is called m-gracefulness of G. It determines how close G is
to being graceful. Pereira, Singh, Arumugam [1915] prove that there are infinitely many
nongraceful graphs with m-gracefulness q−1 and give necessary conditions for an Eulerian
graph with q edges and Kp with q edges to have m-gracefulness q − 1 and q − 2. They
prove that K5 is the only complete graph to have m-gracefulness q − 1. They also give
an upper bound for the highest possible vertex label of Kp if m(Kp) = q − 2.

A (p, q)-graph G is said to be a super graceful graph if there is a a bijective function
f : V (G) ∪ E(G) −→ {1, 2, . . . , p + q} such that f(uv) = |f(u) − f(v)| for every edge
uv ∈ E(G) labeling. Perumal, Navaneethakrishnan, Nagarajan, Arockiaraj [1918] and
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[1919] show that the graphs Pn, Cn, Pm�nK1, Km,n, and Pn�K1 minus a pendent edge
at an endpoint of Pn are super graceful graphs. Lau, Shiu, and Ng [1469] study the super
gracefulness of complete graphs, the disjoint union of certain star graphs, the complete
tripartite graphs K(1,1,n), and certain families of trees. They also provide four methods of
constructing new super graceful graphs. They prove all trees of order at most 7 are super
graceful and conjecture that all trees are super graceful. Amutha and Uma Devi [149]
proved the following graphs are super graceful: fans, double fans DFn = Pn+K2 (n ≥ 2),
and for (m ≥ 3, n ≥ 2) the graphs obtained by identifying a central vertex of the star Sm
with an end vertex of path in Pn +K1.

In [715] Elsonbaty and Daoud introduce a new version of gracefulness called an edge
even graceful labeling of graphs. A bijective function f from the edges of a (p, q)-graph G
to {2, 4, . . . , 2q} is said to be an edge even graceful labeling of G if the induced function
f ∗ from the vertices to {0, 2, . . . , 2q} defined by f ∗(e) is the sum of f(e) (mod max(p, q))
is injective. They prove the following graphs have edge even graceful labelings: Pn if and
only if n is odd, Cn if and only if n is odd, K1,n if and only if n is even, wheels, fans,
friendship graphs, and double wheels Wn,n. The polar grid graph Pm,n consists of n copies
of Cm, a new vertex v0, and m copies on Pn+1 that share a endpoint at v0 The graph
is drawn as m concentric circles with a center at a new vertex v0 and the m vertices of
each cycle lie on a line with one endpoint at v0 and the other endpoint at the outermost
cycle in such a way that the n vertices of the copies on Pn+1 other the v0 intersect the
vertices of cycles. Daoud [644] provided necessary and sufficient conditions for the polar
grid graph to be edge even graceful.

Singh and Devaraj [2401] call a graph G with p vertices and q edges triangular grace-
ful if there is an injection f from V (G) to {0, 1, 2, . . . , Tq} where Tq is the qth triangular
number and the labels induced on each edge uv by |f(u)− f(v)| are the first q triangular
numbers. They prove the following graphs are triangular graceful: paths, level 2 rooted
trees, olive trees (see § 2.1 for the definition), complete n-ary trees, double stars, caterpil-
lars, C4n, C4n with pendent edges, the one-point union of C3 and Pn, and unicyclic graphs
that have C3 as the unique cycle. They prove that wheels, helms, flowers (see §2.2 for the
definition) and Kn with n ≥ 3 are not triangular graceful. They conjecture that all trees
are triangular graceful. In [2301] Sethuraman and Venkatesh introduced a new method
for combining graceful trees to obtain trees that have α-labelings.

Van Bussel [2699] considered two kinds of relaxations of graceful labelings as applied
to trees. He called a labeling range-relaxed graceful it is meets the same conditions as
a graceful labeling except the range of possible vertex labels and edge labels are not
restricted to the number of edges of the graph (the edges are distinctly labeled but not
necessarily labeled 1 to q where q is the number of edges). Similarly, he calls a labeling
vertex-relaxed graceful if it satisfies the conditions of a graceful labeling while permitting
repeated vertex labels. He proves that every tree T with q edges has a range-relaxed
graceful labeling with the vertex labels in the range 0, 1, . . . , 2q−d where d is the diameter
of T and that every tree on n vertices has a vertex-relaxed graceful labeling such that
the number of distinct vertex labels is strictly greater than n/2. In 2017 Sethuraman,
Ragukumar, and Slater [2289] improved the bound on the range-relaxed graceful labeling

the electronic journal of combinatorics (2019), #DS6 67



given by Van Bussel in [2699] in 2002 for a tree T .
In [371], Barrientos and Krop introduce left- and right-layered trees as trees with a

specific representation and define the excess of a tree. Applying these ideas, they show
a range-relaxed graceful labeling which improves the upper bound for maximum vertex
label given by Van Bussel in [2699]. They also improve the bounds given by Rosa and
Širáň in [2139] for the α-size and gracesize of lobsters.

Sekar [2200] calls an injective function φ from the vertices of a graph with q edges to
{0, 1, 3, 4, 6, 7, . . . , 3(q − 1), 3q − 2} one modulo three graceful if the edge labels induced
by labeling each edge uv with |φ(u) − φ(v)| is {1, 4, 7, . . . , 3q − 2}. He proves that the
following graphs are one modulo three graceful: Pm; Cn if and only if n ≡ 0 mod 4;
Km,n; C

(2)
2n (the one-point union of two copies of C2n);C

(t)
n for n = 4 or 8 and t > 2; C

(t)
6

and t ≥ 4; caterpillars; stars; lobsters; banana trees; rooted trees of height 2; ladders; the
graphs obtained by identifying the endpoints of any number of copies of Pn; the graph
obtained by attaching pendent edges to each endpoint of two identical stars and then
identifying one endpoint from each of these graphs; the graph obtained by identifying a
vertex of C4k+2 with an endpoint of a star; n-polygonal snakes (see §2.2) for n ≡ 0 (mod
4); n-polygonal snakes for n ≡ 2 (mod 4) where the number of polygons is even; crowns
Cn � K1 for n even; C2n � Pm (C2n with Pm attached at each vertex of the cycle) for
m ≥ 3; chains of cycles (see §2.2) of the form C4,m, C6,2m, and C8,m. He conjectures that
every one modulo three graceful graph is graceful.

A subdivided shell graph is obtained by subdividing the edges in the path of the shell
graph. Jeba Jesintha and Ezhilarasi Hilda [1119] proved that the subdivided uniform shell
bow graphs (that is, double shells in which each shell has the same order) are one modulo
three graceful. Jeba Jesintha and Ezhilarasi Hilda [1118] proved the disjoint union of two
subdivided shell graphs are one modulo three graceful.

In [2074] Ramachandran and Sekar introduced the notion of one modulo N grace-
ful as follows. For a positive integer N a graph G with q edges is said to be one
modulo N graceful if there is an injective function φ from the vertex set of G to
{0, 1, N,N + 1, 2N, 2N + 1, . . . , (q− 1)N, (q− 1)N + 1} such that φ induces a bijection φ∗

from the edge set of G to {1, N+1, 2N+1, . . . , (q−1)N+1} where φ∗(uv) = |φ(u)−φ(v)|.
They proved the following graph are one modulo N graceful for all positive integers N :
paths, caterpillars, and stars [2074]; n-polygonal snakes, C

(t)
n , Pa,b [2087]; the splitting

graphs S ′(P2n), S ′(P2n+1), S ′(K1,n), all subdivision graphs of double triangular snakes,
and all subdivision graphs of 2m-triangular snakes [2075]; the graph Ln ⊗ Sm obtained
from the ladder Ln (Pn × P2) by identifying one vertex of Ln with any vertex of the star
Sm other than the center of Sm [2077]; arbitrary supersubdivisions of paths, disconnected
paths, cycles, and stars [2076]; and regular bamboo trees and coconut trees [2078]. Ra-
machandran and Sekar [2079] proved the supersubdivisions of ladders are one modulo N
graceful for all positive integers N . In [2080] Ramachandran and Sekar proved that the
crowns, armed crowns, and chain of even cycles are one modulo N graceful for all positive
integers N .

Deviating from the standard definition of Fibonacci numbers, Kathiresan and Amutha
[1349] define F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . .. They call a function f : V (G) →
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{0, 1, 2, . . . , Fq} where Fq is their qth Fibonacci number, to be Fibonacci graceful labeling if
the induced edge labeling f(uv) = |f(u)−f(v)| is a bijection onto the set {F1, F2, . . . , Fq}.
If a graph admits a Fibonacci graceful labeling, it is is called a Fibonacci graceful graph.
They prove the following: Kn is Fibonacci graceful if and only if n ≤ 3; if an Eulerian
graph with q edges is Fibonacci graceful then q ≡ 0 (mod 3); paths are Fibonacci graceful;
fans Pn � K1 are Fibonacci graceful; squares of paths P 2

n are Fibonacci graceful; and
caterpillars are Fibonacci graceful. They define a function f : V (G)→ {0, F1, F2, . . . , Fq}
where Fi is the ith Fibonacci number, to be super Fibonacci graceful labeling if the induced
labeling f(uv) = |f(u)−f(v)| is a bijection onto the set {F1, F2, . . . , Fq}. They show that
bistars Bn,n are Fibonacci graceful but not super Fibonacci graceful for n ≥ 5; cycles
Cn are super Fibonacci graceful if and only if n ≡ 0 (mod 3); if G is Fibonacci or super
Fibonacci graceful then G �K1 is Fibonacci graceful; if G1 and G2 are super Fibonacci
graceful in which no two adjacent vertices have the labeling 1 and 2 then G1 ∪ G2 is
Fibonacci graceful; and if G1, G2, . . . , Gn are super Fibonacci graceful graphs in which no
two adjacent vertices are labeled with 1 and 2 then the amalgamation of G1, G2, . . . , Gn

obtained by identifying the vertices having labels 0 is also a super Fibonacci graceful.
Vaidya and Prajapati [2659] proved: the graphs obtained joining a vertex of C3m and

a vertex of C3n by a path Pk are Fibonacci graceful; the graphs obtained by starting with
any number of copies of C3m and joining each copy with a copy of the next by identifying
the end points of a path with a vertex of each successive pair of C3m (the paths need
not be the same length) are Fibonacci graceful; the one point union of C3m and C3n is
Fibonacci graceful; the one point union of k cycles C3m is super Fibonacci graceful; every
cycle Cn with n ≡ 0 (mod 3) or n ≡ 1 (mod 3) is an induced subgraph of a super Fibonacci
graceful graph; and every cycle Cn with n ≡ 2 (mod 3) can be embedded as a subgraph
of a Fibonacci graceful graph. Karthikeyan, Arthi, Abinaya, Swathi, Madhumathi [1342]

proved that friendship graphs C
(t)
3 and the graphs obtained by the one-point union of

copies of K4 with an edge deleted are super Fibonacci graceful.
For a graph G with q edges an injective function f from the vertices of G to

{F0, F1, F2, . . . , Fq−1, Fq+1}, where Fi is the ith Fibonacci number (as defined by Kathire-
san and Amuth above), is said to be almost super Fibonacci graceful if the induced
edge labeling f ∗ (uv) = |f(u) − f(v)| is a bijection onto the set {F1, F2, . . . , Fq} or
{F0, F1, F2, . . . , Fq−1, Fq+1}.

Sridevi, Navaneethakrishnan, and Nagarajan [2463] proved that paths, combs, graphs
obtained by subdividing each edge of a star, and some special types of extension of cycle
related graphs are almost super Fibonacci graceful labeling.

For a graph G and a vertex v of G, a vertex switching Gv is the graph obtained from G
by removing all edges incident to v and adding edges joining v to every vertex not adjacent
to v in G. Vaidya and Vihol [2685] prove the following: trees are Fibonacci graceful; the
graph obtained by switching of a vertex in cycle is Fibonacci graceful; wheels and helms
are not Fibonacci graceful; the graph obtained by switching of a vertex in a cycle is super
Fibonacci graceful except n ≥ 6; the graph obtained by switching of a vertex in cycle Cn
for n ≥ 6 can be embedded as an induced subgraph of a super Fibonacci graceful graph;
and the graph obtained by joining two copies of a fixed fan with an edge is Fibonacci
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graceful.
The Perrin sequence of numbers Pn is defined by the linear recurrence relation satisfy-

ing the conditions: P1 = 3, P2 = 0, P3 = 2, and Pn = Pn−2 +Pn−3, if n ≥ 4. Letting Pi be
the ith term of the Perrin sequence and P0 = 0, Sugumaran and Rajesh [2527] introduced
the notion of Perrin graceful labeling as follows: A function f is called a Perrin grace-
ful labeling of a graph G, if f : V (G) → {P0, P1, P2, ..., Pq} is injective and the induced
function f (∗) : E(G) → {P1, P2, ..., Pq} defined by f ∗(uv) = |f(u) − f(v)| is bijective. A
graph that admits Perrin graceful labeling is called a Perrin graceful graph. In [2527]
Sugumaran and Rajesh proved that the following graphs are Perrin graceful graphs: K1,n,
Bn,n, Pn �K1, Cn �K1, and < K1,n; 4 >.

For n ≥ 1 the Pell numbers are defined as p0 = 0, p1 = 1, and pn+1 = 2pn+pn−1. For a
graph G with q edges Muthuramakrishnan and Sutha [1813] introduced the concept of Pell
graceful labeling as an injective function f from V (G) to the Pell numbers {0, 1, 2, . . . , pq}
such that the induced edge labeling f ∗(uv) = |f(u) − f(v)| is a bijection onto the Pell
numbers {p1, p2, . . . , pq} They prove that paths, combs Pn �K1 (n ≥ 3), and the graphs
obtained by the one point union of paths of lengths 1, 2, . . . , n (n ≥ 3) are Pell graceful.

In [502] Brešar and Klavžar define a natural extension of graceful labelings of certain
tree subgraphs of hypercubes. A subgraph H of a graph G is called isometric if for every
two vertices u, v of H, there exists a shortest u-v path that lies in H. The isometric
subgraphs of hypercubes are called partial cubes. Two edges xy, uv of G are in Θ-relation
if dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u). A Θ-relation is an equivalence relation that
partitions E(G) into Θ-classes. A Θ-graceful labeling of a partial cube G on n vertices is
a bijection f : V (G) → {0, 1, . . . , n − 1} such that, under the induced edge labeling, all
edges in each Θ-class of G have the same label and distinct Θ-classes get distinct labels.
They prove that several classes of partial cubes are Θ-graceful and the Cartesian product
of Θ-graceful partial cubes is Θ-graceful. They also show that if there exists a class of
partial cubes that contains all trees and every member of the class admits a Θ-graceful
labeling then all trees are graceful.

Table 4 provides a summary results about graceful-like labelings adapted from [501].
“Y” indicates that all graphs in that class have the labeling; “N” indicates that not all
graphs in that class have the labeling; “?” means unknown; “C” means conjectured.

3.4 k-graceful Labelings

A natural generalization of graceful graphs is the notion of k-graceful graphs introduced
independently by Slater [2424] in 1982 and by Maheo and Thuillier [1688] in 1982. A graph
G with q edges is k-graceful if there is labeling f from the vertices of G to {0, 1, 2, . . . , q+
k − 1} such that the set of edge labels induced by the absolute value of the difference
of the labels of adjacent vertices is {k, k + 1, . . . , q + k − 1}. Obviously, 1-graceful is
graceful and it is readily shown that any graph that has an α-labeling is k-graceful for
all k. Graphs that are k-graceful for all k are sometimes called arbitrarily graceful. The
result of Barrientos and Minion [372] that all snake polyominoes are α-graphs partially
answers a question of Acharya [25] and supports his conjecture that if the length of every
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Table 4: Summary of Results on Graceful-like labelings

Graph α-labeling β-labeling σ-labeling ρ-labeling
Cycle Cn, n ≡ 0 mod 4 Y [2136] Y Y Y
Cycle Cn, n ≡ 3 mod 4 N [2136] Y [2136] Y Y
Wheels N Y [795], [1018] Y Y
Trees

Yes, if order ≤ 5 35 [747] 54
Paths Y [2136] Y Y Y
Caterpillars Y [2136] Y Y Y
Firecrackers Y [575] Y Y Y
Lobsters N[471] ?C [445] Y Y [546]
Bananas ? Y [2281], [2280] Y Y
Symmetrical trees N [471] Y [449] Y Y
Olive trees ? Y [1902], [11] Y Y
Diameter < 8 N [2790] Y Y Y
< 5 end vertices N [471] Y [2136] Y Y
Max degree 3 N [2139] C C C
Max degree 3 and

perfect matching C [499] C C C

cycle of a graph is a multiple of 4, then the graph is arbitrarily graceful. In [2233] Seoud
and Elsakhawi show that P2 ⊕ K2 (n ≥ 2) is arbitrarily graceful. Ng [1849] has shown
that there are graphs that are k-graceful for all k but do not have an α-labeling.

Results of Maheo and Thuillier [1688] together with those of Slater [2424] show that:
Cn is k-graceful if and only if either n ≡ 0 or 1 (mod 4) with k even and k ≤ (n− 1)/2,
or n ≡ 3 (mod 4) with k odd and k ≤ (n2− 1)/2. Maheo and Thuillier [1688] also proved
that the wheel W2k+1 is k-graceful and conjectured that W2k is k-graceful when k 6= 3 or
k 6= 4. This conjecture was proved by Liang, Sun, and Xu [1590]. Kang [1324] proved that
Pm × C4n is k-graceful for all k. Lee and Wang [1557] showed that the graphs obtained
from a nontrivial path of even length by joining every other vertex to one isolated vertex
(a lotus), the graphs obtained from a nontrivial path of even length by joining every other
vertex to two isolated vertices (a diamond), and the graphs obtained by arranging vertices
into a finite number of rows with i vertices in the ith row and in every row the jth vertex
in that row is joined to the jth vertex and j + 1st vertex of the next row (a pyramid) are
k-graceful. Liang and Liu [1578] have shown that Km,n is k-graceful. Bu, Gao, and Zhang
[511] have proved that Pn×P2 and (Pn×P2)∪ (Pn×P2) are k-graceful for all k. Acharya
(see [25]) has shown that a k-graceful Eulerian graph with q edges must satisfy one of the
following conditions: q ≡ 0 (mod 4), q ≡ 1 (mod 4) if k is even, or q ≡ 3 (mod 4) if k
is odd. Bu, Zhang, and He [516] have shown that an even cycle with a fixed number of
pendent edges adjoined to each vertex is k-graceful. Lu, Pan, and Li [1673] have proved
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that K1,m ∪Kp,q is k-graceful when k > 1, and p and q are at least 2. Jirimutu, Bao, and
Kong [1257] have shown that the graphs obtained from K2,n (n ≥ 2) and K3,n (n ≥ 3)
by attaching r ≥ 2 edges at each vertex is k-graceful for all k ≥ 2. Seoud and Elsakhawi
[2233] proved: paths and ladders are arbitrarily graceful; and for n ≥ 3, Kn is k-graceful
if and only if k = 1 and n = 3 or 4. Li, Li, and Yan [1576] proved that Km,n is k-graceful
graph. Pradhan and Kamesh [2009] showed that the hairy cycle Cn · rK1 (n ≡ 3 (mod
4), the graph obtained by adding a pendent edge to each pendent vertex of hairy cycle
Cn ·K1; n ≡ 0 (mod 4), double graphs of path Pn, and double graphs of combs Pn ·K1

are k-graceful.
Yao, Cheng, Zhongfu, and Yao [2862] have shown: a tree of order p with maximum

degree at least p/2 is k-graceful for some k; if a tree T has an edge u1u2 such that the
two components T1 and T2 of T − u1u2 have the properties that dT1(u1) ≥ |T1|/2 and
dT2(u2) ≥ |T2|/2, then T is k-graceful for some positive k; if a tree T has two edges
u1u2 and u2u3 such that the three components T1, T2, and T3 of T − {u1u2, u2u3} have
the properties that dT1(u1) ≥ |T1|/2, dT2(u2) ≥ |T2|/2, and dT3(u3) ≥ |T3|/2, then T is
k-graceful for some k > 1; and every Skolem-graceful (see 3.5 for the definition) tree is
k-graceful for all k ≥ 1. They conjecture that every tree is k-graceful for some k > 1.

Several authors have investigated the k-gracefulness of various classes of subgraphs of
grid graphs. Acharya [23] proved that all 2-dimensional polyminoes that are convex and
Eulerian are k-graceful for all k; Lee [1487] showed that Mongolian tents and Mongolian
villages are k-graceful for all k (see §2.3 for the definitions); Lee and K. C. Ng [1511]
proved that all Young tableaus (see §2.3 for the definitions) are k-graceful for all k. (A
special case of this is Pn × P2.) Lee and H. K. Ng [1511] subsequently generalized these
results on Young tableaus to a wider class of planar graphs.

In [382] Barrientos and Minion say that two caterpillars Γ and Ω of size n are analogous
if the stable sets of Γ have the same cardinalities as the stable sets of Ω. They prove that if
Ω is an induced subgraph of a gracefully labeled graph G, such that the induced labeling is
a bipartite k-labeling shifted c units, then the graph G′ obtained by replacing Ω with any
other caterpillar Γ analogous to Ω, is a graceful graph. This result is used to generalize
several existing results that use k-graceful labelings of paths such as the subdivision of
graceful trees [520], the α-labeling of the ith attachment tree [2301], the α-labelings of
path-like trees [353], the α-labelings of the graphs obtained by identifying the end-vertices
of b paths of length a with two new vertices, as well as the graceful labelings of the armed
crowns [2200].

Duan and Qi [697] use Gt(m1, n1;m2, n2; . . . ;ms, ns) to denote the graph composed of
the s complete bipartite graphs Km1,n1 , Km2,n2 , . . . , Kms,ns that have only t
(1 ≤ t ≤ min{m1,m2, . . . ,ms}) common vertices but no common edge and
G(m1, n1;m2, n2) to denote the graph composed of the complete bipartite graphs
Km1,n1 , Km2,n2 with exactly one common edge. They prove that these graphs are k-
graceful graphs for all k.

Let c,m, p1, p2, . . . , pm be positive integers. For i = 1, 2, . . . ,m, let Si be a set of pi+ 1
integers and let Di be the set of positive differences of the pairs of elements of Si. If all
these differences are distinct then the system D1, D2, . . . , Dm is called a perfect system of
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difference sets starting at c if the union of all the sets Di is c, c+1, . . . , c−1+
∑m

i=1

(
pi+1

2

)
.

There is a relationship between k-graceful graphs and perfect systems of difference sets. A
perfect system of difference sets starting with c describes a c-graceful labeling of a graph
that is decomposable into complete subgraphs. A survey of perfect systems of difference
sets is given in [13].

Acharya and Hegde [39] generalized k-graceful labelings to (k, d)-graceful labelings by
permitting the vertex labels to belong to {0, 1, 2, . . . , k + (q − 1)d} and requiring the set
of edge labels induced by the absolute value of the difference of labels of adjacent vertices
to be {k, k + d, k + 2d, . . . , k + (q − 1)d}. They also introduce an analog of α-labelings
in the obvious way. Notice that a (1,1)-graceful labeling is a graceful labeling and a
(k, 1)-graceful labeling is a k-graceful labeling. Bu and Zhang [515] have shown: Km,n

is (k, d)-graceful for all k and d; for n > 2, Kn is (k, d)-graceful if and only if k = d
and n ≤ 4; if mi, ni ≥ 2 and max{mi, ni} ≥ 3, then Km1,n1 ∪ Km2,n2 ∪ · · · ∪ Kmr,nr is
(k, d)-graceful for all k, d, and r; if G has an α-labeling, then G is (k, d)-graceful for all k
and d; a k-graceful graph is a (kd, d)-graceful graph; a (kd, d)-graceful connected graph
is k-graceful; and a (k, d)-graceful graph with q edges that is not bipartite must have
k ≤ (q − 2)d.

Let T be a tree with adjacent vertices u0 and v0 and pendent vertices u and v such
that the length of the path u0 − u is the same as the length of the path v0 − v. Hegde
and Shetty [998] call the graph obtained from T by deleting u0v0 and joining u and v
an elementary parallel transformation of T . They say that a tree T is a Tp-tree if it can
be transformed into a path by a sequence of elementary parallel transformations. They
prove that every Tp-tree is (k, d)-graceful for all k and d and every graph obtained from
a Tp-tree by subdividing each edge of the tree is (k, d)-graceful for all k and d.

Yao, Cheng, Zhongfu, and Yao [2862] have shown: a tree of order p with maximum
degree at least p/2 is (k, d)-graceful for some k and d; if a tree T has an edge u1u2 such
that the two components T1 and T2 of T − u1u2 have the properties that dT1(u1) ≥ |T1|/2
and T2 is a caterpillar, then T is Skolem-graceful (see 3.5 for the definition); if a tree T
has an edge u1u2 such that the two components T1 and T2 of T −u1u2 have the properties
that dT1(u1) ≥ |T1|/2 and dT2(u2) ≥ |T2|/2, then T is (k, d)-graceful for some k > 1 and
d > 1; if a tree T has two edges u1u2 and u2u3 such that the three components T1, T2,
and T3 of T − {u1u2, u2u3} have the properties that dT1(u1) ≥ |T1|/2, dT2(u2) ≥ |T2|/2,
and dT3(u3) ≥ |T3|/2, then T is (k, d)-graceful for some k > 1 and d > 1; and every
Skolem-graceful tree is (k, d)-graceful for k ≥ 1 and d > 0. They conjecture that every
tree is (k, d)-graceful for some k > 1 and d > 1.

Hegde [983] has proved the following: if a graph is (k, d)-graceful for odd k and even d,
then the graph is bipartite; if a graph is (k, d)-graceful and contains C2j+1 as a subgraph,
then k ≤ jd(q− j− 1); Kn is (k, d)-graceful if and only if n ≤ 4; C4t is (k, d)-graceful for
all k and d; C4t+1 is (2t, 1)-graceful; C4t+2 is (2t− 1, 2)-graceful; and C4t+3 is (2t+ 1, 1)-
graceful.

A semismooth graceful graph is a bipartite graph G with the property that for some
fixed positive integer t ≤ q and all positive integers l there is an injective map g :
V −→ {0, 1, . . . , t − l, t + l + 1, . . . , q + l} such that the induced edge labeling map
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g? : E −→ {1 + l, 2 + l, . . . , q+ l} defined by g?(e) = |g(u)− g(v)| is a bijection. Kaneria,
Gohil, and Makadia [1279] prove every semismooth graceful graph is a (k, d)-graceful;
graphs obtained by joining two semismooth graceful graphs with an arbitrary path is a
semismooth graceful graph; and the notions of graceful labeling and odd-even graceful
labelings are equivalent. (A graph G with q edges is odd-even graceful if there is an
injection f from the vertices of G to {1, 3, 5, . . . , 2q + 1} such that, when each edge uv is
assigned the label |f(u) − f(v)|, the resulting edge labels are {2, 4, 6, . . . , 2q}). Kaneria,
Meghpara and Khoda [1286] prove: a smooth graceful labeling for a graph is also an
α-labeling for the graph; a graph that has an α-labeling is a semismooth graceful graph;
graphs that admit an α-labeling are semismooth graceful graphs; if m is even and H has
an α-labeling, then the path union P (m · H) is a smooth graceful graph; and the path
union P (m ·H) has an α-labeling.

In [2487] Sudha and Kanniga proved that tensor product of a star and P2 is odd-even
graceful. (The tensor product G⊗H of graphs G and H, has the vertex set V (G)×V (H)
and any two vertices (u, u′) and (v, v′) are adjacent in G⊗H if and only if u′ is adjacent
with v′ and u is adjacent with v.) In [2723] Venkatesh, Mahalakshmi, and Amirthavahini
use Cn,k to denote the dragon obtained by joining an end point of Pk with a vertex of
Cn and Ct

n,k to denote the graph obtained by taking one-point union of t copies of Cn,k
at the common vertex v. They proved that the graph Ct

n,k admits a graceful labeling, an
odd graceful labeling, and odd-even graceful labeling for all values of t with n = 4, k = 1,
and that Ct

n,1 admits vertex cordial labeling for all values of n and t, except n ≡ 2 mod 4
(see Section 3.7). Nurvazly and Sugeng [1879] proved that Θ(C3)n graphs (n copies of C3

that share an edge) have odd-even graceful labelings. Anitha, Selvam, and Thirusangu
[174] provide k-graceful and odd-even graceful labelings for the extended duplicate graph
of the kite graph.

For a graph G let G(1), G(2), . . . , G(n) be n ≥ 2 copies of G. The graph obtained by
joining vertices u, v of G(i) with same vertices of the graph G(i+1) by two edges, for all
i = 1, 2, . . . , n− 1 is called the double path union of n copies of the graph G. Such graphs
can obtained in p(p−1)

2
different ways, where p = |V (G)| and are denoted by D(n · G).

Kaneria, Teraiya and Meghpara [1314] prove the double path unions of C4m, Km,n, and
P2m have α-labelings.

Hegde [981] calls a (k, d)-graceful graph (k, d)-balanced if it has a (k, d)-graceful label-
ing f with the property that there is some integer m such that for every edge uv either
f(u) ≤ m and f(v) > m, or f(u) > m and f(v) ≤ m. He proves that if a graph is (1, 1)-
balanced then it is (k, d)-graceful for all k and d and that a graph is (1, 1)-balanced graph
if and only if it is (k, k)-balanced for all k. He conjectures that all trees are (k, d)-balanced
for some values of k and d.

Slater [2427] has extended the definition of k-graceful graphs to countable infinite
graphs in a natural way. He proved that all countably infinite trees, the complete graph
with countably many vertices, and the countably infinite Dutch windmill is k-graceful for
all k.

In [1004] Hegde and Shivarajkumar extend the idea of k-graceful labeling of undirected
graphs to directed graphs as follows. A simple directed graph D with n vertices and e
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edges is labeled by assigning each vertex a distinct element from the set Ze+k and assigning
the edge xy from vertex x to vertex y the label θ(x, y) = θ(y)− θ(x) mod(e + k), where
θ(y) and θ(x) are the values assigned to the vertices y and x respectively. A labeling is a
k-graceful labeling if all θ(x, y) are distinct and belong to {k, k + 1, . . . , k + e − 1}. If a
digraph D admits a k-graceful labeling then D is called a k-graceful digraph. They provide
some values of k for which the unidirectional cycles admit a k-graceful labeling; give a
necessary and sufficient condition for the outspoken unicyclic wheel to be k-graceful; and
prove that to provide a list of values of k for which the unicyclic wheel is k-graceful is
NP-complete.

More specialized results on k-graceful labelings can be found in [1487], [1511], [1515],
[2424], [510], [512], [511], and [573].

Graceful-type labelings methods have been used for cryptographical password con-
struction for network data [2768], [2767], [2769], and [2534].

3.5 Skolem-Graceful Labelings

A number of authors have invented analogues of graceful graphs by modifying the per-
missible vertex labels. For instance, Lee (see [1541]) calls a graph G with p vertices and q
edges Skolem-graceful if there is an injection from the set of vertices of G to {1, 2, . . . , p}
such that the edge labels induced by |f(x)−f(y)| for each edge xy are 1, 2, . . . , q. A neces-
sary condition for a graph to be Skolem-graceful is that p ≥ q+1. Lee and Wui [1571] have
shown that a connected graph is Skolem-graceful if and only if it is a graceful tree. Yao,
Cheng, Zhongfu, and Yao [2862] have shown that a tree of order p with maximum degree
at least p/2 is Skolem-graceful. Although the disjoint union of trees cannot be graceful,
they can be Skolem-graceful. Lee and Wui [1571] prove that the disjoint union of 2 or 3
stars is Skolem-graceful if and only if at least one star has even size. In [601] Choudum
and Kishore show that the disjoint union of k copies of the star K1,2p is Skolem graceful if
k ≤ 4p+ 1 and the disjoint union of any number of copies of K1,2 is Skolem graceful. For
k ≥ 2, let St(n1, n2, . . . , nk) denote the disjoint union of k stars with n1, n2, . . . , nk edges.
Lee, Wang, and Wui [1564] showed that the 4-star St(n1, n2, n3, n4) is Skolem-graceful for
some special cases and conjectured that all 4-stars are Skolem-graceful. Denham, Leu,
and Liu [661] proved this conjecture. Kishore [1381] has shown that a necessary condition
for St(n1, n2, . . . , nk) to be Skolem graceful is that some ni is even or k ≡ 0 or 1 (mod
4) (see also [2893] . He conjectures that each one of these conditions is sufficient. Yue,
Yuan-sheng, and Xin-hong [2893] show that for k at most 5, a k-star is Skolem-graceful if
at one star has even size or k ≡ 0 or 1 (mod 4). Choudum and Kishore [599] proved that
all 5-stars are Skolem graceful.

Lee, Quach, and Wang [1527] showed that the disjoint union of the path Pn and the
star of size m is Skolem-graceful if and only if n = 2 and m is even or n ≥ 3 and m ≥ 1.
It follows from the work of Skolem [2416] that nP2, the disjoint union of n copies of P2, is
Skolem-graceful if and only if n ≡ 0 or 1 (mod 4). Harary and Hsu [961] studied Skolem-
graceful graphs under the name node-graceful. Frucht [797] has shown that Pm ∪ Pn is
Skolem-graceful when m + n ≥ 5. Bhat-Nayak and Deshmukh [459] have shown that
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Pn1 ∪ Pn2 ∪ Pn3 is Skolem-graceful when n1 < n2 ≤ n3, n2 = t(n1 + 2) + 1 and n1 is even
and when n1 < n2 ≤ n3, n2 = t(n1 + 3) + 1 and n1 is odd. They also prove that the
graphs of the form Pn1 ∪ Pn2 ∪ · · · ∪ Pni

where i ≥ 4 are Skolem-graceful under certain
conditions. In [665] Deshmukh states the following results: the sum of all the edges on
any cycle in a Skolem graceful graph is even; C5∪K1,n if and only if n = 1 or 2; C6∪K1,n

if and only if n = 2 or 4.
Youssef [2872] proved that if G is Skolem-graceful, then G+Kn is graceful. In [2876]

Youssef shows that that for all n ≥ 2, Pn ∪ Sm is Skolem-graceful if and only if n ≥ 3 or
n = 2 and m is even. Yao, Cheng, Zhongfu, and Yao [2862] have shown that if a tree T
has an edge u1u2 such that the two components T1 and T2 of T −u1u2 have the properties
that dT1(u1) ≥ |T1|/2 and T2 is a caterpillar or have the properties that dT1(u1) ≥ |T1|/2
and dT2(u2) ≥ |T2|/2, then T is Skolem-graceful.

A graph G = (V,E) is said to be (k, d)-Skolem graceful if there exists a bijection f
from V (G) to {12, . . . , |V |} such that the induced edge labeling gf defined by gf (uv) =
|f(u)−f(v)| is a bijection from E to {k, k+d, . . . , k+(q−1)d} where k and d are positive
integers. Such a labeling is called a (k, d)-Skolem graceful labeling of G. In [1916] Pereira,
Singh, and Arumugam present a few basic results on (k, d)-Skolem graceful graphs and
prove that nK2 is (2, 1)-Skolem graceful if and only if n ≡ 0 or 3 (mod 4), which produces
the Langford sequence L(2, n).

Mendelsohn and Shalaby [1742] defined a Skolem labeled graph G(V,E) as one for
which there is a positive integer d and a function L : V → {d, d+ 1, . . . , d+m}, satisfying
(a) there are exactly two vertices in V such that L(v) = d+ i, 0 ≤ i ≤ m; (b) the distance
in G between any two vertices with the same label is the value of the label; and (c) if G′ is
a proper spanning subgraph of G, then L restricted to G′ is not a Skolem labeled graph.
Note that this definition is different from the Skolem-graceful labeling of Lee, Quach,
and Wang. A hooked Skolem sequence of order n is a sequence s1, s2, . . . , s2n+1 such that
s2n = 0 and for each j ∈ {1, 2, . . . , n}, there exists a unique i ∈ {1, 2, . . . , 2n− 1, 2n+ 1}
such that si = si+j = j. Mendelsohn [1741] established the following: any tree can be
embedded in a Skolem labeled tree with O(v) vertices; any graph can be embedded as
an induced subgraph in a Skolem labeled graph on O(v3) vertices; for d = 1, there is
a Skolem labeling or the minimum hooked Skolem (with as few unlabeled vertices as
possible) labeling for paths and cycles; for d = 1, there is a minimum Skolem labeled
graph containing a path or a cycle of length n as induced subgraph. In [1741] Mendelsohn
and Shalaby prove that the necessary conditions in [1742] are sufficient for a Skolem or
minimum hooked Skolem labeling of all trees consisting of edge-disjoint paths of the same
length from some fixed vertex. Graham, Pike, and Shalaby [924] obtained various Skolem
labeling results for grid graphs. Among them are P1 × Pn and P2 × Pn have Skolem
labelings if and only if n ≡ 0 or 1 mod 4; and Pm × Pn has a Skolem labeling for all m
and n at least 3.

In [1930] Pike, Sanaei, and Shalaby introduce pseudo-Skolem sequences, which are
similar to Skolem-type sequences in their structures and applications. They use known
Skolem-type sequences to constructions of such sequences and discuss applications of these
sequences to Skolem labelingsre graphs such that H is bipartite, and give formulas for the
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gamma-number of rail-siding graphs and caterpillars.
In [626] Clark and Sanaei present (hooked) vertex Skolem labelings for generalized

Dutch windmills whenever such labelings exist. They present a novel technique for show-
ing that generalized Dutch windmills with more than two cycles cannot be Skolem labelled
and that those composed of two cycles of lengths m and n, n ≥ m cannot be Skolem
labelled if and only if n−m ≡ 3 or 5 (mod 8) and m is odd.

3.6 Odd-Graceful Labelings

Gnanajothi [894, p. 182] defined a graph G with q edges to be odd-graceful if there is an
injection f from V (G) to {0, 1, 2, . . . , 2q−1} such that, when each edge xy is assigned the
label |f(x)− f(y)|, the resulting edge labels are {1, 3, 5, . . . , 2q− 1}. She proved that the
class of odd-graceful graphs lies between the class of graphs with α-labelings and the class
of bipartite graphs by showing that every graph with an α-labeling has an odd-graceful
labeling and every graph with an odd cycle is not odd-graceful. She also proved the
following graphs are odd-graceful: Pn; Cn if and only if n is even; Km,n; combs Pn �K1

(graphs obtained by joining a single pendent edge to each vertex of Pn); books; crowns
Cn�K1 (graphs obtained by joining a single pendent edge to each vertex of Cn) if and only
if n is even; the disjoint union of copies of C4; the one-point union of copies of C4; Cn×K2

if and only if n is even; caterpillars; rooted trees of height 2; the graphs obtained from
Pn (n ≥ 3) by adding exactly two leaves at each vertex of degree 2 of Pn; the graphs
obtained from Pn × P2 by deleting an edge that joins to end points of the Pn paths; the
graphs obtained from a star by adjoining to each end vertex the path P3 or by adjoining to
each end vertex the path P4. She conjectures that all trees are odd-graceful and proves the
conjecture for all trees with order up to 10. Barrientos [357] has extended this to trees of
order up to 12. Eldergill [708] generalized Gnanajothi’s result on stars by showing that the
graphs obtained by joining one end point from each of any odd number of paths of equal
length is odd-graceful. He also proved that the one-point union of any number of copies
of C6 is odd-graceful. Kathiresan [1347] has shown that ladders and graphs obtained
from them by subdividing each step exactly once are odd-graceful. Barrientos [360] and
[357] has proved the following graphs are odd-graceful: every forest whose components are
caterpillars; every tree with diameter at most five is odd-graceful; and all disjoint unions
of caterpillars. He conjectures that every bipartite graph is odd-graceful. In [1840] Neela
and Selvaraj partially resolved a Barrientos’s conjecture by showing that the following
graphs are odd-graceful: finite unions of paths, stars, and caterpillars; finite unions of
ladders; finite unions of paths, bistars and caterpillars; finite unions of graphs obtained
by the one end point union of an odd number of paths of uniform length; and the coronas
Km;n � rKl. Gao, Zhang, and Xu [838] proved that Pn × Pm (m = 2, 3 or 4), generalized
crown graphs Cn �K1,t, and gears are odd graceful.

Seoud, Diab, and Elsakhawi [2230] have shown that a connected complete r-partite
graph is odd-graceful if and only if r = 2 and that the join of any two connected graphs
is not odd-graceful. Yan [2844] proved that Pm×Pn is odd-graceful labeling. Vaidya and
Shah [2667] prove that the splitting graph and the shadow graph of bistar are odd-graceful.
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(The shadow graph D2(G) of a connected graph G is constructed by taking 2 copies G1

and G2 of G and joining each vertex u in G1 to the neighbors of the corresponding vertex v
in G2. Li, Li, and Yan [1576] proved that Km,n is odd-graceful. Liu, Wang, and Lu [1614]
that proved that a class of bicyclic graphs with a common edge is odd-graceful. Moussa
and Badr [1792] proved tha ladders and subdivisions of ladders with pendent edges are
odd-graceful.

Sekar [2200] has shown the following graphs are odd-graceful: the graph obtained by
identifying an end point of Pn with every vertex of Cm where n ≥ 3 and m is even; Pa,b
when a ≥ 2 and b is odd (see §2.7); P2,b and b ≥ 2; P4,b and b ≥ 2; Pa,b when a and
b are even and a ≥ 4 and b ≥ 4;P4r+1,4r+2;P4r−1,4r; all n-polygonal snakes with n even;

C
(t)
n (see §2.2 for the definition); graphs obtained by beginning with C6 and repeatedly

forming the one-point union with additional copies of C6 in succession; graphs obtained
by beginning with C8 and repeatedly forming the one-point union with additional copies
of C8 in succession; graphs obtained from even cycles by identifying a vertex of the cycle
with the endpoint of a star; C6,n and C8,n (see §2.7); the splitting graph of Pn (see §2.7)
the splitting graph of Cn, n even; lobsters, banana trees, and regular bamboo trees (see
§2.1).

Yao, Cheng, Zhongfu, and Yao [2862] have shown the following: if a tree T has an
edge u1u2 such that the two components T1 and T2 of T − u1u2 have the properties that
dT1(u1) ≥ |T1|/2 and T2 is a caterpillar, then T is odd-graceful; and if a tree T has a
vertex of degree at least |T |/2, then T is odd-graceful. They conjecture that for trees
the properties of being Skolem-graceful and odd-graceful are equivalent. Recall a banana
tree is a graph obtained by starting with any number os stars and connecting one end-
vertex from each to a new vertex. Zhenbin [2913] has shown that graphs obtained by
starting with any number of stars, appending an edge to exactly one edge from each star,
then joining the vertices at which the appended edges were attached to a new vertex are
odd-graceful.

Solairaju and Chithra [2441] defined a graph G with q edges to be edge-odd graceful
if there is an bijection f from the edges of the graph to {1, 3, 5, . . . , 2q − 1} such that,
when each vertex is assigned the sum of all the edges incident to it mod 2q, the resulting
vertex labels are distinct. They prove they following graphs are odd-graceful: paths with
at least 3 vertices; odd cycles; ladders Pn × P2 (n ≥ 3); stars with an even number of
edges; and crowns Cn � K1. In [2442] they prove the following graphs have edge-odd
graceful labelings: Pn (n > 1) with a pendent edge attached to each vertex (combs); the
graph obtained by appending 2n+ 1 pendent edges to each endpoint of P2 or P3; and the
graph obtained by subdividing each edge of the star K1,2n.

A subdivided shell graph is obtained by subdividing the edges in the path of the shell
graph. Let G1, G2, . . . , Gn be n subdivided shell graphs of any order. The graph SSG(n)
is obtained by adding an edge to apexes of Gi and Gi+1, i = 1, 2, . . . , n− 1. Jeba Jesintha
and Ezhilarasi Hilda [1126] that SSG(2) is odd graceful. In [1120] and [1125] Jeba Jesintha
and Ezhilarasi Hilda proved that the subdivided uniform shell bow graphs (that is, double
shells in which each shell has the same order) are odd graceful and shell butterfly graphs
are edge-odd graceful. Daoud [643] provided necessary and sufficient conditions for Cm×
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Pn and Cm × Cn to be edge-odd graceful.
Gao [831] has proved the following graphs are odd-graceful: the union of any number

of paths; the union of any number of stars; the union of any number of stars and paths;
Cm∪Pn; Cm∪Cn; and the union of any number of cycles each of which has order divisible
by 4.

If f is an odd-graceful labeling of a bipartite graph G with bipartition (V1, V2) such
that max{f(u) : u ∈ V1} < min{f(v) : v ∈ V2}, Zhou, Yao, Chen, and Tao [2921]
say that f is a set-ordered odd-graceful labeling of G. They proved that every lobster
is odd-graceful and adding leaves to a connected set-ordered odd-graceful graph is an
odd-graceful graph.

In [2219] Seoud and Abdel-Aal determined all odd-graceful graphs of order at most
6 and proved that if G is odd-graceful then G ∪ Km,n is odd-graceful. In [2238] Seoud
and Helmi proved: if G has an odd-graceful labeling f with bipartition (V1, V2) such that
max{f(x) : f(x) is even, x ∈ V1} < min{f(x) : f(x) is odd, x ∈ V2}, then G has
an α-labeling; if G has an α-labeling, then G � Kn is odd-graceful; and if G1 has an
α-labeling and G2 is odd-graceful, then G1 ∪ G2 is odd-graceful. They also proved the
following graphs have odd-graceful labelings: dragons obtained from an even cycle; graphs
obtained from a gear graph by attaching a fixed number of pendent edges to each vertex
of degree 2 on rim of the wheel of the graph; C2m � Kn; graphs obtained from an even
cycle by attaching a fixed number of pendent edges to every other vertex; graphs obtained
by identifying an endpoint of a star Sn (n ≥ 3) with a vertex of an even cycle; the graphs
consisting of two even cycles of the same order that share a common vertex with any
number of pendent edges attached at the common vertex; and the graphs obtained by
joining two even cycles of the same order by an edge. Seoud, El Sonbaty, and Abd El
Rehim [2231] proved that the conjunction Pm ∧ Pn for all n,m ≥ 2 and the conjunction
K2∧Fn for n even are odd-graceful. Jeba Jesintha and Ezhilarasi Hilda [1118] proved the
disjoint union of two subdivided shell graphs is odd-graceful and the one vertex union of
three subdivided shells are odd-graceful.

In [1789] and [1790] Moussa proved that Cm ∪ Pn is odd-graceful in some cases and
gave algorithms to prove that for all m ≥ 2 the graphs P4r−1;m, r = 1, 2, 3 and P4r+1;m,
r = 1, 2 are odd-graceful. (Pn;m is the graph obtained by identifying the endpoints of m
paths each of length n). He also presented an algorithm that showed that closed spider
graphs and the graphs obtained by joining one or two copies of Pm to each vertex of the
path Pn are odd-graceful. Moussa and Badr [1788] proved that Cm�Pn is odd-graceful if
and only if m is even (see also [216]). Badr, Moussa, and Kathiresan [216] proved ladders
are odd graceful.

Moussa [1791] defines the tensor product, Pm ∧ Pn, of Pm and Pn as the graph with
vertices vji , i = 1, . . . , n; j = 1, . . . ,m and edges vj1v

j+1
2 , vj+1

2 vj3, . . . , v
j
n−1v

j+1
n for j odd

and
vj1v

j−1
2 , vj−1

2 vj3, . . . , v
j
n−1v

j−1
n for j even. He proves that Pm ∧ Pm is odd-graceful.

In [2] Abdel-Aal generalized the notions of shadow graphs and splitting graphs are
follows. The m-shadow graph Dm(G) of a connected graph G is constructed by taking m
copies of G1, G2, . . . , Gm of G , and joining each vertex u in Gi to the neighbors of the
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corresponding vertex v in Gj for 1 ≤ i, j ≤ m. The m-splitting graph Splm(G) of a graph
G is obtained by adding to each vertex v of G m new vertices, v1, v2, . . . , vm, such that
vi, 1 ≤ i ≤ m is adjacent to every vertex that is adjacent to v in Gj. Thus the 2-shadow
graph is the shadow graph D2(G) and the 1-splitting graph of G is the splitting graph of
G. Abdel-Aal proved the following graphs are odd-graceful: Dm(Pn), Dm(Pn ⊕K2) (the
symmetric product of Pn and K2), Dm(Kr,s), Splm(Pn), Splm(K1,n), and Splm(Pn⊕K2).

Vaidya and Bijukumar [2624] proved the following are odd-graceful: graphs obtained
by joining two copies of Cn by a path; graphs that are two copies of an even cycle that
share a common edge; graphs that are the splitting graph of a star; and graphs that are
the tensor product of a star and P2.

Acharya, Germina, Princy, and Rao [35] proved that every bipartite graph G can be
embedded in an odd-graceful graph H. The construction is done in such a way that if
G is planar and odd-graceful, then so is H. Varkey and Sunoj [2706] investigate some
new families of odd graceful graphs generated from various graph operations on the given
graph.

In [570] Chawathe and Krishna extend the definition of odd-gracefulness to countably
infinite graphs and show that all countably infinite bipartite graphs that are connected
and locally finite have odd-graceful labelings.

Solairaju and Chithra [2441] defined a graph G with q edges to be edge-odd graceful
if there is an bijection f from the edges of the graph to {1, 3, 5, . . . , 2q − 1} such that,
when each vertex is assigned the sum of all the edges incident to it mod 2q, the resulting
vertex labels are distinct. They prove they following graphs are odd-graceful: paths with
at least 3 vertices; odd cycles; ladders Pn × P2 (n ≥ 3); stars with an even number of
edges; and crowns Cn � K1. In [2442] they prove the following graphs have edge-odd
graceful labelings: Pn (n > 1) with a pendent edge attached to each vertex (combs); the
graph obtained by appending 2n+ 1 pendent edges to each endpoint of P2 or P3; and the
graph obtained by subdividing each edge of the star K1,2n.

Singhun [2405] proved the following graphs have edge-odd graceful labelings: W2n;
Wn �K1; and Wn �Km, when n is odd, m is even, and n divides m. Seoud and Salim
[2253] present edge-odd graceful labelings for the following families of graphs: Wn for
n ≡ 1, 2 and 3 (mod 4); Cn�K2m−1; even helms; Pn�K2m; and K2,s. They also provide
two theorems about non edge-odd graceful graphs. Susanti, Ernanto1, and Surodjo [2548]
found edge-odd graceful labelings for some classes of prism related graphs.

In [2464] Sridevi, Navaeethakrishnan, Nagarajan, and Nagarajan call a graph G with q
edges odd-even graceful if there is an injection f from the vertices of G to {1, 3, 5, . . . , 2q+
1} such that, when each edge uv is assigned the label |f(u) − f(v)|, the resulting edge
labels are {2, 4, 6, . . . , 2q}. They proved that Pn, combs Pn �K1, stars K1,n, K1,2,n, Km,n,
and bistars Bm,n are odd-even graceful.

Sudha and Babu [2484] say a graph G with q edges is even-even graceful if there is an
injection f from the edges of G to {2, 4, 6, . . . , 2q} such that, the induced map f+ from
V (G) to {0, 2, . . . , 2k − 2} defined by f ∗(x) = Σ(f(xy) (mod 2k) where k = max(p, q) is
injective and each value is f ∗(x) is even. They proved that dumbbells, stars, Cn × P2,
and K1 + Cn are even-even graceful.
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Behera, Mishra, and Nayak [431] proved the following: bistars Br,r are even-even
graceful, combs are even-even graceful, the trees obtained by joining and even number
of pendent edges to the endpoint of a path are even-even graceful, the graphs obtained
by identifying the center of a star and a vertex of C3 are odd-even graceful, the graphs
obtained by identifying the center of a star and a vertex of C3 and two pendent edges
at the other two verticies are odd-even graceful, and the graphs obtained by identifying
the center of a star with a vertex of Cn and the endpoints of the star with the opposite
vertices of Cn is odd-even graceful.

In [645] Daoud zele introduced vertex odd graceful labelings as follows. Let G be a
graph with q edges. A function f is called a vertex odd gracefulabeling of G if f E(G)→
{1, 2, 3, . . . , 2q} is an injection and the induced function f ∗ V (G) → {1, 3, . . . , 2q − 1}
defined as f ∗(u) =

∑
uv∈E(G) f(uv) (mod 2q) is also an injection. A graph which admits

a vertex odd graceful labeling is called a vertex odd graceful graph. Necessary and sufficient
conditions for prisme, tori, wheels, fans and books to be vertex odd graceful are given.

3.7 Cordial Labelings

Cahit [528] has introduced a variation of both graceful and harmonious labelings. Let
f be a function from the vertices of G to {0, 1} and for each edge xy assign the label
|f(x) − f(y)|. Call f a cordial labeling of G if the number of vertices labeled 0 and the
number of vertices labeled 1 differ by at most 1, and the number of edges labeled 0 and
the number of edges labeled 1 differ at most by 1. Cahit [529] proved the following: every
tree is cordial; Kn is cordial if and only if n ≤ 3; Km,n is cordial for all m and n; the

friendship graph C
(t)
3 (i.e., the one-point union of t 3-cycles) is cordial if and only if t 6≡ 2

(mod 4); all fans are cordial; the wheel Wn is cordial if and only if n 6≡ 3 (mod 4) (see
also [694]); maximal outerplanar graphs are cordial; and an Eulerian graph is not cordial
if its size is congruent to 2 (mod 4). Kuo, Chang, and Kwong [1445] determine all m
and n for which mKn is cordial. Youssef [2876] proved that every Skolem-graceful graph
(see 3.5 for the definition) is cordial. Liu and Zhu [1623] proved that a 3-regular graph of
order n is cordial if and only if n 6≡ 4 (mod 8).

In [2016], [2017], [2018], [2023], and [2019] Prajapati and Gajjar provided results about
the existence of cordial labelings of graphs obtained from paths, cycles, flower graphs,
sunflower graphs, flower snarks, lotus inside a circle graphs, helms, closed helms, armed
helms (Wn ⊕ P2), and webs by the duplication of vertices and edges.

A k-angular cactus is a connected graph all of whose blocks are cycles with k vertices.
In [529] Cahit proved that a k-angular cactus with t cycles is cordial if and only if kt 6≡ 2
(mod 4). This was improved by Kirchherr [1379] who showed any cactus whose blocks
are cycles is cordial if and only if the size of the graph is not congruent to 2 (mod 4).
Kirchherr [1380] also gave a characterization of cordial graphs in terms of their adjacency
matrices. Ho, Lee, and Shee [1017] proved: Pn × C4m is cordial for all m and all odd n;
the composition G and H is cordial if G is cordial and H is cordial and has odd order
and even size (see §2.3 for definition of composition); for n ≥ 4 the composition Cn[K2] is
cordial if and only if n 6≡ 2 (mod 4); the Cartesian product of two cordial graphs of even
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size is cordial. Ho, Lee, and Shee [1016] showed that a unicyclic graph is cordial unless
it is C4k+2 and that the generalized Petersen graph (see §2.7 for the definition) P (n, k) is
cordial if and only if n 6≡ 2 (mod 4). Khan [1362] proved that a graph that consisting of
a finite number of cycles of finite length joined at a common cut vertex is cordial if and
only if the number of edges is not congruent to 2 mod 4.

Du [694] determines the maximal number of edges in a cordial graph of order n and
gives a necessary condition for a k-regular graph to be cordial. Riskin [2120] proved that
Möbius ladders Mn (see §2.3 for the definition) are cordial if and only if n ≥ 3 and n 6≡ 2
(mod 4). (See also [2233].) Diab and Nada [677] show that Pn�Pm is cordial; except for
n and m both equal to 2 (mod 4), Cn � Cm is cordial; and when n ≡ 2 (mod 4) and m
is odd, Cn �Cm is not cordial. In [2166] Salehi, Mukhin, and Saputro showed that Qn is
cordial for all n > 1.

Seoud and Abdel Maqusoud [2221] proved that if G is a graph with n vertices and
m edges and every vertex has odd degree, then G is not cordial when m + n ≡ 2 (mod
4). They also prove the following: for m ≥ 2, Cn × Pm is cordial except for the case
C4k+2×P2;P 2

n is cordial for all n;P 3
n is cordial if and only if n 6= 4; and P 4

n is cordial if and
only if n 6= 4, 5, or 6. Seoud, Diab, and Elsakhawi [2230] have proved the following graphs
are cordial: Pn+Pm for all m and n except (m,n) = (2, 2); Cm+Cn if m 6≡ 0 (mod 4) and
n 6= 2 (mod 4); Cn +K1,m for n 6≡ 3 (mod 4) and odd m except (n,m) = (3, 1); Cn +Km

when n is odd, and when n is even and m is odd; K1,m,n; K2,2,m; the n-cube; books Bn if
and only if n 6≡ 3 (mod 4); B(3, 2,m) for all m; B(4, 3,m) if and only if m is even; and
B(5, 3,m) if and only if m 6≡ 1 (mod 4) (see §2.4 for the notation B(n, r,m)). In [2437]
Solairaju and Arockiasamy prove that various families of subgraphs of grids Pm × Pn are
cordial.

Diab [670], [671], and [673] proved the following graphs are cordial: Cm + Pn if and
only if (m,n) 6= (3, 3), (3, 2), or (3,1); Pm +K1,n if and only if (m,n) 6= (1, 2); Pm ∪K1,n

if and only if (m,n) 6= (1, 2);Cm ∪ K1,n; Cm + Kn for all m and n except m ≡ 3 (mod
4) and n odd, and m ≡ 2 (mod 4) and n even; Cm ∪Kn for all m and n except m ≡ 2
(mod 4); Pm +Kn; Pm ∪Kn; P 2

m ∪ P 2
n except for (m,n) = (2, 2) or (3,3); P 2

n + Pm except
for (m,n) = (3, 1), (3, 2), (2, 2), (3, 3), and (4,2); P 2

n ∪ Pm except for (n,m) = (2, 2), (3, 3),
and (4,2); P 2

n +Cm if and only if (n,m) 6= (1, 3), (2, 3), and (3, 3).Pn +Km; Cn +K1,m for
all n > 3 and all m except n ≡ 3 (mod 4); Cn +K1,m for n ≡ 3 (mod 4) (n 6= 3) and even
m ≥ 2; and Cm × Cn if and only if 2mn is not congruent to 2 (mod 4).

In [672] Diab proved the graphs Wn+Wm are cordial if and only if one of the following
conditions is not satisfied: (i) (n,m) = (3, 3), (ii) n = 3 and m ≡ 1 (mod 4), (iii) n ≡ 1
(mod 4) and m ≡ 3 (mod 4); the graphs Wn ∪Wm are cordial if and only if one of the
following conditions is not satisfied: (i) n = 3 and m ≡ 1 (mod 4), (ii) n ≡ 1 (mod 4)
and m ≡ 3 (mod 4); the graphs Wn + Pm are cordial if and only if one of the following
conditions is not satisfied: (i) (n,m) = (3, 1), (3, 2) and (3, 3), (ii) n ≡ 3 (mod 4) and
m = 1. They also prove that Wn ∪ Pm and Wn ∪ Cm are cordial for all m and n and
Wn +Cm is cordial if and only if (m,n) 6= (3, 3) and (3, 4). In [674] Diab showed that the
second power of Cn is cordial if and only if n = 3 or n is even and greater than 4. He also
investigated the cordiality of the join and union of pairs of second power of cycles and
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graphs consisting of one second power of cycle with one cycle and one path.
In [1816] Nada, Diab, Elrokh, and Sabra proved that Pn �Cm is cordial if and only if

gcd(n,m) 6= 1 or 3 (mod 4); in [1815] they proved Cn � Pm is cordial for all n ≥ 3 and
m ≥ 1. Nada, Elrokh, and Elshafey [1817] provided necessary and sufficient conditions
for F 2

n = K1 + P 2
n , F

2
n + F 2

m, and F 2
n + F 2

m to be cordial.
The generalized Jahangir graph Jm,n m > 3, n > 1 is a graph on mn + 1 vertices,

consisting of a cycle Cmn with one additional vertex that is adjacent to n vertices of Cmn
at distance m to each other on Cmn. Gajjar and Des [809] proved Jm,n is cordial for all
m > 3 and n > 1, except for J1,4n−1.

Youssef [2878] has proved the following: If G and H are cordial and one has even
size, then G ∪H is cordial; if G and H are cordial and both have even size, then G+H
is cordial; if G and H are cordial and one has even size and either one has even order,
then G + H is cordial; Cm ∪ Cn is cordial if and only if m + n 6≡ 2 (mod 4); mCn is
cordial if and only if mn 6≡ 2 (mod 4); Cm + Cn is cordial if and only if (m,n) 6= (3, 3)
and {m (mod 4), n (mod 4)} 6= {0, 2}; and if P k

n is cordial, then n ≥ k + 1 +
√
k − 2.

He conjectures that this latter condition is also sufficient. He confirms the conjecture for
k = 5, 6, 7, 8, and 9.

Lee and Liu [1505] have shown that the complete n-partite graph is cordial if and
only if at most three of its partite sets have odd cardinality (see also [694]). Lee, Lee,
and Chang [1480] prove the following graphs are cordial: the Cartesian product of an
arbitrary number of paths; the Cartesian product of two cycles if and only if at least one
of them is even; and the Cartesian product of an arbitrary number of cycles if at least
one of them has length a multiple of 4 or at least two of them are even. Ali Al-Shamiri,
Elrokh, El-Mashtawye, and Tallah [132] showed that the Cartesian product of a path and
a cycle is cordial under some conditions and that the Cartesian product of two paths is
cordial.

Shee and Ho [2321] have investigated the cordiality of the one-point union of n copies

of various graphs. For C
(n)
m , the one-point union of n copies of Cm, they prove:

(i) If m ≡ 0 (mod 4), then C
(n)
m is cordial for all n;

(ii) If m ≡ 1 or 3 (mod 4), then C
(n)
m is cordial if and only if n 6≡ 2 (mod 4);

(iii) If m ≡ 2 (mod 4), then C
(n)
m is cordial if and only if n is even.

For K
(n)
m , the one-point union of n copies of Km, Shee and Ho [2321] prove:

(i) If m ≡ 0 (mod 8), then K
(n)
m is not cordial for n ≡ 3 (mod 4);

(ii) If m ≡ 4 (mod 8), then K
(n)
m is not cordial for n ≡ 1 (mod 4);

(iii) If m ≡ 5 (mod 8), then K
(n)
m is not cordial for all odd n;

(iv) K
(n)
4 is cordial if and only if n 6≡ 1 (mod 4);

(v) K
(n)
5 is cordial if and only if n is even;

(vi) K
(n)
6 is cordial if and only if n > 2;

(vii) K
(n)
7 is cordial if and only if n 6≡ 2 (mod 4);

(viii) K
(2)
n is cordial if and only if n has the form p2 or p2 + 1.

For W
(n)
m , the one-point union of n copies of the wheel Wm with the common vertex being

the center, Shee and Ho [2321] show:
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(i) If m ≡ 0 or 2 (mod 4), then W
(n)
m is cordial for all n;

(ii) If m ≡ 3 (mod 4), then W
(n)
m is cordial if n 6≡ 1 (mod 4);

(iii) If m ≡ 1 (mod 4), then W
(n)
m is cordial if n 6≡ 3 (mod 4). For all n and all m > 1

Shee and Ho [2321] prove F
(n)
m , the one-point union of n copies of the fan Fm = Pm +K1

with the common point of the fans being the center, is cordial (see also [1595]). The flag
Flm is obtained by joining one vertex of Cm to an extra vertex called the root. Shee and
Ho [2321] show all Fl

(n)
m , the one-point union of n copies of Flm with the common point

being the root, are cordial. In his 2001 Ph. D. thesis Selvaraju [2202] proves that the
one-point union of any number of copies of a complete bipartite graph is cordial. Benson
and Lee [438] have investigated the regular windmill graphs K

(n)
m and determined precisely

which ones are cordial for m < 14.
Diab and Mohammedm [676] proved the following: the join of two fans Fn + Fm is

cordial if and only if n,m ≥ 4; Fn ∪ Fm is cordial if and only if (n,m) 6= (1,1) or (2,2);
Fn + Pm is cordial if and only if (n,m) 6= (1,2), (2,1), (2,2), (2,3), or (3,2); Fn ∪ Pm is
cordial if and only if (n,m) 6= (1,2); Fn +Cm is cordial if and only if (n,m) 6= (1,3), (2,3)
or (3,3); and Fn ∪ Cm is cordial if and only if (n,m) 6= (2, 3). Hefnawy, Elsid, and Euat
Tallah [976] gave necessary and sufficient conditions for a cordial labeling of thesum of
the second power of the path P 2

n +K1,m and P 2
n ∪K1,m.

Andar, Boxwala, and Limaye [153], [154], and [157] have proved the following graphs
are cordial: helms; closed helms; generalized helms obtained by taking a web (see 2.2 for
the definitions) and attaching pendent vertices to all the vertices of the outermost cycle in
the case that the number cycles is even; flowers (graphs obtained by joining the vertices
of degree one of a helm to the central vertex); sunflower graphs (that is, graphs obtained
by taking a wheel with the central vertex v0 and the n-cycle v1, v2, . . . , vn and additional
vertices w1, w2, . . . , wn where wi is joined by edges to vi, vi+1, where i+ 1 is taken modulo
n); multiple shells (see §2.2); and the one point unions of helms, closed helms, flowers,
gears, and sunflower graphs, where in each case the central vertex is the common vertex.

Du [695] proved that the disjoint union of n ≥ 2 wheels is cordial if and only if n is
even or n is odd and the number of vertices of in each cycle is not 0 (mod 4) or n is odd
and the number of vertices of in each cycle is not 3 (mod 4). Prajapati and Gajjar [2015]
prove Wn is not cordial if n 6≡ 4, 7 (mod 8) and Cn is not cordial if n 6≡ 4, 7 (mod 8).

Let O be the family of all cordial graphs of odd order and odd size for which there
is no cordial labeling g such that eg(0) − eg(1) = 1. Barrientos and Minion [376] proved
that if G is a cordial graph such that G 6∈ O, then the corona K1 � G is cordial. They
use this result to prove that H �G is cordial when G and H are cordial and G has even
order and even size or G 6∈ O. In addition, H �G is cordial when G is a cordial graph of
odd order and even size and H is any graph of order m and size n ∈ {m− 1,m,m + 1}.
If H is bipartite such that the difference of the cardinalities of its partite sets is at most
one, and G is a cordial graph of even order and odd size that admits a cordial labeling
g such that eg(0) − eg(1) = 1, then the corona H � G is cordial. Barrientos and Minion
proved the cordiality of certain circulant graphs; they also proved that for every positive
integer k, the k-splitting of a cordial graph of even size, results in a cordial graph. They
provide sufficient conditions to prove that any super subdivision of a graph G is cordial.
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They study the cordiality of the join of two cordial graphs, proving that G+H is cordial
when G and H have even order and even size, or both have odd order and even size, or
both graphs have odd order, odd size, and the dominating weight in both graphs is not
1, or G has even order, odd size, and the dominating weight on both graphs is not the
same, or both G and H have odd order, but only one has odd size, and the dominating
weight is 0. They also prove that when G is a cordial graph of odd order and even size,
the one-point union of t copies of G is cordial.

In [376] Barrientos and Minion provide necessary conditions for the cordiality of coro-
nas of cordial graphs, prove the cordiality of a family of circulant graphs, prove that any
splitting graph of a cordial graph of even order and even size is cordial, determine a con-
dition that a graph must satisfy in order that any super subdivision of it is cordial, prove
the cordiality of the joint of two cordial graphs, and determine when a one-point union
of a cordial graph is cordial.

For positive integers m and n divisible by 4 Venkatesh [2721] constructs graphs ob-
tained by appending a copy of Cn to each vertex of Cm by identifying one vertex of Cn
with each vertex of Cm and iterating by appending a copy of Cn to each vertex of degree
2 in the previous step. He proves that the graphs obtained by successive iterations are
cordial.

Elumalai and Sethurman [711] proved: cycles with parallel cords are cordial and n-
cycles with parallel Pk-chords (see §2.2 for the definition) are cordial for any odd positive
integer k at least 3 and any n 6≡ 2 (mod 4) of length at least 4. They call a graph H an
even-multiple subdivision graph of a graph G if it is obtained from G by replacing every
edge uv of G by a pair of paths of even length starting at u and ending at v. They prove
that every even-multiple subdivision graph is cordial and that every graph is a subgraph
of a cordial graph. In [2807] Wen proves that generalized wheels Cn + mK1 are cordial
when m is even and n 6≡ 2 (mod 4) and when m is odd and n 6≡ 3 (mod 4). Kuppusamy
and Guruswamy [1446] show that the subdivision graph of K2,n is graceful for n ≥ 1 and
the subdivision graph of the shell graph C(n, n− 3) is graceful for n ≥ 4.

Vaidya, Ghodasara, Srivastav, and Kaneria investigated graphs obtained by joining
two identical graphs by a path. They prove: graphs obtained by joining two copies of
the same cycle by a path are cordial [2635]; graphs obtained by joining two copies of the
same cycle that has two chords with a common vertex with opposite ends of the chords
joining two consecutive vertices of the cycle by a path are cordial [2635]; graphs obtained
by joining two rim verticies of two copies of the same wheel by a path are cordial [2637];
and graphs obtained by joining two copies of the same Petersen graph by a path are
cordial [2637]. They also prove that graphs obtained by replacing one vertex of a star by
a fixed wheel or by replacing each vertex of a star by a fixed Petersen graph are cordial
[2637]. In [2676] Vaidya, Ghodasara, Srivastav, and Kaneria investigated graphs obtained
by joining two identical cycles that have a chord are cordial and the graphs obtained by
starting with copies G1, G2, . . . , Gn of a fixed cycle with a chord that forms a triangle
with two consecutive edges of the cycle and joining each Gi to Gi+1 (i = 1, 2, . . . , n − 1)
by an edge that is incident with the endpoints of the chords in Gi and Gi+1 are cordial.
Vaidya, Dani, Kanani, and Vihol [2630] proved that the graphs obtained by starting with
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copies G1, G2, . . . , Gn of a fixed star and joining each center of Gi to the center of Gi+1

(i = 1, 2, . . . , n− 1) by an edge are cordial.
Ghodasara, Rokad, and Jadav [882] prove that the path union of Pn × Pn is cordial.

They also prove that the graph obtained by joining two copies of Pn × Pn by a path is
cordial. Ghodasara and Jadav [876] prove: the graph obtained by joining a finite number
of copies of Pn×Pn by path is cordial; the star of Pn×Pn is cordial; and the path union of
the star of Pn × Pn is cordial. Rokad and Patadiya [2133] proved that the shadow graph,
splitting graph, and the degree splitting graph of a star are cordial graphs. They also
showed that the jewel graph and the jellyfish graph are cordial.

Ghodasara and Rokad prove [883] the star of Kn,n (n ≥ 2) is cordial, the path union
of Kn,n (n ≥ 2) is cordial, and the graph obtained by joining two copies of Kn,n (n ≥ 2)
by a path is cordial [883]. In [884] the same authors prove that a vertex switching of
any non-apex vertex of a wheel graph, a vertex switching of any internal vertex of a
flower graph, a vertex switching of any non-apex vertex of a gear graph, and a vertex
switching of any non-apex vertex of a shell graph are cordial graphs. In [885] they proved
that a barycentric subdivision of a shell graph, a barycentric subdivision of Kn,n, and a
barycentric subdivision of a wheel are cordial. Ghodasara and Sonchhatra [886] prove
that the graph obtained by joining two copies of the same fan by a path is cordial. They
also prove that the star of a fan is cordial and the graph obtained by joining two copies
of the star of the same fan by a path is cordial [886].

Vaidya, Kanani, Srivastav, and Ghodasara [2645] proved: graphs obtained by subdi-
viding every edge of a cycle with exactly two extra edges that are chords with a common
endpoint and whose other end points are joined by an edge of the cycle are cordial; graphs
obtained by subdividing every edge of the graph obtained by starting with Cn and adding
exactly three chords that result in two 3-cycles and a cycle of length n − 3 are cordial;
graphs obtained by subdividing every edge of a Petersen graph are cordial. Sankar and
Sethuramam zske [2181] showed that the subdivision graph S(K2, n) is graceful and cor-
dial, for n ≥ 1 and the shell graph S(C(n, n− 3)) is graceful and cordial for n ≥ 4.

Recall the shell C(n, n−3) is the cycle Cn with n−3 cords sharing a common endpoint.
Vaidya, Dani, Kanani, and Vihol [2631] proved that the graphs obtained by starting with
copies G1, G2, . . . , Gn of a fixed shell and joining common endpoint of the chords of Gi

to the common endpoint of the chords of Gi+1 (i = 1, 2, . . . , n − 1) by an edge are
cordial. Vaidya, Dani, Kanani, and Vihol [2646] define Cn(Cn) as the graph obtained
by subdividing each edge of Cn and connecting the new n vertices to form a copy of Cn
inscribed the original Cn. They prove that Cn(Cn) is cordial if n 6= 2 (mod 4); the graphs
obtained by starting with copies G1, G2, . . . , Gk of Cn(Cn) the graph obtained by joining a
vertex of degree 2 in Gi to a vertex of degree 2 in Gi+1 (i = 1, 2, . . . , n− 1) by an edge are
cordial; and the graphs obtained by joining vertex of degree 2 from one copy of Cn(Cn)
to a vertex of degree 2 to another copy of Cn(Cn) by any finite path are cordial. Vaidya
and Shah [2672] and [2673] proved that following graphs are cordial: the shadow graph of
the bistar Bn,n, the splitting graph of Bn,n, the degree splitting graph of Bn,n, alternate
triangular snakes, alternate quadrilateral snakes, double alternate triangular snakes, and
double alternate quadrilateral snakes. In [2675] Vaidya and Shah give cordial labelings of
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the degree splitting graph of paths, shells, helms, and gears.
A graph C(2n, n − 2) is called an alternate shell if C(2n, n − 2) is obtained from

the cycle C2n (v0, v1, v2, . . . , v2n−1) by adding n − 2 chords between the vertex v0 and
the vertices v2i+1, for 1 ≤ i ≤ n − 2. Sethuraman and Sankar [2290] proved that some
graphs obtained by merging alternate shells and joining certain vertices by a path have
α-labelings.

Vaidya, Srivastav, Kaneria, and Ghodasara [2677] proved that a cycle with two chords
that share a common vertex and the opposite ends of which join two consecutive vertices
of the cycle is cordial. For a graph G Vaidya, Ghodasara, Srivastav, and Kaneria [2636]
introduced the graph G∗ called the star of G as the graph obtained by replacing each
vertex of the star K1,n by a copy of G and prove that C ∗

n admits cordial labeling. Vaidya
and Dani [2626] proved that the graphs obtained by starting with n copies G1, G2, . . . , Gn

of a fixed star and joining each center of Gi to the center of Gi+1 by an edge as well as
each of the centers to a new vertex xi (1 ≤ i ≤ n− 1) by an edge admit cordial labelings.
An arbitrary supersubdivison H of a graph G is the graph obtained from G by replacing
every edge of G by K2,m, where m may vary for each edge arbitrarily. Vaidya and Kanani
[2638] proved that arbitrary supersubdivisions of paths and stars admit cordial labelings.
Vaidya and Dani [2627] prove that arbitrary supersubdivisions of trees, Km,n, and Pm×Pn
are cordial. They also prove that an arbitrary supersubdivision of the graph obtained by
identifying an end vertex of a path with every vertex of a cycle Cn is cordial except when
n is odd, mi (1 ≤ i ≤ n) are odd, and mi (n+ 1 ≤ i ≤ mn) of the K2,mi

are even. Recall
for a graph G and a vertex v of G Vaidya, Srivastav, Kaneria, and Kanani [2678] define
a vertex switching Gv as the graph obtained from G by removing all edges incident to
v and adding edges joining v to every vertex not adjacent to v in G. They proved that
the graphs obtained by the switching of a vertex in Cn admit cordial labelings. They
also show that the graphs obtained by the switching of any arbitrary vertex of cycle Cn
with one chord that forms a triangle with two consecutive edges of the cycle are cordial.
Moreover they prove that the graphs obtained by the switching of any arbitrary vertex
in cycle with two chords that share a common vertex the opposite ends of which join two
consecutive vertices of the cycle are cordial.

The middle graph M(G) of a graph G is the graph whose vertex set is V (G) ∪ E(G)
and in which two vertices are adjacent if and only if either they are adjacent edges of G
or one is a vertex of G and the other is an edge incident with it. Vaidya and Vihol [2680]
prove that the middle graph M(G) of an Eulerian graph is Eulerian with |E(M(G))| =∑n

i=1(d(vi)
2 + 2e)/2. They prove that middle graphs of paths, crowns Cn�K1, stars, and

tadpoles (that is, graphs obtained by appending a path to a cycle) admit cordial labelings.
Vaidya and Dani [2629] define the duplication of an edge e = uv of a graph G by a

new vertex w as the graph G′ obtained from G by adding a new vertex w and the edges
wv and wu. They prove that the graphs obtained by duplication of an arbitrary edge
of a cycle and a wheel admit a cordial labeling. Starting with k copies of fixed wheel
Wn, W

(1)
n ,W

(2)
n , . . . , W

(k)
n , Vaidya, Dani, Kanani, and Vihol [2633] define G =< W

(1)
n :

W
(2)
n : . . . : W

(k)
n > as the graph obtained by joining the center vertices of each of W

(i)
n and

W
(i+1)
n to a new vertex xi where 1 ≤ i ≤ k−1. They prove that < W

(1)
n : W

(2)
n : ... : W

(k)
n >
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are cordial graphs. Kaneria and Vaidya [1317] define the index of cordiality of G as n
if the disjoint union of n copies of G is cordial but the disjoint union of fewer than n
copies of G is not cordial. They obtain several results on index of cordiality of Kn. In the
same paper they investigate cordial labelings of graphs obtained by replacing each vertex
of K1,n by a graph G. Kaneria, Jariya, and Karavadiya [1280] proved that the index of
cordiality for Kn is at most 6 for n at most 105; the index of cordiality for Kn is at most
4, when n can be expressed as sum of square of two integers; and it is at most 8 when a
particular different condition on the edge labels are met. See also [1094].

In [157] Andar et al. define a t-ply graph Pt(u, v) as a graph consisting of t internally
disjoint paths joining vertices u and v. They prove that Pt(u, v) is cordial except when it
is Eulerian and the number of edges is congruent to 2 (mod 4). In [158] Andar, Boxwala,
and Limaye prove that the one-point union of any number of plys with an endpoint as
the common vertex is cordial if and only if it is not Eulerian and the number of edges is
congruent to 2 (mod 4). They further prove that the path union of shells obtained by
joining any point of one shell to any point of the next shell is cordial; graphs obtained by
attaching a pendent edge to the common vertex of the cords of a shell are cordial; and
cycles with one pendent edge are cordial.

For a graph G and a positive integer t, Andar, Boxwala, and Limaye [155] define the
t-uniform homeomorph Pt(G) of G as the graph obtained from G by replacing every edge
of G by vertex disjoint paths of length t. They prove that if G is cordial and t is odd,
then Pt(G) is cordial; if t ≡ 2 (mod 4) a cordial labeling of G can be extended to a cordial
labeling of Pt(G) if and only if the number of edges labeled 0 in G is even; and when t ≡ 0
(mod 4) a cordial labeling of G can be extended to a cordial labeling of Pt(G) if and only
if the number of edges labeled 1 in G is even. In [156] Ander et al. prove that Pt(K2n) is
cordial for all t ≥ 2 and that Pt(K2n+1) is cordial if and only if t ≡ 0 (mod 4) or t is odd
and n 6≡ 2 (mod 4), or t ≡ 2 (mod 4) and n is even.

In [158] Andar, Boxwala, and Limaya show that a cordial labeling of G can be extended
to a cordial labeling of the graph obtained from G by attaching 2m pendent edges at each
vertex of G. For a binary labeling g of the vertices of a graph G and the induced edge
labels given by g(e) = |g(u)− g(v)| let vg(j) denote the number of vertices labeled with j
and eg(j) denote the number edges labeled with j. Let i(G) = min{|eg(0)− eg(1)|} taken
over all binary labelings g of G with |vg(0) − vg(1)| ≤ 1. Andar et al. also prove that
a cordial labeling g of a graph G with p vertices can be extended to a cordial labeling
of the graph obtained from G by attaching 2m + 1 pendent edges at each vertex of G
if and only if G does not satisfy either of the conditions: (1) G has an even number of
edges and p ≡ 2 (mod 4); (2) G has an odd number of edges and either p ≡ 1 (mod 4)
with eg(1) = eg(0) + i(G) or n ≡ 3 (mod 4) and eg(0) = eg(1) + i(G). Andar, Boxwala,
and Limaye [159] also prove: if g is a binary labeling of the n vertices of graph G with
induced edge labels given by g(e) = |g(u) − g(v)| then g can be extended to a cordial
labeling of G �K2m if and only if n is odd and i(G) ≡ 2 (mod 4); Kn �K2m is cordial
if and only if n 6= 4 (mod 8); Kn � K2m+1 is cordial if and only if n 6= 7 (mod 8); if
g is a binary labeling of the n vertices of graph G with induced edge labels given by
g(e) = |g(u)− g(v)| then g can be extended to a cordial labeling of G� Ct if t 6= 3 mod
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4, n is odd and eg(0) = eg(1). For any binary labeling g of a graph G with induced edge
labels given by g(e) = |g(u)− g(v)| they also characterize in terms of i(G) when g can be
extended to graphs of the form G�K2m+1.

For graphs G1, G2, . . . , Gn (n ≥ 2) that are all copies of a fixed graph G, Shee and Ho
[2322] call a graph obtained by adding an edge from Gi to Gi+1 for i = 1, . . . , n− 1 a path
union of G (the resulting graph may depend on how the edges are chosen). Among their
results they show the following graphs are cordial: path-unions of cycles; path-unions of
any number of copies of Km when m = 4, 6, or 7; path-unions of three or more copies of
K5; and path-unions of two copies of Km if and only if m − 2,m, or m + 2 is a perfect
square. They also show that there exist cordial path-unions of wheels, fans, unicyclic
graphs, Petersen graphs, trees, and various compositions.

Lee and Liu [1505] give the following general construction for the forming of cordial
graphs from smaller cordial graphs. Let H be a graph with an even number of edges and
a cordial labeling such that the vertices of H can be divided into t parts H1, H2, . . . , Ht

each consisting of an equal number of vertices labeled 0 and vertices labeled 1. Let
G be any graph and G1, G2, . . . , Gt be any t subsets of the vertices of G. Let (G,H)
be the graph that is the disjoint union of G and H augmented by edges joining every
vertex in Gi to every vertex in Hi for all i. Then G is cordial if and only if (G,H)
is. From this it follows that: all generalized fans Fm,n = Km + Pn are cordial; the
generalized bundle Bm,n is cordial if and only if m is even or n 6≡ 2 (mod 4) (Bm,n

consists of 2n vertices v1, v2, . . . , vn, u1, u2, . . . , un with an edge from vi to ui and 2m
vertices x1, x2, . . . , xm, y1, y2, . . . , ym with xi joined to vi and yi joined to ui); if m is odd
the generalized wheel Wm,n = Km + Cn is cordial if and only if n 6≡ 3 (mod 4). If m is
even, Wm,n is cordial if and only if n 6≡ 2 (mod 4); a complete k-partite graph is cordial
if and only if the number of parts with an odd number of vertices is at most 3.

Sethuraman and Selvaraju [2299] have shown that certain cases of the union of any
number of copies of K4 with one or more edges deleted and one edge in common are
cordial. Youssef [2882] has shown that the kth power of Cn is cordial for all n when
k ≡ 2 (mod 4) and for all even n when k ≡ 0 (mod 4). Ramanjaneyulu, Venkaiah, and
Kothapalli [2081] give cordial labelings for a family of planar graphs for which each face is
a 3-cycle and a family for which each face is a 4-cycle. Acharya, Germina, Princy, and Rao
[35] prove that every graph G can be embedded in a cordial graph H. The construction
is done in such a way that if G is planar or connected, then so is H.

Recall from §2.7 that a graph H is a supersubdivision of a graph G, if every edge uv
of G is replaced by K2,m (m may vary for each edge) by identifying u and v with the two
vertices in K2,m that form the partite set with exactly two members. Vaidya and Kanani
[2638] prove that supersubdivisions of paths and stars are cordial. They also prove that
supersubdivisions of Cn are cordial provided that n and the various values for m are odd.

Raj and Koilraj [2061] proved that the splitting graphs of Pn, Cn, Km,n,Wn, nK2, and

the graphs obtained by starting with k copies of stars K
(1)
1,n, K

(2)
1,n, . . . , K

(k)
1,n and joining the

central vertex of K
(p−1)
1,n and K

(p)
1,n to a new vertex xp−1 for each 2 ≤ p ≤ k are cordial.

Seoud, El Sonbaty, and Abd El Rehim [2231] proved the following graphs are cordial:
K1,l,m,n when mn is even; Pm +K1,n if n is even or n is odd and (m 6= 2); the conjunction
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graph P4 ∧ Cn is cordial if n is even; and the join of the one-point union of two copies of
Cn and K1.

Recall < K1,n1 , . . . , K1,nt > is the graph obtained by starting with the stars
K1,n1 , . . . , K1,nt and joining the center vertices of K1,ni

and K1,ni+1
to a new vertex vi where

1 ≤ i ≤ k − 1. Kaneria, Jariya, and Meghpara [1284] proved that < K1,n1 , . . . , K1,nt >
is cordial and every graceful graph with |vf (odd) − vf (even)| ≤ 1 is cordial. Kaneria,
Meghpara, and Makadia [1312] proved that the cycle of complete graphs C(t ·Km,n) and
the cycle of wheels C(t ·Wn) are cordial. Kaneria, Makadia, and Meghpara [1299] proved
that the cycle of cycles C(t · Cn) is cordial for t ≥ 3. Kaneria, Makadia, and Meghpara
[1300] proved that a star of Kn and a cycle of n copies of Kn are cordial. Kaneria, Viradia,
Jariya, and Makadia [1319] proved that the cycle of paths C(t · Pn) is cordial, product
cordial (see Section 7.7), and total edge product cordial.

Cahit [534] calls a graph H-cordial if it is possible to label the edges with the numbers
from the set {1,−1} in such a way that, for some k, at each vertex v the sum of the labels
on the edges incident with v is either k or −k and the inequalities |v(k)− v(−k)| ≤ 1 and
|e(1)− e(−1)| ≤ 1 are also satisfied, where v(i) and e(j) are, respectively, the number of
vertices labeled with i and the number of edges labeled with j. He calls a graph Hn-cordial
if it is possible to label the edges with the numbers from the set {±1,±2, . . . ,±n} in such
a way that, at each vertex v the sum of the labels on the edges incident with v is in the
set {±1,±2, . . . ,±n} and the inequalities |v(i) − v(−i)| ≤ 1 and |e(i) − e(−i)| ≤ 1 are
also satisfied for each i with 1 ≤ i ≤ n. Among Cahit’s results are: Kn,n is H-cordial
if and only if n > 2 and n is even; and Km,n,m 6= n, is H-cordial if and only if n ≡ 0
(mod 4), m is even and m > 2, n > 2. Unfortunately, Ghebleh and Khoeilar [875] have
shown that other statements in Cahit’s paper are incorrect. In particular, Cahit states
that Kn is H-cordial if and only if n ≡ 0 (mod 4); Wn is H-cordial if and only if n ≡ 1
(mod 4); and Kn is H2-cordial if and only if n ≡ 0 (mod 4) whereas Ghebleh and Khoeilar
instead prove that Kn is H-cordial if and only if n ≡ 0 or 3 (mod 4) and n 6= 3;Wn is
H-cordial if and only if n is odd; Kn is H2-cordial if n ≡ 0 or 3 (mod 4); and Kn is
not H2-cordial if n ≡ 1 (mod 4). Ghebleh and Khoeilar also prove every wheel has an
H2-cordial labeling. In [772] Freeda and Chellathurai prove that the following graphs are
H2-cordial: the join of two paths, the join of two cycles, ladders, and the tensor product
Pn ⊗ P2. They also prove that the join of Wn and Wm where n + m ≡ 0 (mod 4) is
H-cordial. Cahit generalizes the notion of H-cordial labelings in [534].

A graph G(V,E) is called Hk- cordial if it has an H-cordial labeling f such that for
each edge e and each vertex v of G have the label 1 ≤ |f(e)| ≤ k, 1 ≤ |f(v)| ≤ k and
|vf (i)− vf (−i))| ≤ 1, |ef (i))− ef (−i)| ≤ 1 for each i with 1 ≤ i ≤ k. Ratilal and Parmar
[2107] investigated Hk-cordial labelings of triangular snakes, double triangular snakes,
triple triangular snakes, alternate triangular snakes, double alternate triangular snakes,
irregular triangular snakes, quadrilateral snakes, double quadrilateral snakes, alternate
quadrilateral snakes, and irregular quadrilateral snakes. Joshi and Parmar [1895], [1261]
investigated the H-, H2- and H3-cordiality of the following snakes: triangular, double
triangular, triple trianglar, quadrilateral, double quadrilateral, alternate trigular, dou-
ble alternate trigular, irregular triangular, quadrilateral, double quadrilateral, alternate
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quadrilateral, and irregular quadrilateral. Joshi and Pamar [1261] investigated Hk-cordial
labeling of p-triangular, m-polygonal snakes, double m-polygonal snakes, alternate m-
polygonal snakes, double alternate m-polygonal snakes, irregular m-polygonal snakes,
and double irregular m-polygonal snakes.

Cahit and Yilmaz [538] call a graph Ek-cordial if it is possible to label the edges
with the numbers from the set {0, 1, 2, . . . , k − 1} in such a way that, at each vertex v,
the sum of the labels on the edges incident with v modulo k satisfies the inequalities
|v(i)−v(j)| ≤ 1 and |e(i)−e(j)| ≤ 1, where v(s) and e(t) are, respectively, the number of
vertices labeled with s and the number of edges labeled with t. Cahit and Yilmaz prove
the following graphs are E3-cordial: Pn (n ≥ 3); stars Sn if and only if n 6≡ 1 (mod 3);
Kn (n ≥ 3); Cn (n ≥ 3); friendship graphs; and fans Fn (n ≥ 3). They also prove that
Sn (n ≥ 2) is Ek-cordial if and only if n 6≡ 1 (mod k) when k is odd or n 6≡ 1 (mod
2k) when k is even and k 6= 2. Ni, Liu, and Lu [1842] demonstrate the E3-cordiality of
Wn, Pm × Pn, Km,n, and trees.

Bapat and Limaye [347] provide E3-cordial labelings for: Kn (n ≥ 3); snakes whose
blocks are all isomorphic to Kn where n ≡ 0 or 2 (mod 3); the one-point union of any
number of copies of Kn where n ≡ 0 or 2 (mod 3); graphs obtained by attaching a copy
of Kn where n ≡ 0 or 3 (mod 3) at each vertex of a path; and Km � Kn. Rani and
Sridharan [2095] proved: for odd n > 1 and k ≥ 2, Pn � K1 is Ek-cordial; for n even
and n 6= k/2, Pn � K1 is Ek-cordial; and certain cases of fans are Ek-cordial. Youssef
[2879] gives a necessary condition for a graph to be Ek-cordial for certain k. He also gives
some new families of Ek-cordial graphs and proves Lee’s [1537] conjecture about the edge-
gracefulness of the disjoint union of two cycles. Venkatesh, Salah, and Sethuraman [2724]
proved that C2n+1 snakes and C2t

2n+1 are E2-cordial. Liu, Liu, and Wu [1622] provide two
necessary conditions for a graph G to be Ek-cordial and prove that every Pn (n ≥ 3) is
Ep-cordial if p is odd. They also discuss the E2-cordiality of a graph G under the condition
that some subgraph of G has a 1-factor. Liu and Liu [1621] proved that a graph with
no isolated vertex is E2-cordial if and only if it does not have order 4n + 2. Bapat and
Limaye [348] prove that helms, one point unions of helms, and path unions of helms are
E3-cordial. Jinnah and Beena [1252] prove the graphs Pn (n ≥ 3), Cn where n 6= 4 mod
8, and Kn (n ≥ 3) are E4-cordial graphs. They also prove that every graph of order at
least 3 is a subgraph of an E4-cordial graph.

Hovey [1021] has introduced a simultaneous generalization of harmonious and cordial
labelings. For any Abelian group A (under addition) and graph G(V,E) he defines G to
be A-cordial if there is a labeling of V with elements of A such that for all a and b in A
when the edge ab is labeled with f(a) + f(b), the number of vertices labeled with a and
the number of vertices labeled b differ by at most one and the number of edges labeled
with a and the number labeled with b differ by at most one. In the case where A is the
cyclic group of order k, the labeling is called k-cordial. With this definition we have: if
G(V,E) is a graph with |E| ≥ |V | − 1 then G(V,E) is harmonious if and only if G is
|E|-cordial; G is cordial if and only if G is 2-cordial.

Hovey has obtained the following: caterpillars are k-cordial for all k; all trees are
k-cordial for k = 3, 4, and 5; odd cycles with pendent edges attached are k-cordial for all
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k; cycles are k-cordial for all odd k; for k even, C2mk+j is k-cordial when 0 ≤ j ≤ k
2

+ 2
and when k < j < 2k; C(2m+1)k is not k-cordial; Km is 3-cordial; and, for k even, Kmk is
k-cordial if and only if m = 1.

Hovey advances the following conjectures: all trees are k-cordial for all k; all connected
graphs are 3-cordial; and C2mk+j is k-cordial if and only if j 6= k, where k and j are even
and 0 ≤ j < 2k. The last conjecture was verified by Tao [2571]. Tao’s result combined
with those of Hovey show that for all positive integers k the n-cycle is k-cordial with the
exception that k is even and n = 2mk + k. Tao also proved that the crown with 2mk + j
vertices is k-cordial unless j = k is even, and for 4 ≤ n ≤ k the wheel Wn is k-cordial
unless k ≡ 5 (mod 8) and n = (k + 1)/2. In [2603] Tuczyński, Wenus, and Wesek proved
a conjecture of Cichacz, Görlich, and Tuza [624] that all hypertrees are 2-cordial. They
also proved that all hypertree are 3-cordial.

In [2885] Youssef and Al-Kuleab proved the following: if G is a (p1, q1) k-cordial graph
and G is a (p2, q2) k-cordial graph with p1 or p2 ≡ 0 (mod k) and q1 or q2 ≡ 0 (mod k),
then G + H is k-cordial; if G is a (p1, q1) 4-cordial graph and G is a (p2, q2) 4-cordial
graph with p1 or p2 6≡ 2 (mod 4) and q1 or q2 ≡ 0 (mod k), then G+H is 4-cordial; and
Km,n,p is 4-cordial if and only if (m,n, p) mod 4 6≡ (0, 2, 2) or (2, 2, 2).

In [2877] Youssef obtained the following results: C2k with one pendent edge is not
(2k + 1)-cordial for k > 1; Kn is 4-cordial if and only if n ≤ 6; C2

n is 4-cordial if and only
if n 6≡ 2 (mod 4); and Km,n is 4-cordial if and only if n 6≡ 2 (mod 4); He also provides
some necessary conditions for a graph to be k-cordial. Driscol zele [690] proved that all
trees are 7-cordial.

Modha and Kanani [1776] prove that following graphs have a 5-cordial labeling: the
shadow graph of a path and a cycle, graphs obtained by one point duplication and duplica-
tion of an edge by a vertex in cycle, and the graph obtained by the barycentric subdivision
of wheel. In [1769] Modha and Kanani proved prisms, webs, flowers, and closed helms
admit 5-cordial labelings. In [1770] they proved that fans are k-cordial for all k and dou-
ble fans are k-cordial for all odd k and n = (k + 1)/2. In [1772] they proved that the
following graphs are k-cordial: Wn for odd k, n = mk + j,m ≥ 0, 1 ≤ j ≤ k − 1 except
for j = (k − 1)/2; the total graphs of paths (recall T (Pn) has vertex set V (Pn) ∪ E(Pn)
with two vertices adjacent whenever they are neighbors in Pn); the square C2

n for odd
k ≤ n; the path union of n copies of Ck where k is odd; and Cn with one pendent edge
for odd k ≤ n. Rathod and Kanani [2103] proved P 2

n is k-cordial for all k and cycles with
a single pendent edge are k-cordial for all even k. In [2100] Rathod and Kanani proved
the middle graph, total graph, and splitting graph of a path are 4-cordial and P 2

n and
triangular snakes are 4-cordial. Modha and Kanani [1773] proved: Wn is k-cordial for all
odd k and for all n = mk + j, m ≥ 0, 1 ≤ j ≤ k − 1 except for j = k − 1; the path
union of copies of Ck is k-cordial for odd k; the total graph of Pn is k-cordial for all k; the
square C2

n is k-cordial for odd k odd and n ≥ k; and the graphs obtained by appending
an edge to Cn is k-cordial for odd k and n ≥ k. Modha and Kanani [1775] prove the
following graphs are k-cordial: Pm×Ck, Pm×Ck+1, Pm×Ck+3 for all odd k and m ≥ 2,
and Pm×C2k−1 for all odd k,m ≥ 2 and m 6= tk. Rathod and Kanani [2103] [2105] prove
that following graphs are 4-cordial: the splitting graph of K1,n; triangular books; and
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the one point union any number of copies of the fan f3; braid graphs; triangular ladders;
and irregular quadrilateral snakes obtained from the path Pn with consecutive vertices
u1, u2, . . . , un and new vertices v1, v2, . . . , vn−2, w1, w2, and edges uivi, wiui+2, viwi for all
1 ≤ i ≤ n − 2. Rathod and Kanani [2104] prove wheels, fans, friendship graphs, double
fans, and helms are 5-cordial. Driscoll, Krop, and Nguyen [683] proved that all trees are
6-cordial. In [1275], [1276], and [1771] Kanani and Modha prove that fans, friendship
graphs, ladders, double fans, double wheels, wheels, helms, closed helms, and webs are
7-cordial graphs and wheels, fans and friendship graphs, gears, double fans, and helms
are 4-cordial graphs.

Cichacz, Görlich and Tuza [624] extended the definition of k-cordial labeling for hy-
pergraphs. They presented various sufficient conditions on a hypertree H (a connected
hypergraph without cycles) to be k-cordial. From their theorems it follows that every
k-uniform hypertree is k-cordial, and every hypertree with odd order or size is 2-cordial.
Modha and Kanani [1774] prove the following graphs are k-cordial for all k: bistars,
restricted square graphs B2

n,n, the one-point union of C3 and K1,n, and Pn �K1.
In [2295] Sethuraman and Selvaraju present an algorithm that permits one to start

with any non-trivial connected graph G and successively form supersubdivisions (see §2.7
for the definition) that are cordial in the case that every edge in G is replaced by K2,m

where m is even. Sethuraman and Selvaraju [2294] also show that the one-vertex union
of any number of copies of Km,n is cordial and that the one-edge union of k copies of
shell graphs C(n, n − 3) (see §2.2) is cordial for all n ≥ 4 and all k. They conjectured
that the one-point union of any number of copies of graphs of the form C(ni, ni − 3) for
various ni ≥ 4 is cordial. This was proved by Yue, Yuansheng, and Liping in [2896].
Riskin [2122] claimed that Kn is (Z2×Z2)-cordial if and only if n is at most 3 and Km,n is
(Z2×Z2)-cordial if and only if (m,n) 6= (2, 2). (Many authors use V4 to denote Z2×Z2.)
However, Pechenik and Wise [1911] report that the correct statement for Km,n is Km,n

is (Z2 × Z2)-cordial if and only if m and n are not both congruent to 2 mod 4. Seoud
and Salim [2249] gave an upper bound on the number of edges of a graph that admits
a (Z2 ⊕ Z2)-cordial labeling in terms the number of vertices. Rathod and Kanani [2102]
prove the following graphs are (Z2×Z2)-cordial for all n and m: Cn�mK1, Cn�K2, and
graphs obtained by appending a single edge to one vertex of Cn. In Rathod and Kanani
[2106] and [2101] proved the following graphs are (Z2 × Z2)-cordial: alternate triangular
snakes, alternate double triangular snakes, alternate triple triangular snakes, quadrilateral
snakes, alternate quadrilateral snakes, double quadrilateral snakes, and double alternate
quadrilateral snakes.

In [1911] Pechenik and Wise investigate Z2×Z2-cordiality of complete bipartite graphs,
paths, cycles, ladders, prisms, and hypercubes. They proved that all complete bipartite
graphs are Z2×Z2-cordial except Km,n where m,n ≡ 2 mod 4; all paths are Z2×Z2-cordial
except P4 and P5; all cycles are Z2×Z2-cordial except C4, C5, Ck, where k ≡ 2 mod 4; and
all ladders P2×Pk are Z2×Z2-cordial except C4. They also introduce a generalization of
A-cordiality involving digraphs and quasigroups, and show that there are infinitely many
Q-cordial digraphs for every quasigroup Q. Jinnah and Nair [1253] proved that all trees
except P4 and P5 are Z2×Z2-cordial and the graphs obtained by subdividing the pendent
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edges of Cn �K1 are Z2 × Z2 -cordial for all n.
Cairnie and Edwards [541] have determined the computational complexity of cordial

and k-cordial labelings. They prove the conjecture of Kirchherr [1380] that deciding
whether a graph admits a cordial labeling is NP-complete. As a corollary, this result
implies that the same problem for k-cordial labelings is NP-complete. They remark that
even the restricted problem of deciding whether connected graphs of diameter 2 have a
cordial labeling is also NP-complete.

For a (p, q) graph G and a bijection f from V (G) to {1, 2, . . . , p} Ponraj, Annathurai,
and Kala [1948] introduced a new graph labeling as follows. For each edge uv assign
the remainder when f(u) is divided by f(v) or when f(v) is divided by f(u) depending
on whether f(u) ≥ f(v) or f(v) ≥ f(u). The function f is called a remainder cordial
labeling of G if |ηe − ηo| ≤ 1 where ηe and ηo respectively denote the number of edges
labeled with even integers and the number of edges labeled with odd integers. A graph
G with a remainder cordial labeling is called a remainder cordial graph. In [1948] and
[1953] they proved that the following graphs are remainder cordial: paths, cycles, stars,
bistars, crowns, combs, K2,n, S(K1,n), S(Bn,n), P 2

n , wheels, subdivisions of wheels, K2,2n,
and the graph obtained by subdividing the pendent edges of the bistar Bn,n. They also
proved the following star related graphs are remainder cordial: K1,n ∪ Bn,n, Pn ∪ K1,n,
Pn ∪Bn,n, K1,n ∪ S(K1,n), K1,n ∪ S(Bn,n), P 2

n ∪K1,n, Pn
2 ∪Bn,n, and S(K1,n) ∪ S(Bn,n).

They conjecture that Kn is remainder cordial if and only if n ≤ 3. Ponraj, Annathurai,
and Kala [1949] generalize remainder cordial labelings as follows. Let f be a function
from V (G) to {1, 2, . . . , k} where 2 < k ≤ |V (G)|. For each edge uv assign the remainder
when f(u) is divided by f(v) or when f(v) is divided by f(u) depending on whether
f(u) ≥ f(v) or f(v) ≥ f(u). The function f is called a k-remainder cordial labeling of
G if |vf (i)− vf (j)| ≤ 1, for i, j ∈ {1, . . . , k} where vf (x) denote the number of vertices
labeled with x and |ηe − ηo| ≤ 1 where ηe and ηo respectively denote the number of edges
labeled with even integers and the number of edges labeled with odd integers. A graph
that admits a k-remainder cordial labeling is called a k-remainder cordial graph. In [1949],
[175], [176], and [1954] they proved the following. Every graph is a subgraph of a connected
k-remainder cordial graph for k ≥ 4. Note that when k = 2, the number of edges with
label 0 is q so there does not exists a 2-remainder cordial labeling. They further investigate
the 3-remainder cordial labeling behavior of paths, cycles, stars, combs, crowns, wheels,
fans, squares of paths, subdivisions of wheels, subdivisions of stars, subdivisions of combs,
armed crowns, and K1,n�K2. They further proved that Wn is 3-remainder cordial if and
only if n ≡ 1 (mod 3), K1,n is 3-remainder cordial if and only if n ∈ {1, 2, 3, 4, 5, 6, 7, 9},
and Kn is 3-remainder cordial if and only if n ≤ 3. In [1950], [1951], and [1952] Ponraj,
Annathurai, and Kala proved the following graphs are 4-remainder cordial: complete
graphs, paths, cycles, crowns, stars, bistars, books, subdivisions of stars, subdivisions of
bistars, subdivisions of jelly fish, flowers, sunflowers, lotuses inside a circle, friendship
graphs, webs, triangular snakes, durer graphs, planar grids, mongolian tents, prisms,
dragon graphs Cm@Pn (the graph obtained by identifying an endpoint of Pn with one
vertex of Cm), crossed prisms CP2n, and K2 + mK1 (m ≡ 0, 1, 3 (mod 4). They also
investigate the 4-remainder cordial labeling of Ln �mK1, Ln �K2, Ln �mK1, Pn �K1,
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Pn � 2K1, Cn �K1, and S(Pn �K1).
In Bapat [223] introduces the following new labeling. A graph G(V,E) has a L-cordial

labeling if there is a bijection f from E(G) to {1, 2, . . . , |E|} that assigns 0 to a vertex
v if the largest label on the edges incident to v is even and assigns 1 to v otherwise and
this assignment satisfies the condition that the number of vertices labeled with 0 and the
number of vertices labeled with 1 differ by at most 1. A graph that admits an L-cordial
labeling is called as L-cordial graph. He shows that stars, path, cycles, and triangular
snakes are L-cordial graphs

In [566] Chartrand, Lee, and Zhang introduced the notion of uniform cordiality as
follows. Let f be a labeling from V (G) to {0, 1} and for each edge xy define f ∗(xy) =
|f(x) − f(y)|. For i = 0 and 1, let vi(f) denote the number of vertices v with f(v) = i
and ei(f) denote the number of edges e with f ∗(e) = i. They call a such a labeling f
friendly if |v0(f) − v1(f)| ≤ 1. A graph G for which every friendly labeling is cordial is
called uniformly cordial. They prove that a connected graph of order n ≥ 2 is uniformly
cordial if and only if n = 3 and G = K3, or n is even and G = K1,n−1.

In [2120] Riskin introduced two measures of the noncordiality of a graph. He defines
the cordial edge deficiency of a graph G as the minimum number of edges, taken over all
friendly labelings of G, needed to be added to G such that the resulting graph is cordial.
If a graph G has a vertex labeling f using 0 and 1 such that the edge labeling fe given
by fe(xy) = |f(x) − f(y)| has the property that the number of edges labeled 0 and the
number of edges labeled 1 differ by at most 1, the cordial vertex deficiency defined as ∞.
Riskin proved: the cordial edge deficiency of Kn (n > 1) is bn

2
c − 1; the cordial vertex

deficiency of Kn is j − 1 if n = j2 + δ, when δ is −2, 0 or 2, and ∞ otherwise. In [2120]
Riskin determines the cordial edge deficiency and cordial vertex deficiency for the cases
when the Möbius ladders and wheels are not cordial. In [2121] Riskin determines the
cordial edge deficiencies for complete multipartite graphs that are not cordial and obtains
a upper bound for their cordial vertex deficiencies.

Recall a graph G the graph G∗, called the star of G, is the graph obtained by replacing
each vertex G with the star K1,n. In [1313] Kaneria, Patadiya and Teraiya introduced a
balanced cordial labeling for a graph by saying that a cordial labeling f is a vertex balanced
cordial if it satisfies the conditionvf (0) = vf (1); f is a balanced cordial if it satisfies the
conditions ef (0) = ef (1) and vf (0) = vf (1). Kaneria, Teraiya, and Patadiya [1316] proved
the path union P (t ·C4n) is a balanced cordial if t is odd and it is vertex balanced cordial
if t is even; C(t · C4n) is a balanced cordial if t ≡ 0 (mod 4) and it is a vertex balanced
cordial if t ≡ 1, 3 (mod 4); and C?

4n is balanced cordial. They proved Pn×C4t is balanced
cordial; C2n × C4t is balanced cordial; and G1 �G2 is cordial when G1 is cordial and G2

is a balanced cordial. Kaneria and Teraiya [1315] prove if G is a balanced cordial, then
so is G∗; if G is a balanced cordial, then so is P2n+1 × G; and if G is a balanced cordial,
then so is G

∗
.

If f is a binary vertex labeling of a graph G Lee, Liu, and Tan [1506] defined a partial
edge labeling of the edges of G by f ∗(uv) = 0 if f(u) = f(v) = 0 and f ∗(uv) = 1 if
f(u) = f(v) = 1. They let e0(G) denote the number of edges uv for which f ∗(uv) = 0
and e1(G) denote the number of edges uv for which f ∗(uv) = 1. They say G is balanced if
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it has a friendly labeling f such that if |e0(f)− e1(f)| ≤ 1. In the case that the number
of vertices labeled 0 and the number of vertices labeled 1 are equal and the number of
edges labeled 0 and the number of edges labeled 1 are equal they say the labeling is
strongly balanced. They prove: Pn is balanced for all n and is strongly balanced if n is
even; Km,n is balanced if and only if m and n are even, m and n are odd and differ by at
most 2, or exactly one of m or n is even (say n = 2t) and t ≡ −1, 0, 1 (mod |m − n|); a
k-regular graph with p vertices is strongly balanced if and only if p is even and is balanced
if and only if p is odd and k = 2; and if G is any graph and H is strongly balanced, the
composition G[H] (see §2.3 for the definition) is strongly balanced. In [1411] Kong, Lee,
Seah, and Tang show: Cm×Pn is balanced if m and n are odd and is strongly balanced if
either m or n is even; and Cm �K1 is balanced for all m ≥ 3 and strongly balanced if m
is even. They also provide necessary and sufficient conditions for a graph to be balanced
or strongly balanced. Lee, Lee, and Ng [1477] show that stars are balanced if and only
if the number of edges of the star is at most 4. Kwong, Lee, Lo, and Wang [1452] define
a graph G to be uniformly balanced if |e0(f) − e1(f)| ≤ 1 for every vertex labeling f
that satisfies if |v0(f) − v1(f)| ≤ 1. They present several ways to construct families of
uniformly balanced graphs. Kim, Lee, and Ng [1374] prove the following: for any graph
G, mG is balanced for all m; for any graph G, mG is strongly balanced for all even m;
if G is strongly balanced and H is balanced, then G ∪ H is balanced; mKn is balanced
for all m and strongly balanced if and only if n = 3 or mn is even; if H is balanced and
G is any graph, the G × H is strongly balanced; if one of m or n is even, then Pm[Pn]
is balanced; if both m and n are even, then Pm[Pn] is balanced; and if G is any graph
and H is strongly balanced, then the tensor product G ⊗ H is strongly balanced. (The
tensor product G⊗H of graphs G and H, has the vertex set V (G)× V (H) and any two
vertices (u, u′) and (v, v′) are adjacent in G⊗H if and only if u′ is adjacent with v′ and
u is adjacent with v.)

A graph G is k-balanced if there is a function f from the vertices of G to {0, 1, 2, . . . , k−
1} such that for the induced function f ∗ from the edges of G to {0, 1, 2, . . . , k−1} defined
by f ∗(uv) = |f(u) − f(v)| the number of vertices labeled i and the number of edges
labeled j differ by at most 1 for each i and j. Seoud, El Sonbaty, and Abd El Rehim
[2231] proved the following: if |E| ≥ 2k + 1 and |V | ≤ k then G(V,E) is not k-balanced;
if |E| ≥ 3k + 1, (k ≥ 2) and 3k − 1 ≥ |V | ≥ 2k + 1 then G(V,E) is not k-balanced;
r-regular graphs with 3 ≤ r ≤ n − 1 are not r-balanced; if G1 has m vertices and G2

has n vertices then G1 + G2 is not (m + n)-balanced for m,n ≥ 5; P3 × Pn with edge
set E is 3n-balanced and |E|-balanced; Ln × P2 (Ln = Pn × P2) with vertex set V and
edge set E is |V |-balanced and k-balanced for k ≥ |E| but not n-balanced for n ≥ 2; the
one-point union of two copies of K2,n is 2n-balanced, |V |-balanced, and |E|-balanced not
is 3-balanced when n ≥ 4. They also proved that the composition graph Pn[P2] is not
n-balanced for n ≥ 3, is not 2n-balanced for n ≥ 5, and is not |E|-balanced.

A graph whose edges are labeled with 0 and 1 so that the absolute difference in the
number of edges labeled 1 and 0 is no more than one is called edge-friendly. We say an
edge-friendly labeling induces a partial vertex labeling if vertices which are incident to
more edges labeled 1 than 0, are labeled 1, and vertices which are incident to more edges
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labeled 0 than 1, are labeled 0. Vertices that are incident to an equal number of edges
of both labels are called unlabeled. Call a procedure on a labeled graph a label switching
algorithm if it consists of pairwise switches of labels. Krop, Lee, and Raridan [1436] prove
that given an edge-friendly labeling of Kn, we show a label switching algorithm producing
an edge-friendly relabeling of Kn such that all the vertices are labeled.

In 2017 [226] Bapat introduced a new labeling as follows. A function f from the
vertices of a graph G(E, V ) to {0, 1, 2, . . . , |V | − 1} is called an extended vertex edge
additive cordial labeling if the induced function f ∗ from the edges of G to {0, 1} defined
by f ∗(uv) = f(u) + f(v) (mod 2) for all edges uv of G has the property that the number
of edges labeled 0 and the number of edges labeled 1 differ by at most 1. Bapat [226]
proved paths, stars, K2,n, K3,n, K4,n, Pn � C3, and Pn � C4 admit extended vertex edge
additive cordial labeling.

Let G(p, q) a simple finite connected graph. Given a bijective function f from E(G) to
{0, 1, . . . , q− 1} Bapat [227] calls a bijective function f ∗ from E(G) to {0, 1, 2, . . . , q− 1}
an extended edge vertex cordial (eevc) labeling if the induced function f ∗ from V (G) to
{0, 1} defined by f ∗(u) = Σf(uv) mod 2 where the sum is taken over all edges incident
to u has the property that the number of vertices labeled with 0 differs from the number
labeled with 1 by at most 1. He shows that Pn (n 6= 2 mod 4), Cn (n 6= 2 mod 4),
K1,n (n 6= 1 mod 4), graphs obtained by joining the centers of two copies of K1,2n+1 by
an edge, and triangular snakes have eevc labelings.

3.8 The Friendly Index–Balance Index

Recall a function f from V (G) to {0, 1} where for each edge xy, f ∗(xy) = |f(x) −
f(y)|, vi(f) is the number of vertices v with f(v) = i, and ei(f) is the num-
ber of edges e with f ∗(e) = i is called friendly if |v0(f) − v1(f)| ≤ 1. Lee
and Ng [1514] define the friendly index set of a graph G as FI(G)= {|e0(f) −
e1(f)| where f runs over all friendly labelings f of G}. They proved: for any graph G
with q edges FI(G) ⊆ {0, 2, 4, . . . , q} if q is even and FI(G)⊆ {1, 3, . . . , q} if q is odd;
for 1 ≤ m ≤ n, FI(Km,n)= {(m − 2i)2| 0 ≤ i ≤ bm/2c} if m + n is even; and
FI(Km,n)= {i(i + 1)| 0 ≤ i ≤ m} if m + n is odd. In [1517] Lee and Ng prove the
following: FI(C2n) = {0, 4, 8, . . . , 2n} when n is even; FI(C2n) = {2, 6, 10, . . . , 2n} when n
is odd; and FI(C2n+1) = {1, 3, 5, . . . , 2n− 1}. Elumalai [710] defines a cycle with a full set
of chords as the graph PCn obtained from Cn = v0, v1, v2, . . . , vn−1 by adding the cords
v1vn−1, v2vn−2, . . . , v(n−2)/2, v(n+2)/2 when n is even and v1vn−1, v2vn−2, . . . , v(n−3)/2, v(n+3)/2

when n is odd. Lee and Ng [1516] prove: FI(PC2m+1) = {3m− 2, 3m− 4, 3m− 6, . . . , 0}
when m is even and FI(PC2m+1) = {3m − 2, 3m − 4, 3m − 6, . . . , 1} when m is odd;
FI(PC4) = {1, 3}; for m ≥ 3, FI(PC2m) = {3m − 5, 3m − 7, 3m − 9, . . . , 1} when m is
even; FI(PC2m) = {3m− 5, 3m− 7, 3m− 9, . . . , 0} when m is odd.

Salehi and Lee [2161] determined the friendly index for various classes of trees. Among
their results are: for a tree with q edges that has a perfect matching, the friendly index is
the odd integers from 1 to q and for n ≥ 2, FI(Pn)= {n− 1− 2i| 0 ≤ ib(n− 1)/2c. Law
[1474] determined the full friendly index sets of spiders and disproved a conjecture by
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Salehi and Lee [2161] that the friendly index set of a tree forms an arithmetic progression.
In [1520] Lee, Ng, and Lau determine the friendly index sets of several classes of spiders.
Gao, Sun, and Lee [836] determined the full friendly index of Pm × Pn with the extra
mn + 1 − m − n edges uij − u(i+1)(j+1). Sun, Gao, and Lee [2533] determined the full
friendly index and friendly index for the twisted product of Mőbius ladders. Sinha and
Kaur [2392] determined the full edge friendly index of stars, wheels, 2-regular graphs, and
mPn. In [2334] Shiu determined the full edge-friendly index sets of complete bipartite
graphs. Salehi and McGinn [2164] obtained partial results about the friendly index set of
Qn and strenghten a conjecture about the friendly index set of Qn made in [2166]. Teffilia1
and Devaraj [2576] found the friendly index set of the graphs obtained by identifying the
central vertex of a fan with the endpoint of a path (umbrella), the graphs obtained by
identifying the central vertex of a star with the endpoint of a path, the graphs obtained
by identifying the endpoints of copies of P2 (globe), the splitting graph of a star, and
P2 +mK1. Lee, Low, Ng, and Wang [1508] determined the friendly index sets for various
classes of disjoint unions of stars. Gao, Ruo-Yuan, Lee, Ren, and Sun [835] determined
FFI(G), FI(G) and FPCI(G) for a class of cubic graphs G.

Lee and Ng [1516] define PC(n, p) as the graph obtained from the cycle Cn with
consecutive vertices v0, v1, v2, . . . , vn−1 by adding the p cords joining vi to vn−i for 1 ≤
pbn/2c− 1. They prove FI(PC(2m+ 1, p)) = {2m+ p− 1, 2m+ p− 3, 2m+ p− 5, . . . , 1}
if p is even and FI(PC(2m + 1, p)) = {2m + p − 1, 2m + p − 3, 2m + p − 5, . . . , 0} if
p is odd; FI(PC(2m, 1)) = {2m − 1, 2m − 3, 2m − 5, . . . , 1}; for m ≥ 3, and p ≥ 2,
FI(PC(2m, p)) = {2m + p − 4, 2m + p − 6, 2m + p − 8, . . . , 0} when p is even, and
FI(PC(2m, p)) = {2m + p − 4, 2m + p − 6, 2m + p − 8, . . . , 1} when p is odd. More
generally, they show that the integers in the friendly index of a cycle with an arbitrary
nonempty set of parallel chords form an arithmetic progression with a common difference
2. Shiu and Kwong [2338] determine the friendly index of the grids Pn×P2. The maximum
and minimum friendly indices for Cm × Pn were given by Shiu and Wong in [2367].

In [1518] Lee and Ng prove: for n ≥ 2, FI(C2n×P2) = {0, 4, 8, . . . , 6n−8, 6n} if n is even
and FI(C2n×P2) = {2, 6, 10, . . . , 6n−8, 6n} if n is odd; FI(C3×P2) = {1, 3, 5}; for n ≥ 2,
FI(C2m+1×P2) = {6n−1}∪{6n−5−2k| where k ≥ 0 and 6n−5−2k ≥ 0}; FI(M4n) (here
M4n is the Möbius ladder with 4n steps) = {6n−4−4k| where k ≥ 0 and 6n−4−4k ≥ 0};
FI(M4n+2) = {6n+3}∪{6n−5−2k| where k ≥ 0 and 6n−5−2k > 0}. In [1453] Kwong,
Lee, and Ng completely determine the friendly index of all 2-regular graphs. As a corollary,
they show that Cm ∪ Cn is cordial if and only if m + n = 0, 1 or 3 (mod 4). Ho, Lee,
and Ng [1014] determine the friendly index sets of stars and various regular windmills. In
[2807] Wen determines the friendly index of generalized wheels Cn+mK1 for all m > 1. In
[2160] Salehi and De determine the friendly index sets of certain caterpillars of diameter
4 and disprove a conjecture of Lee and Ng [1517] that the friendly index sets of trees form
an arithmetic progression. The maximum and minimum friendly indices for for Cm × Pn
were given by Shiu and Wong in [2367]. Salehi and Bayot [2157] have determined the
friendly index set of Pm × Pn. In [1518] Lee and Ng determine the friendly index sets for
two classes of cubic graphs, prisms d Möbius ladders. Sinha and Kaur [2392] investigate
the full region index sets of friendly labelings of cycles, wheels fans, and P2 × Pn.
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For positive integers a ≤ b ≤ c, Lee, Ng, and Tong [1523] define the broken wheel
W (a, b, c) with three spokes as the graph obtained from K4 with vertices u1, u2, u3, c by
inserting vertices x1,1, x1,2, . . . , x1,a−1 along the edge u1u2, x2,1, x2,2, . . . , x2,b−1 along the
edge u2u3, x3,1, x3,2, . . . , x3,c−1 along the edge u3u1. They determine the friendly index set
for broken wheels with three spokes.

Lee and Ng [1516] define a parallel chord of Cn as an edge of the form vivn−i
(i < n − 1) that is not an edge of Cn. For n ≥ 6, they call the cycle Cn with con-
secutive vertices v1, v2, . . . , vn and the edges v1vn−1, v2vn−2, . . . , v(n−2)/2v(n+2)/2 for n even
and v2vn−1, v3vn−2, . . . , v(n−1)/2v(n+3)/2 for n odd, Cn with a full set of parallel chords.
They determine the friendly index of these graphs and show that for any cycle with an
arbitrary non-empty set of parallel chords the numbers in its friendly index set form an
arithmetic progression with common difference 2.

For a graph G(V,E) and a graph H rooted at one of its vertices v, Ho, Lee, and Ng
[1013] define a root-union of (H, v) by G as the graph obtained from G by replacing each
vertex of G with a copy of the root vertex v of H to which is appended the rest of the
structure of H. They investigate the friendly index set of the root-union of stars by cycles.

For a graph G(V,E), the total graph T (G) of G, is the graph with vertex set V ∪ E
and edge set E ∪ {(v, uv)| v ∈ V, uv ∈ E}. Note that the total graph of the n-star
is the friendship graph and the total graph of Pn is a triangular snake. Lee and Ng
[1513] use SP (1n,m) to denote the spider with one central vertex joining n isolated
vertices and a path of length m. They show: FI(K1 + 2nK2) (friendship graph with 2n
triangles) = {2n, 2n− 4, 2n− 8, . . . , 0} if n is even; {2n, 2n− 4, 2n− 8, . . . , 2} if n is odd;
FI(K1 +(2n+1)K2) = {2n+1, 2n−1, 2n−3, . . . , 1}; for n odd, FI(T (Pn)) = {3n−7, 3n−
11, 3n− 15, . . . , z} where z = 0 if n ≡ 1 (mod 4) and z = 2 if n ≡ 3 (mod 4); for n even,
FI(T (Pn)) = {3n−7, 3n−11, 3n−15, . . . , n+1}∪{n−1, n−3, n−5, . . . , 1}; for m ≤ n−1
and m+n even, FI(T (SP (1n,m))) = {3(m+n)−4, 3(m+n)−8, 3(m+n)−12, . . . , (m+n)
(mod 4)}; for m + n odd, FI(T (SP (1n,m))) = {3(m + n)− 4, 3(m + n)− 8, 3(m + n)−
12, . . . ,m + n + 2} ∪ {m + n,m + n − 2,m + n − 4, . . . , 1}; for n ≥ m and m + n even,
FI(T (SP (1n,m))) = {|4k− 3(m+n)| |(n−m+ 2)/2 ≤ k ≤ m+n}; for n ≥ m and m+n
odd, FI(T (SP (1n,m))) = {|4k − 3(m+ n)| |(n−m+ 3)/2 ≤ k ≤ m+ n}.

Kwong and Lee [1449] determine the friendly index any number of copies of C3 that
share an edge in common and the friendly index any number of copies of C4 that share
an edge in common. Lau, Gao, Lee, and Sun determine the friendly index sets and the
cordiality of the edge-gluing of a complete graph Kn and n copies of cycles C3.

For a planar graph G(V,E) Sinha and Kaur [2410] extended the notion of an index
set of a friendly labeling to regions of a planar graph and determined the full region index
sets of friendly labeling of cycles, wheels fans, and grids Pn × P2.

An edge-friendly labeling f of a graph G induces a function f ∗ from V (G) to {0, 1}
defined as the sum of all edge labels mod 2. The edge-friendly index set, If (G), of f
is the number of vertices of f labeled 1 minus the number of vertices labeled 0. The
edge-friendly index set of a graph G, EFI(G), is {|If (G)|} taken over all edge-friendly
labelings f of G. The full edge-friendly index set of a graph G, FEFI(G), is {If (G)}
taken over all edge-friendly labelings f of G. Sinha and Kaur [2409] determined the full
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edge-friendly index sets of stars, 2-regular graphs, wheels, and mPn. In [2411] Sinha and
Kaur extended the notion of index set of an edge-friendly labeling to regions of a planar
graph and determined the full region index set of edge-friendly labelings of cycles, wheels,
fans Pn + K1, double fans Pn + K2, and grids Pm × Pn (m ≥ 2, n ≥ 3). Sinha and Kaur
[2391] investigate the full edge-friendly index sets of double stars, fans generalized fans,
and Pn × P2. In [2333] Shiu determined the extreme values of edge-friendly indices of
complete bipartite graphs.

In [1375] Kim, Lee, and Ng define the balance index set of a graph G as {|e0(f)−e1(f)|}
where f runs over all friendly labelings f of G. Zhang, Lee, and Wen [1477] investigate
the balance index sets for the disjoint union of up to four stars and Zhang, Ho, Lee,
and Wen [2900] investigate the balance index sets for trees with diameter at most four.
Kwong, Lee, and Sarvate [1457] determine the balance index sets for cycles with one
pendent edge, flowers, and regular windmills. Lee, Ng, and Tong [1522] determine the
balance index set of certain graphs obtained by starting with copies of a given cycle and
successively identifying one particular vertex of one copy with a particular vertex of the
next. For graphs G and H and a bijection π from G to H, Lee and Su [1543] define
Perm(G, π,H) as the graph obtaining from the disjoint union of G and H by joining each
v in G to π(v) with an edge. They determine the balanced index sets of the disjoint union
of cycles and the balanced index sets for graphs of the form Perm(G, π,H) where G and
H are regular graphs, stars, paths, and cycles with a chord. They conjecture that the
balanced index set for every graph of the form Perm(G, π,H) is an arithmetic progression.
Lee, Ho, and Su [1493] investigated the balance index sets of k-level wheel graphs.

Wen [2806] determines the balance index set of the graph that is constructed by
identifying the center of a star with one vertex from each of two copies of Cn and provides
a necessary and sufficient for such graphs to be balanced. In [1546] Lee, Su, and Wang
determine the balance index sets of the disjoint union of a variety of regular graphs of the
same order. Kwong [1447] determines the balanced index sets of rooted trees of height at
most 2, thereby settling the problem for trees with diameter at most 4. His method can
be used to determine the balance index set of any tree. The homeomorph Hom(G, p) of a
graph G is the collection of graphs obtained from G by adding p (p ≥ 0) additional degree
2 vertices to its edges. For any regular graph G, Kong, Lee, and Lee [1404] studied the
changes of the balance index sets of Hom(G, p) with respect to the parameter p. They
derived explicit formulas for their balance index sets provided new examples of uniformly
balanced graphs. In [494] Bouchard, Clark, Lee, Lo, and Su investigate the balance index
sets of generalized books and ear expansion graphs. In [2140] Rose and Su provided
an algorithm to calculate the balance index sets of a graph. Hua and Raridan [1029]
determine the balanced index sets of all complete bipartite graphs with a larger part of
odd cardinality and a smaller part of even cardinality.

In[2339] Shiu and Kwong made a major advance by introducing an easier approach
to find the balance index sets of a large number of families of graphs in a unified and
uniform manner. They use this method to determine the balance index sets for r-regular
graphs, amalgamations of r-regular graphs, complete bipartite graphs, wheels, one point
unions of regular graphs, sun graphs, generalized theta graphs, m-ary trees, spiders, grids
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Pm × Pn, and cylinders Cm × Pn. They provide a formula that enables one to determine
the balance index sets of many biregular graphs (that is, graphs with the property that
there exist two distinct positive integers r and s such that every vertex has degree r or
s).

A labeling f from the vertices of a graph G to {0, 1} is said to be vertex-friendly if the
number of vertices labeled with 0 and the number labeled with 1 differ by at most 1. The
vertex balance index set of G is |e0(f)− e1(f)| taken over all vertex-friendly labelings f .
Adiga, Subbaraya, Shrikanth and Sriraj [54] completely determined the vertex balance
index set of Kn, Km,n, Cn × P2, and complete binary trees.

In [2338] Shiu and Kwong define the full friendly index set of a graph G as {e0(f) −
e1(f)} where f runs over all friendly labelings of G. The full friendly index for P2×Pn is
given by Shiu and Kwong in [2338]. The full friendly index of Cm × Cn is given by Shiu
and Ling in [2354]. In [2407] and [2408] Sinha and Kaur investigated the full friendly
index sets complete graphs, cycles, fans, double fans, wheels, double stars, P3 × Pn, and
the tensor product of P2 and Pn. Shiu and Ho [2336] investigated the full friendly index
sets of cylinder graphs Cm × P2 (m ≥ 3), Cm × P3 (m ≥ 4), and C3 × Pn (n ≥ 4). These
results, together with previously proven ones, completely determine the full friendly index
of all cylinder graphs. Shiu and Ho [2337] study the full friendly index set and the full
product-cordial index set of odd twisted cylinders and two permutation Petersen graphs.
Gao [825] determined the full friendly index set of Pm × Pn, but he used the terms
“edge difference set” instead of “full friendly index set” and “direct product” instead of
“Cartesian product.” The twisted cylinder graph is the permutation graph on 4n (n ≥ 2)
vertices, P (2n;σ), where σ = (1, 2)(3, 4) · · · (2n−1, 2n) (the product of n transpositions).
Shiu and Lee [2352] determined the full friendly index sets of twisted cylinders.

In [595] and [1450] Chopra, Lee, and Su and Kwong and Lee introduce a dual of
balance index sets as follows. For an edge labeling f using 0 and 1 they define a partial
vertex labeling f ∗ by assigning 0 or 1 to f ∗(v) depending on whether there are more
0-edges or 1-edges incident to v and leaving f ∗(v) undefined otherwise. For i = 0 or
1 and a graph G(V,E), let ef (i) = |{uv ∈ E : f(uv) = i}| and vf (i) = |{v ∈ V :
f ∗(v) = i}|. They define the edge-balance index of G as EBI(G) = {|vf (0) − vf (1)| :
the edge labeling f satisfies |ef (0)− ef (1)| ≤ 1}. Among the graphs whose edge-balance
index sets have been investigated by Lee and his colleagues are: fans and wheels [595];
generalized theta graphs [1450]; flower graphs [1451] and [1451]; stars, paths, spiders,
and double stars [1554]; (p, p + 1)-graphs [1548]; prisms and Möbius ladders [2780]; 2-
regular graphs, complete graphs [2779]; and the envelope graphs of stars, paths, and
cycles [605]. (The envelope graph of G(V,E) is the graph with vertex set V (G) ∪ E(G)
and set E(G) ∪ {(u, (u, v)) : U ∈ V, (u, v) ∈ E)}).

Lee, Kong, Wang, and Lee [1405] found the EBI(Km,n) for m = 1, 2, 3, 4, 5 and m = n.
Krop, Minion, Patel, and Raridan [1438] did the case for complete bipartite graphs with
both parts of odd cardinality. Dao, Hua, Ngo, and Raridan [642] determined the edge-
balanced index sets for complete even bipartite graphs. Krop and Sikes [1440] determined
EBI(Km,m−2a) for 1 ≤ a ≤ (m− 3)/4 and m odd.

For a graph G and a connected graph H with a distinguished vertex s, the L-product
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of G and (H, s), G ×L (H, s), is the graph obtained by taking |V (G)| copies of (H, s)
and identifying each vertex of G with s of a single copy of H. In [597] and [496] Chou,
Galiardi, Kong, Lee, Perry, Bouchard, Clark, and Su investigated the edge-balance index
sets of L-product of cycles with stars. Bouchard, Clark, and Su [495] gave the exact values
of the edge-balance index sets of L-product of cycles with cycles.

Chopra, Lee, and Su [598] prove that the edge-balance index of the fan P3 + K1

is {0, 1, 2} and edge-balance index of the fan Pn + K1, n ≥ 4, is {0, 1, 2, . . . , n − 2}.
They define the broken fan graphs BF (a, b) as the graph with V (BF (a, b)) = {c} ∪
{v1, . . . , va} ∪ {u1, . . . , ub} and E(BF (a, b)) = {(c, vi)| i = 1, . . . , a} ∪ {(c, ui)| 1, . . . , b} ∪
E(Pa) ∪ E(Pb) (a ≥ 2 and b ≥ 2). They prove the edge-balance index set of BF (a, b) is
{0, 1, 2, . . . , a + b − 4}. In [1544] Lee, Su, and Todt give the edge-balance index sets of
broken wheels. See also [2474] and [2592]. In [1478] Lee, Lee, and Su present a technique
that determines the balance index sets of a graph from its degree sequence. In addition,
they give an explicit formula giving the exact values of the balance indices of generalized
friendship graphs, envelope graphs of cycles, and envelope graphs of cubic trees.

3.9 k-equitable Labelings

In 1990 Cahit [530] proposed the idea of distributing the vertex and edge labels among
{0, 1, . . . , k − 1} as evenly as possible to obtain a generalization of graceful labelings
as follows. For any graph G(V,E) and any positive integer k, assign vertex labels from
{0, 1, . . . , k−1} so that when the edge labels induced by the absolute value of the difference
of the vertex labels, the number of vertices labeled with i and the number of vertices
labeled with j differ by at most one and the number of edges labeled with i and the
number of edges labeled with j differ by at most one. Cahit has called a graph with
such an assignment of labels k-equitable. Note that G(V,E) is graceful if and only if it
is |E| + 1-equitable and G(V,E) is cordial if and only if it is 2-equitable. Cahit [529]
has shown the following: Cn is 3-equitable if and only if n 6≡ 3 (mod 6); the triangular

snake with n blocks is 3-equitable if and only if n is even; the friendship graph C
(n)
3 is

3-equitable if and only if n is even; an Eulerian graph with q ≡ 3 (mod 6) edges is not
3-equitable; and all caterpillars are 3-equitable [529]. Cahit [529] claimed to prove that
Wn is 3-equitable if and only if n 6≡ 3 (mod 6) but Youssef [2874] proved that Wn is
3-equitable for all n ≥ 4. Youssef [2872] also proved that if G is a k-equitable Eulerian
graph with q edges and k ≡ 2 or 3 (mod 4) then q 6≡ k (mod 2k). Cahit conjectures
[529] that a triangular cactus with n blocks is 3-equitable if and only if n is even. In [530]
Cahit proves that every tree with fewer than five end vertices has a 3-equitable labeling.
He conjectures that all trees are k-equitable [531]. In 1999 Speyer and Szaniszló [2462]
proved Cahit’s conjecture for k = 3. Coles, Huszar, Miller, and Szaniszlo [629] proved
caterpillars, symmetric generalized n-stars (or symmetric spiders), and complete n-ary
trees are 4-equitable. Vaidya and Shah [2666] proved that the splitting graphs of K1,n

and the bistar Bn,n and the shadow graph of Bn,n are 3-equitable. Rokad [2131] found
3-equitable labelings of the ring sum of different graphs.

Vaidya, Dani, Kanani, and Vihol [2630] proved that the graphs obtained by starting
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with copies G1, G2, . . . , Gn of a fixed star and joining each center of Gi to the center of
Gi+1 (i = 1, 2, . . . , n−1) by an edge are 3-equitable. Recall the shell C(n, n−3) is the cycle
Cn with n− 3 cords sharing a common endpoint called the apex. Vaidya, Dani, Kanani,
and Vihol [2631] proved that the graphs obtained by starting with copies G1, G2, . . . , Gn

of a fixed shell and joining each apex of Gi to the apex of Gi+1 (i = 1, 2, . . . , n− 1) by an
edge are 3-equitable. For a graph G and vertex v of G, Vaidya, Dani, Kanani, and Vihol
[2632] prove that the graphs obtained from the wheel Wn, n ≥ 5, by duplicating (see 3.7
for the definition) any rim vertex is 3-equitable and the graphs obtained from the wheel
Wn by duplicating the center is 3-equitable when n is even and not 3-equitable when n is
odd and at least 5. They also show that the graphs obtained from the wheel Wn, n 6= 5,
by duplicating every vertex is 3-equitable.

Vaidya, Srivastav, Kaneria, and Ghodasara [2677] prove that cycle with two chords
that share a common vertex with opposite ends that are incident to two consecutive
vertices of the cycle is 3-equitable. Vaidya, Ghodasara, Srivastav, and Kaneria [2636]
prove that star of cycle C ∗

n is 3-equitable for all n. Vaidya and Dani [2626] proved
that the graphs obtained by starting with n copies G1, G2, . . . , Gn of a fixed star and
joining the center of Gi to the center of Gi+1 by an edge and each center to a new vertex
xi (1 ≤ i ≤ n − 1) by an edge have 3-equitable labeling. Vaidya and Dani [2629] prove
that the graphs obtained by duplication of an arbitrary edge of a cycle or a wheel have
3-equitable labelings.

Recall G =< W
(1)
n : W

(2)
n : . . . : W

(k)
n > 1s the graph obtained by joining the center

vertices of each of W
(i)
n and W

(i+1)
n to a new vertex xi where 1 ≤ i ≤ k− 1. Vaidya, Dani,

Kanani, and Vihol [2633] prove that < W
(1)
n : W

(2)
n : ... : W

(k)
n > is 3-equitable. Vaidya

and Vihol [2681] prove that any graph G can be embedded as an induced subgraph of a
3-equitable graph thereby ruling out any possibility of obtaining any forbidden subgraph
characterization for 3-equitable graphs.

The shadow graph D2(G) of a connected graph G is constructed by taking two copies
of G, G′ and G′′ and joining each vertex u′ in G′ to the neighbors of the corresponding
vertex u′′ in G′′. Vaidya, Vihol, and Barasara [2684] prove that the shadow graph of Cn is
3-equitable except for n = 3 and 5 while the shadow graph of Pn is 3-equitable except for
n = 3. They also prove that the middle graph of Pn is 3-equitable and the middle graph
of Cn is 3-equitable for n even and not 3-equitable for n odd.

Bhut-Nayak and Telang have shown that crowns Cn � K1, are k-equitable for k =
n, . . . , 2n− 1 [464] and Cn �K1 is k-equitable for all n when k = 2, 3, 4, 5, and 6 [465].

In [2220] Seoud and Abdel Maqsoud prove: a graph with n vertices and q edges in
which every vertex has odd degree is not 3-equitable if n ≡ 0 (mod 3) and q ≡ 3 (mod
6); all fans except P2 + K1 are 3-equitable; all double fans Pn + K2 except P4 + K2 are
3-equitable; P 2

n is 3-equitable for all n except 3; K1,1,n is 3-equitable if and only if n ≡ 0
or 2 (mod 3); K1,2,n, n ≥ 2, is 3-equitable if and only if n ≡ 2 (mod 3); Km,n, 3 ≤ m ≤ n,
is 3-equitable if and only if (m,n) = (4, 4); and K1,m,n, 3 ≤ m ≤ n, is 3-equitable if
and only if (m,n) = (3, 4). They conjectured that C2

n is not 3-equitable for all n ≥ 3.
However, Youssef [2880] proved that C2

n is 3-equitable if and only if n is at least 8. Youssef
[2880] also proved that Cn +K2 is 3-equitable if and only if n is even and at least 6 and
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determined the maximum number of edges in a 3-equitable graph as a function of the
number of its vertices. For a graph with n vertices to admit a k-equitable labeling, Seoud
and Salim [2249] proved that the number of edges is at most kd(n/k)c2 + k − 1.

Bapat and Limaye [345] have shown the following graphs are 3-equitable: helms
Hn, n ≥ 4; flowers (see §2.2 for the definition); the one-point union of any number
of helms; the one-point union of any number of copies of K4; K4-snakes (see §2.2 for
the definition); Ct-snakes where t = 4 or 6; C5-snakes where the number of blocks is not
congruent to 3 modulo 6. A multiple shell MS{nt11 , . . . , ntrr } is a graph formed by ti shells
each of order ni, 1 ≤ i ≤ r, that have a common apex. Bapat and Limaye [346] show that
every multiple shell is 3-equitable and Chitre and Limaye [587] show that every multiple
shell is 5-equitable. In [588] Chitre and Limaye define the H-union of a family of graphs
G1, G2, . . . , Gt, each having a graph H as an induced subgraph, as the graph obtained by
starting with G1 ∪G2 ∪ · · · ∪Gt and identifying all the corresponding vertices and edges
of H in each of G1, . . . , Gt. In [588] and [589] they proved that the Kn-union of gears and
helms Hn (n ≥ 6) are edge-3-equitable.

Szaniszló [2567] has proved the following: Pn is k-equitable for all k; Kn is 2-equitable
if and only if n = 1, 2, or 3; Kn is not k-equitable for 3 ≤ k < n; Sn is k-equitable for
all k; K2,n is k-equitable if and only if n ≡ k − 1 (mod k), or n ≡ 0, 1, 2, . . . , bk/2c − 1
(mod k), or n = bk/2c and k is odd. She also proves that Cn is k-equitable if and only if
k meets all of the following conditions: n 6= k; if k ≡ 2, 3 (mod 4), then n 6= k − 1 and
n 6≡ k (mod 2k). Coles, Huszar, Miller, and Szaniszló [629] proved that all caterpillars,
symmetric generalized n-stars (or symmetric spiders), and complete n-ary trees for all are
4-equitable.

Vickrey [2714] has determined the k-equitability of complete multipartite graphs. He
shows that for m ≥ 3 and k ≥ 3, Km,n is k-equitable if and only if Km,n is one of the
following graphs: K4,4 for k = 3; K3,k−1 for all k; or Km,n for k > mn. He also shows that
when k is less than or equal to the number of edges in the graph and at least 3, the only
complete multipartite graphs that are k-equitable are Kkn+k−1,2,1 and Kkn+k−1,1,1. Partial
results on the k-equitability of Km,n were obtained by Krussel [1441].

In [2887] Youssef and Al-Kuleab proved the following: C3
n is 3-equitable if and only

if n is even and n ≥ 12; gear graphs are k-equitable for k = 3, 4, 5, 6; ladders Pn × P2

are 3-equitable for all n ≥ 2; Cn × P2 is 3-equitable if and only if n 6≡ (mod 6); Möbius
ladders Mn are 3-equitable if and only if n 6≡ (mod6); and the graphs obtained from
Pn × P2 (n ≥ 2) where by adding the edges uivi+1 (1 ≤ i ≤ n − 1) to the path vertices
u1, u2, . . . , un and v1, v2, . . . , vn.

In [1635] López, Muntaner-Batle, and Rius-Font prove that if n is an odd integer and
F is optimal k-equitable for all proper divisors k of |E(F )|, then nF is optimal k-equitable
for all proper divisors k of |E(F )|. They also prove that if m − 1 and n are odd, then
then nCm is optimal k-equitable for all proper divisors k of |E(F )|.

As a corollary of the result of Cairnie and Edwards [541] on the computational com-
plexity of cordially labeling graphs it follows that the problem of finding k-equitable
labelings of graphs is NP-complete as well.

Seoud and Abdel Maqsoud [2221] call a graph k-balanced if the vertices can be labeled
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from {0, 1, . . . , k − 1} so that the number of edges labeled i and the number of edges
labeled j induced by the absolute value of the differences of the vertex labels differ by at
most 1. They prove that P 2

n is 3-balanced if and only if n = 2, 3, 4, or 6; for k ≥ 4, P 2
n

is not k-balanced if k ≤ n − 2 or n + 1 ≤ k ≤ 2n − 3; for k ≥ 4, P 2
n is k-balanced if

k ≥ 2n− 2; for k,m, n ≥ 3, Km,n is k-balanced if and only if k ≥ mn; for m ≤ n, K1,m,n

is k-balanced if and only if (i) m = 1, n = 1 or 2, and k = 3; (ii) m = 1 and k = n + 1
or n+ 2; or (iii) k ≥ (m+ 1)(n+ 1).

In [2880] Youssef gave some necessary conditions for a graph to be k-balanced and
some relations between k-equitable labelings and k-balanced labelings. Among his results
are: Cn is 3-balanced for all n ≥ 3; Kn is 3-balanced if and only if n ≤ 3; and all trees
are 2-balanced and 3-balanced. He conjectures that all trees are k-balanced (k ≥ 2).

Bloom has used the term k-equitable to describe another kind of labeling (see [2817]
and [2818]). He calls a graph k-equitable if the edge labels induced by the absolute value
of the difference of the vertex labels have the property that every edge label occurs exactly
k times. Bloom calls a graph of order n minimally k-equitable if the vertex labels are 1,
2,. . ., n and it is k-equitable. Both Bloom and Wojciechowski [2817], [2818] proved that
Cn is minimally k-equitable if and only if k is a proper divisor of n. Barrientos and Hevia
[369] proved that if G is k-equitable of size q = kw (in the sense of Bloom), then δ(G) ≤ w
and ∆(G) ≤ 2w. Barrientos, Dejter, and Hevia [368] have shown that forests of even size
are 2-equitable. They also prove that for k = 3 or k = 4 a forest of size kw is k-equitable
if and only if its maximum degree is at most 2w and that if 3 divides mn + 1, then the
double star Sm,n is 3-equitable if and only if q/3 ≤ m ≤ b(q − 1)/2c. (Sm,n is P2 with m
pendent edges attached at one end and n pendent edges attached at the other end.) They
discuss the k-equitability of forests for k ≥ 5 and characterize all caterpillars of diameter 2
that are k-equitable for all possible values of k. Acharya and Bhat-Nayak [45] have shown
that coronas of the form C2n �K1 are minimally 4-equitable. In [349] Barrientos proves
that the one-point union of a cycle and a path (dragon) and the disjoint union of a cycle
and a path are k-equitable for all k that divide the size of the graph. Barrientos and Havia
[369] have shown the following: Cn×K2 is 2-equitable when n is even; books Bn (n ≥ 3)
are 2-equitable when n is odd; the vertex union of k-equitable graphs is k-equitable; and
wheels Wn are 2-equitable when n 6≡ 3 (mod 4). They conjecture that Wn is 2-equitable
when n ≡ 3 (mod 4) except when n = 3. Their 2-equitable labelings of Cn ×K2 and the
n-cube utilized graceful labelings of those graphs.

M. Acharya and Bhat-Nayak [46] have proved the following: the crowns C2n � K1

are minimally 2-equitable, minimally 2n-equitable, minimally 4-equitable, and minimally
n-equitable; the crowns C3n � K1 are minimally 3-equitable, minimally 3n-equitable,
minimally n-equitable, and minimally 6-equitable; the crowns C5n � K1 are minimally
5-equitable, minimally 5n-equitable, minimally n-equitable, and minimally 10-equitable;
the crowns C2n+1 � K1 are minimally (2n + 1)-equitable; and the graphs Pkn+1 are k-
equitable.

In [351] Barrientos calls a k-equitable labeling optimal if the vertex labels are con-
secutive integers and complete if the induced edge labels are 1, 2, . . . , w where w is the
number of distinct edge labels. Note that a graceful labeling is a complete 1-equitable
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labeling. Barrientos proves that Cm � nK1 (that is, an m-cycle with n pendent edges
attached at each vertex) is optimal 2-equitable when m is even; C3 � nK1 is complete
2-equitable when n is odd; and that C3 � nK1 is complete 3-equitable for all n. He also
shows that Cn � K1 is k-equitable for every proper divisor k of the size 2n. Barrientos
and Havia [369] have shown that the n-cube (n ≥ 2) has a complete 2-equitable labeling
and that Km,n has a complete 2-equitable labeling when m or n is even. They conjecture
that every tree of even size has an optimal 2-equitable labeling.

3.10 Hamming-graceful Labelings

Mollard, Payan, and Shixin [1781] introduced a generalization of graceful graphs called
Hamming-graceful. A graph G = (V,E) is called Hamming-graceful if there exists an
injective labeling g from V to the set of binary |E|-tuples such that {d(g(v), g(u))| uv ∈
E} = {1, 2, . . . , |E|} where d is the Hamming distance. Shixin and Yu [2373] have shown
that all graceful graphs are Hamming-graceful; all trees are Hamming-graceful; Cn is
Hamming-graceful if and only if n ≡ 0 or 3 (mod 4); if Kn is Hamming-graceful, then n
has the form k2 or k2 + 2; and Kn is Hamming-graceful for n = 2, 3, 4, 6, 9, 11, 16, and 18.
They conjecture that Kn is Hamming-graceful for n of the forms k2 and k2 + 2 for k ≥ 5.
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4 Variations of Harmonious Labelings

4.1 Sequential and Strongly c-harmonious Labelings

Chang, Hsu, and Rogers [558] and Grace [921], [922] have investigated subclasses of
harmonious graphs. Chang et al. define an injective labeling f of a graph G with q
vertices to be strongly c-harmonious if the vertex labels are from {0, 1, . . . , q − 1} and
the edge labels induced by f(x) + f(y) for each edge xy are c, . . . , c + q − 1. Strongly
1-harmoinious labelings are more simply called strongly harmonious. Grace called such
a labeling sequential. In the case of a tree, Chang et al. modify the definition to permit
exactly one vertex label to be assigned to two vertices whereas Grace allows the vertex
labels to range from 0 to q with no vertex label being used twice. For graphs other than
trees, we use the term c-sequential labelings interchangeably with strongly c-harmonious
labelings. By taking the edge labels of a sequentially labeled graph with q edges modulo
q, we obviously obtain a harmoniously labeled graph. It is not known if there is a graph
that can be harmoniously labeled but not sequentially labeled. Grace [922] proved that
caterpillars, caterpillars with a pendent edge, odd cycles with zero or more pendent edges,
trees with α-labelings, wheels W2n+1, and P 2

n are sequential. Liu and Zhang [1606] finished
off the crowns C2n �K1. (The case C2n+1 �K1 was a special case of Grace’s results. Liu
[1618] proved crowns are harmonious.)

Bača and Youssef [320] investigated the existence of harmonious labelings for the
corona graphs of a cycle and a graph G. They proved that if G+K1 is strongly harmonious
with the 0 label on the vertex of K1, then Cn � G is harmonious for all odd n ≥ 3. By
combining this with existing results they have as corollaries that the following graphs are
harmonious: Cn � Cm for odd n ≥ 3 and m 6≡ 2 (mod 3); Cn �Ks,t for odd n ≥ 3; and
Cn �K1,s,t for odd n ≥ 3.

Bu [507] also proved that crowns are sequential as are all even cycles with m pendent
edges attached at each vertex. Figueroa-Centeno, Ichishima, and Muntaner-Batle [762]
proved that all cycles with m pendent edges attached at each vertex are sequential. Wu
[2823] has shown that caterpillars with m pendent edges attached at each vertex are
sequential. exactly one path of fixed length to each vertex of some path is sequential.

Singh has proved the following: Cn�K2 is sequential for all odd n > 1 [2396]; Cn�P3

is sequential for all odd n [2397]; K2 � Cn (each vertex of the cycle is joined by edges to
the end points of a copy of K2) is sequential for all odd n [2397]; helms Hn are sequential
when n is even [2397]; and K1,n + K2, K1,n + K2, and ladders are sequential [2399].
Santhosh [2182] has shown that Cn � P4 is sequential for all odd n ≥ 3. Both Grace
[921] and Reid (see [815]) have found sequential labelings for the books B2n. Jungreis
and Reid [1266] have shown the following graphs are sequential: Pm×Pn (m,n) 6= (2, 2);

C4m × Pn (m,n) 6= (1, 2); C4m+2 × P2n; C2m+1 × Pn; and C4 × C2n (n > 1). The graphs

C4m+2 × C2n+1 and C2m+1 × C2n+1 fail to satisfy a necessary parity condition given by
Graham and Sloane [925]. The remaining cases of Cm × Pn and Cm × Cn are open.
Gallian, Prout, and Winters [816] proved that all graphs Cn × P2 with a vertex or an
edge deleted are sequential. Zhu and Liu [2922] give necessary and sufficient conditions
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for sequential graphs, provide a characterization of non-tree sequential graphs by way of
by vertex closure, and obtain characterizations of sequential trees.

Gnanajothi [894] [pp. 68-78] has shown the following graphs are sequential: K1,m,n;
mCn, the disjoint union of m copies of Cn if and only if m and n are odd; books with
triangular pages or pentagonal pages; and books of the form B4n+1, thereby answering
a question and proving a conjecture of Gallian and Jungreis [815]. Sun [2529] has also
proved that Bn is sequential if and only if n 6≡ 3 (mod 4). Ichishima and Oshima [1062]
pose determining whether or not mKs,t is sequential as a problem.

Yuan and Zhu [2894] have shown that mCn is sequential when m and n are odd.
Although Graham and Sloane [925] proved that the Möbius ladder M3 is not harmonious,
Gallian [810] established that all other Möbius ladders are sequential (see §2.3 for the
definition of Möbius ladder). Chung, Hsu, and Rogers [558] have shown that Km,n +K1,
which includes Sm + K1, is sequential. Seoud and Youssef [2259] proved that if G is
sequential and has the same number of edges as vertices, then G+Kn is sequential for all
n. Recall that Θ(Cm)n denotes the book with n m-polygonal pages. Lu [1671] proved that
Θ(C2m+1)2n is 2mn-sequential for all n and m = 1, 2, 3, 4, and Θ(Cm)2 is (m−2)-sequential
if m ≥ 3 and m ≡ 2, 3, 4, 7 (mod 8).

Zhou and Yuan [2919] have shown that for every c-sequential graph G with p vertices
and q edges and any positive integer m the graph (G + Km) + Kn is also k-sequential
when q − p + 1 ≤ m ≤ q − p + c. Zhou [2918] has shown that the analogous results
hold for strongly c-harmonious graphs. Zhou and Yuan [2919] have shown that for every
c-sequential graph G with p vertices and q edges and any positive integer m the graph
(G+Km) +Kn is c-sequential when q − p+ 1 ≤ m ≤ q − p+ c.

Shee [1532] proved that every graph is a subgraph of a sequential graph. Acharya,
Germina, Princy, and Rao [35] prove that every connected graph can be embedded in
a strongly c-harmonious graph for some c. Miao and Liang [1743] use Cn(d; i, j;Pk) to
denote a cycle Cn with path Pk joining two nonconsecutive vertices xi and xj of the
cycle, where d is the distance between xi and xj on Cn. They proved that the graph
Cn(d; i, j;Pk) is strongly c-harmonious when k = 2, 3 and integer n ≥ 6. Lu [1670]
provides three techniques for constructing larger sequential graphs from some smaller
one: an attaching construction, an adjoining construction, and the join of two graphs.
Using these, he obtains various families of sequential or strongly c-indexable graphs.

For 1 ≤ s ≤ n3, let Cn(i : i1, i2, . . . , is) denote an n-cycle with consecutive vertices
x1, x2, . . . , xn to which the s chords xixi1 , xixi2 , . . . , xixis have been added. Liang [1586]
proved a variety of graphs of the form Cn(i : i1, i2, . . . , is) are strongly c-harmonious.

Youssef [2877] observed that a strongly c-harmonious graph with q edges is c-cordial
for all c ≥ q and a strongly k-indexable graph is k-cordial for every k. The converse of
this latter result is not true.

In [1059] Ichishima and Oshima show that the hypercube Qn (n ≥ 2) is sequential if
and only if n ≥ 4. They also introduce a special kind of sequential labeling of a graph
G with size 2t + s by defining a sequential labeling f to be a partitional labeling if G is
bipartite with partite sets X and Y of the same cardinality s such that f(x) ≤ t+ s− 1
for all x ∈ X and f(y) ≥ t− s for all y ∈ Y , and there is a positive integer m such that
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the induced edge labels are partitioned into three sets [m,m+ t−1], [m+ t,m+ t+ s−1],
and [m + t + s,m + 2t + s − 1] with the properties that there is an involution π, which
is an automorphism of G such that π exchanges X and Y , xπ(x) ∈ E(G) for all x ∈ X,
and {f(x) + f(π(x))| x ∈ X} = [m+ t,m+ t+ s− 1]. They prove if G has a partitional
labeling, then G × Qn has a partitional labeling for every nonnegative integer n. Using
this together with existing results and the fact that every graph that has a partitional
labeling is sequential, harmonious, and felicitous (see §4.5) they show that the following
graphs are partitional, sequential, harmonious, and felicitous: for n ≥ 4, hypercubes Qn;
generalized books S2m ×Qn; and generalized ladders P2m+1 ×Qn.

In [1060] Ichishma and Oshima proved the following: if G is a partitional graph, then
G×K2 is partitional, sequential, harmonious and felicitous; if G is a connected bipartite
graph with partite sets of distinct odd order such that in each partite set each vertex has
the same degree, then G × K2 is not partitional; for every positive integer m, the book
Bm is partitional if and only if m is even; the graph B2m×Qn is partitional if and only if
(m,n) 6= (1, 1); the graph Km,2×Qn is partitional if and only if (m,n) 6= (2, 1); for every
positive integer n, the graph Km,3 ×Qn is partitional when m = 4, 8, 12, or 16. As open
problems they ask which m and n is Km,n ×K2 partitional and for which l,m and n is
Kl,m ×Qn partitional?

Ichishma and Oshima [1060] also investigated the relationship between partitional
graphs and strongly graceful graphs (see §3.1 for the definition) and partitional graphs
and strongly felicitous graphs (see §4.5) for the definition). They proved the following. If
G is a partitional graph, then G×K2 is partitional, sequential, harmonious and felicitous.
Assume that G is a partitional graph of size 2t+ s with partite sets X and Y of the same
cardinality s, and let f be a partitional labeling of G such that λ1 = max{f(x) : x ∈ X}
and λ2 = max{f(y) : y ∈ Y }. If λ1 + 1 = m+ 2t+ s−λ2, where m = min{f(x) + f(y) :
xy ∈ E(G)} = min{f(y) : y ∈ Y }, then G has a strong α-valuation. Assume that G
is a partitional graph of size 2t + s with partite sets X and Y of the same cardinality
s, and let f be a partitional labeling of G such that λ1 = max{f(x) : x ∈ X} and
λ2 = max{f(y) : y ∈ Y }. If λ1 + 1 = m + 2t + s − λ2, where m = min{f(x) + f(y) :
xy ∈ E(G)} = min{f(y) : y ∈ Y }, then G is strongly felicitous. Assume that G is
a partitional graph of size 2t + s with partite sets X and Y of the same cardinality s,
and let f be a partitional labeling of G such that µ1 = f(x1) = min{f(x) : x ∈ X}
and µ2 = f(y1) = min{f(y) : y ∈ Y }. If t + s = m + 1 and µ1 + µ2 = m, where
m = min{f(x) + f(y) : xy ∈ E(G)} and x1y1 ∈ E(G), then G has a strong α-valuation
and strongly felicitous labeling.

Vaidya and Lekha [2655] proved the following graphs are odd sequential: Pn, Cn
for n ≡ 0 (mod 4), crowns Cn

⊙
K1 for even n, the graph obtained by duplication of

arbitrary vertex in even cycles, path unions of stars, arbitrary super subdivisions in Pn,
and shadows of stars. They also introduced the concept of a bi-odd sequential labeling
of a graph G as one for which both G and its line graph L(G) admit odd sequential
labeling. They proved Pn and Cn for n ≡ ( mod 4) are bi-odd sequential graphs and trees
are bi-odd sequential if and only if they are paths. They also prove that P4 is the only
graph with the property that it and its complement are odd sequential.

the electronic journal of combinatorics (2019), #DS6 109



Arockiaraj, Mahalakshmi, and Namasivayam [184] proved that the subdivision graphs
of the following graphs have odd sequential labelings (they call them odd sum labelings):
triangular snakes; quadrilateral snakes; slanting ladders SLn (n > 1) (the graphs obtained
from two paths u1u2 . . . un and v1v2 . . . vn by joining each ui with vi+1); Cp �K1, Hn �
K1, Cm@Cn (the graph obtained by attaching paths Pn to Cm by identifying the endpoints
of the paths with each successive pairs of vertices of Cm); Pm×Pn; and graphs obtained by
the duplication of a vertex of a path and the duplication of a vertex of a cycle. Arockiaraj,
Mahalakshmi, and Namasivayam [186] investigate the odd sum labeling behavior of paths,
combs, cycles, crowns, and ladders under duplication of an edge. In [187] they investigated
the odd sum property of shadow graphs, edge duplication graphs and vertex identification
graphs. In [913] Gopi proved the following graphs are odd sum graphs: graphsHn obtained
from two copies of Pn (n ≥ 3) with vertices v1, v2, . . . , vn and u1, u2, . . . , un by joining
v(n+1)/2 and u(n+1)/2 if n is odd and vn/2 and u(n+2)/2 if n is even; graphs obtained from
Hn by attaching a fixed number of pendent edges at each vertex, graphs obtained from
Pn (n ≥ 4) by attaching a two pendent edges at each interior vertex; and graphs obtained
from Pm (m ≥ 4) by identifying an endpoint of the star Sn (n ≥ 2) with each vertex of
Pm. In [917] Gopi and Irudaya Mary proved that slanting ladders, shadow graphs of stars
and bistars and mirror graphs and duplicate vertex graphs of paths with at least four
verticies are odd sum graphs. In [912] Gopi proved that alternative quadrilateral snakes
A(D(Qn)) (n ≥ 4) are odd sum graphs.

Arockiaraj and Mahalakshmi [183] proved the following graphs have odd sequential
labelings (odd sum labelings): Pn (n > 1), Cn if and only if n ≡ 0 (mod 4); C2n �
K1; Pn × P2 (n > 1); Pm � K1 if m is even or m is odd and n = 1 or 2; the balloon
graph Pm(Cn) obtained by identifying an end point of Pm with a vertex of Cn if either
n ≡ 0 (mod 4) or n ≡ 2 (mod 4) and m 6≡ 1 (mod 3); quadrilateral snakes Qn; Pm � Cn
if m > 1 and n ≡ 0 (mod 4); Pm � Q3; bistars; C2n × P2; the trees T np obtained from n
copies of Tp by joining an edge uu′ between every pair of consecutive paths where u is a
vertex in ith copy of the path and u′ is the corresponding vertex in the (i+ 1)th copy of
the path; Hn-graphs obtained by starting with two copies of Pn with vertices v1, v2, . . . , vn
and u1, u2, . . . , un and joining the vertices v(n+1)/2 and u(n+1)/2 if n is odd and the vertices
vn/2+1 and un/2 if n; and Hn �mK1.

Arockiaraj and Mahalakshmi [185] proved the splitting graphs of following graphs have
odd sequential labelings (odd sum labelings): Pn; Cn if and only if n ≡ 0 (mod 4); Pn �
K1; C2n �K1; K1,n if and only if n ≤ 2; Pn × P2 (n > 1); slanting ladders SLn (n > 1);
the quadrilateral snake Qn; and Hn-graphs.

Among the strongly 1-harmonious (also called strongly harmonious) graphs are: fans
Fn with n ≥ 2 [558]; wheels Wn with n 6≡ 2 (mod 3) [558]; Km,n + K1 [558]; French

windmills K
(t)
4 [1025], [1327]; the friendship graphs C

(n)
3 if and only if n ≡ 0 or 1 (mod 4)

[1025], [1327], [2842]; C
(t)
4k [2530]; and helms [2064].

Seoud, Diab, and Elsakhawi [2230] have shown that the following graphs are strongly
harmonious: Km,n with an edge joining two vertices in the same partite set; K1,m,n; the
composition Pn[P2] (see §2.3 for the definition); B(3, 2,m) and B(4, 3,m) for all m (see
§2.4 for the notation); P 2

n (n ≥ 3); and P 3
n (n ≥ 3). Seoud et al. [2230] have also
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proved: B2n is strongly 2n-harmonious; Pn is strongly bn/2c-harmonious; ladders L2k+1

are strongly (k+ 1)-harmonious; and that if G is strongly c-harmonious and has an equal
number of vertices and edges, then G+Kn is also strongly c-harmonious.

Bača and Youssef [320] investigated the existence of harmonious labelings for the
corona graphs of a cycle and a graph G, and for the corona graph of K2 and a tree. They
prove: if join of a graph G of order p and K1, G+K1, is strongly harmonious with the 0
label on the vertex of K1, then the corona of Cn with G, Cn � G, is harmonious for all
odd n ≥ 3; if T is a strongly c-harmonious tree of odd size q and c = q+1

2
then the corona

of K2 with T , K2 � T , is also strongly c-harmonious; if a unicyclic graph G of odd size
q is a strongly c-harmonious and c = q−1

2
then the corona of K2 with G, K2 � G, is also

strongly c-harmonious.
Seenivasan and Lourdusamy [2199] define an absolutely harmonious labeling f as an

injection from the vertex set of a graph G with q edges to the set {0, 1, 2, . . . , q − 1}, if
when each edge uv is assigned f(u) + f(v), the resulting edge labels can be arranged as
a0, a1, a2, . . . , aq−1 where ai = q− i or q+ i for 0 ≤ i ≤ q− 1. When G is a tree one of the
vertex labels may be assigned to exactly two vertices. A graph that admits absolutely
harmonious labeling is called an absolutely harmonious graph. Observe that a strongly
harmonious graph is an absolutely harmonious graph. They prove the following graphs
are absolutely harmnious: Pn (n ≥ 3), Pn � Km, Cn � Km, the banana tree obtained
by joining a vertex of degree 1 of each of any number of copies of K1,n to an isolated
vertex, ladders, triangular snakes, quadrilateral snakes, mK4, Kn if and only if n = 3
or 4. They also prove that if G is an absolutely harmonious graph, then there exists
a partition (V1, V2) of the vertex set V (G), such that the number of edges connecting
the vertices of V1 to the vertices of V2 is exactly dq/2e snd that if every vertex of an
absolutely harmonious graph with q edges is even then q ≡ 1 or 2. As corollaries of the
latter condition, they have that Cn when n ≡ 1 or 2 (mod 4), Cm × Cn when m and n
are odd, and mK3, m ≥ 2 are not absolutely harmonious.

Sethuraman and Selvaraju [2298] have proved that the graph obtained by joining two
complete bipartite graphs at one edge is graceful and strongly harmonious. They ask
whether these results extend to any number of complete bipartite graphs.

For a graph G(V,E) Gayathri and Hemalatha [859] define an even sequential harmo-
nious labeling f of G as an injection from V to {0, 1, 2, . . . , 2|E|} with the property that
the induced mapping f+ from E to {2, 4, 6, . . . , 2|E|} defined by f+(uv) = f(u) + f(v)
when f(u) +f(v) is even, and f+(uv) = f(u) +f(v) + 1 when f(u) +f(v) is odd, is an in-
jection. They prove the following have even sequential harmonious labelings (all cases are
the nontrivial ones): Pn, P

+
n , Cn( n ≥ 3), triangular snakes, quadrilateral snakes, Möbius

ladders, Pm × Pn (m ≥ 2, n ≥ 2), Km,n; crowns Cm �K1, graphs obtained by joining the
centers of two copies of K1,n by a path; banana trees (see §2.1), P 2

n , closed helms (see
§2.2), C3 � nK1 (n ≥ 2); D �K1,n where D is a dragon (see §2.2); 〈K1,n : m〉 (m,n ≥ 2)
(see §4.5); the wreath product Pn ∗K2 (n ≥ 2) (see §4.5); combs Pn �K1; the one-point
union of the end point of a path to a vertex of a cycle (tadpole); the one-point union
of the end point of a tadpole and the center of a star; the graphs PCn obtained from
Cn = v0, v1, v2, . . . , vn−1 by adding the cords v1vn−1, v2vn−2, . . . , v(n−2)/2, v(n+2)/2 when n
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is even and v1vn−1, v2vn−2, . . . , v(n−3)/2, v(n+3)/2 when n is odd (that is, cycles with a full
set of cords); Pm � nK1; the one-point union of a vertex of a cycle and the center of a
star; graphs obtained by joining the centers of two stars with an edge; graphs obtained by
joining two disjoint cycles with an edge (dumbbells); graphs consisting of two even cycles
of the same order sharing a common vertex with an arbitrary number of pendent edges
attached at the common vertex (butterflies).

In [1046] Ichishima, Muntaner-Batle, and Oshima define the harmonious number,
η(G), of a graph G with q edges as the smallest positive integer n for which there exists
an injective function f from V (G) to Zn+1 such that each uv of G is labeled f(u) + f(v)
(mod q) and the resulting edge labels are distinct, or +∞ if there exists no such integer
n. If such functions exist, they are called harmonious numberings. The strong harmo-
nious number, ηs(G), of a graph G is defined to be either the smallest positive integer n
such that n = η(G) with the additional property that there exists an integer λ such that
min{f(u), f(v)} ≤ λ ≤ max{f(u), f(v)} for each edge in G or +∞ if there exists no such
integer n. They provide a necessary condition for a graph to have a finite harmonious num-
ber and sufficient conditions for a graph to have an infinite (strong) harmonious number.
In addition, they examine the relations between harmonious numbers, gamma-numbers,
alpha-numbers, and super edge magic deficiencies (see §5.2). They determine the formulas
for the (strong) harmonious numbers of some 2-regular graphs and all complete bipartite
graphs.

In her PhD thesis [1812] (see also [860]) Muthuramakrishnan defined a labeling f
of a graph G(V,E) to be k-even sequential harmonious if f is an injection from V to
{k − 1, k, k + 1, . . . , k + 2q − 1} such that the induced mapping f+ from E to {2k, 2k +
2, 2k + 4, . . . , 2k + 2q − 2} defined by f+(uv) = f(u) + f(v) if f(u) + f(v) is even and
f+(uv) = f(u) + f(v) + 1 if f(u) + f(v) is odd are distinct. A graph G is called a k-even
sequential harmonious graph if it admits a k-even sequential harmonious labeling. Among
the numerous graphs that she proved to be k-even sequential harmonious are: paths,
cycles, Km,n, P 2

n (n ≥ 3), crowns Cm � K1, Cm@Pn (the graph obtained by identifying
an endpoint of Pn with one vertex of Cm), double triangular snakes, double quadrilateral
snakes, bistars, grids Pm×Pn (m,n ≥ 2), Pn[P2], C3�nK1 (n ≥ 2), flags Flm (the cycle Cm
with one pendent edge), dumbbell graphs (two disjoint cycles joined by an edge) butterfly
graphs Bn (two even cycles of the same order sharing a common vertex with an arbitrary
number of pendent edges attached at the common vertex), K2 + nK1, Kn + 2K2, banana
trees, sparklers Pm@K1,n (m,n ≥ 2), (graphs obtained by identifying an endpoint of Pm
with the center of a star), twigs (graphs obtained from Pn (n ≥ 3) by attaching exactly
two pendent edges at each internal vertex of Pn), festoon graphs Pm � nK1 (m ≥ 2), the
graphs Tm,n,t obtained from a path Pt by appending m edges at one endpoint of Pt and
n edges at the other endpoint of Pt, Ln �K1 (Ln is the ladder Pn × P2), shadow graphs
of paths, stars and bistars, and split graphs of paths and stars. Muthuramakrishnan also
defines k-odd sequential harmonious labeling of graphs in the natural way and obtains a
handful of results.
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4.2 (k, d)-arithmetic Labelings

Acharya and Hegde [39] have generalized sequential labelings as follows. Let G be a
graph with q edges and let k and d be positive integers. A labeling f of G is said to
be (k, d)-arithmetic if the vertex labels are distinct nonnegative integers and the edge
labels induced by f(x) + f(y) for each edge xy are k, k + d, k + 2d, . . . , k + (q − 1)d.
They obtained a number of necessary conditions for various kinds of graphs to have a
(k, d)-arithmetic labeling. The case where k = 1 and d = 1 was called additively graceful
by Hegde [977]. Hegde [977] showed: Kn is additively graceful if and only if n = 2, 3, or
4; every additively graceful graph except K2 or K1,2 contains a triangle; and a unicyclic
graph is additively graceful if and only if it is a 3-cycle or a 3-cycle with a single pendent
edge attached. Jinnah and Singh [1254] noted that P 2

n is additively graceful. Hegde
[978] proved that if G is strongly k-indexable, then G and G+Kn are (kd, d)-arithmetic.
Acharya and Hegde [41] proved that Kn is (k, d)-arithmetic if and only if n ≥ 5 (see also
[513]). They also proved that a graph with an α-labeling is a (k, d)-arithmetic for all k
and d. Bu and Shi [513] proved that Km,n is (k, d)-arithmetic when k is not of the form
id for 1 ≤ i ≤ n − 1. For all d ≥ 1 and all r ≥ 0, Acharya and Hegde [39] showed the
following: Km,n,1 is (d + 2r, d)-arithmetic; C4t+1 is (2dt + 2r, d)-arithmetic; C4t+2 is not
(k, d)-arithmetic for any values of k and d; C4t+3 is ((2t + 1)d + 2r, d)-arithmetic; W4t+2

is (2dt+ 2r, d)-arithmetic; and W4t is ((2t+ 1)d+ 2r, d)-arithmetic. They conjecture that
C4t+1 is (2dt + 2r, d)-arithmetic for some r and that C4t+3 is (2dt + d + 2r, d)-arithmetic
for some r. Hegde and Shetty [996] proved the following: the generalized web W (t, n)
(see §2.2 for the definition) is ((n − 1)d/2, d)-arithmetic and ((3n − 1)d/2, d)-arithmetic
for odd n; the join of the generalized web W (t, n) with the center removed and Kp where
n is odd is ((n − 1)d/2, d)-arithmetic; every Tp-tree (see §3.2 for the definition) with
q edges and every tree obtained by subdividing every edge of a Tp-tree exactly once is
(k+(q−1)d, d)-arithmetic for all k and d. Lu, Pan, and Li [1673] proved that K1,m∪Kp,q

is (k, d)-arithmetic when k > (q − 1)d+ 1 and d > 1.
Yu [2889] proved that a necessary condition for C4t+1 to be (k, d)-arithmetic is that

k = 2dt + r for some r ≥ 0 and a necessary condition for C4t+3 to be (k, d)-arithmetic is
that k = (2t + 1)d + 2r for some r ≥ 0. These conditions were conjectured by Acharya
and Hegde [39]. Singh proved that the graph obtained by subdividing every edge of the
ladder Ln is (5, 2)-arithmetic [2395] and that the ladder Ln is (n, 1)-arithmetic [2398].
He also proves that Pm × Cn is ((n− 1)/2, 1)-arithmetic when n is odd [2398]. Acharya,
Germina, and Anandavally [33] proved that the subdivision graph of the ladder Ln is
(k, d)-arithmetic if either d does not divide k or k = rd for some r ≥ 2n and that Pm×Pn
and the subdivision graph of the ladder Ln are (k, k)-arithmetic if and only if k is at least
3. Lu, Pan, and Li [1673] proved that Sm∪Kp,q is (k, d)-arithmetic when k > (q−1)d+ 1
and d > 1.

A graph is called arithmetic if it is (k, d)-arithmetic for some k and d. Singh and
Vilfred [2403] showed that various classes of trees are arithmetic. Singh [2398] has proved
that the union of an arithmetic graph and an arithmetic bipartite graph is arithmetic. He
conjectures that the union of arithmetic graphs is arithmetic. He provides an example to
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show that the converse is not true.
Germina and Anandavally [869] investigated embedding of graphs in arithmetic graphs.

They proved: every graph can be embedded as an induced subgraph of an arithmetic
graph; every bipartite graph can be embedded in a (k, d)-arithmetic graph for all k and d
such that d does not divide k; and any graph containing an odd cycle cannot be embedded
as an induced subgraph of a connected (k, d)-arithmetic with k < d.

In [2863] Yao, Liu, and Yao give necessary and sufficient conditions for a tree to
have the following mutually equivalent labelings: set-ordered odd-graceful, (k, d)-graceful,
super edge-magic total, odd-elegant (see §4.4), harmonious, (k, d)-arithmetic, and edge-
antimagic (see §6.1).

4.3 (k, d)-indexable Labelings

Acharya and Hegde [39] call a graph with p vertices and q edges (k, d)-indexable if there is
an injective function from V to {0, 1, 2, . . . , p−1} such that the set of edge labels induced
by adding the vertex labels is a subset of {k, k+d, k+2d, . . . , k+q(d−1)}. When the set of
edges is {k, k+d, k+2d, . . . , k+q(d−1)} the graph is said to be strongly (k, d)-indexable. A
(k, 1)-graph is more simply called k-indexable and strongly 1-indexable graphs are simply
called strongly indexable. Notice that strongly indexable graphs are a stronger form of
sequential graphs and for trees and unicyclic graphs the notions of sequential labelings
and strongly k-indexable labelings coincide. Hegde and Shetty [1001] have shown that
the notions of (1, 1)-strongly indexable graphs and super edge-magic total labelings (see
§5.2) are equivalent.

Zhou [2918] has shown that for every k-indexable graph G with p vertices and q edges
the graph (G+Kq−p+k)+K1 is strongly k-indexable. Acharaya and Hegde prove that the
only nontrivial regular graphs that are strongly indexable are K2, K3, and K2 ×K3, and
that every strongly indexable graph has exactly one nontrivial component that is either a
star or has a triangle. Acharya and Hegde [39] call a graph with p vertices indexable if there
is an injective labeling of the vertices with labels from {0, 1, 2, . . . , p − 1} such that the
edge labels induced by addition of the vertex labels are distinct. They conjecture that all
unicyclic graphs are indexable. This conjecture was proved by Arumugam and Germina
[193] who also proved that all trees are indexable. Bu and Shi [514] also proved that all
trees are indexable and that all unicyclic graphs with the cycle C3 are indexable. Hegde
[978] has shown the following: every graph can be embedded as an induced subgraph
of an indexable graph; if a connected graph with p vertices and q edges (q ≥ 2) is
(k, d)-indexable, then d ≤ 2; Pm × Pn is indexable for all m and n; if G is a connected
(1, 2)-indexable graph, then G is a tree; the minimum degree of any (k, 1)-indexable graph
with at least two vertices is at most 3; a caterpillar with partite sets of orders a and b
is strongly (1, 2)-indexable if and only if |a− b| ≤ 1; in a connected strongly k-indexable
graph with p vertices and q edges, k ≤ p− 1; and if a graph with p vertices and q edges is
(k, d)-indexable, then q ≤ (2p− 3− k + d)/d. As a corollary of the latter, it follows that
Kn (n ≥ 4) and wheels are not (k, d)-indexable.

Lee and Lee [1476] provide a way to construct a (k, d)-strongly indexable graph from
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two given (k, d)-strongly indexable graphs. Lee and Lo [1507] show that every given (1,2)-
strongly indexable spider can extend to an (1,2)-strongly indexable spider with arbitrarily
many legs.

Seoud, Abd El Hamid, and Abo Shady [2218] proved the following graphs are in-
dexable: Pm × Pn (m,n ≥ 2); the graphs obtained from Pn +K1 by inserting one vertex
between every two consecutive vertices of Pn; the one-point union of any number of copies
of K2,n; and the graphs obtained by identifying a vertex of a cycle with the center of a star.
They showed Pn is strongly dn/2e-indexable; odd cycles Cn are strongly dn/2e-indexable;
K(m,n) (m,n > 2) is indexable if and only if m or n is at most 2. For a simple indexable
graph G(V,E) they proved |E| ≤ 2|V | − 3. Also, they determine all indexable graphs of
order at most 6.

Hegde and Shetty [1000] also prove that if G is strongly k-indexable Eulerian graph
with q edges then q ≡ 0, 3 (mod 4) if k is even and q ≡ 0, 1 (mod 4) if k is odd. They
further showed how strongly k-indexable graphs can be used to construct polygons of
equal internal angles with sides of different lengths.

Germina [866] has proved the following: fans Pn+K1 are strongly indexable if and only
if n = 1, 2, 3, 4, 5, 6; Pn + K2 is strongly indexable if and only if n ≤ 2; the only strongly
indexable complete m-partite graphs are K1,n and K1,1,n; ladders Pn×P2 are dn

2
e-strongly

indexable, if n is odd; Kn × Pk is a strongly indexable if and only if n = 3; Cm × Pn is
2-strongly indexable if m is odd and n ≥ 2; K1,n +Ki is not strongly indexable for n ≥ 2;
for Gi

∼= K1,n, 1 ≤ i ≤ n, the sequential join G ∼= (G1 +G2)∪(G2 +G3)∪· · ·∪(Gn−1 +Gn)
is strongly indexable if and only if, either i = n = 1 or i = 2 and n = 1 or i = 1, n = 3;
P1∪Pn is strongly indexable if and only if n ≤ 3; P2∪Pn is not strongly indexable; P2∪Pn
is dn+3

2
e-strongly indexable; mCn is k-strongly indexable if and only if m and n are odd;

K1,n ∪ K1,n+1 is strongly indexable; and mK1,n is d3m−1
2
e-strongly indexable when m is

odd.
Acharya and Germina [28] proved that every graph can be embedded in a strongly

indexable graph and gave an algorithmic characterization of strongly indexable unicyclic
graphs. In [30] they provide necessary conditions for an Eulerian graph to be strongly
k-indexable and investigate strongly indexable (p, q)-graphs for which q = 2p− 3.

Hegde and Shetty [996] proved that for n odd the generalized web graph W (t, n) with
the center removed is strongly (n−1)/2-indexable. Hegde and Shetty [1001] define a level
joined planar grid as follows. Let u be a vertex of Pm × Pn of degree 2. For every pair
of distinct vertices v and w that do not have degree 4, introduce an edge between v and
w provided that the distance from u to v equals the distance from u to w. They prove
that every level joined planar grid is strongly indexable. For any sequence of positive
integers (a1, a2, . . . , an) Lee and Lee [1475] show how to associate a strongly indexable
(1, 1)-graph. As a corollary, they obtain the aforementioned result Hegde and Shetty on
level joined planar grids.

Section 5.2 of this survey includes a discussion of a labeling method called super edge-
magic. In 2002 Hegde and Shetty [1001] showed that a graph has a strongly k-indexable
labeling if and only if it has a super edge-magic labeling.
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4.4 Elegant Labelings

In 1981 Chang, Hsu, and Rogers [558] defined an elegant labeling f of a graph G with
q edges as an injective function from the vertices of G to the set {0, 1, . . . , q} such that
when each edge xy is assigned the label f(x)+f(y) (mod (q+1)) the resulting edge labels
are distinct and nonzero. An injective labeling f of a graph G with q vertices is called
strongly k-elegant if the vertex labels are from {0, 1, . . . , q} and the edge labels induced
by f(x) + f(y) (mod (q + 1)) for each edge xy are k, . . . , k + q− 1. Note that in contrast
to the definition of a harmonious labeling, for an elegant labeling it is not necessary to
make an exception for trees.

Whereas the cycle Cn is harmonious if and only if n is odd, Chang et al. [558] proved
that Cn is elegant when n ≡ 0 or 3 (mod 4) and not elegant when n ≡ 1 (mod 4). Chang
et al. further showed that all fans are elegant and the paths Pn are elegant for n 6≡ 0 (mod
4). Cahit [527] then showed that P4 is the only path that is not elegant. Balakrishnan,
Selvam, and Yegnanarayanan [340] have proved numerous graphs are elegant. Among
them are Km,n and the mth-subdivision graph of K1,2n for all m. They prove that the
bistar Bn,n (K2 with n pendent edges at each endpoint) is elegant if and only if n is
even. They also prove that every simple graph is a subgraph of an elegant graph and
that several families of graphs are not elegant. Deb and Limaye [653] have shown that
triangular snakes (see §2.2 for the definition) are elegant if and only if the number of
triangles is not equal to 3 (mod 4). In the case where the number of triangles is 3
(mod 4) they show the triangular snakes satisfy a weaker condition they call semi-elegant
whereby the edge label 0 is permitted. In [654] Deb and Limaye define a graph G with
q edges to be near-elegant if there is an injective function f from the vertices of G to
the set {0, 1, . . . , q} such that when each edge xy is assigned the label f(x) + f(y) (mod
(q + 1)) the resulting edge labels are distinct and not equal to q. Thus, in a near-elegant
labeling, instead of 0 being the missing value in the edge labels, q is the missing value.
Deb and Limaye show that triangular snakes where the number of triangles is 3 (mod
4) are near-elegant. For any positive integers α ≤ β ≤ γ where β is at least 2, the
theta graph θα,β,γ consists of three edge disjoint paths of lengths α, β, and γ having the
same end points. Deb and Limaye [654] provide elegant and near-elegant labelings for
some theta graphs where α = 1, 2, or 3. Seoud and Elsakhawi [2232] have proved that
the following graphs are elegant: K1,m,n; K1,1,m,n; K2 + Km; K3 + Km; and Km,n with
an edge joining two vertices of the same partite set. Elumalai and Sethuraman [713]
proved P n

2 , P 2
m + Kn, Sm + Sn, Sm + Km, C3 × Pm, and even cycles C2n with vertices

a0, a1, . . . , a2n−1, a0 and 2n − 3 chords a0a2, a0a3, . . . , a0a2n−2 (n ≥ 2) are elegant. Zhou
[2918] has shown that for every strongly k-elegant graph G with p vertices and q edges
and any positive integer m the graph (G + Km) + Kn is also strongly k-elegant when
q − p+ 1 ≤ m ≤ q − p+ k.

Sethuraman and Elumalai [2273] proved that every graph is a vertex induced subgraph
of a elegant graph and present an algorithm that permits one to start with any non-trivial
connected graph and successively form supersubdivisions (see §2.7) that have a strong
form of elegant labeling. Acharya, Germina, Princy, and Rao [35] prove that every (p, q)-
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graph G can be embedded in a connected elegant graph H. The construction is done in
such a way that if G is planar and elegant (harmonious), then so is H.

In [2272] Sethuraman and Elumalai define a graph H to be a K1,m-star extension of a
graph G with p vertices and q edges at a vertex v of G where m > p− 1− deg(v) if H is
obtained from G by merging the center of the star K1,m with v and merging p−1−deg(v)
pendent vertices of K1,m with the p − 1 − deg(v) nonadjacent vertices of v in G. They
prove that for every graph G with p vertices and q edges and for every vertex v of G and
every m ≥ 2p−1 − 1 − q, there is a K1,m-star extension of G that is both graceful and
harmonious. In the case where m ≥ 2p−1− q, they show that G has a K1,m-star extension
that is elegant. Sethuraman and Selvaraju [2299] have shown that certain cases of the
union of any number of copies of K4 with one or more edges deleted and one edge in
common are elegant.

In [728] Ephremnath and Elumlai say a graph G is a cycle with a chord Hamiltonian
path if G is obtained from the cycle v0, v1, . . . , vn−1, v0 (n ≥ 6) by adding the chords
v1vn−1, vvvn−2, . . . , vαvβ where α = β = (n − 2)/2 if n is even and α = (n + 3)/2, β =
(n − 1)/2 if n is odd. They proved that Cn (n ≥ 6) with a chord Hamiltonian path is
harmonious and elegant.

Gallian extended the notion of harmoniousness to arbitrary finite Abelian groups as
follows. Let G be a graph with q edges and H a finite Abelian group (under addition) of
order q. Define G to be H-harmonious if there is an injection f from the vertices of G to
H such that when each edge xy is assigned the label f(x) + f(y) the resulting edge labels
are distinct. When G is a tree, one label may be used on exactly two vertices. Beals,
Gallian, Headley, and Jungreis [422] have shown that if H is a finite Abelian group of
order n > 1 then Cn is H-harmonious if and only if H has a non-cyclic or trivial Sylow
2-subgroup and H is not of the form Z2 × Z2 × · · · × Z2. Thus, for example, C12 is not
Z12-harmonious but is (Z2×Z2×Z3)-harmonious. In [707] Ehard, Glock, and Joos apply
rainbow colorings to graph decompositions and harmonious labeling of graphs.

Analogously, the notion of an elegant graph can be extended to arbitrary finite Abelian
groups. Let G be a graph with q edges and H a finite Abelian group (under addition)
with q + 1 elements. We say G is H-elegant if there is an injection f from the vertices
of G to H such that when each edge xy is assigned the label f(x) + f(y) the resulting
set of edge labels is the non-identity elements of H. Beals et al. [422] proved that if
H is a finite Abelian group of order n with n 6= 1 and n 6= 3, then Cn−1 is H-elegant
using only the non-identity elements of H as vertex labels if and only if H has either a
non-cyclic or trivial Sylow 2-subgroup. This result completed a partial characterization of
elegant cycles given by Chang, Hsu, and Rogers [558] by showing that Cn is elegant when
n ≡ 2 (mod 4). Mollard and Payan [1780] also proved that Cn is elegant when n ≡ 2
(mod 4) and gave another proof that Pn is elegant when n 6= 4. In 2014 Ollis [1880] used
harmonious labelings for Zm given by Beals, Gallian, Headley, and Jungreis in [422] to
construct new Latin squares of odd order.

A function f is said to be an odd-elegant labeling of a graph G with q edges if f is an
injection from the vertices of G to the integers from 0 to 2q − 1 such that the induced
mapping f ∗(uv) = f(u) + f(v) (mod 2q) from the edges of G to the odd integers between
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1 to 2q − 1 is a bijection. Zhou, Yao, and Chen [2920] proved that every lobster is odd-
elegant. In [2766] Wang, Xu, Ma, and Zhang gave a new type of graphical passwords
based on odd-elegant labeled graphs. See also[2767] and [2905].

For a graph G(V,E) and an Abelian group H Valentin [2698] defines a polychrome
labeling of G by H to be a bijection f from V to H such that the edge labels induced
by f(uv) = f(v) + f(u) are distinct. Valentin investigates the existence of polychrome
labelings for paths and cycles for various Abelian groups.

4.5 Felicitous Labelings

Another generalization of harmonious labelings are felicitous labelings. An injective func-
tion f from the vertices of a graph G with q edges to the set {0, 1, . . . , q} is called felicitous
if the edge labels induced by f(x) + f(y) (mod q) for each edge xy are distinct. (Recall
a harmonious labeling only allows the vertex labels 0, 1, . . . , q − 1.) This definition first
appeared in a paper by Lee, Schmeichel, and Shee in [1532] and is attributed to E. Choo.
labeling of the graph. Balakrishnan and Kumar [337] proved the conjecture of Lee, Schme-
ichel, and Shee [1532] that every graph is a subgraph of a felicitous graph by showing the
stronger result that every graph is a subgraph of a sequential graph. Among the graphs
known to be felicitous are: Cn except when n ≡ 2 (mod 4) [1532]; Km,n when m,n > 1
[1532]; P2 ∪ C2n+1 [1532]; P2 ∪ C2n [2580]; P3 ∪ C2n+1 [1532]; Sm ∪ C2n+1 [1532]; Kn if

and only if n ≤ 4 [2272]; Pn + Km [2272]; the friendship graph C
(n)
3 for n odd [1532];

Pn∪C3 [2323]; Pn∪Cn+3 [2580]; and the one-point union of an odd cycle and a caterpillar
[2323]. Shee [2319] conjectured that Pm ∪ Cn is felicitous when n > 2 and m > 3. Lee,
Schmeichel, and Shee [1532] ask for which m and n is the one-point union of n copies of
Cm felicitous. They showed that in the case where mn is twice an odd integer the graph is
not felicitous. In contrast to the situation for felicitous labelings, we remark that C4k and
Km,n where m,n > 1 are not harmonious and the one-point union of an odd cycle and a
caterpillar is not always harmonious. Lee, Schmeichel, and Shee [1532] conjectured that
the n-cube is felicitous. This conjecture was proved by Figueroa-Centeno and Ichishima
in 2001 [757].

Balakrishnan, Selvam, and Yegnanarayanan [339] obtained numerous results on fe-
licitous labelings. The wreath product, G ∗ H, of graphs G and H has vertex set
V (G) × V (H) and (g1, h1) is adjacent to (g2, h2) whenever g1g2 ∈ E(G) or g1 = g2

and h1h2 ∈ E(H). They define Hn,n as the graph with vertex set {u1, . . . , un; v1, . . . , vn}
and edge set {uivj| 1 ≤ i ≤ j ≤ n}. They let 〈K1,n : m〉 denote the graph obtained by
taking m disjoint copies of K1,n, and joining a new vertex to the centers of the m copies
of K1,n. They prove the following are felicitous: Hn,n; Pn ∗ K2; 〈K1,m : m〉; 〈K1,2 : m〉
when m 6≡ 0 (mod 3), or m ≡ 3 (mod 6), or m ≡ 6 (mod 12); 〈K1,2n : m〉 for all m and
n ≥ 2; 〈K1,2t+1 : 2n+1〉 when n ≥ t; P k

n when k = n−1 and n 6≡ 2 (mod 4), or k = 2t and
n ≥ 3 and k < n− 1; the join of a star and Kn; and graphs obtained by joining two end
vertices or two central vertices of stars with an edge. Yegnanarayanan [2865] conjectures
that the graphs obtained from an even cycle by attaching n new vertices to each vertex
of the cycle is felicitous. This conjecture was verified by Figueroa-Centeno, Ichishima,
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and Muntaner-Batle in [762]. In [2295] Sethuraman and Selvaraju [2299] have shown that
certain cases of the union of any number of copies of K4 with 3 edges deleted and one
edge in common are felicitous. Sethuraman and Selvaraju [2295] present an algorithm
that permits one to start with any non-trivial connected graph and successively form
supersubdivisions (see §2.7) that have a felicitous labeling. Krisha and Dulawat [1432]
give algorithms for finding graceful, harmonious, sequential, felicitous, and antimagic (see
§5.7) labelings of paths. A linear cactus Pm(Kn) is a connected graph in which all the
blocks are isomorphic to a complete graph Kn and block-cutpoint is a path P2m−1. Go-
mathi [910] proved the follow graphs are felicitous: Pm(K4), splitting graphs of (Bn,n),
planar graphs Plm,n, and C2k+1�Sm. Gomathi and Nagarajan [905] proved the following
graphs are felicitous: a vertex switching of Cn (n ≥ 4), a vertex switching of Cn (n ≥ 4)
with one chord, a vertex duplication of Cn, and the square of the book Bn,n (n ≥ 2).
Ezhilarasi Hilda and Jeba Jesintha [1011] proved that all shell flower graphs are felicitous.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [763] define a felicitous graph to be
strongly felicitous if there exists an integer k so that for every edge uv, min{f(u), f(v)}
≤ k < max{f(u), f(v)}. For a graph with p vertices and q edges with q ≥ p − 1 they
show that G is strongly felicitous if and only if G has an α-labeling (see §3.1). They also
show that for graphs G1 and G2 with strongly felicitous labelings f1 and f2 the graph
obtained from G1 and G2 by identifying the vertices u and v such that f1(u) = 0 = f2(v)
is strongly felicitous and that the one-point union of two copies of Cm where m ≥ 4 and m
is even is strongly felicitous. As a corollary they have that the one-point union of n copies
of Cm where m is even and at least 4 and n ≡ 2 (mod 4) is felicitous. They conjecture
that the one-point union of n copies of Cm is felicitous if and only if mn ≡ 0, 1, or 3
(mod 4). In [767] Figueroa-Centeno, Ichishima, and Muntaner-Batle prove that 2Cn is
strongly felicitous if and only if n is even and at least 4. They conjecture [767] that mCn
is felicitous if and only if mn 6≡ 2 (mod 4) and that Cm ∪ Cn is felicitous if and only if
m+ n 6≡ 2 (mod 4).

As consequences of their results about super edge-magic labelings (see §5.2) Figueroa-
Centeno, Ichishima, Muntaner-Batle, and Oshima [767] have the following corollaries: if
m and n are odd with m ≥ 1 and n ≥ 3, then mCn is felicitous; 3Cn is felicitous if and
only if n 6≡ 2 (mod 4); and C5 ∪ Pn is felicitous for all n.

For a graph G with q edges Shainy and Balaji [2325] call a one-to-one function f
from V (G) to {0, 1, 2, . . . , 2q− 1} a even felicitous if the edge labels generated by (f(r) +
f(s)) mod(2q − 1) for each edge are even and distinct. They proved that stars, bistars,
the union two stars, and the union of three stars are even felicitous graph.

In [1697] Manickam, Marudai, and Kala prove the following graphs are felicitous: the
one-point union of m copies of Cn if mn ≡ 1, 3 mod 4; the one-point union of m copies of
C4; mCn if mn ≡ 1, 3 (mod 4); and mC4. These results partially answer questions raised
by Figueroa-Centeno, Ichishima, Muntaner-Batle, and Oshima in [763] and [767].

Chang, Hsu, and Rogers [558] have given a sequential counterpart to felicitous la-
belings. They call a graph with q edges strongly c-elegant if the vertex labels are from
{0, 1, . . . , q} and the edge labels induced by addition are {c, c+1, . . . , c+q−1}. (A strongly
1-elegant labeling has also been called a consecutive labeling.) Notice that every strongly
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c-elegant graph is felicitous and that strongly c-elegant is the same as (c, 1)-arithmetic in
the case where the vertex labels are from {0, 1, . . . , q}. Chang et al. [558] have shown:
Kn is strongly 1-elegant if and only if n = 2, 3, 4; Cn is strongly 1-elegant if and only if
n = 3; and a bipartite graph is strongly 1-elegant if and only if it is a star. Shee [2320]
has proved that Km,n is strongly c-elegant for a particular value of c and obtained several
more specialized results pertaining to graphs formed from complete bipartite graphs.

Seoud and Elsakhawi [2234] have shown: Km,n (m ≤ n) with an edge joining two
vertices of the same partite set is strongly c-elegant for c = 1, 3, 5, . . . , 2n + 2; K1,m,n is
strongly c-elegant for c = 1, 3, 5, . . . , 2m when m = n, and for c = 1, 3, 5, . . . ,m + n + 1
when m 6= n; K1,1,m,m is strongly c-elegant for c = 1, 3, 5, . . . , 2m+1; Pn+Km is strongly
bn/2c-elegant; Cm +Kn is strongly c-elegant for odd m and all n for c = (m− 1)/2, (m−
1)/2 + 2, . . . , 2m when (m− 1)/2 is even and for c = (m− 1)/2, (m− 1)/2 + 2, . . . , 2m−
(m− 1)/2 when (m− 1)/2 is odd; ladders L2k+1 (k > 1) are strongly (k+ 1)-elegant; and
B(3, 2,m) and B(4, 3,m) (see §2.4 for notation) are strongly 1-elegant and strongly 3-
elegant for all m; the composition Pn[P2] (see §2.3 for the definition) is strongly c-elegant
for c = 1, 3, 5, . . . , 5n − 6 when n is odd and for c = 1, 3, 5, . . . , 5n − 5 when n is even;
Pn is strongly bn/2c-elegant; P 2

n is strongly c-elegant for c = 1, 3, 5, . . . , q where q is the
number of edges of P 2

n ; and P 3
n (n > 3) is strongly c-elegant for c = 1, 3, 5, . . . , 6k−1 when

n = 4k; c = 1, 3, 5, . . . , 6k + 1 when n = 4k + 1; c = 1, 3, 5, . . . , 6k + 3 when n = 4k + 2;
c = 1, 3, 5, . . . , 6k + 5 when n = 4k + 3.

In [381] Barrientos and Minion study a technique to transform an α-labeling of some
snakes whose cells are squares into a felicitous labeling and the felicitous labeling into a
harmonious labeling. They prove that all quadrilateral snakes, all snake polyominoes, and
all hybrid quadrilateral snakes are both, felicitous (see §4.5) and harmonious. A hybrid
quadrilateral snake is a snake obtained with n copies of C4 where the ith copy of C4 is
attached to the (i+1)th copy via vertex amalgamation or edge amalgamation. Barrientos
and Minion [381] prove that all hybrid quadrilateral snakes admit α-labelings.

4.6 Odd Harmonious and Even Harmonious Labelings

Liang and Bai [1588] introduced odd harmonious labelings by defining a function f to be
an odd harmonious labeling of a graph G with q edges if f is an injection from the vertices
of G to the integers from 0 to 2q−1 such that the induced mapping f ∗(uv) = f(u) +f(v)
from the edges of G to the odd integers between 1 to 2q − 1 is a bijection. A function
f is said to be a strongly odd harmonious labeling of a graph G with q edges if f is an
injection from the vertices of G to the integers from 0 to q such that the induced mapping
f ∗(uv) = f(u) + f(v) from the edges of G to the odd integers between 1 to 2q − 1 is a
bijection. Liang and Bai [1588] have shown the following: odd harmonious graphs are
bipartite; if a (p, q)-graph is odd harmonious, then 2

√
q ≤ p ≤ 2q − 1; if a (p, q)-graph

with degree sequence (d1, d2, . . . , dp) is odd harmonious, then gcd(d1, d2, . . . , dp) divides
q2; Pn (n > 1) is odd harmonious and strongly odd harmonious; Cn is odd harmonious if
and only if n ≡ 0 mod 4; Kn is odd harmonious if and only if n = 2; Kn1,n2,...,nk

is odd
harmonious if and only if k = 2; Kt

n is odd harmonious if and only if n = 2; Pm × Pn is
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odd harmonious; the tadpole graph obtained by identifying the endpoint of a path with a
vertex of an n-cycle is odd harmonious if n ≡ 0 mod 4; the graph obtained by appending
two or more pendent edges to each vertex of C4n is odd harmonious; the graph obtained
by subdividing every edge of the cycle of a wheel (gear graphs) is odd harmonious; the
graph obtained by appending an edge to each vertex of a strongly odd harmonious graph
is odd harmonious; and caterpillars and lobsters are odd harmonious. They conjecture
that every tree is odd harmonious.

Liang and Bai [1588] also showned that the kC4-snake graph is an odd harmonious
graph. Abdel-Aal [3] generalize this result by showing that the kCn-snake with string
1, 1, . . . , 1 for n ≡ 0 (mod 4) are odd harmonious. He also showed that the kC4 snake
with m pendent edges is odd harmonius and that all subdivisions of 2m-triangular snakes
are odd harmonious.

Abdel-Aal [3] proved that a necessary condition for odd harmonious Eulerian graphs
with q edges is q ≡ 0 (mod 4) and that the following graphs are odd harmonious:
Cm × Pn (n ≥ 2,m ≡ 0 (mod 4); C4m � C4; Sn � Km; two copies of an even n-cycle
sharing a common edge is an odd harmonious graph when n ≡ 0 (mod 4); two copies of
an even n-cycle sharing a common vertex is odd harmonious when n ≡ 0 (mod 4); and
graphs obtained from K2,n (n ≥ 2) by adding r pendent edges to one of the two vertices
of degree n and s pendent edges to the other vertex of degree n.

Vaidya and Shah [2663] prove that the shadow graphs (see §3.8 for the definition) of
path Pn and star K1n are odd harmonious. They also show that the splitting graphs (see
§2.7 for the definition) ) of path Pn and star K1,n are odd harmonious. In [2664] Vaidya
and Shah proved the following graphs are odd harmonious: the shadow graph and the
splitting graph of bistar Bn,n; the arbitrary supersubdivision of paths; graphs obtained by
joining two copies of cycle Cn for n ≡ 0(mod 4) by an edge; and the graphs Hn,n, where
V (Hn,n) = {v1, v2, . . . , vn, u1, u2, . . . , vn} and E(Hn,n) = {viuj : 1 ≤ i ≤ n, n − i + 1 ≤
j ≤ n}. In [2844] Yan proves that Pm × Pn is strongly odd harmonious. Koppendrayer
[1406] has proved that every graph with an α-labeling is odd harmonious. Li, Li, and Yan
[1576] proved that Km,n is odd strongly harmonious. Saputri, Sugeng, and Fronček [2188]
proved that the graph obtained by joining Cn to Ck by an edge (dumbbell graph Dn,k,2)
is odd harmonious for n ≡ k ≡ 0 (mod 4) and n ≡ k ≡ 2 (mod 4), and Cn × Pm is odd
harmonious if and only if n ≡ 0 (mod 4). They also observe that Cn�K1 with n ≡ 0 (mod
4) is odd harmonious. Firmansah and Tasri [770] obtained a new class odd harnmonious
graphs constructed from the edge amalgamation of double quadrilateral graphs that have
odd harmonious labelings.

Jeyanthi [1193] proved that the shadow and splitting graphs of K2,n, C4n, the double
quadrilateral snakes DQ(n) (n ≥ 2), and the graph Hn,n with vertex set V (Hn,n) =
{v1, v2, . . . , vn, u1, u2, . . . , un} and the edge set E(Hn,n) = {viuj : 1 ≤ i ≤ n, n − i + 1 ≤
j ≤ n} are odd harmonious. Jeyanthi and Philo [1193] proved that the shadow graphs
D2(K2,n) and D2(Hn,n) are odd harmonious and the splitting of graphs of K2,n and Hn,n

are odd harmonious. They also showed that the shadow graph D2(Cn) is odd harmonious
if n ≡ 0 (mod 4), the splitting of Cn is odd harmonious if n ≡ 0 (mod 4), and the
double quadrilateral snake DQ(n) is odd harmonious for n ≥ 2. In [1197] Jeyanthi
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and Philo prove that super subdivision of cycles, ladders, C4n ⊕ K1,m, and uniform fire
crackers are odd harmonious graphs. Jeyanthi and Philo [1202] proved that the graph
Pn−1(1, 2, 3, . . . , n) obtained from a path of n vertices v1, v2, . . . , vn−1 by appending a path
of length n− i at each vi and certain one point unions of the end points of paths are odd
harmonious.

For a Tp-tree T with vertices v1, v2, . . . , vn, the graph T ◦̂Pm is obtained from T and n
copies of Pm by identifying a pendant vertex of ith copy of Pm with vertex vi of T . For Cn
with consecutive vertices v1, v2, . . . , vn, the graph Cn◦̂Pm is obtained from Cn and n copies
of Pm by identifying a pendant vertex of ith copy of Pm with vertex vi of Cn. Jeyanthi and
Philo [1204] proved that Tp-trees, T ◦̂Pm, T ◦̂2Pm, regular bamboo trees, Cn◦̂Pm, Cn◦̂2Pm,
and subdivided grid graphs are odd harmonious.

Recall a subdivided shell graph is obtained by subdividing the edges in the path of the
shell graph. Let G1, G2, . . . , Gn be n subdivided shell graphs of any order. The graph
SSG(n) is obtained by adding an edge to apexes of Gi and Gi+1, i = 1, 2, . . . , (n−1). Jeba
Jesintha and Ezhilarasi Hilda [1126] proved that the subdivided shell graph and SSG(2)
are odd harmonious.

The following definitions are taken from [1203]. The m-shadow graph Dm(G) of a
connected graph G is constructed by taking m-copies of G, G1,G2,G3,. . . ,Gm, and joining
each vertex u in Gi to the neighbors of the corresponding vertex v in Gj, 1 ≤ j ≤ m.
The m-splitting graph Splm(G) of a graph G is obtained by adding to each vertex v of
G m new vertices, v1, v2, . . . , vm such that vi, 1 ≤ i ≤ m, is adjacent to every vertex
that is adjacent to v in G. Note that the 2-shadow graph is the shadow graph D2(G)
and the 1-splitting graph is splitting graph. The m-mirror graph Mm(G) is defined as the
disjoint union of m copies of G, G1, G2, . . . , Gm, together with additional edges joining
each vertex of Gi to its corresponding vertex in Gi+1, 1 ≤ i ≤ m − 1. The graph Wm,n

is obtained from the gear graph arising from the wheel Wn as follows: Join the vertices
vi and vi+2 with the new vertices vji+1 for 1 ≤ j ≤ m and 2 ≤ i ≤ n − 2 and join vn
and v2 with v2i−1. The graph K2,n(r, s) is obtained from K2,n (n ≥ 2) by adding r and
s pendent edges to the two vertices of degree n. The graph G = 〈Cn : K2,m : Cr〉 is
obtained from K2,m with the partite set {u, v} by identifying the vertex u with a vertex
of Cn and the vertex v with a vertex of Cr. Let Pn be a path on n vertices denoted by
(1, 1), (1, 2), . . . , (1, n) and with n−1 edges denoted by e1, e2, . . . , en−1 where ei is the edge
joining the vertices (1, i) and (1, i+ 1). The step ladder graph S(Tn) has (n2 + 3n− 2)/2
vertices denoted by (1, 1), (1, 2), . . . , (1, n), (2, 1), (2, 2), . . . , (2, n), (3, 1), (3, 2), . . . , (3, n−
1), (4, 1), . . . , (4, n− 2), . . . , (n, 1), (n, 2) and n2 + n + 2 edges. In any ordered pair (i, j),
i denotes the row (counted from bottom to top) and j denotes the column(from left to
right) in which the vertex occurs.

The cocktail party graph, Hm,n (m,n ≥ 2), is the graph with a vertex set V =
{v1, v2, . . . , vmn} partitioned into n independent sets V = {I1, I2, . . . , In} each of size
m such that vivj ∈ E for all i, j ∈ {1, 2, . . . ,mn} where i ∈ Ip, j ∈ Iq, p 6= q.

Jeyanthi and Philo [1196] proved that following graphs are odd harmonious: Dm(Pn)
for all m,n ≥ 2; Splm(Pn) for m,n ≥ 2; Dm(Hn,n) for all m ≥ 2 and n ≥ 1; Splm(Hn,n)
for all m ≥ 2 and n ≥ 1; Dm(Kr,s) for all r, s ≥ 1; Splm(Kr,s) for all m ≥ 2 and r, s ≥ 1;
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Dm(Pn ⊕ K2) for all m,n ≥ 2; Splm(Pn ⊕ K2), m, n ≥ 2; and Splm(Cn) if and only if
n ≡ 0 (mod 4).

Jeyanthi and Philo [1203] proved that following graphs are odd harmonious: Wm,n

for n ≡ 0 (mod 4), m ≥ 1; Dm(Pn � K1) (the authors use the notion Cbn for the comb
Pn �K1) for all m ≥ 2 and n ≥ 1; Splm(K2,n(r, s)); 〈Cn : K2,m : Cr〉 for n, r ≡ 0 (mod 4)
and m ≥ 2; and the graphs obtained by arranging vertices into a finite number of rows
with i vertices in the ith row and in every row the jth vertex in that row is joined to the
jth vertex and j+ 1st vertex of the next row (a pyramid) for n ≥ 2. They also prove that
if G is a strongly odd harmonious tree, then Mm(G) is odd harmonious.

Let P2n be a path of length 2n−1 with 2n vertices, denoted by (1, 1), (1, 2), . . . , (1, 2n)
and with 2n−1 edges, denoted by e1, e2, . . . , e2n−1 where ei is the edge joining the vertices
(1, i) and (1, i+ 1). On each edge ei for i = n+ 1, n+ 2, . . . , 2n−1, we erect a ladder with
2n+1−i steps including the edge ei. The double sided step ladder graph 2S(T2×n) has ver-
tices denoted by (1, 1), (1, 2), . . . , (1, 2n),(2, 1), (2, 2), . . . , (2, 2n),(3, 2), (3, 3), . . . , (3, 2n −
1),(4, 3), (4, 4), . . . , (4, 2n − 2), . . . , (n + 1, n), (n + 1, n + 1). In any ordered pair (i, j),
i denotes the row (counted from bottom to top) and j denotes the column (from left
to right) in which the vertex occurs. Jeyanthi and Philo [1201] proved that the path
union of t copies of S(Tn), the double sided step ladder 2S(T2×n), the path union of
t copies of 2S(T2×n), S(t.Cbn), S(t.C4), C4

t, C6
t, and C8

t are odd harmonious graphs.
Jeyanthi and Philo [1198] proved that path union of r copies of Km,n, the path union
of r copies of Kmi,ni

, 1 ≤ i ≤ r, Kt
m,n, Kt

(m1,n1),(m2,n2),...,(mt,nt)
, the join sum of graph

〈Km,n;Km,n; . . . , Km,n (t copies 〉, 〈Km1,n1 ;Km2,n2 ; . . . , Kmt,nt〉, the circle formation of r
copies of Km,n when r ≡ 0 (mod 4), S(t.Km,n) and P t

n(t.n.Kp,q) are odd harmonious
graphs. Jeyanthi and Philo [1200] proved that the subdivided shell graphs, disjoint union
of two subdivided shell graphs, subdivided shell flower graphs, and subdivided uniform
shell bow graphs are odd harmonious. Jeyanthi, Philo, and Youssef [1205] proved that
the path union of t copies of Pm × Pn, the path union of t copies of Pmi

× Pni
where

1 ≤ i ≤ t, the vertex union of t copies of Pm × Pn, the vertex union of t different copies
of Pmi

× Pni
where 1 ≤ i ≤ t, the one point union of path of P t

n(t.n.Pm × Pm), and the
super subdivision of grid graph Pm × Pn are odd harmonious graphs.

Recall from Section 2.7 that for even n > 2 a plus graph of size n (denoted by Pln) is the
graph obtained by starting with paths P2, P4, . . . , Pn−2, Pn, Pn, Pn−2, . . . , P4, P2 arranged
vertically parallel with the vertices in the paths forming horizontal rows and edges joining
the vertices of the rows. Jeyanthi [1195] proved that following graphs are odd harmonious:
Pln where n ≡ 0 (mod 2), n 6= 2; path unions of finitely many copies of Pln where n ≡ 0
(mod 2), n 6= 2; open stars of plus graphs S(t.P ln) where n ≡ 0 (mod 2), n 6= 2 and t
odd; graphs obtained by joining Cm, m ≡ 0 (mod 4) and a plus graph Pln, n ≡ 0 (mod
2), n 6= 2 with a path of arbitrary length; the graph obtained by replacing all vertices of
K1,t, except the apex vertex, by the path union of n copies of the graph Plm.

In [1197] Jeyanthi and Philo prove that super subdivision of cycles, ladders, C4n⊕K1,m,
and uniform fire crackers are odd harmonious graphs. They also proved the (m,n)-
firecracker graph obtained by the concatenation of m n-stars by linking one leaf from
each is odd harmonius; the arbitrary super subdivision of cycles Cm are odd harmonious;
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and the super subdivision of ladders are odd harmonious. Jeyanthi and Philo [1203] proved
that the m-mirror graph Mm(G) (m ≥ 2), m-splitting graph of K2,n(r, s) (obtained from
K2,n, (n > 2) by adding r and s (r, s > 1) pendent edges to the two vertices of degree
n), W(m,4n) obtained from the gear graph of Wn by joining the vertices vi and vi+2 with

the new vertices vji+1 for 1 ≤ j ≤ m and 2 ≤ i ≤ n− 2 and joining vn and v2 with vj1 for
1 ≤ j ≤ m, 〈C4n : K2,m : C4r〉 obtained from K2,m with one partite set V1 = {u, v} and
Cr by identifying the vertex u of V1 with a vertex of Cn and the other vertex v of V1 with
a vertex of Cr, and the pyramid graph PYn(n ≥ 2) are odd harmonious graphs. They
also proved that G is a strongly odd harmonious tree, then Mm(G) is an odd harmonious.

In [1197] Jeyanthi and Philo modified the notion of odd harmonious by defining an
odd harmonious labelings as a function f to be an odd harmonious labeling of a graph G
with q edges if f is an injection from the vertices of G to the integers from 0 to 2q − 1
such that the induced mapping f ∗(uv) = f(u) + f(v) mod (2q) from the edges of G to
the odd integers between 1 to 2q− 1 is a bijection. Using this definition they proved that
an m-cycle and an n-cycle sharing a common vertex is an odd harmonious if and only
if either both m, n ≡ 0 (mod 4) or both m, n ≡ 2 (mod 4) and the same holds for
an m-cycle and an n-cycle sharing a common edge. They also proved that any two even
cycles sharing a common vertex and a common edge are odd harmonious graphs.

Sarasija and Binthiya [2189] say a function f is an even harmonious labeling of a
graph G with q edges if f : V → {0, 1, . . . , 2q} is injective and the induced function
f ∗ : E → {0, 2, . . . , 2(q−1)} defined as f ∗(uv) = f(u)+f(v) (mod 2q) is bijective. Notice
that for an even harmonious labeling of a connected graph all the vertex labels must have
the same parity. Moveover, in the case of even harmonious labelings for connected graphs
there is no loss of generality to assume that all the vertex labels are even integers and
the duplicate vertex is 0. They proved the following graphs are even harmonious: non-
trivial paths; complete bipartite graphs; odd cycles; bistars Bm,n; K2 + Kn; P 2

n ; and
the friendship graphs F2n+1. López, Muntaner-Batle and Rious-Font [1634] proved that
every super edge-magic graph (see Section 5.2 for the definition of super edge-magic)
with p vertices and q edges where q ≥ p − 1 has an even harmonious labeling. In [2884]
Youssef provided a necessary condition for some regular graphs to be even harmonious,
showed that the disjoint union of two k-sequential graphs is even 2k-sequential under
some conditions, and showed that in some cases G is k-sequential implies mG is even
2k-sequential for all positive integer m.

Because 0 and 2q are equal modulo 2q the following retricted form of even harmonious
labelings is of interest. A function f is said to be a properly even harmonious labeling of
a graph G with q edges if f is an injection from the vertices of G to the integers from 0
to 2q− 1 and the induced function f ∗ from the edges of G to {0, 2, . . . , 2q− 2} defined by
f ∗(xy) = f(x)+f(y)(mod 2q) is bijective. In their definition of properly even harmonious
in [817] Gallian and Schoenhard incorrectly required that the vertex labels should be the
even integers from 0 to 2q − 2. For connected graphs the two definitions are equivalent
but for disconnected graph they are not. They used vertex labels from 0 to 2q − 1 for
their results on disconnected graphs.

A graph with a properly even harmonious labeling is said to be properly even harmo-
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nious. Gallian and Schoenhard [817] say a properly even harmonious labeling of a graph
with q edges is strongly even harmonious if it satisfies the additional condition that for
any two adjacent vertices with labels u and v, 0 < u+ v ≤ 2q.

Jared Bass [419] has observed that for connected graphs any harmonious labeling of
a graph with q edges yields an even harmonious labeling by simply multiplying each
vertex label by 2 and adding the vertex labels modulo 2q. Thus we know that every
connected harmonious graph is an even harmonious graph and every connected graph
that is not a tree that has a harmonious labeling also has a properly even harmonious
labeling. Conversely, a properly even harmonious labeling of a connected graph with q
edges (assuming that the vertex labels are even) yields a harmonious labeling of the graph
by dividing each vertex label by 2 and adding the vertex labels modulo q.

Gallian and Schoenhard [817] proved the following: wheels Wn and helms Hn are
properly even harmonious when n is odd; nP2 is even harmonious for n odd; nP2 is
properly even harmonious if and only if n is even; Kn is even harmonious if and only if
n ≤ 4; C2n is not even harmonious when n is odd; Cn ∪ P3 is properly even harmonious
when odd n ≥ 3; C4∪Pn is even harmonious when n ≥ 2; C4∪Fn is even harmonious when
n ≥ 2; Sm ∪ Pn is even harmonious when n ≥ 2; K4 ∪ Sn is properly even harmonious;
Pm∪Pn is properly even harmonious for all m ≥ 2 and n ≥ 2; C3∪P 2

n is even harmonious
when n ≥ 2; C4 ∪ P 2

n is even harmonious when n ≥ 2; the disjoint union of two or three
stars where each star has at least two edges and one has at least three edges is properly
even harmonious; P 2

m∪Pn is even harmonious for m ≥ 2 and 2 ≤ n < 4m−5; the one-point
union of two complete graphs each with at least 3 vertices is not even harmonious; Sm∪Pn
is strongly even harmonious if n ≥ 2; and Sn1 ∪Sn2 ∪· · ·∪Snt is strongly even harmonious
for n1 ≥ n2 ≥ · · · ≥ nt and t < n1

2
+ 2. They conjecture that Sn1 ∪ Sn2 ∪ · · · ∪ Snt is

strongly even harmonious if at least one star has more than 2 edges. They also note that
C4, C8, C12, C16, C20, C24 are even harmonious and conjecture that C4n is even harmonious
for all n. This conjecture was proved by Youssef [2882] who also proved that if a connected
even harmonious graph with q edges where q is even and each vertex has degree divisible
by 2k (k ≥ 1), then q is divisible by 2k+1. As corollary of the latter he gets that C2

4n+2 is
not even harmonious. Hall, Hillesheim, Kocina, and Schmit [948] proved that nC2m+1 is
properly even harmonious for all n and m.

In [818] and [819] Gallian and Stewart investigated properly even harmonious labelings
of unions of graphs. They use Pm

+t to denote the graph obtained from the path Pm by
appending t edges to an endpoint; Catm

+t to denote a caterpillar of path length m with
t pendent edges; and Cm

+t to denote an m-cycle with t pendent edges. They proved the
following graphs are properly even harmonious: nPm if n is even and m ≥ 2; Pn∪Km,2 for
n odd and n > 1, m > 1; Pn∪Sm1 ∪Sm2 for n > 2 and m1 +m2 is odd; Cn∪Sm1 ∪Sm2 for
n odd and m1, m2 > 3; Pm

+t∪Pn+s; the union of any number of caterpillars; Cm∪Catn+t

for m > 1 odd, n > 1;C4 ∪ Catm+t; the union of C4 and a hairy cycle; K4 ∪ Cm+n for
some cases; W4 ∪ Cm+n for some cases; C4 ∪ (Pn + K2) for n > 1; K4 ∪ (Pn + Km)
for n ≡ 1, 2 (mod 4); C3 ∪ (Pn + Km) for n ≡ 1, 2 (mod 4); W4 ∪ (Pn + Km) for n ≡
1, 2 (mod4); W4 ∪ Pn for n ≡ 1, 2 (mod 4); K4 ∪ Pn for n > 1 and n ≡ 1, 2 (mod 4);
K4∪P 2

m1
∪P 2

m2
∪· · ·∪P 2

mn
for mi > 2, n ≥ 1; W4∪P 2

m1
∪P 2

m2
∪· · ·∪P 2

mn
for mi > 2, n ≥ 1;
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Cm ∪P 2
n for m ≡ 3 (mod 4) and n > 1; and 2Pm ∪ 2Pn. They also prove that nP3 is even

harmonious if n > 1 is odd and P 2
m1
∪ P 2

m2
∪ · · · ∪ P 2

mn
is strongly even harmonious for

m > 2, n ≥ 1.
Gallian and Stewart [820] call an injective labeling f of a graph G with q edges even

2a-sequential if the vertex labels are from {0, 1, . . . , 2q − 1} and the edge labels induced
by f(u) + f(v) for each edge uv are 2a, 2a + 2, . . . , 2a + 2q − 2. When G is a tree, the
allowable vertex labels are 0, 1, . . . , 2q. For connected a-sequential graphs, a connected
2a-sequential graph can be obtained by multiplying all the vertex labels by 2. Notice
that the vertex labels in resulting graph belong to {0, 2, . . . , 2q − 2} (or {0, 2, . . . , 2q}
for trees) and the edges labels are from 2a to 2a + 2q − 2. Moreover, a connected a-
sequential graph can be obtained from a connected even 2a-sequential graph with even
vertex labels by dividing all the vertex labels by 2. Likewise, a 2a-sequential labeling of
a connected graph with odd vertex labels induces an a-sequential labeling of the graph
by subtracting 1 from each vertex label and dividing by 2. Thus for connected graphs,
a-sequential is equivalent to 2a-sequential. They prove that if G is even 2a-sequential the
following graphs are properly even harmonious: G ∪ P 2

m for m > 2, G ∪ Pn for n > 1,
n ≡ 1, 2 (mod 4), G ∪ Cm+t for some cases, G ∪ Catm+n for m > 1, and G ∪W2n+1.

For n and k odd and m,n, k, t > 1, Mbianda and Gallian (see [1724]) proved the
following graphs have properly even harmonious labelings: mP3 for even m; 2Pm∪2Pn∪St;
2Pm ∪ 2Pn ∪ Pk; 2Pm ∪ 2Pn ∪ Ck; 2Pm ∪ 2Pn ∪ C4; 2Pm ∪ 2Pn ∪ 2K4; 2Pm ∪ 2Pn ∪ 2W4;
2Pm ∪ 2Pn ∪ 2Ck; Fn ∪ K4 (Fn = Pn + K1 is the fan); Fn ∪ 2K4; Fn ∪W4; Fn ∪ 2W4;
Wn ∪ K4; Wn ∪ 2K4; Wn ∪W4; Wn ∪ 2W4; (Cn + K1) ∪ K4 ((Cn + K1) is the n-cone);
(Cn+K1)∪W4; (Cn+K1)∪2K4; (Cn+K1)∪2W4; and (Cn+K2)∪K4 ((Cn+K2) is the
double cone). Gallian [814] proved the following graphs have properly even harmonious
labelings (in all cases m,n > 1): mPn for m even; 2Pm ∪ 2Pn ∪ 2C3; 2Pm ∪ 2Pn ∪ 2C4;
2Pm ∪ 2Pn ∪ C3 ∪ C4; Fn ∪ P4; Fn ∪ 2P4; Fn ∪ C4; and Fn ∪ 2C4.

Binthiya and Sarasija [469] prove the following graphs are even harmonious: Cn �
mK1 (n odd), Pn�mK1 (n > 1 odd), C2n@K2, Pn (n even) with n−1 copies of mK1, the
shadow graph D2(K1,n), the splitting graph spl(K1,n), and the graph obtained from the
Pn (n even) with n−1 copies of Km incident with first n−1 vertices of Pn. Vargheese and
Arun [2705] prove that the triangular books, the disjoint union of two triangular book
graphs, total graphs T (Pn), the disjoint union of T (Pn) and a triangular book, and the
graph obtained by joining the centers of two disjoint copies of K1,n to an isolated vertex
are even harmonious.
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5 Magic-type Labelings

5.1 Magic Labelings

Motivated by the notion of magic squares in number theory, magic labelings were intro-
duced by Sedláček [2197] in 1963.1 Responding to a problem raised by Sedláček, Stewart
[2471] and [2472] studied various ways to label the edges of a graph in the mid 1960s.
Stewart calls a connected graph semi-magic if there is a labeling of the edges with integers
such that for each vertex v the sum of the labels of all edges incident with v is the same
for all v. (Berge [440] used the term “regularisable” for this notion.) A semi-magic label-
ing where the edges are labeled with distinct positive integers is called a magic labeling.
Stewart calls a magic labeling supermagic if the set of edge labels consists of consecutive
positive integers. The classic concept of an n × n magic square in number theory cor-
responds to a supermagic labeling of Kn,n. Stewart [2471] proved the following: Kn is
magic for n = 2 and all n ≥ 5; Kn,n is magic for all n ≥ 3; fans Fn are magic if and only
if n is odd and n ≥ 3; wheels Wn are magic for n ≥ 4; and Wn with one spoke deleted
is magic for n = 4 and for n ≥ 6. Stewart [2471] also proved that Km,n is semi-magic if
and only if m = n. In [2472] Stewart proved that Kn is supermagic for n ≥ 5 if and only
if n > 5 and n 6≡ 0 (mod 4). Sedláček [2198] showed that Möbius ladders Mn (see §2.3
for the definition) are supermagic when n ≥ 3 and n is odd and that Cn × P2 is magic,
but not supermagic, when n ≥ 4 and n is even. Shiu, Lam, and Lee [2345] have proved:
the composition of Cm and Kn (see §2.3 for the definition) is supermagic when m ≥ 3
and n ≥ 2; the complete m-partite graph Kn,n,...,n is supermagic when n ≥ 3, m > 5 and
m 6≡ 0 (mod 4); and if G is an r-regular supermagic graph, then so is the composition of
G and Kn for n ≥ 3. Ho and Lee [1012] showed that the composition of Km and Kn is
supermagic for m = 3 or 5 and n = 2 or n odd. Bača, Holländer, and Lih [274] have found
two families of 4-regular supermagic graphs. Shiu, Lam, and Cheng [2342] proved that
for n ≥ 2, mKn,n is supermagic if and only if n is even or both m and n are odd. Ivančo
[1078] gave a characterization of all supermagic regular complete multipartite graphs. He
proved that Qn is supermagic if and only if n = 1 or n is even and greater than 2 and
that Cn×Cn and C2m×C2n are supermagic. He conjectures that Cm×Cn is supermagic
for all m and n. Trenklér [2597] has proved that a connected magic graph with p vertices
and q edges other than P2 exits if and only if 5p/4 < q ≤ p(p−1)/2. In [2531] Sun, Guan,
and Lee give an efficient algorithm for finding a magic labeling of a graph. In [2810] Wen,
Lee, and Sun show how to construct a supermagic multigraph from a given graph G by
adding extra edges to G.

In [1423] Kovář provides a general technique for constructing supermagic labelings of
copies of certain kinds of regular supermagic graphs. In particular, he proves: if G is a
supermagic r-regular graph (r ≥ 3) with a proper edge r coloring, then nG is supermagic
when r is even and supermagic when r and n are odd; if G is a supermagic r-regular
graph with m vertices and has a proper edge r coloring and H is a supermagic s-regular

1A comprehensive expository treatment of magic labelings is given by Bača, Miller, Ryan, and Se-
maničová-Feňovč́ıkováin [304].
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graph with n vertices and has a proper edge s coloring, then G×H is supermagic when
r is even or n is odd and is supermagic when s or m is odd.

Kovář, Kravčenko, Krbeček, and Silber [1425] affirmatively answered a question by
Madaras about existence of supermagic graphs with arbitrarily many different degrees.
Their construction provided graphs with all degrees even. They asked if there exists a
supermagic graph with d different odd degrees for any positive integer d. This question
was answered affirmatively by Fronček and Qiu with a construction based on the use of
3-dimensional magic rectangles.

In [689] Drajnová, Ivančo, and Semaničová proved that the maximal number of edges

in a supermagic graph of order n is 8 for n = 5 and n(n−1)
2

for 6 ≤ n 6≡ 0 (mod 4), and
n(n−1)

2
−1 for 8 ≤ n ≡ 0 (mod 4). They also establish some bounds for the minimal number

of edges in a supermagic graph of order n. Ivančo, and Semaničová [1088] proved that
every 3-regular triangle-free supermagic graph has an edge such that the graph obtained
by contracting that edge is also supermagic and the graph obtained by contracting one of
the edges joining the two n-cycles of Cn ×K2 (n ≥ 3) is supermagic.

Ivančo [1080] proved: the complement of a d-regular bipartite graph of order 8k is
supermagic if and only if d is odd; the complement of a d-regular bipartite graph of order
2n where n is odd and d is even is supermagic if and only if (n, d) 6= (3, 2); if G1 and G2

are disjoint d-regular Hamiltonian graphs of odd order and d ≥ 4 and even, then the join
G1 ⊕ G2 is supermagic; and if G1 is d-regular Hamiltonian graph of odd order n, G2 is
d− 2-regular Hamiltonian graph of order n and 4 ≤ d ≡ 0 (mod 4), then the join G1⊕G2

is supermagic.
For k ≥ 2 and graphs G and H, the graph G�kH defined as (G�k−1 H)�H (where

G �1 H = G � H) is called the k-multilevel corona of G with H. Marbun and Salman
[1699] proved (Wn�k−1)� Cn is Wn-edge magic.

In [452] Bezegová and Ivančo [454] extended the notion of supermagic regular graphs
by defining a graph to be degree-magic if the edges can be labeled with {1, 2, . . . , |E(G)|}
such that the sum of the labels of the edges incident with any vertex v is equal to
(1 + |E(G))/deg(v). They used this notion to give some constructions of supermagic
graphs and proved that for any graph G there is a supermagic regular graph which con-
tains an induced subgraph isomorphic to G. In [454] they gave a characterization of
complete tripartite degree-magic graphs and in [455] they provided some bounds on the
number of edges in degree-magic graphs. They say a graph G is conservative if it admits
an orientation and a labeling of the edges by {1, 2, . . . , |E(G)|} such that at each vertex
the sum of the labels on the incoming edges is equal to the sum of the labels on the out-
going edges. In [453] Bezegová and Ivančo introduced some constructions of degree-magic
labelings for a large family of graphs using conservative graphs. Using a connection be-
tween degree-magic labelings and supermagic labelings they also constructed supermagic
labelings for the disjoint union of some regular non-isomorphic graphs. Among their re-
sults are: If G is a δ-regular graph where δ is even and at least 6, and each component
of G is a complete multipartite graph of even size, then G is a supermagic graph; for
any δ-regular supermagic graph H, the union of disjoint graphs H and G is supermagic;
if G is a δ-regular graph with δ ≡ 0 (mod 8) and each component is a circulant graph,
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then G is a supermagic graph; for any δ-regular supermagic graph H, the union of dis-
joint graphs H and G is a supermagic graph; and that the complement of the union of
disjoint cycles Cn1 , . . . , Cnk

is supermagic when k ≡ 1 (mod 4) and 11 ≤ ni ≡ 3 (mod
8) for all i = 1, . . . , k. In [1075] Inpoonjal gave necessary and suficient conditions for the
existence of degree-magic labelings of graphs obtained by taking the join and composition
of complete tripartite graphs.

Let G′ be a copy of a simple graph G and for each vertex vi of G let ui be the vertex
of G′ corresponding with vi. The double graph has vertex set V (G) ∪ V (G′) and edge
set E(G) ∪ E(G′) ∪ {uivj | ui ∈ V (G); vj ∈ V (G′) and uiuj ∈ E(G)}. Ivančo [1081]
establishes sufficient conditions for generalized double graphs to be degree-magic and
constructs supermagic labelings of some graphs generalizing double graphs.

Sedláček [2198] proved that graphs obtained from an odd cycle with consecutive ver-
tices u1, u2, . . . , um, um+1, vm, . . . , v1 (m ≥ 2) by joining each ui to vi and vi+1 and u1 to
vm+1, um to v1 and v1 to vm+1 are magic. Trenklér and Vetchý [2600] have shown that if
G has order at least 5, then Gn is magic for all n ≥ 3 and G2 is magic if and only if G
is not P5 and G does not have a 1-factor whose every edge is incident with an end-vertex
of G. Avadayappan, Jeyanthi, and Vasuki [209] have shown that k-sequential trees are
magic (see §4.1 for the definition).

Seoud and Abdel Maqsoud [2220] proved that K1,m,n is magic for all m and n and
that P 2

n is magic for all n. However, Serverino has reported that P 2
n is not magic for

n = 2, 3, and 5 [873]. Jeurissan [1114] characterized magic connected bipartite graphs.
Ivančo [1079] proved that bipartite graphs with p ≥ 8 vertices, equal sized partite sets,
and minimum degree greater than p are magic. Bača [235] characterizes the structure
of magic graphs that are formed by adding edges to a bipartite graph and proves that a
regular connected magic graph of degree at least 3 remains magic if an arbitrary edge is
deleted. In [2437] Solairaju and Arockiasamy prove that various families of subgraphs of
grids Pm × Pn are magic. Dayanand and Ahmed [648] investigate super magic properties
of several classes of connected and disconnected graphs. They show that there can be
arbitrarily large gaps among the possible valences for certain super magic graphs. They
also prove that the disjoint union of multiple copies of a super magic linear forest is super
magic if the number of copies is odd and that the super magic labeling is complementary
edge antimagic as well. The broom Bn,t is a graph obtained by attaching n − t pendent
edges to an end point vertex of the path Pt. Marimuthu, Raja, and Raja Durga [1707]
prove that Bn,n−1 is E-super vertex magic if and only if n ≥ 3 is odd and Bn,t is not
E-super vertex magic for n− 2 ≥ 2 and t ≥ 3.

Ponnappan, Nagaraj, and Prabakaran [1937] say a vertex magic labeling f of a
graph G(V,E) is an odd vertex magic if f maps V to {1, 3, 5, . . . , 2|V | − 1} and E to
{1, 2, 3, 4, . . . , |V |+ |E|}−{1, 3, 5, . . . , 2|V |−1} if |E| ≥ |V |−1) and otherwise f maps E
to {2, 4, 6, . . . , 2|E|} and V to {1, 2, 3, 4, . . . , |V | + |E|} − {2, 4, 6, . . . , 2|E|}. They prove
that Pn (n ≥ 3), Cn and mC3 are odd vertex magic if and only if n is odd, (3, t)-kites are
vertex magic if and only if t is even, and Cn �K1 are not odd vertex for all n.

A triplet [H,φ, t] is called a supermagic frame of G if φ is a homomorphism of H onto
G and t : E(H)→ {1, 2, . . . , |E(H)|} is an injective mapping such that the sum of t(uw)
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over all u ∈ φ−1(v) is independent of the vertex v ∈ V (G). In 2000, Ivančo proved that
if there is a supermagic frame of a graph G, then G is supermagic. Singhun, Boonklurb,
and Charnsamorn [2406] construct a supermagic frame of m ≥ 2 copies of the Cartesian
product of cycles and show that m copies of the Cartesian product of cycles is supermagic.

A prime-magic labeling is a magic labeling for which every label is a prime. Sedláček
[2198] proved that the smallest magic constant for prime-magic labeling of K3,3 is 53
while Bača and Holländer [270] showed that the smallest magic constant for a prime-
magic labeling of K4,4 is 114. Letting σn be the smallest natural number such that nσn is
equal to the sum of n2 distinct prime numbers we have that the smallest magic constant
for a prime-magic labeling of Kn,n is σn. Bača and Hollaänder [270] conjecture that for
n ≥ 5, Kn,n has a prime-magic labeling with magic constant σn. They proved the
conjecture for 5 ≤ n ≤ 17 and confirmed the conjecture for n = 5, 6 and 7.

Characterizations of regular magic graphs were given by Doob [688] and necessary and
sufficient conditions for a graph to be magic were given in [1114], [1248], and [664]. Some
sufficient conditions for a graph to be magic are given in [686], [2596], and [1794]. Bertault,
Miller, Pé-Rosés, Feria-Puron, and Vaezpour [450] provided a heuristic algorithm for
finding magic labelings for specific families of graphs. The notion of magic graphs was
generalized in [687] and [2171].

Let m,n, a1, a2, . . . , am be positive integers where 1 ≤ ai ≤ bn/2c and the ai are dis-
tinct. The circulant graph Cn(a1, a2, . . . , am) is the graph with vertex set {v1, v2, . . . , vm}
and edge set {vivi+aj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} where addition of indices is done modulo
n. In [2210] Semaničová characterizes magic circulant graphs and 3-regular supermagic
circulant graphs. In particular, if G = Cn(a1, a2, . . . , am) has degree r at least 3 and
d = gcd(a1, n/2) then G is magic if and only if r = 3 and n/d ≡ 2 (mod 4), a1/d ≡ 1
(mod 2), or r ≥ 4 (a necessary condition for Cn(a1, a2, . . . , am) to be 3-regular is that n
is even). In the 3-regular case, Cn(a1, n/2) is supermagic if and only n/d ≡ 2 (mod 4),
a1/d ≡ 1 (mod 2) and d ≡ 1 (mod 2). Semaničová also notes that a bipartite graph that
is decomposable into an even number of Hamilton cycles is supermagic. As a corollary
she obtains that Cn(a1, a2, . . . , a2k) is supermagic in the case that n is even, every ai is
odd, and gcd(a2j−1, a2j, n) = 1 for i = 1, 2, . . . , 2k and j = 1, 2, . . . , k.

Ivančo, Kovář, and Semaničová-Feňovčková [1084] characterize all pairs n and r for
which an r-regular supermagic graph of order n exists. They prove that for positive
integers r and n with n ≥ r + 1 there exists an r-regular supermagic graph of order n if
and only if one of the following statements holds: r = 1 and n = 2; 3 ≤ r ≡ 1 (mod 2) and
n ≡ 2 (mod 4); and 4 ≤ r ≡ 0 (mod 2) and n > 5. The proof of the main result is based
on finding supermagic labelings of circulant graphs. The authors construct supermagic
labelings of several circulant graphs.

In [1078] Ivančo completely determines the supermagic graphs that are the disjoint
unions of complete k-partite graphs where every partite set has the same order.

Trenklér [2598] extended the definition of supermagic graphs to include hypergraphs
and proved that the complete k-uniform n-partite hypergraph is supermagic if n 6= 2 or
6 and k ≥ 2 (see also [2599]). In [2503] Sugiyama gave a generalized definition of magic
graphs, for which any number of digits can be used to label a vertex and edge, and de-
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scribed the construction of such magic graphs and their properties. He determined the
minimum and maximum magic sums for regular graphs, including polygons and polyhe-
drons, and provided techniques for transforming and synthesizing magic graphs using an
affine transform.

For connected graphs of size at least 5, Ivančo, Lastivkova, and Semaničová [1085]
provide a forbidden subgraph characterization of the line graphs that can be magic. As a
corollary they obtain that the line graph of every connected graph with minimum degree
at least 3 is magic. They also prove that the line graph of every bipartite regular graph
of degree at least 3 is supermagic.

For any non-trivial abelian group A under addition, a graph G is said to be strong
A-magic if there exists a labeling f of the edges of G with non-zero elements of A such
that the vertex labeling f+ defined as f+(v) =

∑
f(uv) taken over all edges uv incident at

v is a constant, and the constant is same for all possible values of |V (G)|. Stella Arputha
Mary, Navaneethakrishnan, and Nagarajan [2470] provide strong Z4-magic labelings for
various graphs and strong Z4p-magic labelings for those graphs.

In [2108] Razzaq, Rizvi, and Ali introduce the concept of an H-groupmagic total
labeling of a graph G over a finite Abelian group A as a bijection λ : V (G) ∪ E(G)→ A
such that for any subgraph H ′(V ′, E ′) of G isomorphic to H, the sum

∑
v∈V ′ λ(v) +∑

e∈E′ λ(e) is equal to magic constant k′. A graph is called H-groupmagic if it admits an
H-groupmagic total labeling. They determine the H-groupmagic total labelings of fan
graphs over the finite Abelian group A ∼= Z3 × Zt, where t ≥ 3 and show that disjoint
union of isomorphic as well as non-isomorphic copies of fan graphs are H-groupmagic over
A ∼= Z3 × Zt.

For a natural number h, Salehi [2155] defines a graph G to be h-magic if there is a
labeling α from the edges of G to the nonzero integers in Zh such that for each vertex
v in G the sum of all α values of edges incident to v is a constant (called the magic
sum index) that is independent of the choice of v. If the constant is 0, G is called a
zero-sum h-magic graph. The null set of graph G is the set of all natural numbers h for
which G admits a zero-sum h-magic labeling. In [2155] Salehi determines the null sets
for Kn, Km,n, Cn, books, and cycles with a Pk chord. Lin and Wang [1596] determine
the null sets of generalized wheels and generalized fans, and construct infinitely many
examples of Zh-magic graphs with magic sum zero and present some open problems.

In 1976 Sedláček [2198] defined a connected graph with at least two edges to be pseudo-
magic if there exists a real-valued function on the edges with the property that distinct
edges have distinct values and the sum of the values assigned to all the edges incident to
any vertex is the same for all vertices. Sedláček proved that when n ≥ 4 and n is even,
the Möbius ladder Mn is not pseudo-magic and when m ≥ 3 and m is odd, Cm × P2 is
not pseudo-magic.

A vertex magic total labeling of a graph with p vertices and q edges is a bijection
from the union of the vertex set and edge set to the consecutive integers 1, 2, . . . , p + q
with the property that for every vertex u, the sum of the label of u and the labels of the
edges incident with u is a constant k. A vertex magic total labeling is said to be a-vertex
multiple magic if the set of the labels of the vertices is {a, 2a, . . . , na} and is b-edge multiple
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magic b-edge multiple magic if the set of labels of the edges is {b, 2b, . . . ,mb}. Nagaraj,
Ponnappan, and Prabakaran [1826] provide properties of a-vertex multiple magic graphs
and b-edge multiple magic graphs. In [2903] Zhang and Wang verify the existence of E-
super vertex magic total labeling for odd regular graphs containing a particular 3-factor.

Kong, Lee, and Sun [1412] used the term “magic labeling” for a labeling of the edges
with nonnegative integers such that for each vertex v the sum of the labels of all edges
incident with v is the same for all v. In particular, the edge labels need not be distinct.
They let M(G) denote the set of all such labelings of G. For any L in M(G), they let
s(L) = max{L(e) | e ∈ E} and define the magic strength of G as m(G) = min{s(L) | L ∈
M(G)}. To distinguish these notions from others with the same names and notation,
which we will introduced in the next section for labelings from the set of vertices and
edges, we call the Kong, Lee, and Sun version the edge magic strength and use em(G)
for min{s(L) : L in M(G)} instead of m(G). Kong, Lee, and Sun [1412] use DS(k) to
denote the graph obtained by taking two copies of K1,k and connecting the k pairs of
corresponding leafs. They show: for k > 1, em(DS(k)) = k − 1; em(Pk + K1) = 1 for
k = 1 or 2, em(Pk + K1) = k if k is even and greater than 2, and 0 if k is odd and
greater than 1; for k ≥ 3, em(W (k)) = k/2 if k is even and em(W (k)) = (k − 1)/2
if k is odd; em(P2 × P2) = 1, em(P2 × Pn) = 2 if n > 3, em(Pm × Pn) = 3 if m or

n is even and greater than 2; em(C
(n)
3 ) = 1 if n = 1 (Dutch windmill, – see §2.4), and

em(C
(n)
3 ) = 2n − 1 if n > 1. They also prove that if G and H are magic graphs then

G×H is magic and em(G×H) = max{em(G), em(H)} and that every connected graph
is an induced subgraph of a magic graph (see also [726] and [760]). They conjecture that
almost all connected graphs are not magic. In [1529] Lee, Saba, and Sun show that the
edge magic strength of P k

n is 0 when k and n are both odd.
Recall a lexicographic product of two graphs G1 and G2, denoted by G1[G2], is a graph

that arises from G1 by replacing each vertex of G1 by a copy of the G2 and each edge of
G1 with Kn,n where n is the order of G2. Sun and Lee [2532] show that the Cartesian,
conjunctive, normal, lexicographic, and disjunctive products of two magic graphs are
magic and the sum of two magic graphs is magic. They also determine the edge magic
strengths of the products and sums in terms of the edge magic strengths of the components
graphs.

In [111] Akka and Warad define the super magic strength of a graph G, sms(G) as the
minimum of all magic constants c(f) where the minimum is taken over all super magic
labeling f of G if there exist at least one such super magic labeling. They determine
the super magic strength of paths, cycles, wheels, stars, bistars, P 2

n , < K1,n : 2 > (the
graph obtained by joining the centers of two copies of K1,n by a path of length 2), and
(2n+ 1)P2.

In [1338] Kanwal, Riasat, Imtiaz, Iftikhar, Javed, and Ashraf define a fork as the graph
obtained by starting with three paths of length t with vertices x1,j, x2,j, x3,j, 1 ≤ j ≤ t,
a single new edge x2,0 adjacent to x2,1, an edge joining x1,1 and x2,1 and an edge joining
x2,1 and x3,1. They gave super edge-magic total labelings and deficiencies of forks, the
disjoint union of a fork with a star, a bistar, and a path, and of trees obtained by starting
with two copies of P2t+1 and adding an edge joining the middle vertex of each path. The
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super edge-magic total labeling strengths of forks and the trees are also determined.
A Halin graph ia a planar 3-connected graphs that consist of a tree and a cycle

connecting the end vertices of the tree. Let G be a (p, q)-graph in which the edges are
labeled k, k + 1, . . . , k + q − 1, where k ≥ 0. In [1547] Lee, Su, and Wang define a graph
with p vertices to be k-edge-magic for every vertex v the sum of the labels of the incident
edges at v are constant modulo p. They investigate some classes of Halin graphs that
are k-edge-magic. Lee, Su, and Wang [1549] investigated some classes of cubic graphs
that are k-edge-magic andb provided a counterexample to a conjecture that any cubic
graph of order p ≡ 2 (mod 4) is k-edge-magic for all k. Shiu and Lau [2349] gave some
necessary conditions for families of wheels with certain spokes missing to admit k-edge-
magic labelings.

Lau, Alikhani, Lee, and Kocay [1464] (see also [131]) show that maximal outerplanar
graphs of orders p = 4, 5, 7 are k-edge magic if and only if k ≡ 2 (mod p) and determined all
maximal outerplanar graphs that are k-edge magic for k = 3 and 4. They also characterize
all (p, p − h)-graphs that are k-edge magic for h ≥ 0 and conjecture that a maximal
outerplanar graph of prime order p is k-edge magic if and only if k ≡ 2 (mod p).

S. M. Lee and colleagues [1568] and [1500] call a graph G k-magic if there is a labeling
from the edges of G to the set {1, 2, . . . , k − 1} such that for each vertex v of G the sum
of all edges incident with v is a constant independent of v. The set of all k for which G
is k-magic is denoted by IM(G) and called the integer-magic spectrum of G. In [1568]
Lee and Wong investigate the integer-magic spectrum of powers of paths. They prove:
IM(P 2

4 ) is {4, 6, 8, 10, . . .}; for n > 5, IM(P 2
n) is the set of all positive integers except 2; for

all odd d > 1, IM(P d
2d) is the set of all positive integers except 1; IM(P 3

4 ) is the set of all
positive integers; for all odd n ≥ 5, IM(P 3

n) is the set of all positive integers except 1 and
2; and for all even n ≥ 6, IM(P 3

n) is the set of all positive integers except 2. For k > 3 they
conjecture: IM(P k

n ) is the set of all positive integers when n = k+1; the set of all positive
integers except 1 and 2 when n and k are odd and n ≥ k; the set of all positive integers
except 1 and 2 when n and k are even and k ≥ n/2; the set of all positive integers except
2 when n is even and k is odd and n ≥ k; and the set of all positive integers except 2
when n and k are even and k ≤ n/2. In [1545] Lee, Su, and Wang showed that besides the
natural numbers there are two types of the integer-magic spectra of honeycomb graphs.
Fu, Jhuang and Lin [800] determine the integer-magic spectra of graphs obtained from
attaching a path of length at least 2 to the end vertices of each edge of a cycle.

In [1500] Lee, Lee, Sun, and Wen investigated the integer-magic spectrum of various
graphs such as stars, double stars (trees obtained by joining the centers of two disjoint
stars K1,m and K1,n with an edge), wheels, and fans. In [2158] Salehi and Bennett report
that a number of the results of Lee et al. are incorrect and provide a detailed accounting
of these errors as well as determine the integer-magic spectra of caterpillars. Shiu and
Low [2365] determined the integer-magic spectra and null sets of the Cartesian product
of two trees.

Lee, Lee, Sun, and Wen [1500] use the notation Cm@Cn to denote the graph obtained
by starting with Cm and attaching paths Pn to Cm by identifying the endpoints of the
paths with each successive pairs of vertices of Cm. They prove that IM(Cm@Cn) is the
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set of all positive integers if m or n is even and IM(Cm@Cn) is the set of all even positive
integers if m and n are odd.

Lee, Valdés, and Ho [1556] investigate the integer magic spectrum for special kinds
of trees. For a given tree T they define the double tree DT of T as the graph obtained
by creating a second copy T ∗ of T and joining each end vertex of T to its corresponding
vertex in T ∗. They prove that for any tree T, IM(DT ) contains every positive integer
with the possible exception of 2 and IM(DT ) contains all positive integers if and only if
the degree of every vertex that is not an end vertex is even. For a given tree T they define
ADT , the abbreviated double tree of T , as the the graph obtained from DT by identifying
the end vertices of T and T ∗. They prove that for every tree T , IM(ADT ) contains every
positive integer with the possible exceptions of 1 and 2 and IM(ADT ) contains all positive
integers if and only if T is a path.

Lee, Salehi, and Sun [1531] have investigated the integer-magic spectra of trees with
diameter at most four. Among their findings are: if n ≥ 3 and the prime power factor-
ization of n − 1 = pr11 p

r2
2 · · · p

rk
k , then IM(K1,n) = p1N ∪ p2N ∪ · · · ∪ pkN (here piN

means all positive integer multiples of pi); for m,n ≥ 3, the double star IM(DS(m,m))
(that is, stars Km,1 and Kn,1 that have an edge in common) is the set of all natural num-
bers excluding all divisors of m − 2 greater than 1; if the prime power factorization of
m− n = pr11 p

r2
2 · · · p

rk
k and the prime power factorization of n− 2 = ps11 p

s2
2 · · · p

sk
k , (the ex-

ponents are permitted to be 0) then IM(DS(m,n)) = A1∪A2∪· · ·∪Ak where Ai = p1+si
i N

if ri > si ≥ 0 and Ai = ∅ if si ≥ ri ≥ 0; for m,n ≥ 3, IM(DS(m,n)) = ∅ if and only
if m − n divides n − 2; if m,n ≥ 3 and |m − n| = 1, then DS(m,n) is not magic. Lee
and Salehi [1530] give formulas for the integer-magic spectra of trees of diameter four but
they are too complicated to include here.

For a graph G(V,E) and a function f from the V to the positive integers, Salehi
and Lee [2162] define the functional extension of G by f , as the graph H with
V (H) = ∪{ui| u ∈ V (G) and i = 1, 2, . . . , f(u)} and E(H) = ∪{uiuj| uv ∈ E(G), i =
1, 2, . . . , f(u); j = 1, 2, . . . , f(v)}. They determine the integer-magic spectra for P2, P3,
and P4.

More specialized results about the integer-magic spectra of amalgamations of stars
and cycles are given by Lee and Salehi in [1530].

Table 5 summarizes the state of knowledge about magic-type labelings. In the table,
SM means semi-magic, M means magic, and SPM means supermagic. A question mark
following an abbreviation indicates that the graph is conjectured to have the corresponding
property. The table was prepared by Petr Kovář and Tereza Kovářová.
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Table 5: Summary of Magic Labelings

Graph Types Notes
Kn M if n = 2, n ≥ 5 [2471]

SPM for n ≥ 5 iff n > 5
n 6≡ 0 (mod 4) [2472]

Km,n SM if n ≥ 3 [2471]

Kn,n M if n ≥ 3 [2471]

fans fn M iff n is odd, n ≥ 3 [2471]
not SM if n ≥ 2 [873]

wheels Wn M if n ≥ 4 [2471]
SM if n = 5 or 6 [873]

wheels with one M if n = 4, n ≥ 6 [2471]
spoke deleted

null graph with n vertices

Möbius ladders Mn SPM if n ≥ 3, n is odd [2198]

Cn × P2 not SPM for n ≥ 4, n even [2198]

Cm[Kn] SPM if m ≥ 3, n ≥ 2 [2345]

Kn, n, . . . , n︸ ︷︷ ︸
p

SPM n ≥ 3, p > 5 and

p 6≡ 0 (mod 4) [2345]

composition of r-regular SPM if n ≥ 3 [2345]
SPM graph and Kn

Kk[Kn] SPM if k = 3 or 5, n = 2 or n odd [1012]

mKn,n SPM for n ≥ 2 iff n is even or
both n and m are odd [2342]

Qn SPM iff n = 1 or n > 2 even [1078]

Continued on next page
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Table 5 – Continued from previous page
Graph Types Notes
Cm × Cn SPM m = n or m and n are even [1078]

Cm × Cn SPM? for all m and n [1078]

connected (p, q)-graph M iff 5p/4 < q ≤ p(p− 1)/2 [2597]
other than P2

Gi M |G| ≥ 5, i ≥ 3 [2600]

G2 M G 6= P5 and G does not
have a 1-factor whose every edge
is incident with an
end-vertex of G [2600]

K1,m,n M for all m, n [2220]

P 2
n M for all n except 2, 3, 5 [2220], [873]

G×H M iff G and H are magic [1412]

5.2 Edge-magic Total and Super Edge-magic Total Labelings

In 1970 Kotzig and Rosa [1418] defined a magic valuation of a graph G(V,E) as a bijection
f from V ∪ E to {1, 2, . . . , |V ∪ E|} such that for all edges xy, f(x) + f(y) + f(xy) is
constant (called the magic constant). This notion was rediscovered by Ringel and Lladó
[2118] in 1996 who called this labeling edge-magic. To distinguish between this usage from
that of other kinds of labelings that use the word magic we will use the term edge-magic
total labeling as introduced by Wallis [2752] in 2001. (We note that for 2-regular graphs
a vertex-magic total labeling is an edge-magic total labeling and vice versa.) Kotzig and
Rosa proved: Km,n has an edge-magic total labeling for all m and n; Cn has an edge-
magic total labeling for all n ≥ 3 (see also [896], [2129], [443], and [726]); and the disjoint
union of n copies of P2 has an edge-magic total labeling if and only if n is odd. They
further state that Kn has an edge-magic total labeling if and only if n = 1, 2, 3, 5, or 6
(see [1419], [632], and [726]) and ask whether all trees have edge-magic total labelings.
Wallis, Baskoro, Miller, and Slamin [2756] enumerate every edge-magic total labeling of
complete graphs. They also prove that the following graphs are edge-magic total: paths,
crowns, complete bipartite graphs, and cycles with a single edge attached to one vertex.
Enomoto, Llado, Nakamigana, and Ringel [726] prove that all complete bipartite graphs
are edge-magic total. They also show that wheels Wn are not edge-magic total when n ≡ 3
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(mod 4) and conjectured that all other wheels are edge-magic total. This conjecture was
proved when n ≡ 0, 1 (mod 4) by Phillips, Rees, and Wallis [1926] and when n ≡ 6 (mod
8) by Slamin, Bača, Lin, Miller, and Simanjuntak [2419]. Fukuchi [806] verified all cases
of the conjecture independently of the work of others. Slamin et al. further show that all
fans are edge-magic total. In 2002 Lee and Kong [1496] conjectured that odd star forests
are super edge magic. In 2019 Cerioli, Fernandes, Lee, Lintzmayer, Mota, and da Silva
[545] proved this conjecture for odd symmetric star forests and proved that odd uniform
forests of catterpillars are edge-magic. Afzal, Ather, Baig, and Maheshwari [58] analyzed
pyramidion ladders and Cn-books for their super edge-magicness and gave some methods
for finding new super edge-magic graphs from existing ones.

Inspired by Kotzig-Rosa’s notion, Enomoto, Lladó, Nakamigawa, and Ringel [726]
called a graph G(V,E) with an edge-magic total labeling that has the additional property
that the vertex labels are 1 to |V | a super edge-magic total labeling (SEMT). Kanwal and
Kanwal [1337] determined super edge-magic total labelings and deficiencies for forests
formed by two sided generalized combs, stars, combs, and banana trees. A two-sided
generalized comb Cb2

a,b, where b is odd, is obtained from a path Pa+1 by attaching two
paths P(b+1)/2 to each of the vertices of degree two and one vertex of degree one of Pa+1.
In [1328] Kanwal, Azam, and Iftikhar investigate the SEMT strength of generalized comb
and the SEMT labeling and deficiency of forests composed of two components, where
one of the components for each forest is a generalized comb and other component is star,
bistar, comb, or path. In [1330] Kanwal, Imtiaz, Iftikhar, Ashraf, Arshad, Irfan, and
Sumbal z studied the super edge-magic deficiency of paths, caterpillars, and the disjoint
union of a 2-sided generalized comb with a bistar. They also provide the super edge-magic
total strength for a 2-sided generalized comb. Javed, Riasat, and Kanwal [1106] study
super edge-magic total labeling and deficiencies of forests consisting of combs, generalized
combs, and stars. Their results provide the evidence to support a conjecture proposed
by Figueroa-Centeno, Ichishima, and Muntaner-Bartle [765]. Cerioli, Fernandes, Lee,
Lintzmayer [550] proved certain forests of stars admit a super edge-magic labeling and
that certain forests of caterpillars admit an edge-magic labeling.

Baskoro, Sudarsana, and Cholily [418] provided some constructions of new super edge-
magic graphs from some old ones by attaching 1, 2, or 3 pendent vertices and edges. In
[1377] Kim introduces a new construction of new super edge-magic graphs by attaching
any number pendent vertices and edges under some conditions.

Ringel and Llado [2118] prove that a graph with p vertices and q edges is not edge-
magic total if q is even and p + q ≡ 2 (mod 4) and each vertex has odd degree. Ringel
and Llado conjecture that trees are edge-magic total. In [409] Baskar Babujee and Rao
show that the path with n vertices has an edge-magic total labeling with magic constant
(5n + 2)/2 when n is even and (5n + 1)/2 when n is odd. For stars with n vertices they
provide an edge-magic total labeling with magic constant 3n. In [737] Eshghi and Azimi
discuss a zero-one integer programming model for finding edge-magic total labelings of
large graphs.

Santhosh [2185] proved that for n odd and at least 3, the crown Cn � P2 has an
edge-magic total labeling with magic constant (27n + 3)/2 and for n odd and at least 3,
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Cn � P3 has an edge-magic total labeling with magic constant (39n + 3)/2. Ngurah and
Adiwijaya [1852] investigated whether various classes of chain graphs formed from ladders,
triangular ladders, diagonal ladders, C4, and K4 have an edge-magic or super edge-magic
labelings. Baig and Afzal [217] investigated the super edge-magicness of special classes of
graphs having maximum magic constant k = 3p.

Ahmad, Baig, and Imran [86] define a zig-zag triangle as the graph obtained from the
path x1, x2, . . . , xn by adding n new vertices y1, y2, . . . , yn and new edges y1x1, ynxn−1; xiyi
for 1 ≤ i ≤ n; yixi−1yixi+1 for 2 ≤ i ≤ n − 1. They define a graph Cbn as one obtained
from the path x1, x2, . . . , xn adding n − 1 new vertices y1, y2, . . . , yn−1 and new edges
yixi+1 for 1 ≤ i ≤ n − 1. The graph Cb∗n is obtained from the Cbn by joining a new
edge x1y1. They prove that zig-zag triangles, graphs that are the disjoint union of a star
and a banana tree, certain disjoint unions of stars, and for n ≥ 4, Cb∗n ∪Cbn−1 are super
edge-magic total. Baig, Afzal, Imran, and Javaid [218] investigate the existence of super
edge-magic labeling of volvox and pancyclic graphs.

The super edge-magic deficiency of a graphG, denoted by µs(G), is either the minimum
nonnegative integer n such that G∪nK1 is super edge-magic or +∞ if there exists no such
n. Krisnawati, Ngurah, Hidayat, and Alghofari [1434] investigated the super edge-magic
deficiency of forests whose components are subdivided stars or paths. Imran, Afzal, and
Baig investigate the super edge-magic deficiency of volvox and dumbbell type graphs in
[1065]. Kanwal, Iftikhar, and Azam [1329] found super edge magic total labelings and
deficiencies of forests consisting of two components, where one of the components for each
forest is a generalized comb and the other component is a star, bistar, comb, or path.
They also investigated the super edge magic total strength of generalized combs.

Let G be a graph with p vertices with V (G) = {v1, v2, . . . , vp} and let Sm be the star
with m leaves. If in G, every vertex vi is identified to the center vertex of Smi

, for some
mi ≥ 0, 1 ≤ i ≤ n, where S0 = K1, then the graph obtained is denoted by G(m1,m2,...,mp).
Let M(G) = {(m1,m2, . . . ,mp) | G(m1,m2,...,mp) is a super edge-magic graph}. The star
super edge-magic deficiency Sµ∗(G) is defined as

Sµ∗(G) =

{
min(m1,m2,...,mp)(m1 +m2 + · · ·+mp) if M(G) 6= ∅,
+∞, if M(G) = ∅.

In [1355] Kathiresan and Sabarimalai Madha determine the star super edge-magic defi-
ciency of certain classes of graphs.

Beardon [424] extended the notion of edge-magic total to countable infinite graphs
G(V,E) (that is, V ∪ E is countable). His main result is that a countably infinite tree
that processes an infinite simple path has a bijective edge-magic total labeling using the
integers as labels. He asks whether all countably infinite trees have an edge-magic total
labeling with the integers as labels and whether the graph with the integers as vertices
and an edge joining every two distinct vertices has a bijective edge-magic total labeling
using the integers.

Cavenagh, Combe, and Nelson [549] investigate edge-magic total labelings of countably
infinite graphs with labels from a countable Abelian group A. Their main result is that
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if G is a countable graph that has an infinite set of mutually disjoint edges and A is
isomorphic to a countable subgroup of the real numbers under addition then for any k in
A there is an edge-magic labeling of G with elements from A that has magic constant k.

Balakrishnan and Kumar [337] proved that the join of Kn and two disjoint copies of K2

is edge-magic total if and only if n = 3. Yegnanarayanan [2866] has proved the following
graphs have edge-magic total labelings: nP3 where n is odd; Pn + K1;Pn × C3 (n ≥ 2);
the crown Cn � K1; and Pm × C3 with n pendent vertices attached to each vertex of
the outermost C3. He conjectures that for all n, Cn � Kn, the n-cycle with n pendent
vertices attached at each vertex of the cycle, and nP3 have edge-magic total labelings. In
fact, Figueroa-Centeno, Ichishima, and Muntaner-Batle, [767] have proved the stronger
statement that for all n ≥ 3, the corona Cn �Km admits an edge-magic labeling where
the set of vertex labels is {1, 2, . . . , |V |}. (See also [1696].)

Yegnanarayanan [2866] also introduces several variations of edge-magic labelings and
provides some results about them. Kotzig [2754] provides some necessary conditions for
graphs with an even number of edges in which every vertex has odd degree to have an
edge-magic total labeling. Craft and Tesar [632] proved that an r-regular graph with r odd
and p ≡ 4 (mod 8) vertices can not be edge-magic total. Wallis [2752] proved that if G is
an edge-magic total r-regular graph with p vertices and q edges where r = 2ts+ 1 (t > 0)
and q is even, then 2t+2 divides p.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [761] have proved the following
graphs are edge-magic total: P4 ∪ nK2 for n odd; P3 ∪ nK2; P5 ∪ nK2; nPi for n odd
and i = 3, 4, 5; 2Pn; P1 ∪ P2 ∪ · · · ∪ Pn; mK1,n; Cm � nK1; K1 � nK2 for n even;
W2n; K2 × Kn, nK3 for n odd (the case nK3 for n even and larger than 2 is done
in [1727]); binary trees, generalized Petersen graphs (see also [1854]), ladders (see also
[2813]), books, fans, and odd cycles with pendent edges attached to one vertex.

In [767] Figueroa-Centeno, Ichishima, Muntaner-Batle, and Oshima, investigate super
edge-magic total labelings of graphs with two components. Among their results are:
C3 ∪ Cn is super edge-magic total if and only if n ≥ 6 and n is even; C4 ∪ Cn is super
edge-magic total if and only if n ≥ 5 and n is odd; C5 ∪ Cn is super edge-magic total if
and only if n ≥ 4 and n is even; if m is even with m ≥ 4 and n is odd with n ≥ m/2 + 2,
then Cm ∪Cn is super edge-magic total; for m = 6, 8, or 10, Cm ∪Cn is super edge-magic
total if and only if n ≥ 3 and n is odd; 2Cn is strongly felicitous if and only if n ≥ 4 and n
is even (the converse was proved by Lee, Schmeichel, and Shee in [1532]); C3∪Pn is super
edge-magic total for n ≥ 6; C4∪Pn is super edge-magic total if and only if n 6= 3; C5∪Pn
is super edge-magic total for n ≥ 4; if m is even with m ≥ 4 and n ≥ m/2+2 then Cm∪Pn
is super edge-magic total; Pm ∪ Pn is super edge-magic total if and only (m,n) 6= (2, 2)
or(3,3); and Pm ∪ Pn is edge-magic total if and only (m,n) 6= (2, 2). In [2125] Rizvi, Ali,
Iqbal, and Gulraze give super edge-magic total labelings of forests whose components are
caterpillars and stars, forests whose components are stars and banana trees, and a new
families of trees.

Enomoto, Llado, Nakamigawa, and Ringel [726] conjecture that if G is a graph of order
n+m that contains Kn, then G is not edge-magic total for n� m. Wijaya and Baskoro
[2813] proved that Pm×Cn is edge-magic total for odd n at least 3. Ngurah and Baskoro
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[1854] state that P2 × Cn is not edge-magic total. Hegde and Shetty [992] have shown
that every Tp-tree (see §4.4 for the definition) is edge-magic total. Ngurah, Simanjuntak,
and Baskoro [1864] show that certain subdivisions of the star K1,3 have edge-magic total
labelings. Ali, Hussain, Shaker, and Javaid [128] provide super edge-magic total labelings
of subdivisions of stars K1,p for p ≥ 5. In [1859] Ngurah, Baskoro, Tomescu gave methods
for construction new (super) edge-magic total graphs from old ones by adding some new
pendent edges. They also proved that K1,m∪P m

n is super edge-magic total. Wallis [2752]
proves that a cycle with one pendent edge is edge-magic total. In [2752] Wallis poses a
large number of research problems about edge-magic total graphs.

For n ≥ 3, López, Muntaner-Batle, and Rius-Font [1635] (see [1636] for (corrigen-
dum) let Sn denote the set of all super edge-magic total 1-regular labeled digraphs of
order n where each vertex takes the name of the label that has been assigned to it. For
π ∈ Sn. they define a generalization of generalized Petersen graphs that they denote
by GGP (n; π), which consists of an outer n-cycle x0, x1, . . . , xn−1, x0, a set of n-spokes
xiyi, 0 ≤ i ≤ n− 1, and n inner edges defined by yiyπ(i), i = 0, . . . , n− 1. Notice that, for
the permutation π defined by π(i) = i+ k (mod n) we have GGP (n; π) = P (n; k). They
define a second generalization of generalized Petersen graphs, GGP (n; π2, . . . , πm), as the
graphs with vertex sets ∪mj=1{x

j
i : i = 0, . . . , n − 1}, an outer n-cycle x1

0, x
1
1, . . . , x

1
n−1, x

1
0,

and inner edges xj−1
i xji and xjix

j
πj(i), for j = 2, . . . ,m, and i = 0, . . . , n − 1. Notice that,

GGP (n; π2, . . . , πm) = Pm × Cn, when πj(i) = i + 1 (mod n) for every j = 2, . . . ,m.
Among their results are the Petersen graphs are super edge-magic total; for each m with
1 < l ≤ m and 1 ≤ k ≤ 2, the graph GGP (5;π2, . . . , πm), where πi = σ1 for i 6= l and
πl = σk, is super edge-magic total; for each 1 ≤ k ≤ 2, the graph P (5n; k + 5r) where r
is the smallest integer such that k + 5r = 1 (mod n) is super edge-magic total.

A w-graph, W (n), has vertices {(c1, c2, b, w, d)∪ (x1, x2, . . . , xn)∪ (y1, y2, . . . , yn)} and
edges {(c1x

1, c1x
2, . . . , c1x

n) ∪ (c2y
1, c2y

2, . . . , c2y
n) ∪ (c1b, c1w) ∪ (c2w, c2d)}. A w-tree,

WT (n, k), is a tree obtained by taking k copies of a w-graph W (n) and a new vertex a
and joining a with in each copy d where n ≥ 2 and k ≥ 3. An extended w-tree Ewt(n, k, r)
is a tree obtained by taking k copies of an extended w-graph Ew(n, r) and a new vertex a
and joining a with the vertex d in each of the k copies for n ≥ 2, k ≥ 3 and r ≥ 2. Super
edge-magic total labelings for w-trees, extended w-trees, and disjoint unions of extended
w-trees are given in [1103], [1100], and [127]. Javaid, Hussain, Ali, and Shaker [1104]
provided super edge-magic total labelings of subdivisions of K1,4 and w-trees. Shaker,
Rana, Zobair, and Hussain [2311] gave a super edge-magic total labeling for a subdivided
star with a center of degree at least 4.

In 1988 Godbod and Slater [896] made the following conjecture. If n is odd, n 6= 5,
Cn has an edge magic labeling with valence k, when (5n + 3)/2 ≤ k ≤ (7n + 3)/2. If n
is even, Cn has an edge-magic labeling with valence k when 5n/2 + 2 ≤ k ≤ 7n/2 + 1.
Except for small values of n, very few valences for edge-magic labelings of Cn are known.
In [1640] López, Muntaner-Batle, and Rius-Font use the ⊗h-product in order to prove
the following two results. Let n = pα1

1 p
α2
2 · · · p

αk
k be the unique prime factorization of an

odd number n. Then Cn admits at least 1 +
∑k

i=1 αi edge-magic labelings with at least

1 +
∑k

i=1 αi mutually different valences. Let n = 2αpα1
1 p

α2
2 · · · p

αk
k be the unique prime
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factorization of an even number n, with p1 > p2 > · · · > pk. Then Cn admits at least∑k
i=1 αi edge-magic labelings with at least

∑k
i=1 αi mutually different valences. If α ≥ 2

this lower bound can be improved to 1 +
∑k

i=1 αi. In [1630] López, Muntaner-Batle, and
Prabu introduce a new ⊗h labeling construction that has a wider range of applications
and applies it to the magic valences of cycles and crowns.

In [2565] Swita, Rafflesia, Henni Ms, Adji, and Simanihuruk use B[(Ca,m), (Cb, n), Pt]
to denote the graph that consists of m cycles Ca and n cycles Cb with a common
path Pt. They proved that B[(C7, 1), (C3, n), P2] admits an edge-magic total labeling,
B[(Ca, 1), (C3, n), P2] admits a super edge-magic total labeling for all a ≡ 3 mod 4 (a > 3),
and B[(C7, 2), (C3, n), P2] admits a super edge-magic total labeling.

In 1996 Erdős asked for M (n), the maximum number of edges that an edge-magic
total graph of order n can have (see [632]). In 1999 Craft and Tesar [632] gave the bound
bn2/4c ≤ M (n) ≤ bn(n − 1)/2c. For large n this was improved by Pikhurko [1932] in
2006 to 2n2/7 +O(n) ≤ M (n) ≤ (0.489 + · · ·+ o(1)n2).

Enomoto, Lladó, Nakamigawa, and Muntaner-Batle [726] proved that a super edge-
magic total graph G(V,E) with |V | ≥ 4 and with girth at least 4 has at most 2|V | − 5
edges. They prove this bound is tight for graphs with girth 4 and 5 in [726] and [1057].

In his Ph.D. thesis, Barrientos [353] introduced the following notion. Let L1, L2, . . . , Lh
be ordered paths in the grid Pr × Pt that are maximal straight segments such that the
end vertex of Li is the beginning vertex of Li+1 for i = 1, 2, . . . , h− 1. Suppose for some
i with 1 < i < h we have V (Li) = {u0, v0} where u0 is the end vertex of Li−1 and the
beginning vertex of Li and v0 is the end vertex of L1 and the beginning vertex of Li+1. Let
u ∈ V (Li−1)− {u0} and v ∈ V (Li+1)− {v0}. The replacement of the edge u0v0 by a new
edge uv is called an elementary transformation of the path Pn. A tree is called a path-like
tree if it can be obtained from Pn by a sequence of elementary transformations on an
embedding of Pn in a 2-dimensional grid. In [291] Bača, Lin, and Muntaner-Batle proved
that if T1, T2, . . . , Tm are path-like trees each of order n ≥ 4 where m is odd and at least
3, then T1∪T2,∪ · · · ∪Tm has a super edge-magic labeling. In [290] Bača, Lin, Muntaner-
Batle and Rius-Font proved that the number of such trees grows at least exponentially
with m. As an open problem Bača, Lin, Muntaner-Batle and Rius-Font ask if graphs of
the form T1∪T2∪· · ·∪Tm where T1, T2, . . . , Tm are path-like trees each of order n ≥ 2 and
m is even have a super edge-magic labeling. In [353] Barrientos proved that all path-like
trees admit an α-valuation. Using Barrientos’s result, it is very easy to obtain that all
path-like trees are a special kind of super edge-magic by using a super edge-magic labeling
of the path Pn, and hence they are also super edge-magic. Furthermore, in [760] Figueroa-
Centeno, Ichishima, and Muntaner-Batle proved that if a tree is super edge-magic, then
it is also harmonious. Therefore all path-like trees are also harmonious. In [1632] López,
Muntaner-Batle, and Rius-Font also use a variation of the Kronecker product of matrices
in order to obtain lower bounds for the number of non isomorphic super edge-magic
labeling of some types of path-like trees. As a corollary they obtain lower bounds for the
number of harmonious labelings of the same type of trees. López, Muntaner-Batle, and
Rius-Font [1641] proved that if m ≥ 4 is an even integer and n ≥ 3 is an odd divisor of
m, then Cm ∪Cn is super edge-magic. Lee and Kong conjecture that if n is an odd, then
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St(a1, a2, . . . , an) is super edge-magic, and they proved that the following graphs are super
edge-magic: St(m,n) (n ≡ 0 mod(m + 1)), St(1, k, n)(k = 1, 2 or n), St(2, k, n) (k =
2, 3), St(1, 1, k, n) (k = 2, 3), St(k, 2, 2, n) (k = 1, 2). Zhenbin and Chongjin [2915]
proved that St(1,m, n), St(3,m,m+1), St(n, n+1, n+2) are super edge-magic, and under
some conditions St(a1, a2, . . . , a2n+1), St(a1, a2, . . . , a4n+1), St(a1, a2, . . . , a4n+3) are also
super edge-magic.

For a simple graph H we say that G(V,E) admits an H-covering if every edge in E(G)
belongs to a subgraph of G that is isomorphic to H. In [1643] López, Muntaner-Batle,
Rius-Font study a relationship existing among (super) magic coverings and the Kronecker
product of matrices. (For a simple graph H, G(V,E) admits an H-covering if every edge
in E(G) belongs to a subgraph of G that is isomorphic to H.) Their results can be applied
to construct S-magic partitions. For m copies of a graph G and a fixed subgraph H of
each copy the graph I(G,H,m) is formed by taking of all the Gi’s and identifying their
subgraph H. Liang [1587] determines which I(G,H,m) and which mG have G supermagic
coverings.

Bača, Lin and Muntaner-Batle in [289] using a generalization of the Kronecker product
of matrices prove that the number of non-isomorphic super edge-magic labelings of the
disjoint union of m copies of the path Pn, m ≡ 2 (mod 4), m ≥ 2, n ≥ 4, is at least
(m/2)(2n−2).

In [1634] López, Muntaner-Batle and Rius-Font proved that every super edge-magic
graph with p vertices and q edges where q ≥ p− 1 has an even harmonious labeling (See
Section 4.6.) In [1639] they stated some open problems concerning relationships among
super edge-magic labelings and graceful and harmonious labelings. A Langford sequence
of order m and defect d is a sequence (t1, t2, . . . , t2m) of 2m numbers such that (i) for every
k ∈ [d, d+m− 1] there exist exactly two subscripts i, j ∈ [1, 2m] with ti = tj = k and (ii)
the subscripts i and j satisfy the condition |i− j| = k. López and Muntaner-Batle [1629]
provided new lower bounds on the number of distinct Langford sequences with certain
properties in terms of the number of 1-regular super edge-magic labeled digraphs of a
particular order.

Lee and Lee [1499] prove the following graphs are super edge-magic: P2n +Km, (P2 ∪
nK1) + K2, graphs obtained by appending a path to the apex of a fan with at least 4
vertices (umbrella), and jelly fish graphs J(m,n) obtained from a 4-cycle v1, v2, v3, v4 by
joining v1 and v3 with an edge and appending m pendent edges to v2 and n pendent edges
to v4.

In [57] Afzel introduces two new familes of graphs called carrom and jukebox graphs
and proves they admit super edge-magic labelings. Carroms are generalizations of Cn×P2.

Marimuthu and Balakrishnan [1701] define a graph G(p, q) to be edge magic graceful if
there exists a bijection f from V (G)∪E(G) to {1, 2, . . . , p+ q} such |f(u) +f(v)−f(uv)|
is a constant for all edges uv of G. An edge magic graceful graph is said to be super
edge magic graceful if V (G) = {1, 2, . . . , p}. They present some properties of super edge
magic graceful graphs, prove some classes of graphs are super edge magic graceful, and
prove that every super edge magic graceful graph with either f(uv) > f(u) + f(v) for all
edges uv or f(uv) < f(u) + f(v) for all edges uv is sequential, harmonious, super edge
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magic and not graceful. Marimuthu, Kavitha, and Balakrishnan [1702] proved that the
generalized Petersen graphs P (n, 1) and P (n, (n − 1)/2) are super edge magic graceful
when n is odd.

Let G = (V,E) be a (p, q)-linear forest. In [290] Bača, Lin, Muntaner-Batle, and Rius-
Font call a labeling f a strong super edge-magic labeling of G and G a strong super edge-
magic graph if f : V ∪E → {1, 2, . . . , p+q} with the extra property that if uv ∈ E, u′, v′ ∈
V (G) and dG(u, u′) = dG(v, v′) < +∞, then we have that f(u) + f(v) = f(u′) + f(v′).
In [94] Ahmad, López, Muntaner-Batle, and Rius-Font define the concept of strong super
edge-magic labeling of a graph with respect to a linear forest as follows. Let G = (V,E)
be a (p, q)-graph and let F be any linear forest contained in G. A strong super edge-
magic labeling of G with respect to F is a super edge-magic labeling f of G with the extra
property with if uv ∈ E(F ), u′, v′ ∈ V (F ) and dF (u, u′) = dF (v, v′) < +∞ then we have
that f(u) + f(v) = f(u′) + f(v′). If a graph G admits a strong super edge-magic labeling
with respect to some linear forest F , they say that G is a strong super edge-magic graph
with respect to F . They prove that if m is odd and G is an acyclic graph which is strong
super edge-magic with respect to a linear forest F , then mG is strong super edge-magic
with respect to F1 ∪ F2 ∪ · · · ∪ Fm, where Fi ' F for i = 1, 2, . . . ,m and every regular
caterpillar is strong super edge-magic with respect to its spine.

Noting that for a super edge-magic labeling f of a graph G with p vertices and q edges,
the magic constant k is given by the formula: k = (

∑
u∈V deg(u)f(u)+

∑p+q
i=p+1 i)/q, López,

Muntaner-Batle and Rius-Font [1633] define the set

SG =
{

(
∑

u∈V deg(u)g(u) +
∑p+q

i=p+1 i)/q : the function g : V → {i}pi=1 is bijective
}
. If

dminSGe ≤ bmaxSGc then the super edge-magic interval of G is the set IG =
[dminSGe, bmaxSGc] ∩ N. The super edge-magic set of G is σG = {k ∈ IG :
there exists a super edge-magic labeling of G with valence k}. López et al. call a graph
G perfect super edge-magic if IG = σG. They show that the family of paths Pn is a family
of perfect super edge-magic graphs with |IPn| = 1 if n is even and |IPn| = 2 if n is odd
and raise the question of whether there is an infinite family F1, F2, . . . of graphs such that
each member of the family is perfect super edge-magic and limi→+∞ |IFi

| = +∞. They
show that graphs G ∼= Cpk �Kn where p > 2 is a prime is such a family.

In [1634] López et al. define the irregular crown C(n; j1, j2, . . . , jn) = (V,E), where
n > 2 and ji ≥ 0 for all i ∈ {1, 2, . . . , n} as follows: V = {vi}ni=1 ∪ V1 ∪ V2 ∪ · · · ∪ Vn,
where Vk = {v1

k, v
2
k, . . . , v

jk
k }, if jk 6= 0 and Vk = ∅ if jk = 0, for each k ∈ {1, 2, . . . , n}

and E = {vivi+1}n−1
i=1 ∪ {v1vn} ∪ (∪nk=1,jk 6=0{vkvlk}

jk
l=1). In particular, they denote Cn

m
∼=

C(m; j1, j2, . . . , jm), where j2i−1 = n, for each i with 1 ≤ i ≤ (m + 1)/2, and j2i = 0, for
each i, 1 ≤ i ≤ (m− 1)/2. They prove that the graphs Cn

3 and Cn
5 are perfect edge-magic

for all n > 1.
López et al. [1637] define Fk-family and Ek-family of graphs as follows. The infinite

family of graphs (F1, F2, . . . ) is an Fk-family if each element Fn admits exactly k different
valences for super edge-magic labelings, and limn→+∞ |I(Fn)| = +∞. The infinite family
of graphs (F1, F2, . . . ) is an Ek-family if each element Fn admits exactly k different valences
for edge-magic labelings, and limn→+∞ |J(Fn)| = +∞.

An easy observation is that (K1,2, K1,3, . . . ) is an F2-family and an E3-family. They
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pose the two problems: for which positive integers k is it possible to find Fk-families and
Ek-families? Their main results in [1637] are that an Fk-family exits for each k = 1, 2, 3;
and an Ek-family exits for each k = 3, 4 and 7.

McSorley and Trono [1732] define a relaxed version of edge-magic total labelings of
a graph as follows. An edge-magic injection µ of a graph G is an injection µ from the
set of vertices and edges of G to the natural numbers such that for every edge uv the
sum µ(u) + µ(v) + µ(uv) is some constant kµ. They investigate κ(G), the smallest kµ
among all edge-magic injections of a graph G. They determine κ(G) in the cases that
G is K2, K3, K5, K6 (recall that these are the only complete graphs that have edge-magic
total labelings), a path, a cycle, or certain types of trees. They also show that every graph
has an edge-magic injection and give bounds for κ(Kn).

Avadayappan, Vasuki, and Jeyanthi [210] define the edge-magic total strength of a
graph G as the minimum of all constants over all edge-magic total labelings of G. We
denote this by emt(G). They use the notation < K1,n : 2 > for the tree obtained from
the bistar Bn,n (the graph obtained by joining the center vertices of two copies of K1,n

with an edge) by subdividing the edge joining the two stars. They prove: emt(P2n) =
5n+1; emt(P2n+1) = 5n+3; emt(< K1,n : 2 >) = 4n+9; emt(Bn,n) = 5n+6; emt((2n+
1)P2) = 9n+6; emt(C2n+1) = 5n+4; emt(C2n) = 5n+2; emt(K1,n) = 2n+4; emt(P 2

n) =
3n; and emt(Kn,m) ≤ (m + 2)(n + 1) where n ≤ m. Using an analogous definition for
super edge-magic total strength, Swaninathan and Jeyanthi [2559], [2559], [2560] provide
results about the super edge-magic strength of trees, fire crackers, unicyclic graphs, and
generalized theta graphs. Ngurah, Simanjuntak, and Baskoro [1864] show that certain
subdivisions of the star K1,3 have super edge-magic total labelings. In [726] Enomoto,
Lladó, Nakamigawa and Ringel conjectured that all trees have a super edge-magic total
labeling. Ichishima, Muntaner-Batle, and Rius-Font [1056] have shown that any tree of
order p is contained in a tree of order at most 2p − 3 that has a super edge-magic total
labeling.

In [290] Bača, Lin, Muntaner-Batle, and Rius-Font use a generalization of the Kro-
necker product of matrices introduced by Figueroa-Centeno, Ichishima, Muntaner-Batle,
and Rius-Font [769] to obtain an exponential lower bound for the number of non-
isomorphic strong super edge-magic labelings of the graph mPn, for m odd and any
n, starting from the strong super edge-magic labeling of Pn. They prove that the num-
ber of non-isomorphic strong super edge-magic labelings of the graph mPn, n ≥ 4, is at
least 5

2
2b

m
2
c + 1 where m ≥ 3 is an odd positive integer. This result allows them to gen-

erate an exponential number of non-isomorphic super edge-magic labelings of the forest
F ∼=

⋃m
j=1 Tj, where each Tj is a path-like tree of order n and m is an odd integer.

López, Muntaner-Batle, and Rius-Font [1631] introduced a generalization of super
edge-magic graphs called super edge-magic models and prove some results about them.

Yegnanarayanan and Vaidhyanathan [2867] use the term nice (1, 1) edge-magic labeling
for a super edge-magic total labeling. They prove: a super edge-magic total labeling f of
a (p, q)-graph G satisfies 2

∑
v∈V (G) f(v)deg(v) ≡ 0 mod q; if G is (p, q) r-regular graph

(r > 1) with a super edge-magic total labeling then q is odd and the magic constant is
(4p + q + 3)/2; every super edge-magic total labeling has at least two vertices of degree
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less than 4; fans Pn +K1 are edge-magic total for all n and super edge-magic total if and
only if n is at most 6; books Bn are edge-magic total for all n; a super edge-magic total
(p, q)-graph with q ≥ p is sequential; a super edge-magic total tree is sequential; and a
super edge-magic total tree is cordial. These last three results had been proved earlier by
Figueroa-Centenoa, Ichishima, and Muntaner-Batle [760].

In [2866] Yegnanarayanan conjectured that the disjoint union of 2t copies of P3 has a
(1, 1) edge-magic labeling and posed the problem of determining the values of m and n
such that mPn has a (1, 1) edge-magic labeling. Manickam and Marudai [1696] prove the
conjecture and partially settle the open problem.

Hegde and Shetty [998] (see also [997]) define the maximum magic strength of a graphG
as the maximum magic constant over all edge-magic total labelings of G. We use eMt(G)
to denote the maximum magic strength of G. Hegde and Shetty call a graph G with p
vertices strong magic if eMt(G) = emt(G); ideal magic if 1 ≤ eMt(G)− emt(G) ≤ p; and
weak magic if eMt(G) − emt(G) > p. They prove that for an edge-magic total graph G
with p vertices and q edges, eMt(G) = 3(p + q + 1) − emt(G). Using this result they
obtain: Pn is ideal magic for n > 2; K1,1 is strong magic; K1,2 and K1,3 are ideal magic;
and K1,n is weak magic for n > 3; Bn,n is ideal magic; (2n+ 1)P2 is strong magic; cycles
are ideal magic; and the generalized web W (t, 3) (see §2.2 for the definition) with the
central vertex deleted is weak magic.

Santhosh [2185] has shown that for n odd and at least 3, eMt(Cn�P2) = (27n+3)/2
and for n odd and at least 3, (39n+ 3)/2 ≤ eMt(Cn � P2) ≤ (40n+ 3)/2. Moreover, he
proved that for n odd and at least 3 both Cn � P2 and Cn � P3 are weak magic. In [592]
Chopra and Lee provide an number of families of super edge-magic graphs that are weak
magic.

In [1798] Murugan introduces the notions of almost-magic labeling, relaxed-magic la-
beling, almost-magic strength, and relaxed-magic strength of a graph. He determines the
magic strength of Huffman trees and twigs of odd order and the almost-magic strength of
nP2 (n is even) and twigs of even order. Also, he obtains a bound on the magic strength
of the path-union Pn(m) and on the relaxed-magic strength of kSn and kPn.

Enomoto, Llado, Nakamigawa, and Ringel [726] call an edge-magic total labeling super
edge-magic if the set of vertex labels is {1, 2, . . . , |V |} (Wallis [2752] calls these labelings
strongly edge-magic). They prove the following: Cn is super edge-magic if and only if n
is odd; caterpillars are super edge-magic; Km,n is super edge-magic if and only if m = 1
or n = 1; and Kn is super edge-magic if and only if n = 1, 2, or 3. They also prove that
if a graph with p vertices and q edges is super edge-magic then, q ≤ 2p − 3. In [1683]
MacDougall and Wallis study super edge-magic (p, q)-graphs where q = 2p− 3. Enomoto
et al. [726] conjecture that every tree is super edge-magic. Lee and Shan [1540] have
verified this conjecture for trees with up to 17 vertices with a computer. Fukuchi, and
Oshima, [808] have shown that if T is a tree of order n ≥ 2 such that T has diameter
greater than or equal to n− 5, then T has a super edge-magic labeling.

Various classes of banana trees that have super edge-magic total labelings have been
found by Swaminathan and Jeyanthi [2559] and Hussain, Baskoro, and Slamin [1037]. In
[72] Ahmad, Ali, and Baskoro [72] investigate the existence of super edge-magic labelings
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of subdivisions of banana trees and disjoint unions of banana trees. They pose three open
problems.

Kotzig and Rosa’s ([1418] and [1419]) proof that nK2 is edge-magic total when n is
odd actually shows that it is super edge-magic. Kotzig and Rosa also prove that every
caterpillar is super-edge magic. Figueroa-Centeno, Ichishima, and Muntaner-Batle prove
the following: if G is a bipartite or tripartite (super) edge-magic graph, then nG is (super)
edge-magic when n is odd [764]; if m is a multiple of n+1, then K1,m∪K1,n is super edge-
magic [764]; K1,2∪K1,n is super edge-magic if and only if n is a multiple of 3; K1,m∪K1,n

is edge-magic if and only if mn is even [764]; K1,3 ∪K1,n is super edge-magic if and only
if n is a multiple of 4 [764]; Pm∪K1,n is super edge-magic when m ≥ 4 [764]; 2Pn is super
edge-magic if and only if n is not 2 or 3; K1,m ∪ 2nK2 is super edge-magic for all m and n
[764]; C3 ∪Cn is super edge-magic if and only if n ≥ 6 and n is even [767] (see also [927]);
C4∪Cn is super edge-magic if and only if n ≥ 5 and n is odd [767] (see also [927]); C5∪Cn
is super edge-magic if and only if n ≥ 4 and n is even [767]; if m is even and at least 6
and n is odd and satisfies n ≥ m/2 + 2, then Cm ∪Cn is super edge-magic [767]; C4 ∪ Pn
is super edge-magic if and only if n 6= 3 [767]; C5 ∪ Pn is super edge-magic if n ≥ 4 [767];
if m is even and at least 6 and n ≥ m/2 + 2, then Cm ∪ Pn is super edge-magic [767];
and Pm ∪ Pn is super edge-magic if and only if (m,n) 6= (2, 2) or (3,3) [767]. They [764]
conjecture that K1,m ∪K1,n is super edge-magic only when m is a multiple of n + 1 and
they prove that if G is a super edge-magic graph with p vertices and q edges with p ≥ 4
and q ≥ 2p − 4, then G contains triangles. In [767] Figueroa-Centeno et al. conjecture
that Cm ∪ Cn is super edge-magic if and only if m+ n ≥ 9 and m+ n is odd.

Singgih [2393] gave super edge magic total labelings for unions of books mB(n) for
odd m; m(P2 × Pn) for m and n odd; r(Pm × Pn) for odd r and (m,n) 6= (2, 2) or (3,3);
r(P3 ×mPn) for odd r; mPn for m ≡ 2 (mod 4), n 6= 2, 3; and mP4n for m ≡ 2 (mod 4),
n > 1.

In [807] Fukuchi and Oshima describe a construction of super-edge-magic labelings of
some families of trees with diameter 4. Salman, Ngurah, and Izzati [2168] use Smn (n ≥ 3)
to denote the graph obtained by inserting m vertices in every edge of the star Sn. They
prove that Smn is super edge-magic when m = 1 or 2.

In [1642] López, Muntaner-Batle, and Ruis-Font introduce a new construction for
super edge-magic labelings of 2-regular graphs which allows loops and is related to the
knight jump in the game of chess. They also study the super edge-magic properties of
cycles with cords.

Muntaner-Batle calls a bipartite graph with partite sets V1 and V2 special super edge-
magic if is has a super edge-magic total labeling f with the property that f(V1) =
{1, 2, . . . , |V1|}. He proves that a tree has a special super edge-magic labeling if and
only if it has an α-labeling (see §3.1 for the definition). Figueroa-Centeno, Ichishima,
Muntaner-Batle, and Rius-Font [769] use matrices to generate edge-magic total labeling
and define the concept of super edge-magic total labelings for digraphs. They prove that
if G is a graph with a super edge-magic total labeling then for every natural number d
there exists a natural number k such that G has a (k, d)-arithmetic labeling (see §4.2 for
the definition). In [1476] Lee and Lee prove that a graph is super edge-magic if and only
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if it is (k, 1)-strongly indexable (see §4.3 for the definition of (k, d)-strongly indexable
graphs). They also provide a way to construct (k, d)-strongly indexable graphs from two
given (k, d)-strongly indexable graphs. This allows them to obtain several existing results
about super edge-magic graphs as special cases of their constructions. Acharya and Ger-
mina [28] proved that the class of strongly indexable graphs is a proper subclass of super
edge-magic graphs.

In [1041] Ichishima, López, Muntaner-Batle and Rius-Font show how one can use the
product ⊗h of super edge-magic 1-regular labeled digraphs and digraphs with harmonious,
or sequential labelings to create new undirected graphs that have harmonious, sequential
labelings or partitional labelings (see §4.1 for the definition). They define the product

⊗h as follows. Let
−→
D = (V,E) be a digraph with adjacency matrix A(

−→
D) = (aij) and

let Γ = {Fi}mi=1 be a family of m digraphs all with the same set of vertices V ′. Assume
that h : E −→ Γ is any function that assigns elements of Γ to the arcs of D. Then the

digraph
−→
D⊗hΓ is defined by V (D⊗hΓ) = V ×V ′ and ((a1, b1), (a2, b2)) ∈ E(D⊗hΓ)⇐⇒

[(a1, a2) ∈ E(D)∧(b1, b2) ∈ E(h(a1, a2))]. An alternative way of defining the same product

is through adjacency matrices, since one can obtain the adjacency matrix of
−→
D ⊗h Γ as

follows: if aij = 0 then aij is multiplied by the p′ × p′ 0-square matrix, where p′ = |V ′|.
If aij = 1 then aij is multiplied by A(h(i, j)) where A(h(i, j)) is the adjacency matrix of

the digraph h(i, j). They prove the following. Let
−→
D = (V,E) be a harmonious (p, q)-

digraph with p ≤ q and let h be any function from E to the set of all super edge-magic
1-regular labeled digraphs of order n, which we denote by Sn. Then the undirected graph

und(
−→
D⊗hSn) is harmonious. Let

−→
D = (V,E) be a sequential digraph and let h : E −→ Sn

be any function. Then und(
−→
D ⊗h Sn) is sequential. Let D be a partitional graph and let

h : E −→ Sn be any function, where
−→
D = (V,E) is the digraph obtained by orienting all

edges from one stable set to the other one. Then und(
−→
D ⊗h Sn) is partitional.

Marr, Ochel, and Perez [1713] say a digraph D with v vertices and e directed edges
has an in-magic total labeling if there exists a bijective function λ from V (D) ∪ E(D) to
{1, 2, . . . , v+e} such that for every vertex x we have λ(x)+

∑
λ(y, x) = k for some integer

k, where the sum is taken over all directed edges (y, x). They provide such labelings for
trees and cycles and discuss some relationships between this labeling and other digraph
labelings.

In [1638] López, Muntaner-Batle and Rius-Font introduce the concept of {Hi}i∈I-
super edge-magic decomposable as follows: Let G = (V,E) be any graph and let {Hi}i∈I
be a set of graphs such that G = ⊕i∈IHi (that is, G decomposes into the graphs in the
set {Hi}i∈I). Then we say that G is {Hi}i∈I-super edge-magic decomposable if there is a
bijection β : V → [1, |V |] such that for each i ∈ I the subgraph Hi meets the following two
requirements: (i) β(V (Hi)) = [1, |V (Hi)|] and (ii) {β(a) + β(b) : ab ∈ E(Hi)} is a set of
consecutive integers. Such function β is called an {Hi}i∈I-super edge-magic labeling of G.
When Hi = H for every i ∈ I we just use the notation H-super edge-magic decomposable
labeling. Among their results are the following. Let G = (V,E) be a (p, q)-graph which is
{H1, H2}-super edge-magic decomposable for a pair of graphs H1 and H2. Then G is super
edge-bimagic; Let n be an even integer. Then the cycle Cn is (n/2)K2-super edge-magic
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decomposable if and only if n ≡ 2 (mod 4). Let n be odd. Then for any super edge-magic
tree T there exists a bipartite connected graph G = G(T, n) such that G is (nT )-super
edge-magic decomposable. Let G be a {Hi}i∈I-super edge magic decomposable graph,

where Hi is an acyclic digraph for each i ∈ I. Assume that
−→
G is any orientation of G

and h : E(
−→
G) → Sp is any function. Then und(

−→
G ⊗h Sp) is {pHi}i∈I-super edge magic

decomposable.
As a corollary of the last result they have that if G is a 2-regular, (1-factor)-super

edge-magic decomposable graph and
−→
G is any orientation of G and h : E(

−→
G) → Sp is

any function, then und(
−→
G⊗hSp) is a 2-regular, (1-factor)-super edge-magic decomposable

graph. Moreover, if we denote the 1-factor of G by F then pF is the 1-factor of und(
−→
G⊗h

Sp).
They pose the following two open questions: Fix p ∈ N. Find the maximum r ∈ N such

that there is a r-regular graph of order p which is (p/2)K2-super edge-magic decomposable:
and characterize the set of 2-regular graphs of order n, n ≡ 2 (mod 4), such that each
component has even order and admits an (n/2)K2-super edge-magic decomposition. In
connection to open question 1 they prove: For all r ∈ N, there is n ∈ N such that there
exists a k-regular bipartite graph B(n), with k > r and |V (B(n))| = 2 · 3n, such that
B(n) is (3nK2)-super edge-magic decomposable.

Hendy, Sugeng, Salman, and Ayunda [1009] provided a sufficient condition for Cn[Km]
to have a Pt[Km]-magic decompositions, where n > 3, m > 1, and t = 3, 4, n− 2.

An H-magic labeling in an H-decomposable graph G is a bijection f V (G)∪E(G)→
{1, 2, . . . , p + q} such that, for every copy H in the decomposition,

∑
v∈V (H) f(v) +∑

e∈E(H) f(e) is constant. The function f is said to be an H-V -super magic labeling

if f(V (G)) = {1, 2, . . . , p}. In [1804] Murugan and Chandra Kumar find the magic con-
stant for H-factorable graphs that are H-V -super magic. Also, they give a necessary and
sufficient condition for an H-factorable graph to be H-V -super magic and characterize
the even regular graphs with a 2-factor-V -super magic labeling.

A bipartite graph G with partite sets X1 and X2 is called consecutively super edge-
magic if there exists a bijective function f : V (G)∪E (G)→ {1, 2, . . . , |V (G)|+ |E (G)|}
such that f (X1) = {1, 2, . . . , |X1|}, f (X2) = {|X1|+ 1, |X1|+ 2, . . . , |V (G)|} and f (u)+
f (v) + f (uv) is a constant for each uv ∈ E (G). In [1044] Ichishima, Muntaner-Batle,
and Oshima investigated for which bipartite graphs is it possible to add a finite number
of isolated vertices so that the resulting graph is consecutively super edge-magic. If it
is possible for a bipartite graph G, then they say that the minimum such number µc(G)
of isolated vertices is the consecutively super edge-magic deficiency of G; otherwise, it
is +∞. Thus, the consecutively super edge-magic deficiency of a graph G is a measure
of how close G is to being consecutively super edge-magic. They also include a detailed
discussion of other concepts that are closely related to the consecutively super edge-magic
deficiency.

In [1047] Ichishima, Muntaner-Batle, and Oshima prove that α(G) = µc(G)+ |V (G)|+
1. Thus a tree has a consecutively super edge-magic if and only if it has an α-valuation.
They explore the relation between super edge-magic labelings and graceful labelings of
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trees.
In [1064] Ichishima, Oshima, and Takamashi introduce the notion of strength sum of

a non-empty graph as follows. The strength sum strsf (G) of a numbering f : V (G) →
{1, 2, . . . , |V (G)|} is defined by strs(G) = min{strsf (G) | f is a numbering of G}, where
strsf (G) =

∑
uv∈E(G)(f(u) + f(v)). A numbering f of a graph G for which strsf (G) =

strs(G) is called a strength sum labeling of G. They also discuss relations among invariants
on super edge-magic graphs and their its strength sums.

Avadayappan, Jeyanthi, and Vasuki [209] define the super magic strength of a graph G
as sm(G) = min{s(L)} where L runs over all super edge-magic labelings of G. They use
the notation < K1,n : 2 > for the tree obtained from the bistar Bn,n (the graph obtained
by joining the center vertices of two copies of K1,n with an edge) by subdividing the edge
joining the two stars. They prove: sm(P2n) = 5n+ 1; sm(P2n+1) = 5n+ 3;
sm(< K1,n : 2 >) = 4n+ 9; sm(Bn,n) = 5n+ 6; sm((2n+ 1)P2) = 9n+ 6; sm(C2n+1) =
5n + 4; emt(C2n) = 5n + 2; sm(K1,n) = 2n + 4; and sm(P 2

n) = 3n. Note that in each
case the super magic strength of the graph is the same as its magic strength.

Santhosh and Singh [2184] proved that Cn�P2 and Cn�P3 are super edge-magic for
all odd n ≥ 3 and prove for odd n ≥ 3, sm(Cn � P2) = (15n + 3)/2 and (20n + 3) ≤
sm(Cn � P3) ≤ (21n+ 3)/2.

Gray [928] proves that C3 ∪ Cn is super edge-magic if and only if n ≥ 6 and C4 ∪ Cn
is super edge-magic if and only if n ≥ 5. His computer search shows that C5 ∪ 2C3 does
not have a super edge-magic labeling.

In [2752] Wallis posed the problem of investigating the edge-magic properties of Cn
with the path of length t attached to one vertex. Kim and Park [1376] call such a graph
an (n, t)-kite. They prove that an (n, 1)-kite is super edge-magic if and only if n is odd
and an (n, 3)-kite is super edge-magic if and only if n is odd and at least 5. Park, Choi,
and Bae [1894] show that (n, 2)-kite is super edge-magic if and only if n is even. Wallis
[2752] also posed the problem of determining when K2∪Cn is super edge-magic. In [1894]
and [1376] Park et al. prove that K2∪Cn is super edge-magic if and only if n is even. Kim
and Park [1376] show that the graph obtained by attaching a pendent edge to a vertex
of degree one of a star is super-edge magic and that a super edge-magic graph with edge
magic constant k and q edges satisfies q ≤ 2k/3− 3.

Lee and Kong [1496] use St(a1, a2, . . . , an) to denote the disjoint union of the n stars
St(a1), St(a2), . . . , St(an). They prove the following graphs are super edge-magic:
St(m,n) where n ≡ 0 mod(m+1); St(1, 1, n); St(1, 2, n); St(1, n, n); St(2, 2, n); St(2, 3, n);
St(1, 1, 2, n) (n ≥ 2); St(1, 1, 3, n); St(1, 2, 2, n); and St(2, 2, 2, n). They conjecture that
St(a1, a2, . . . , an) is super edge-magic when n > 1 is odd. Gao and Fan [833] proved
that St(1,m, n); St(3,m,m+ 1); and St(n, n+ 1, n+ 2) are super edge-magic, and under
certain conditions St(a1, a2, . . . , a2n+1), St(a1, a2, . . . , a4n+1), and St(a1, a2, . . . , a4n+3) are
also super edge magic.

In [1682] MacDougall and Wallis investigate the existence of super edge-magic labelings
of cycles with a chord. They use Ct

v to denote the graph obtained from Cv by joining
two vertices that are distance t apart in Cv. They prove: Ct

4m+1 (m ≥ 3) has a super
edge-magic labeling for every t except 4m − 4 and 4m − 8; Ct

4m (m ≥ 3) has a super
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edge-magic labeling when t ≡ 2 mod 4; and that Ct
4m+2 (m > 1) has a super edge-magic

labeling for all odd t other than 5, and for t = 2 and 6. They pose the problem of what
values of t does Ct

2n have a super edge-magic labeling.
Enomoto, Masuda, and Nakamigawa [727] have proved that every graph can be em-

bedded in a connected super edge-magic graph as an induced subgraph. Slamin, Bača,
Lin, Miller, Simanjuntak [2419] proved that the friendship graph consisting of n triangles
is super edge-magic if and only if n is 3, 4, 5, or 7. Fukuchi proved [805] the generalized
Petersen graph P (n, 2) (see §2.7 and at least 5. Baskoro and Ngurah [417] showed that
nP3 is super edge-magic for n ≥ 4 and n even.

Hegde and Shetty [1001] showed that a graph is super edge-magic if and only if it
is strongly k-indexable (see §4.1 for the definition). Figueroa-Centeno, Ichishima, and
Muntaner-Batle [760] proved that a graph is super edge-magic if and only if it is strongly
1-harmonious and that every super edge-magic graph is cordial. They also proved that
P 2
n and K2×C2n+1 are super edge-magic. In [761] Figueroa-Centeno et al. show that the

following graphs are super edge-magic: P3 ∪ kP2 for all k; kPn when k is odd; k(P2 ∪Pn)
when k is odd and n = 3 or n = 4; and fans Fn if and only if n ≤ 6. They conjecture that
kP2 is not super edge-magic when k is even. This conjecture has been proved by Z. Chen
[579] who showed that kP2 is super edge-magic if and only if k is odd. Figueroa-Centeno
et al. proved that the book Bn is not super edge-magic when n ≡ 1, 3, 7 (mod 8) and
when n = 4. They proved that Bn is super edge-magic for n = 2 and 5 and conjectured
that for every n ≥ 5, Bn is super edge-magic if and only if n is even or n ≡ 5 (mod 8).
Yuansheng, Yue, Xirong, and Xinhong [2895] proved this conjecture for the case that n
is even. They prove that every tree with an α-labeling is super edge-magic. Yokomura
(see [726]) has shown that P2m+1 × P2 and C2m+1 × Pm are super edge-magic (see also
[760]). In [762], Figueroa-Centeno et al. proved that if G is a (super) edge-magic 2-regular
graph, then G�Kn is (super) edge-magic and that Cm�Kn is super edge-magic. Fukuchi
[804] shows how to recursively create super edge-magic trees from certain kinds of existing
super edge-magic trees. Ngurah, Baskoro, and Simanjuntak [1858] provide a method for
constructing new (super) edge-magic graphs from existing ones. One of their results is
that if G has an edge-magic total labeling and G has order p and size p or p − 1, then
G� nK1 has an edge-magic total labeling.

Ichishima, Muntaner-Batle, Oshima [1042] enlarged the classes of super edge-magic
2-regular graphs by presenting some constructions that generate large classes of super
edge-magic 2-regular graphs from previously known super edge-magic 2-regular graphs or
pseudo super edge-magic graphs. By virtue of known relationships among other classes
of labelings the 2-regular graphs obtained from their constructions are also harmonious,
sequential, felicitous and equitable. Their results add credence to the conjecture of Holden
et al. [1019] that all 2-regular graphs of odd order with the exceptions of C3∪C4, 3C3∪C4,
and 2C3 ∪ C5 possess a strong vertex-magic total labeling, which is equivalent to super
edge-magic labelings for 2-regular graphs. For a 2-regular graph G with 2m + 1 vertices
that has a strong vertex-magic total labeling McQuillan and McQuillan [1728] proved that
G∪ 2mC3, G∪ (2m+ 2)C3, G∪mC8 and G∪ (m+ 1)C8 also have a strong vertex-magic
total labeling.
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Lee and Lee [1498] investigate the existence of total edge-magic labelings and super
edge-magic labelings of unicylic graphs. They obtain a variety of positive and negative
results and conjecture that all unicyclic are edge-magic total.

Shiu and Lee [2351] investigated edge labelings of multigraphs. Given a multigraph
G with q edges they call a bijection from the set of edges of G to {1, 2, . . . , q} with the
property that for each vertex v the sum of all edge labels incident to v is a constant
independent of v a supermagic labeling of G. They use K2[n] to denote the multigraph
consisting of n edges joining 2 vertices and mK2[n] to denote the disjoint union of m
copies of K2[n]. They prove that for m and n at least 2, mK2[n] is supermagic if and
only if n is even or if both m and n are odd.

In 1970 Kotzig and Rosa [1418] defined the edge-magic deficiency, µ(G), of a graph G
as the minimum n such that G∪ nK1 is edge-magic total. If no such n exists they define
µ(G) = ∞. In 1999 Figueroa-Centeno, Ichishima, and Muntaner-Batle [766] extended
this notion to super edge-magic deficiency, µs(G), is the analogous way. They prove the
following: µs(nK2) = µ(nK2) = n − 1 (mod 2); µs(Cn) = 0 if n is odd; µs(Cn) = 1
if n ≡ 0 (mod 4); µs(Cn) = ∞ if n ≡ 2 (mod 4); µs(Kn) = ∞ if and only if n ≥
5; µs(Km,n) ≤ (m − 1)(n − 1); µs(K2,n) = n − 1; and µs(F ) is finite for all forests F .
They also prove that if a graph G has q edges with q/2 odd, and every vertex is even, then
µs(G) =∞ and conjecture that µs(Km,n) ≤ (m− 1)(n− 1). This conjecture was proved
for m = 3, 4, and 5 by Hegde, Shetty, and Shankaran [1002] using the notion of strongly
k-indexable labelings. Baig, Baskoro, and Semaničová-Feňovč́ıková [219] investigated the
super edge-magic deficiency of a forest consisting of stars. Ngurah investigates the (super)
edge-magic deficiency of chain graphs in [1853] and Ngurah and Adiwijaya does the same
in [1852].

For an (n, t)-kite graph (a path of length t attached to a vertex of an n-cycle) G
Ahmad, Siddiqui, Nadeem, and Imran [100] proved the following: for odd n ≥ 5 and even
t ≥ 4, µs(G) = 1; for odd n ≥ 5, t ≥ 5, t 6= 11, and t ≡ 3, 7 (mod 8), µs(G) ≤ 1; for
n ≥ 10, n ≡ 2 (mod 4) and t = 4, µs(G) ≤ 1; and for t = 5, µs(G) = 1.

In [324] Baig, Ahmad, Baskoro, and Simanjuntak provide an upper bound for the
super edge-magic deficiency of a forest formed by paths, stars, combs, banana trees, and
subdivisions of K1,3. Baig, Baskoro, and Semaničová-Feňovč́ıková [325] investigate the
super edge-magic deficiency of forests consisting of stars. Among their results are: a
forest consisting of k ≥ 3 stars has super edge-magic deficiency at most k − 2; for every
positive integer n a forest consisting of 4 stars with exactly 1, n, n, and n+ 2 leaves has a
super edge-magic total labeling; for every positive integer n a forest consisting of 4 stars
with exactly 1, n + 5, 2n + 6, and n + 1 leaves has a super edge-magic total labeling;
and for every positive integers n and k a forest consisting of k identical stars has super
edge-magic deficiency at most 1 when k is even and deficiency 0 when k is odd. In [93]
Ahmad, Javaid, Nadeem, and Hasni investigate the super edge-magic deficiency of some
families of graphs related to ladder graphs. Kanwal, Javed, and Riasat [1331] give super
edge-magic total labelings and the deficiency for forests consisting of extended w-trees,
combs, stars and paths. In [96] Ahmad, Nadeem, and Gupta provided bounds for the
super edge-magic deficiency of some Toeplitz graphs.
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The generalized Jahangir graph Jn,m for m ≥ 3 is a graph on nm+1 vertices, consisting
of a cycle Cnm with one additional vertex that is adjacent to m vertices of Cnm at distance
n to each other on Cnm. In [326] Baig, Imran, Javaid, and Semaničová-Feňovčiková study
the super edge-magic deficiencies of the web graph Wbn,m, the generalized Jahangir graph
J2,n, crown products Ln �K1, K4 � nK1, and gave the exact value of super edge-magic
deficiency for one class of lobsters.

In [765] Figueroa-Centeno, Ichishima, and Muntaner-Batle proved that µs(Pm ∪
K1,n) = 1 if m = 2 and n is odd, or m = 3 and n is not congruent to 0 mod 3, whereas
in all other cases µs(Pm ∪K1,n) = 0. They also proved that µs(2K1,n) = 1 when n is odd
and µs(2K1,n) ≤ 1 when n is even. They conjecture that µs(2K1,n) = 1 in all cases. Other
results in [765] are: µs(Pm∪Pn) = 1 when (m,n) = (2, 2) or (3, 3) and µs(Pm∪Pn) = 0 in
all other cases; µs(K1,m∪K1,n) = 0 when mn is even and µs(K1,m∪K1,n) = 1 when mn is
odd; µ(Pm ∪K1,n) = 1 when m = 2 and n is odd and µ(Pm ∪K1,n) = 0 in all other cases;
µ(Pm ∪ Pn) = 1 when (m,n) = (2, 2) and µ(Pm ∪ Pn) = 0 in all other cases; µs(2Cn) = 1
when n is even and ∞ when n is odd; µs(3Cn) = 0 when n is odd; µs(3Cn) = 1 when
n ≡ 0 (mod 4); µs(3Cn) =∞ when n ≡ 2 (mod 4); and µs(4Cn) = 1 when n ≡ 0 (mod 4).
They conjecture the following: µs(mCn) = 0 when mn is odd; µs(mCn) = 1 when mn ≡ 0
(mod 4); µs(mCn) = ∞ when mn ≡ 2 (mod 4); µs(2K1,n) = 1; and if F is a forest with
two components, then µ(F ) ≤ 1 and µs(F ) ≤ 1. Santhosh and Singh [2183] proved: for
n odd at least 3, µs(K2 � Cn) ≤ (n− 3)/2; for n > 1, 1 ≤ µs(Pn[P2]) = d(n− 1)/2e; and
for n ≥ 1, 1 ≤ µs(Pn ×K4) ≤ n.

Ichishima and Oshima [1062] prove the following: if a graph G(V,E) has an α-labeling
and no isolated vertices, then µs(G) ≤ |E|− |V |+1; if a graph G(V,E) has an α-labeling,
is not sequential, and has no isolated vertices, then µs(G) = |E| − |V | + 1; and, if m is
even, then µs(mK1,n) ≤ 1. As corollaries of the last result they have: µs(2K1,n) = 1; when
m ≡ 2 (mod 4) and n is odd, µs(mK1,n) = 1; µs(mK1,3) = 0 when m ≡ 4 (mod 8) or m
is odd; µs(mK1,3) = 1 when m ≡ 2 (mod 4); µs(mK2,2) = 1; for n ≥ 4, (n− 4)2n−2 + 3 ≤
µs(Qn) ≤ (n− 2)2n−1 − 4; and for s ≥ 2 and t ≥ 2, µs(mKs,t) ≤ m(st− s− t) + 1. They
conjecture that for s ≥ 2 and t ≥ 2, µs(mKs,t) = m(st− s− t) + 1 and pose as a problem
determining the exact value of µs(Qn).

Ichishima and Oshima [1060] determined the super edge-magic deficiency of graphs
of the form Cm ∪ Cn for m and n even and for arbitrary n when m = 3, 4, 5, and 7.
They state a conjecture for the super edge-magic deficiency of Cm ∪ Cn in the general
case. Afzal and Aslam [59] investigate the super edge-magic deficiency of various disjoint
unions of K2,n with stars, paths and disjoint union of paths. The join product of two
graphs is their graph union with additional edges that connect all vertices of the first
graph to each vertex of the second graph. In [1862] Ngurah and Simanjuntak investigate
the super edge-magic deficiencies of a wheel minus an edge and join products of a path, a
star, and a cycle with isolated vertices. They also show that the join product of a super
edge-magic graph with isolated vertices has finite super edge-magic deficiency.

A block of a graph is a maximal subgraph with no cut-vertex. The block-cut-vertex
graph of a graph G is a graph H whose vertices are the blocks and cut-vertices in G; two
vertices are adjacent in H if and only if one vertex is a block in G and the other is a cut-

the electronic journal of combinatorics (2019), #DS6 152



vertex in G belonging to the block. A chain graph is a graph with blocks B1, B2, B3, . . . , Bk

such that for every i, Bi and Bi+1 have a common vertex in such a way that the block-
cut-vertex graph is a path. The chain graph with k blocks where each block is identical
and isomorphic to the complete graph Kn is called the kKn-path.

Ngurah, Baskoro, and Simanjuntak [1857] investigate the exact values of µs(kKn-path)
when n = 2 or 4 for all values of k and when n = 3 for k ≡ 0, 1, 2 (mod 4), and give an
upper bound for k ≡ 3 (mod 4). They determine the exact super edge-magic deficiencies
for fans, double fans, wheels of small order and provide upper and lower bounds for the
general case as well as bounds for some complete partite graphs. They also include some
open problems. Lee and Wang [1560] show that various chain graphs with blocks that are
complete graphs are super edge-magic. In [92] investigate the super edge-magic deficiency
of some kites and Cn ∪K2.

Figueroa-Centeno and Ichishima [758] introduce the notion of the sequential number
σ(G) of a graph G without isolated vertices to be either the smallest positive integer
n for which it is possible to label the vertices of G with distinct elements from the set
{0, 1, . . . , n} in such a way that each uv ∈ E(G) is labeled f(u) + f(v) and the resulting
edge labels are |E(G)| consecutive integers or +∞ if there exists no such integer n.
They prove that σ(G) = µs(G) + |V (G)| − 1 for any graph G without isolated vertices,
and σ(Km,n) = mn, which settles the conjecture of Figueroa-Centeno, Ichishima, and
Muntaner-Batle [766] that µs(Km,n) = (m− 1)(n− 1).

In [1052] Ichishima and Muntaner-Batle define the strong sequential number σs(G) of
G as the smallest positive integer n for which there exists an injective function from the
vertices of G to [0, n] such that when each edge uv is labeled f(u)+f(v), the resulting set
of edge labels is [c, c+q−1] for some positive integer c and there exists an integer λ so that
min{f(u), f(v)} ≤ λ < max{f(u), f(v)} for all edges uv. Note that for G to have finite
σs(G), it must be bipartite. They prove for a graph G of order p, σ (G) = µs (G) + p− 1.
From this it follows that the problems of determining the sequential number and super
edge-magic deficiency are equivalent and that for any graph G, σ (G) is finite if and
only if µs (G) is finite. They also introduced the following parameter as a measure of
how close a graph G is to having an α-labeling. The alpha-number α (G) of a graph G
with q edges is the smallest positive integer n for which there exists an injective function
f : V (G)→ [0, n] such that when each edge uv is labeled |f (u)− f (v)| the resulting set
of edge labels is [c, c+ q − 1] for some positive integer c, and there exists an integer λ so
that min {f(u), f(v)} ≤ λ < max{f(u), f(v)} for each uv ∈ E(G). If no such n exists
the alpha-number of G is defined to be +∞. Since a graph that admits an α-labeling is
necessarily bipartite, graphs with finite α (G) are bipartite.

Ichishima and Muntaner-Batle [1052] prove: if every vertex of graph G has even
degree and |E (G)| ≡ 2 (mod 4), then σ (G) = σs (G) = +∞; for every graph G of order
p, σs (G) = µc (G)+p−1; and if G is a super edge-magic graph with at least one edge, then
the graph G+nK1 is sequential for every positive integer n. As corollaries they have: for
every graph σs (G) = α (G); a graph G has an α-labeling if and only if σs (G) = |E(G)|;
and if a graph G of order p and size q ≥ 1 has a super edge-magic labeling f with s =
min{f(u) + f(v) : uv ∈ E(G)}, then σ (G+ nK1) ≤ s + q + (n− 1) p − 2; if G is
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a graph of order p and size q ≥ 1 and G has a super edge-magic labeling f with s =
min{f(u) + f(v) : uv ∈ E(G)}, then µs (G+ nK1) ≤ s+ q+ (n− 2) (p− 1)− 3; and if G
is a super edge-magic graph with at least one edge, then the graph G+nK1 is harmonious
and felicitous for any positive integer n.

For a graph G order p and size q Ichishima, Muntaner-Batle, and Oshima [1054] prove
the following: if q = p − 1 and βs (G) = p − 1, then β (G� nK1) = βs (G� nK1) =
(n+ 1) p − 1 for every positive integer n; if q > p − 1 and βs (G) = q, then there exists
a supergraph H of G such that β (H � nK1) = βs (H � nK1) = (n+ 1) (q + 1) − 1 for
every positive integer n; if G has a subgraph H such that βs (H) = q < p − 1, then
β (H � nK1) = βs (H � nK1) = (n+ 1) (q + 1) − 1 for every positive integer n; and if
G has a subgraph H such that βs (H) = q < p − k (H ′), where H ′ is a subgraph of H
without isolated vertices, then β (H � nK1) = βs (H � nK1) = (n+ 1) (q + 1) − 1 for
every positive integer n.

As the concept of super magic strength is effectively defined only for super edge-magic
graphs, Ichishima, Muntaner-Batle, and Oshima [1049] generalize it for any nonempty
graph as follows. A numbering f of a graph G of order p is a labeling that assigns distinct
elements of the set [1, p] to the vertices ofG, where each edge uv ofG is labeled f (u)+f (v).
The strength, strf (G), of a numbering f : V (G) → [1, p] of G is defined by strf (G) =
max {f (u) + f (v) |uv ∈ E (G)} , that is, strf (G) is the maximum edge label of G, and the
strength, str(G), of a graph G itself is str (G) = min {strf (G) |f is a numbering of G} . A
numbering f of a graph G for which strf (G) = str (G) is called a strength labeling of G.
If G is an empty graph, then str (G) is undefined. For a graph G of order p they prove
the following: if G has order at least 3 and contains a path of order k (k ∈ [2, p− 1]) as
an induced subgraph, then str (G) ≤ 2p− (k − 1); if ∆ (G) + 2 ≤ str (G) ≤ 2p− 1; and if
p+m+ min {p, δ (G) +m} ≤ str (G+mK1) ≤ str (G) + 2m for every positive integer m.
They determine the exact strength for many basic families of graphs such as paths, cycles
complete graphs, ladders, books, and hypercubes. They conclude with six problems and
a conjecture.

In [1050] Ichishima, Muntaner-Batle, and Oshima determined the strength of cater-
pillars and complete n-ary k-level trees. The strength str (G) is also given for graphs G
obtained by taking the corona of certain graphs and arbitrary number of isolated vertices.
They further proved if G is a graph of order p with δ (G) ≥ 1 and str (G) = p + δ (G) ,
then str (G� nK1) = (n+ 1) p+ 1. for every positive integer n.

The following result established in [1044] shows the connection between the alpha-
number of a graph and its consecutively super edge-magic deficiency. For every graph G
of order p, α (G) = µc(G) + p − 1. This result shows that the problems of determining
the alpha-number and consecutively super edge-magic deficiency are equivalent.

In [1863] Ngurah and Simanjuntak proved that if G is a cycle-free graph with minimum
degree one and µs(G + K1) = 0 then G is either a tree or a forest. They also prove: the
join product of some classes of trees and forests with an isolated vertex has zero super
edge-magic deficiency; for all but one tree of order at most 6, their join product with an
isolated vertex has zero super edge-magic deficiency. For trees T of order at least 7 they
proved that if µs(T +K1) = 0, then either 2K1,3 or K3∪K1,3 is a subgraph of T +K1. For
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the super edge-magic deficiency of the join product of a tree T of order at least 2 with
m ≥ 2 isolated vertices, they showed that µs(T + mK1) = 0 if and only if T = P2. For

a tree T 6= P2, they proved µs(T + mK1) ≥
⌊

(m−1)(|V (T )−2|+1)
2

⌋
.They also present results

for the super edge-magic deficiency of some chain graphs.
Z. Chen [579] has proved: the join of K1 with any subgraph of a star is super edge-

magic; the join of two nontrivial graphs is super edge-magic if and only if at least one of
them has exactly two vertices and their union has exactly one edge; and if a k-regular graph
is super edge-magic, then k ≤ 3. Chen also obtained the following: there is a connected
super edge-magic graph with p vertices and q edges if and only if p − 1 ≤ q ≤ 2p − 3;
there is a connected 3-regular super edge-magic graph with p vertices if and only if p ≡ 2
(mod 4); and if G is a k-regular edge-magic total graph with p vertices and q edges then
(p+ q)(1 + p+ q) ≡ 0 (mod 2d) where d = gcd(k− 1, q). As a corollary of the last result,
Chen observes that nK2 + nK2 is not edge-magic total.

Another labeling that has been called “edge-magic” was introduced by Lee, Seah, and
Tan in 1992 [1538]. They defined a graph G = (V,E) to be edge-magic if there exists
a bijection f : E → {1, 2, . . . , |E|} such that the induced mapping f+ : V → N defined
by f+(u) =

∑
(u,v)∈E f(u, v) (mod |V |) is a constant map. Lee (see [1526]) conjectured

that a cubic graph with p vertices is edge-magic if and only if p ≡ 2 (mod 4). Lee,
Pigg, and Cox [1526] verified this conjecture for prisms and several other classes of cubic
graphs. They also show that Cn×K2 is edge-magic if and only if n is odd. Shiu and Lee
[2351] showed that the conjecture is not true for multigraphs and disconnected graphs. In
[2351] Lee’s conjecture was modified by restricting it to simple connected cubic graphs.
A computer search by Lee, Wang, and Wen [1563] showed that the new conjecture was
false for a graph of order 10. Using different methods, Shiu [2331] and Lee, Su, and Wang
[1549] gave proofs that it is was false.

Lee, Seah, and Tan [1538] establish that a necessary condition for a multigraph with
p vertices and q edges to be edge-magic is that p divides q(q+ 1) and they exhibit several
new classes of cubic edge-magic graphs. They also proved: Kn,n (n ≥ 3) is edge-magic
and Kn is edge-magic for n ≡ 1, 2 (mod 4) and for n ≡ 3 (mod 4) (n ≥ 7). Lee, Seah,
and Tan further proved that following graphs are not edge-magic: all trees except P2; all
unicyclic graphs; and Kn where n ≡ 0 (mod 4). Schaffer and Lee [2192] have proved that
Cm×Cn is always edge-magic. Lee, Tong, and Seah [1555] have conjectured that the total
graph of a (p, p)-graph is edge-magic if and only if p is odd. They prove this conjecture
for cycles. Lee, Kitagaki, Young, and Kocay [1495] proved that a maximal outerplanar
graph with p vertices is edge-magic if and only if p = 6. Shiu [2330] used matrices with
special properties to prove that the composition of Pn with Kn and the composition of
Pn with Kkn where kn is odd and n is at least 3 have edge-magic labelings. Boonklurb,
Narissayaporn, and Singhun [492] show that under some conditions the m-node k-uniform
hyperpaths and m-node k-uniform hypercycles are super edge-magic.

For a (p, q)-graph a bijection f from V (G) ∪ E(G) to {1, 2, . . . , p + q} such that for
each edge xy ∈ E(G) the value of f(x) + f(xy) + f(y) is either k1, k2 or k3 is said to be
an edge trimagic total labeling . Regees and Jayasekaran [2112] prove that Cm × Pn, the
generalized web graph, and the generalized web graph without a center are super edge
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trimagic total graphs. In [2111] proved that the star type graphs P3�Kn, Bm,n, 〈Bm,n : 2〉
and 〈K1,n 3〉 admits edge trimagic total labelings and super edge trimagic total labelings.

Amuthavalli and Sugapriya [151] defined a reverse edge-trimagic labeling on a graph
G(V,E) with p vertices and q edges as a one-to-one map that takes the vertices and
edges onto the integers 1, 2, . . . , p + q with the property that for every edge e, when the
sum of all vertex labels incident to e is subtracted from edge label f(e), the result is
one of three constants. A reverse edge-trimagic labeling is said to be a reverse super
edge-trimagic labeling if f(V ) = {1, 2, . . . , p} and f(E) = {p+ 1, p+ 2, . . . , p+ q}. They
investigated the reverse super edge-trimagic labeling of barycentric subdivision of bistars,
degree splitting graphs of K1,n +K1,n and K1,n ∪K1,n, and the splitting graphs of stars.

Chopra, Dios, and Lee [591] investigated the edge-magicness of joins of graphs. Among
their results are: K2,m is edge-magic if and only if m = 4 or 10; the only possible edge-
magic graphs of the form K3,m are those with m = 3, 5, 6, 15, 33, and 69; for any fixed m
there are only finitely many n such that Km,n is edge-magic; for any fixed m there are only
finitely many trees T such that T +Km is edge-magic; and wheels are not edge-magic.

Lee, Ho, Tan, and Su [1494] define the edge-magic index of a graph G to be the smallest
positive integer k such that the graph kG is edge-magic. They completely determined
the edge-magic indices of graphs which are stars. In [2347] Shiu, Lam, and Lee give the
edge-magic index set of the second power of a path.

For any graph G and any positive integer k the graph G[k], called the k-fold G, is
the hypergraph obtained from G by replacing each edge of G with k parallel edges. Lee,
Seah, and Tan [1538] proved that for any graph G with p vertices, G[2p] is edge-magic
and, if p is odd, G[p] is edge-magic. Shiu, Lam, and Lee [2346] show that if G is an
(n + 1, n)-multigraph, then G is edge-magic if and only if n is odd and G is isomorphic
to the disjoint union of K2 and (n− 1)/2 copies of K2[2]. They also prove that if G is a
(2m+ 1, 2m)-multigraph and k ≥ 2, then G[k] is edge-magic if and only if 2m+ 1 divides
k(k− 1). For a (2m, 2m− 1)-multigraph G and k at least 2, they show that G[k] is edge-
magic if 4m divides (2m− 1)k((2m− 1)k + 1) or if 4m divides (2m + k − 1)k. In [2344]
Shiu, Lam, and Lee characterize the (p, p)-multigraphs that are edge-magic as mK2[2]
or the disjoint union of mK2[2] and two particular multigraphs or the disjoint union of
K2, mK2[2], and four particular multigraphs. They also show for every (2m+ 1, 2m+ 1)-
multigraph G, G[k] is edge-magic for all k at least 2. Lee, Seah, and Tan [1538] prove
that the multigraph Cn[k] is edge-magic for k ≥ 2.

Tables 6 and 7 summarize what is known about edge-magic total labelings and super
edge-magic total labelings. We use SEMT to indicate the graphs have super edge-magic
total labelings and EMT to indicate the graphs have edge-magic total labelings. A
question mark following SEMT or EMT indicates that the graph is conjectured to have the
corresponding property. The tables were prepared by Petr Kovář and Tereza Kovářová.
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Table 6: Summary of Edge-magic Total Labelings

Graph Types Notes
Pn EMT [2756]

trees EMT? [1419], [2118]

Cn EMT for n ≥ 3 [1418], [896], [2129], [443]

Kn EMT iff n = 1, 2, 3, 4, 5, or 6 [1419],
[632], [726]
enumeration of all EMT of
Kn [2756]

Km,n EMT [2756], [1418]

crowns Cn �K1 EMT [2866], [2756]

Cn with a single edge EMT [2756]
attached to one vertex

wheels Wn EMT iff n 6≡ 3 (mod 4) [726], [806]

fans EMT [2419], [760], [761]

(p, q)-graph not EMT if q even, p+ q ≡ 2 (mod 4) [2118]

nP2 EMT iff n odd [1418]

Pn +K1 EMT [2866]

r-regular graph not EMT r odd and p ≡ 4 (mod 8) [632]

P3 ∪ nK2 and P5 ∪ nK2 EMT [760], [761]

P4 ∪ nK2 EMT n odd [760], [761]

nPi EMT n odd, i = 3, 4, 5 [2866], [760], [761]

nP3 EMT? [2866]

2Pn EMT [760], [761]
Continued on next page
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Table 6 – Continued from previous page
Graph Types Notes

P1 ∪ P2 ∪ · · · ∪ Pn EMT [760], [761]

mK1,n EMT [760], [761]

unicylic graphs EMT? [1498]

K1 � nK2 EMT n even [760], [761]

K2 ×Kn EMT [760], [761]

nK3 EMT iff n 6= 2 odd [760], [761], [1727]

binary trees EMT [760], [761]

P (m,n) (generalized EMT [760], [761], [1854]
Petersen graph see §2.7)

ladders EMT [760], [761]

books EMT [760], [761]

odd cycle with pendent EMT [760], [761]
edges attached to
one vertex

Pm × Cn EMT n odd n ≥ 3 [2813]

Pm × P2 EMT m odd m ≥ 3 [2813]

K1,m ∪K1,n EMT iff mn is even [764]

G�Kn EMT if G is EMT 2-regular [762]
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Table 7: Summary of Super Edge-magic Labelings

Graph Types Notes
Cn SEMT iff n is odd [726]

caterpillars SEMT [726], [1418], [1419]

Km,n SEMT iff m = 1 or n = 1 [726]

Kn SEMT iff n = 1, 2 or 3 [726]

trees SEMT? [726]

nK2 SEMT iff n odd [579]

nG SEMT if G is a bipartite or tripartite
SEM graph and n odd [764]

mB(n) SEMT if m is odd [2393]

m(P2 × Pn) SEMT if m, n are odd [2393]

r(Pm × Pn) SEMT if r is odd, (m,n) 6= (2, 2)
or (3,3) [2393]

r(P3 ×mPn) SEMT if r is odd [2393]

K1,m ∪K1,n SEMT if m is a multiple of n+ 1 [764]

K1,m ∪K1,n SEMT? iff m is a multiple of n+ 1 [764]

K1,2 ∪K1,n SEMT iff n is a multiple of 3 [764]

K1,3 ∪K1,n SEMT iff n is a multiple of 4 [764]

Pm ∪K1,n SEMT if m ≥ 4 is even [764]

2Pn SEMT iff n is not 2 or 3 [764]

2P4n SEMT for all n [764]

mPn SEMT if m ≡ 2 (mod 4), n 6= 2, 3 [2393]
Continued on next page
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Table 7 – Continued from previous page
Graph Types Notes

mP4n SEMT ifm ≡ 2 (mod 4), n > 1 [2393]

K1,m ∪ 2nK1,2 SEMT for all m and n [764]

C3 ∪ Cn SEMT iff n ≥ 6 even [767], [927]

C4 ∪ Cn SEMT iff n ≥ 5 odd [767], [927]

C5 ∪ Cn SEMT iff n ≥ 4 even [767]

Cm ∪ Cn SEMT if m ≥ 6 even,
n odd n ≥ m/2 + 2 [767]

Cm ∪ Cn SEMT? iff m+ n ≥ 9 and m+ n odd [767]

C4 ∪ Pn SEMT iff n 6= 3 [767]

C5 ∪ Pn SEMT if n 6= 4 [767]

Cm ∪ Pn SEMT if m ≥ 6 even, n ≥ m/2 + 2 [767]

Pm ∪ Pn SEMT iff (m,n) 6= (2, 2) or (3, 3) [767]

corona Cn �Km SEMT n ≥ 3 [767]

St(m,n) SEMT n ≡ 0 (mod m+ 1) [1496]

St(1, k, n) SEMT k = 1, 2 or n [1496]

St(2, k, n) SEMT k = 2, 3 [1496]

St(1, 1, k, n) SEMT k = 2, 3 [1496]

St(k, 2, 2, n) SEMT k = 1, 2 [1496]

St(a1, . . . , an) SEMT? for n > 1 odd [1496]

Ct
4m SEMT [1682]

Continued on next page
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Table 7 – Continued from previous page
Graph Types Notes
Ct

4m+1 SEMT [1682]

friendship graph of SEMT iff n = 3, 4, 5, or 7 [2419]
n triangles

generalized Petersen SEMT if n ≥ 3 odd [804]
graph P (n, 2) (see §2.7)

nP3 SEMT if n ≥ 4 even [417]

P 2
n SEMT [760]

K2 × C2n+1 SEMT [760]

P3 ∪ kP2 SEMT for all k [761]

kPn SEMT if k is odd [761]

k(P2 ∪ Pn) SEMT if k is odd and n = 3, 4 [761]

fans Fn SEMT iff n ≤ 6 [761]

books Bn SEMT if n even [2895]

books Bn SEMT? if n ≡ 5 (mod 8)[761]

trees with α-labelings SEMT [761]

P2m+1 × P2 SEMT [726], [760]

C2m+1 × Pm SEMT [760]

G�Kn SEMT if G is SEM 2-regular graph [762]

Cm �Kn SEMT [762]

join of K1 with any SEMT [579]
subgraph of a star

if G is k-regular SEMT then k ≤ 3 [579]
Continued on next page
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Table 7 – Continued from previous page
Graph Types Notes
graph

G is connected (p, q)-graph SEMT G exists iff p− 1 ≤ q ≤ 2p− 3 [579]

G is connected 3-regular SEMT iff p ≡ 2 (mod 4) [579]
graph on p vertices

nK2 + nK2 not SEMT [579]

5.3 Vertex-magic Total Labelings

MacDougall, Miller, Slamin, and Wallis [1679] introduced the notion of a vertex-magic
total labeling in 1999. For a graph G(V,E) an injective mapping f from V ∪ E to the
set {1, 2, . . . , |V |+ |E|} is a vertex-magic total labeling if there is a constant k, called the
magic constant, such that for every vertex v, f(v) +

∑
f(vu) = k where the sum is over

all vertices u adjacent to v (some authors use the term “vertex-magic” for this concept).
They prove that the following graphs have vertex-magic total labelings: Cn; Pn (n >
2);Km,m (m > 1);Km,m − e (m > 2); and Kn for n odd. They also prove that when
n > m + 1, Km,n does not have a vertex-magic total labeling. They conjectured that
Km,m+1 has a vertex-magic total labeling for all m and that Kn has vertex-magic total
labeling for all n ≥ 3. The latter conjecture was proved by Lin and Miller [1598] for
the case that n is divisible by 4 while the remaining cases were done by MacDougall,
Miller, Slamin, and Wallis [1679]. McQuillan [1726] provided many vertex-magic total
labelings for cycles Cnk for k ≥ 3 and odd n ≥ 3 using given vertex-magic labelings
for Ck. Gray, MacDougall, and Wallis [937] then gave a simpler proof that all complete
graphs are vertex-magic total. Krishnappa, Kothapalli, and Venkaiah [1410] gave another
proof that all complete graphs are vertex-magic total. Senthil Amutha and Murugesan
[2217] characterized connected vertex magic total labeling graphs through their ideals in
topological spaces. Among other results, Wang and Zhang [2793] settle a 2006 conjecture
raised by Slamin et al., which claims the existence of the vertex magic total labeling of
disjoint union of multiple copies of Cn � K1. Vimal Kumar and Vijayalakshmi [2720]
investigated vertex magic total labelings of the middle and total graphs of cycles.

In [1679] MacDougall, Miller, Slamin, and Wallis conjectured that for n ≥ 5, Kn

has a vertex-magic total labeling with magic constant h if and only if h is an integer
satisfying n3 + 3n ≤ 4h ≤ n3 + 2n2 + n. In [1729] McQuillan and Smith proved that this
conjecture is true when n is odd. Armstrong and McQuillan [181] proved that if n ≡ 2
(mod 4) (n ≥ 6) then Kn has a vertex-magic total labeling with magic constant h for
each integer h satisfying n3 + 6n ≤ 4h ≤ n3 + 2n2 − 2n. If, in addition, n ≡ 2 (mod
8), then Kn has a vertex-magic total labeling with magic constant h for each integer h
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satisfying n3 + 4n ≤ 4h ≤ n3 + 2n2. They further showed that for each odd integer
n ≥ 5, 2Kn has a vertex-magic total labeling with magic constant h for each integer
h such that n3 + 5n ≤ 2h ≤ n3 + 2n2 − 3n. If, in addition, n ≡ 1(mod 4), then 2Kn

has a vertex-magic total labeling with magic constant h for each integer h such that
n3 + 3n ≤ 2h ≤ n3 + 2n2 − n.

In [1727] McQuillan and McQuillan investigate the existence of vertex-magic labelings
of nC3. They prove: for every even integer n ≥ 4, nC3 is vertex-magic (and therefore
also edge-magic); for each even integer n ≥ 6, nC3 has vertex-magic total labelings
with at least 2n − 2 different magic constants; if n ≡ 2 mod 4, two extra vertex-magic
total labelings with the highest possible and lowest possible magic constants exist; if
n = 2 ·3k, k > 1, nC3 has a vertex-magic total labeling with magic constant k if and only
if (1/2)(15n+ 4) ≤ k ≤ (1/2)(21n+ 2); if n is odd, there are vertex-magic total labelings
for nC3 with n + 1 different magic constants. In [1725] McQuillan provides a technique
for constructing vertex-magic total labelings of 2-regular graphs. In particular, if m is an
odd positive integer, G = Cn1 ∪ Cn2 ∪ · · · ∪ Cnk

has a vertex-magic total labeling, and J
is any subset of I = {1, 2, . . . , k} then (∪i∈J mCni

) ∪ (∪i∈I−J mCni
) has a vertex-magic

total labeling.
In [620] Cichacz, Fronček and Singgih introduced a new method to expand some known

vertex magic total labelings of 2-regular graphs. The also proved that for odd values of
m, if (2r + 1) 6≡ 0 (mod 3) and n 6≡ 0 (mod (2r + 1)), then 2mCrn ∪mCn has a vetex
magic total labeling.

Lin and Miller [1598] have shown that Km,m is vertex-magic total for all m > 1 and
that Kn is vertex-magic total for all n ≡ 0 (mod 4). Phillips, Rees, and Wallis [1927]
generalized the Lin and Miller result by proving that Km,n is vertex-magic total if and
only if m and n differ by at most 1. Cattell [547] has shown that a necessary condition for
a graph of the form H+Kn to be vertex-magic total is that the number of vertices of H is
at least n− 1. As a corollary he gets that a necessary condition for Km1,m2,...,mr,n where n
is the largest size of any partite set to be vertex-magic total is that m1+m2+· · ·+mr ≥ n.
He poses as an open question whether graphs that meet the conditions of the theorem
are vertex-magic total. Cattell also proves that K1,n,n has a vertex-magic total labeling
when n is odd and K2,n,n has a vertex-magic total labeling when n ≡ 3 (mod 4). In [2057]
Rahim and Slamin proved the disjoint union of coronas Ct1�K1∪Ct2�K1∪· · ·∪Ctn�K1

has a vertex-magic total labeling with magic constant 6
∑n

k=1 tk + 1.
Miller, Bača, and MacDougall [1748] have proved that the generalized Petersen graphs

P (n, k) (see §2.7) for the definition) are vertex-magic total when n is even and k ≤ n/2−1.
They conjecture that all P (n, k) are vertex-magic total when k ≤ (n − 1)/2 and all
prisms Cn × P2 are vertex-magic total. Bača, Miller, and Slamin [306] proved the first
of these conjectures (see also [2421] for partial results) while Slamin and Miller prove
the second. Slamin, Prihandoko, Setiawan, Rosita and Shaleh [2422] constructed vertex-
magic total labelings for the disjoint union of two copies of P (n, k) and Silaban, Parestu,
Herawati, Sugeng, and Slamin [2384] extended this to any number of copies of P (n, k).
More generally, they proved that for nj ≥ 3 and 1 ≤ kj ≤ b(nj − 1)/2c, the union
P (n1, k1)∪ P (n2, k2)∪ · · · ∪ P (nt, kt) has a vertex-magic total labeling with vertex magic
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constant 10(n1 +n2 + · · ·+nt) + 2. In the same article Silaban et al. define the union of t
special circulant graphs ∪tj=1Cn(1,mj) as the graph with vertex set {vji | 0 ≤ i ≤ n−1, 1 ≤
j ≤ t} and edge set {vji v

j
i+1| 0 ≤ i ≤ n−1, 1 ≤ j ≤ t}∪{vji v

j
i+mj
| 0 ≤ i ≤ n−1, 1 ≤ j ≤ t}.

They prove that for odd n at least 5 and mj ∈ {2, 3, . . . , (n − 1)/2}, the disjoint union
∪tj=1Cn(1,mj) has a vertex-magic total labeling with constant 8tn+ (n− 10/2 + 3.

MacDougall et al. ([1679], [1681] and [935]) have shown: Wn has a vertex-magic total
labeling if and only if n ≤ 11; fans Fn have a vertex-magic total labelings if and only if
n ≤ 10; friendship graphs have vertex-magic total labelings if and only if the number of
triangles is at most 3; Km,n (m > 1) has a vertex-magic total labeling if and only if m
and n differ by at most 1. Wallis [2752] proved: if G and H have the same order and
G∪H is vertex-magic total then so is G+H; if the disjoint union of stars is vertex-magic
total, then the average size of the stars is less than 3; if a tree has n internal vertices and
more than 2n leaves then it does not have a vertex-magic total labeling. Wallis [2753] has
shown that if G is a regular graph of even degree that has a vertex-magic total labeling
then the graph consisting of an odd number of copies of G is vertex-magic total. He also
proved that if G is a regular graph of odd degree (not K1) that has a vertex-magic total
labeling then the graph consisting of any number of copies of G is vertex-magic total.

Gray, MacDougall, McSorley, and Wallis [936] investigated vertex-magic total labelings
of forests. They provide sufficient conditions for the nonexistence of a vertex-magic total
labeling of forests based on the maximum degree and the number of internal vertices, and
leaves or the number of components. They also use Skolem sequences to prove a star
forest with each component a K1,2 has a vertex-magic total labeling.

Recall a helm Hn is obtained from a wheel Wn by attaching a pendent edge at each
vertex of the n-cycle of the wheel. A generalized helm H(n, t) is a graph obtained from a
wheel Wn by attaching a path on t vertices at each vertex of the n-cycle. A generalized web
W(n, t) is a graph obtained from a generalized helm H(n, t) by joining the corresponding
vertices of each path to form an n-cycle. Thus W(n, t) has (t+ 1)n+ 1 vertices and
2(t+ 1)n edges. A generalized Jahangir graph Jk,s is a graph on ks+ 1 vertices consisting
of a cycle Cks and one additional vertex that is adjacent to k vertices of Cks at distance s
to each other on Cks. Rahim, Tomescu, and Slamin [2058] prove: Hn has no vertex-magic
total labeling for any n ≥ 3; W(n, t) has a vertex-magic total labeling for n = 3 or n = 4
and t = 1, but it is not vertex-magic total for n ≥ 17t + 12 and t ≥ 0; and Jn,t+1 is
vertex-magic total for n = 3 and t = 1, but it does not have this property for n ≥ 7t+ 11
and t ≥ 1. Recall a flower is the graph obtained from a helm by joining each pendent
vertex to the central vertex of the helm. Ahmad and Tomescu [101] proved that flower
graph is vertex-magic if and only if the underlying cycle is C3.

Fronček, Kovář, and Kovářová [787] proved that Cn×C2m+1 and K5×C2n+1 are vertex-
magic total. Kovář [1421] furthermore proved some general results about products of
certain regular vertex-magic total graphs. In particular, if G is a (2r + 1)-regular vertex-
magic total graph that can be factored into an (r + 1)-regular graph and an r-regular
graph, then G×K5 and G×Cn for n even are vertex-magic total. He also proved that if
G an r-regular vertex-magic total graph and H is a 2s-regular supermagic graph that can
be factored into two s-regular factors, then their Cartesian product G×H is vertex-magic
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total if either r is odd, or r is even and |H| is odd.
Ivančo and Polláková [1087] consider supermagic graphs having a saturated vertex

(i.e., a vertex that is adjacent to every other vertex). They characterize supermagic
graphs G + K1, where G is a regular graph, using a connection to vertex-magic total
graphs. They prove that if G is a d-regular graph of order n then the join G + K1 is
supermagic if and only if G has a VMT labeling with constant h such that (n− d− 1) is
a divisor of the non-negative integer (n+ 1)h− n((d+ 2)/2)(n(d+ 2)/2) + 1). They also
prove K1,n,n is supermagic if and only if n ≥ 2; K1,2,2,...,2 is supermagic except for K1,2;
and the graph obtained from Kn,n (n ≥ 5) by removing all edges in a Hamilton cycle is
supermagic. They also consider circulant graphs and prove that the complement of the
circulant graph C2n(1, n), n ≥ 4, is supermagic.

MacDougall, Miller, and Sugeng [1680] define a super vertex-magic total labeling of a
graph G(V,E) as a vertex-magic total labeling f of G with the additional property that
f(V ) = {1, 2, . . . , |V |} and f(E) = {|V |+ 1, |V |+ 2, . . . , |V |+ |E|} (some authors use the
term “super vertex-magic” for this concept). They show that a (p, q)-graph that has a
super vertex-magic total labeling with magic constant k satisfies the following conditions:
k = (p+ q)(p+ q+ 1)/v− (v+ 1)/2; k ≥ (41p+ 21)/18; if G is connected, k ≥ (7p− 5)/2;
p divides q(q+1) if p is odd, and p divides 2q(q+1) if p is even; if G has even order either
p ≡ 0 (mod 8) and q ≡ 0 or 3 (mod 4) or p ≡ 4 (mod 8) and q ≡ 1 or 2 (mod 4); if G
is r-regular and p and r have opposite parity then p ≡ 0 (mod 8) implies q ≡ 0 (mod 4)
and p ≡ 4 (mod 8) implies q ≡ 2 (mod 4). They also show: Cn has a super vertex-magic
total labeling if and only if n is odd; and no wheel, ladder, fan, friendship graph, complete
bipartite graph or graph with a vertex of degree 1 has a super vertex-magic total labeling.
They conjecture that no tree has a super vertex-magic total labeling and that K4n has a
super vertex-magic total labeling when n > 1. The latter conjecture was proved by Gómez
in [906]. In [907] Gómez proved that if G is a d-regular graph that has a vertex-magic
total labeling and k is a positive integer such that (k − 1)(d + 1) is even, then kG has a
super vertex-magic total labeling. As a corollary, we have that if n and k are odd or if
n ≡ 0 (mod 4) and n > 4, then kKn has a super vertex-magic total labeling. Gómez also
shows how graphs with super vertex-magic total labeling can be constructed from a given
graph G with super vertex-magic total labeling by adding edges to G in various ways.

Gray and MacDougall [934] establish the existence of vertex-magic total labelings
for several infinite classes of regular graphs. Their method enables them to begin with
any even-regular graph and from it construct a cubic graph possessing a vertex-magic
total labeling. A feature of the construction is that it produces strong vertex-magic
total labelings many even order regular graphs. The construction also extends to certain
families of non-regular graphs. MacDougall has conjectured (see [1422]) that every r-
regular (r > 1) graph with the exception of 2K3 has a vertex-magic total labeling. As a
corollary of a general result Kovář [1422] has shown that every 2r-regular graph with an
odd number of vertices and a Hamiltonian cycle has a vertex-magic total labeling.

Gómez and Kovář [908] proved that a super vertex-magic total labeling of kKn exists
for n odd and any k, for 4 < n ≡ 0 (mod 4) and any k, and for n = 4 and k even. They
also showed kK4t+2 does not admit a super vertex-magic total labeling for k odd and
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provide a large number of super vertex-magic total labelings of kK4t+2 for any k based
on a super vertex-magic total labeling of kK4t+1.

Beardon [423] has shown that a necessary condition for a graph with c components, p
vertices, q edges and a vertex of degree d to be vertex-magic total is (d+2)2 ≤ (7q2 +(6c+
5)q+c2 +3c)/p. When the graph is connected this reduces to (d+2)2 ≤ (7q2 +11q+4)/p.
As a corollary, the following are not vertex-magic total: wheels Wn when n ≥ 12; fans Fn
when n ≥ 11; and friendship graphs C

(n)
3 when n ≥ 4.

Beardon [425] has investigated how vertices of small degree effect vertex-magic total
labelings. Let G(p, q) be a graph with a vertex-magic total labeling with magic constant
k and let d0 be the minimum degree of any vertex. He proves k ≤ (1 + d0)(p+ q − d0/2)
and q < (1 + d0)q. He also shows that if G(p, q) is a vertex-magic graph with a vertex of
degree one and t is the number of vertices of degree at least two, then t > q/3 ≥ (p−1)/3.
Beardon [425] has shown that the graph obtained by attaching a pendent edge to Kn is
vertex-magic total if and only if n = 2, 3, or 4.

Meissner and Zwierzyński [1739] used finding vertex-magic total labelings of graphs
as a way to compare the efficiency of parallel execution of a program versus sequential
processing.

Swaminathan and Jeyanthi [2557] prove the following graphs are super vertex-magic
total: Pn if and only if n is odd and n ≥ 3; Cn if and only if n is odd; the star graph
if and only if it is P2; and mCn if and only if m and n are odd. In [2558] they prove
the following: no super vertex-magic total graph has two or more isolated vertices or an
isolated edge; a tree with n internal edges and tn leaves is not super vertex-magic total
if t > (n + 1)/n; if ∆ is the largest degree of any vertex in a tree T with p vertices and
∆ > (−3 +

√
1 + 16p)/2, then T is not super vertex-magic total; the graph obtained from

a comb by appending a pendent edge to each vertex of degree 2 is super vertex-magic
total; the graph obtained by attaching a path with t edges to a vertex of an n-cycle is
super vertex-magic total if and only if n + t is odd. Ali, Bača, and Bashir [123] proved
that mP3 and mP4 have no super vertex-magic total labeling

For n > 1 and distinct odd integers x, y and z in [1,n− 1] Javaid, Ismail, and Salman
[1095] define the chordal ring of order n CRn(x, y, z), as the graph with vertex set Zn, the
additive group of integers modulo n, and edges (i, i + x), (i, i + y), (i, i + z) for all even
i. They prove that CRn(1, 3, n − 1) has a super vertex-magic total labeling when n ≡ 0
mod 4 and n ≥ 8 and conjecture that for an odd integer ∆, 3 ≤ ∆ ≤ n− 3, n ≡ 0 mod 4,
CRn(1,∆, n− 1) has a super vertex-magic total labeling with magic constant 23n/4 + 2.

The Knödel graphs W∆,n with n even and degree ∆, where 1 ≤ ∆ ≤ b log2nc have
vertices pairs (i, j) with i = 1, 2 and 0 ≤ j ≤ n/2 − 1 where for every 0 ≤ j ≤ n/2 − 1
and there is an edge between vertex (1, j) and every vertex (2, (j + 2k − 1) mod n/2), for
k = 0, 1, . . . ,∆− 1. Xi, Yang, Mominul, and Wong [2829] have shown that W3,n is super
vertex-magic total when n ≡ 0 mod 4.

A vertex magic total labeling of G(V,E) is said to be E-super if f(E(G)) =
{1, 2, 3, . . . , |E(G)|}. The cocktail party graph, Hm,n (m,n ≥ 2), is the graph with a
vertex set V = {v1, v2, . . . , vmn} partitioned into n independent sets V = {I1, I2, . . . , In}
each of size m such that vivj ∈ E for all i, j ∈ {1, 2, . . . ,mn} where i ∈ Ip, j ∈ Iq, p 6= q.
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(The graph Hn,n is the complement of the ladder graph and the dual graph of the n-
cube.) Marimuthu and Balakrishnan [1700] gave some basic properties of such labelings
and proved that Hm,n is E-super vertex magic. Wang and Zhang [2791] show the fol-
lowing: Hamiltonian even regular graphs of odd order are E-super magic; even-regular
graphs of odd order that contains a 2-factor consisting of an odd number of odd cycles
with the same size are E-super vertex magic; graphs that can be decomposed into the
sum of two spanning graphs where one is E-super magic and one is regular of even degree
are E-supermagic; even-regular graphs of odd order that contain a 2-factor consisting of
an odd number of odd cycles with the same size are E-super vertex magic; and circu-
lant graphs with odd order are E-super vertex magic. Swaminathan and Jeyanthi [2557]
proved that mCn is E-super magic if and only if both m and n are odd.

In [1704] Marimuthu and Kumar investigate E-super vertex magic labelings of discon-
nected graphs. They prove: if a graph with p vertices and q edges and even order has an
E-super vertex magic labeling, then either (i) p ≡ 0 (mod 8) and q ≡ 0 or 3 (mod 4),
or (ii) p ≡ 4 (mod 8) and q ≡ 1 or 2 (mod 4); if an r-regular graph G of order p has an
E-super vertex magic labeling, then p and r have opposite parity and (i) if p ≡ 0 (mod
8), then q ≡ 0 (mod 4) (ii) if p ≡ 4 (mod 8), then q ≡ 2 (mod 4); mCn is E-super vertex
magic if and only if Pn ∪ (m − 1)Cn is E-super vertex magic; Pm ∪K1,m is not E-super
vertex magic; Cm∪Pn is not E-super vertex magic if both m and n have the same parity;
the disjoint union of two non-isomorphic suns is not E-super vertex magic; the disjoint
union of any number of isomorphic suns is not E-super vertex magic; and mP3 is not
E-super vertex magic for any integer m > 1. They conjecture that Km ∪ Pm is E-super
vertex magic if m = 8t+ 2.

In [1808] Mutharasu and Kumar generalized the notion of super vertex-magic total
labelings as follows. Let G(V,E) be a graph and k be an integer with 1 ≤ k ≤ diam(G).
For e ∈ E(G), let Ek(e) be the set of all vertices that are at a distance at most k from
e and let Ek(v) be the set of all edges that are at a distance at most k from v (u and v
are at distance 1 from the edge uv). A graph G is said to be Ek-regular with regularity
r if, for all edges e, |Ek(e)| = r for some positive integer r. Note that all nontrivial
graphs are E1-regular. Let G be a simple graph with p vertices and q edges. A V -
super vertex magic labeling is a bijection f : V (G) ∪ E(G)→ {1, 2, . . . , p + q} such that
f(V (G)) = {1, 2, . . . , p} and for each vertex v ∈ V (G), f(v) +

∑
u∈N(v) f(uv) = M

for some positive integer M . A Vk-super vertex magic labeling (Vk-SVML) is a bijection
f : V (G) ∪ E(G)→ {1, 2, . . . , p+ q} with the property that f(V (G)) = {1, 2, . . . , p} and
for each v ∈ V (G), f(v) +

∑
e∈Ek(v) f(e) = M for some positive integer M . A graph

that admits a Vk-SVML is called Vk-super vertex magic. Mutharasu and Kumar gave a
necessary and sufficient condition for the existence of Vk-SVML in graphs, determined the
magic constant for Ek-regular graphs, and obtained results about V2-SVML labelings for
cycles, complement of cycles, prisms, and a family of circulant graphs.

Balbuena, Barker, Das, Lin, Miller, Ryan, and Slamin [329] call a vertex-magic to-
tal labeling of G(V,E) a strongly vertex-magic total labeling if the vertex labels are
{1, 2, . . . , |V |}. They prove: the minimum degree of a strongly vertex-magic total graph
is at least 2; for a strongly vertex-magic total graph G with n vertices and e edges, if
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2e ≥
√

10n2 − 6n+ 1 then the minimum degree of G is at least 3; and for a strongly
vertex-magic total graph G with n vertices and e edges if 2e <

√
10n2 − 6n+ 1 then the

minimum degree of G is at most 6. They also provide strongly vertex-magic total label-
ings for certain families of circulant graphs. In [1725] McQuillan provides a technique for
constructing vertex-magic total labelings of 2-regular graphs. In particular, if m is an
odd positive integer, G = Cn1 ∪Cn2 ∪ · · · ∪Cnk

has a strongly vertex-magic total labeling,
and J is any subset of I = {1, 2, . . . , k} then (∪i∈J mCni

)∪ (∪i∈I−J mCni
) has a strongly

vertex-magic total labeling.
Gray [928] proved that if G is a graph with a spanning subgraph H that possesses a

strongly vertex-magic total labeling and G−E(H) is even regular, then G also possesses
a strongly vertex-magic total labeling. As a corollary one has that regular Hamiltonian
graphs of odd order have a strongly vertex-magic total labelings.

In a series of papers Gray and MacDougall expand on McQuillan’s technique to obtain
a variety of results. In [931] Gray and MacDougall show that for any r ≥ 4, every r-regular
graph of odd order at most 17 has a strong vertex-magic total labeling. They also show
that several large classes of r-regular graphs of even order, including some Hamiltonian
graphs, have vertex-magic total labelings. They conjecture that every 2-regular graph of
odd order possesses a strong vertex-magic total labeling if and only if it is not of the form
(2t− 1)C3 ∪ C4 or 2tC3 ∪ C5. They include five open problems.

In [933] Gray and MacDougall introduce a procedure called a mutation that transforms
one vertex-magic totaling labeling into another one by swapping sets of edges among
vertices that may result in different labeling of the same graph or a labeling of a different
graph. Among their results are: a description of all possible mutations of a labeling of
the path and the cycle; for all n ≥ 2 and all i from 1 to n − 1 the graphs obtained by
identifying an end points of paths of lengths i, i+ 1, and 2n− 2i− 1 have a vertex-magic
total labeling; for odd n, the graph obtained by attaching a path of length n−m to an m
cycle, (such graphs are called (m;n−m)-kites ) have strong vertex-magic total labelings
for m = 3, . . . , n−2; C2n+1∪C4n+4 and 3C2n+1 have a strong vertex-magic total labeling;
and for n ≥ 2, C4n ∪C6n−1 has a strong vertex-magic total labeling. They conclude with
three open problems.

Kimberley and MacDougall [1378] studied mutations that involve labelings of regular
graphs into labelings of other regular graphs. They present results of extensive compu-
tations which confirm how prolific this procedure is. These computations add weight to
MacDougall’s conjecture that all nontrivial regular graphs are vertex-magic.

Gray and MacDougall [932] show how to construct vertex-magic total labelings for
several families of non-regular graphs, including the disjoint union of two other graphs
already possessing vertex-magic total labelings. They prove that if G is a d-regular graph
of order v and H a t-regular graph of order u with each having a strong vertex magic
total labeling and vd2 + 2d + 2v + 2u = 2tvd + 2t + ut2 then G ∪ H possesses a strong
vertex-magic total labeling. They also provide bounds on the minimum degree of a graph
with a vertex-magic total labeling.

In [934] Gray and MacDougall establish the existence of vertex-magic total labelings
for several infinite classes of regular graphs. Their method enables them to begin with any
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even-regular graph and construct a cubic graph possessing a vertex-magic total labeling
that produces strong vertex-magic total labelings for many even order regular graphs.
The construction also extends to certain families of non-regular graphs.

In [1820] Nagaraj, Ponnappan, and Prabakaran define a vertex-magic total la-
beling of G to be an even vertex magic total labeling if the set of vertex labels is
{2, 4, 6, . . . , 2|V (G)|}. They prove the following: Cn is even vertex magic total if and
only if n is odd; rCs is even vertex magic total if and only if r and s are odd; Cn �K1 is
even vertex magic total; wheels are not even vertex magic total; fans (excluding C3) are
not even vertex magic total; kites are not even vertex magic total; and K4n is not even
vertex magic total. In [1823] they prove that C3 ∪C2t (t > 2) and C4 ∪C2t+1 (t ≥ 2) have
even vertex magic total labelings. In [1822] Nagaraj, Ponnappan, and Prabakan prove
that the union of any finite numbers of graphs of the form Cn �K1 (the sizes may vary)
has an even vertex magic total labeling.

Rahim and Slamin [2056] give the bounds for the number of vertices for Jahangir
graphs, helms, webs, flower graphs and sunflower graphs when the graphs considered
are not vertex-magic total. Thirusangu, Nagar, and Rajeswari [2590] show that certain
Cayley digraphs of cyclic groups have vertex-magic total labelings.

Balbuena, Barker, Lin, Miller, and Sugeng [334] call vertex-magic total labeling an
a-vertex consecutive magic labeling if the vertex labels are {a, a+ 1, . . . , a+ |V |}. For an
a-vertex consecutive magic labeling of a graph G with p vertices and q edges they prove:
if G has one isolated vertex, then a = q and (p − 1)2 + p2 = (2q + 1)2; if q = p − 1,
then p is odd and a = p − 1; if p = q, then p is odd and if G has minimum degree 1,
then a = (p + 1)/2 or a = p; if G is 2-regular, then p is odd and a = 0 or p; and if G
is r-regular, then p and r have opposite parities. They also define an b-edge consecutive
magic labeling analogously and state some results for these labelings.

Wood [2820] generalizes vertex-magic total and edge-magic total labelings by requiring
only that the labels be positive integers rather than consecutive positive integers. He
gives upper bounds for the minimum values of the magic constant and the largest label
for complete graphs, forests, and arbitrary graphs.

Exoo, Ling, McSorley, Phillips, and Wallis [744] call a function λ a totally magic
labeling of a graph G if λ is both an edge-magic total and a vertex-magic total labeling
of G. A graph with such a labeling is called totally magic. Among their results are: P3

is the only connected totally magic graph that has a vertex of degree 1; the only totally
magic graphs with a component K1 are K1 and K1 ∪P3; the only totally magic complete
graphs are K1 and K3; the only totally magic complete bipartite graph is K1,2; nK3 is
totally magic if and only if n is odd; P3 ∪ nK3 is totally magic if and only if n is even.
In [2755] Wallis asks: Is the graph K1,m ∪ nK3 ever totally magic? That question was
answered by Calhoun, Ferland, Lister, and Polhill [540] who proved that if K1,m ∪ nK3 is
totally magic then m = 2 and K1,2 ∪ nK3 is totally magic if and only if n is even.

McSorley and Wallis [1731] examine the possible totally magic labelings of a union of
an odd number of triangles and determine the spectrum of possible values for the sum of
the label on a vertex and the labels on its incident edges and the sum of an edge label
and the labels of the endpoints of the edge for all known totally magic graphs.
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Gray and MacDougall [929] define an order n sparse semi-magic square to be an n×n
array containing the entries 1, 2, . . . ,m once (for some m < n2), has its remaining entries
equal to 0, and whose rows and columns have a constant sum of k. They prove some
basic properties of such squares and provide constructions for several infinite families of
squares, including squares of all orders n ≥ 3. Moreover, they show how such arrays can
be used to construct vertex-magic total labelings for certain families of graphs.

In Tables 8, 9 and 10, VMT means vertex-magic total labeling, SVMT means super
vertex magic total, and TM means totally magic labeling. A question mark following an
abbreviation indicates that the graph is conjectured to have the corresponding property.
The tables were prepared by Petr Kovář and Tereza Kovářová and updated by J. Gallian
in 2007.

Table 8: Summary of Vertex-magic Total Labelings

Graph Types Notes
Cn VMT [1679]

Pn VMT n > 2 [1679]

Km,m − e VMT m > 2 [1679]

Km,n VMT iff |m− n| ≤ 1 [1927], [1679], [1681]

Kn VMT for n odd [1679]
for n ≡ 2 (mod 4),n > 2 [1598]

nK3 VMT iff n 6= 2 [760], [761], [1727]

mKn VMT m ≥ 1, n ≥ 4 [1730]

Petersen P (n, k) VMT [306]

prisms Cn × P2 VMT [2421]

Wn VMT iff n ≤ 11 [1679], [1681]

Fn VMT iff n ≤ 10 [1679], [1681]

friendship graphs VMT iff # of triangles ≤ 3 [1679], [1681]

G+H VMT |V (G)| = |V (H)|
and G ∪H is VMT [2752]

Continued on next page
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Table 8 – Continued from previous page
Graph Types Notes
unions of stars VMT [2752]

tree with n internal vertices not VMT [2752]
and more than 2n leaves
nG VMT n odd, G regular of even

degree, VMT [2753]
G is regular of odd
degree, VMT, but not K1 [2753]

Cn × C2m+1 VMT [787]

K5 × C2n+1 VMT [787]

G× C2n VMT G 2r + 1-regular VMT [1421]

G×K5 VMT G 2r + 1-regular VMT [1421]

G×H VMT G r-regular VMT, r odd
or r even and |H| odd,
H 2s-regular supermagic [1421]

Table 9: Summary of Super Vertex-magic Total
Labelings

Graph Types Notes
Pn SVMT iff n > 1 is odd [2557]

Cn SVMT iff n is odd [2557] and [1680]

K1,n SVMT iff n = 1 [2557]

mCn SVMT iff m and n are odd [2557]

Wn not SVMT [1680]

ladders not SVMT [1680]

friendship graphs not SVMT [1680]

Continued on next page
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Table 9 – Continued from previous page
Graph Types Notes
Km,n not SVMT [1680]

dragons (see §2.2) SVMT iff order is even [2558], [2558]

Knödel graphs W3,n SVMT n ≡ 0 (mod 4) [2829]

graphs with min. deg. 1 not SVMT [1680]

K4n SVMT n > 1 [906]

Table 10: Summary of Totally Magic Labelings

Graph Types Notes
P3 TM the only connected

TM graph with vertex
of deg 1 [744]

Kn TM iff n = 1, 3 [744]

Km,n TM iff Km,n = K1,2 [744]

nK3 TM iff n is odd [744]

P3 ∪ nK3 TM iff n is even [744]

K1,m ∪ nK3 TM iff m = 2 and n is even [540]

5.4 H-Magic Labelings

In 2005 Gutiérrez and Lladó [943] introduced the notion of an H-magic labeling of a graph,
which generalizes the concept of a magic valuation. Let H and G = (V,E) be finite simple
graphs with the property that every edge of G belongs to at least one subgraph isomorphic
to H. A bijection f : V ∪E → {1, . . . , |V |+ |E|} is an H-magic labeling of G if there exists
a positive integer m(f), called the magic sum, such that for any subgraph H ′(V ′, E ′) of
G isomorphic to H, the sum

∑
v∈V ′ f(v)+

∑
e∈E′ f(e) is equal to the magic sum, m(f). A

graph is H-magic if it admits an H-magic labeling. If, in addition, the H-magic labeling
f has the property that {f(v)}v∈V = {1, . . . , |V |}, then the graph is H-supermagic. A
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K2-magic labeling is also known as an edge-magic total labeling. Gutiérrez and Lladó
investigate the cases where G = Kn or G = Km,n and H is a star or a path. Among their
results are: a d-regular graph is not K1,h for any 1 < h < d; Kn,n is K1,n-magic for all n;
Kn,n is not K1,n-supermagic for n > 1; for any integers 1 < r < s, Kr,s is K1,h-supermagic
if and only if h = s; Pn is Ph-supermagic for all 2 ≤ h ≤ n; Kn is not Ph-magic for any
2 < h ≤ n; Cn is Ph-magic for any 2 ≤ h < n such that gcd(n, h(h − 1)) = 1. They
also show that by uniformly gluing copies of H along edges of another graph G, one can
construct connected H-magic graphs from a given 2-connected graph H and an H-free
supermagic graph G.

Lladó and Moragas [1624] studied cycle-magic graphs. They proved: wheels Wn are

C3-magic for odd n at least 5; for r ≥ 3 and k ≥ 2 the windmill graphs C
(k)
r (the one-point

union of k copies of Cr) are Cr-supermagic; and if G is C4-free supermagic graph of odd
size, then G × K2 is C4-supermagic. As corollaries of the latter result, they have that
for n odd, prisms Cn ×K2 and books K1,n ×K2 are C4-magic. They define a subdivided
wheel Wn(r, k) as the graph obtained from a wheel Wn by replacing each radial edge
vvi, 1 ≤ i ≤ n by a vvi-path of size r ≥ 1, and every external edge vivi+1 by a vivi+1-path
of size k ≥ 1. They prove that Wn(r, k) is C2r+k-magic for any odd n 6= 2r/k+ 1 and that
Wn(r, 1) is C2r+1-supermagic. They also prove that the graph obtained by joining the
end points of any number of internally disjoint paths of length p ≥ 2 is C2p-supermagic.
Asif, Ali, Numan, and Semaničová-Feňovč́ıková [206] proved that if G is Cr-(super)magic,
then so is nG and that Pm × Pn (m,n ≥ 4) is C4-supermagic. In [2011] Pradipta and
Salman define a calendula graph, denoted by Clm,n, as the graph constructed from Cm
and m copies of Cn, Cn1 , Cn2 , . . . , Cnm , and grafting the i-th edge of Cm to an edge of Cni

for each i. They provide some cycle-supermagic labelings of calendula graphs. Chithra,
Marimuthu, and Kumar [586] provided some basic results on the magic constant of graphs,
on cycle-supermagic labelings of generalized splitting graphs, and proved that mCn is cycle
-supermagic for m ≥ 2 and n ≥ 3.

A decomposition of a graph G into isomorphic copies of a graph H is H-magic if there
is a bijection f from V (G)∪E(G) onto {0, 1, . . . , |V (G)|+|E(G)|−1} such that the sum of
labels of edges and vertices of each copy of H in the decomposition is constant. By using
the results on the sumset partition problem, Inayah, Lladó, and Moragas [1067] show that
K2m+1 admits T -magic decompositions by any graceful tree with m edges. They address
analogous problems for complete bipartite graphs and for antimagic and (a, d)-antimagic
decompositions.

An edge of H-magic graph G is said to be a good edge if it belongs to only one subgraph
isomorphic to H. For s ≥ 1, B is the collection of good edges obtained by choosing exactly
s good edges from each subgraph isomorphic to H in G. A uniform subdivided graph G of
the graph G is obtained by subdividing all edges of B with k ≥ 1 vertices. A nonuniform
subdivided graph is obtained by subdividing the edges of E(G) \ B. Rizvi, Khalid, Ali,
Miller, and Ryan [2126] prove that if a graph G is a Cn-supermagic graph then its uniform
subdivided graph G is Cn+sk-(super)magic for positive integers n, s, and k. Using known
results on the cycle-supermagicness they immediately obtain that uniform subdivided
graphs of fans, antiprisms, triangular ladders, ladders and grids are cycle-(super)magic.
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They also prove that some special nonuniform subdivisions of fans and triangular ladders
are cycle-supermagic.

Jeyanthi and Muthuraja [1191] established that Pm,n is C2m-supermagic for all
m,n ≥ 2 and the splitting graph of Cn is C4-supermagic for n 6= 4. Nirmalasari Wi-
jaya, Ryan, and Kalinowski [1869] show that for odd n and arbitrary k, the firecracker
Fk,n is F2,n-supermagic, the banana tree Bk,n is B1,n-supermagic, and flower graphs are C3-
supermagic. Kojima [1401] proved that for two positive integers m and t with m > t ≥ 2,
if Cm is Pt-supermagic, then C3m is also Pt-supermagic and for t = 2, 3, 4, or 9 and
Cn is Pt-supermagic if and only if n is odd with n > t. Nirmalasari Wijaya, Ryan, and
Kalinowski [1847] proved that every d-dimensional grid graph (d > 2) is Qd-supermagic
where Qd is the d-cube. Pu, Numan, Butt, Asif, Rafique, and Shao [2039] showed that
toroidal fullerenes, Klein-bottle fullerenes, and the disjoint union of toroidal and Klein-
bottle fullerenes are C6-supermagic and the subdivision of toroidal fullerenes, Klein-bottle
fullerenes, and any graph homeomorphic to a toroidal fullerene or Klein-bottle fullerene
are cyclic-supermagic. Ulfatimah, Roswitha, and Kusmayadi [2607] proved that a star
with one or more appended edges at each end-point admits a double star S2,2-supermagic
labeling and Lm�Pn admits supermagic labeling of the one-point union of C3 and C4 for
m,n ≥ 2.

The edge corona path graph Gm � Pn is the graph obtained from one copy of the
gear graph Gm and 3m copies of Pn, P i

n, by joining two end vertices of ei ∈ E(Gm) to
every vertex vjinV (Pn) in the i-th copy of Gm with i = 1, 2, . . . , 3m and j = 1, 2, . . . , n.
Noviati, Martini, and Indriati [1872] provided a C3 � Pn-supermagic labeling for fn � Pn
and a P3 � Pn-supermagic labeling for Sn � Pn for odd n ≥ 3.

Rizvi, Ali, and Hussian [2124] proved: the disjoint union of two or more copies of G is
C3-supermagic when G is a fan, triangular ladder, wheel, or a generalized antiprism; the
disjoint union of two or more copies of G is C3-supermagic when G is a ladder or a book;
sFn+1 ∪ kFn is C3-supermagic; and sLn+1 ∪ kLn is C4-supermagic. Khalid, Rizvi, and Ali
[1360] investigated whether the disjoint union of isomorphic copies of a connected cycle-
supermagic graph is cycle-supermagic or not. They also study cycle-supermagic labelings
for the disjoint union of isomorphic copies of fans, ladders, triangular ladders, wheels,
books, and generalized antiprisms as well as disjoint unions of non-isomorphic copies of
ladders and fans. Ali, Rizvi, Semaničová-Feňovč́ıková [129] proved that the disjoint union
of an arbitrary number of isomorphic copies of prisms Cn×Pm, m ≥ 2 and n ≥ 3, n 6= 4,
is C4-supermagic. They propose an open problem to find a C4-supermagic labeling of the
graph t(C4 × Pm) for m ≥ 2 and t ≥ 1.

Liang [1585] proved the following: if there exist an even integer k and mi ≡ 0 (mod k)
for every i in [1,n], then there exist Kk,k- and C2k-supermagic decompositions of Km1,...,mn ;
if k and tn ≥ k are even integers, then for any positive integers ti ≡ 0 (mod k), i in [1, n−1],
there exists a C2k-supermagic decomposition of Kt1,...,tn−1,tn ; if there exists an even integer
k and Km,n is C2k-decomposable, then there exists a C2k-supermagic decomposition of
Km,n; and if G is a graph with p vertices and p edges, H is a graph with q vertices
and q edges, and there is an H-supermagic decomposition of G, then there exists an H-
supermagic decomposition of nG. In [2812] Wichianpaisarn and Mato gave necessary and
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sufficient conditions for the existence of K1,n−1-supermagic decomposition of Kn,n minus
a one-factor.

In [1715] Maryati, Baskoro, and Salman provided Pn-(super) magic labelings of subdi-
visions of stars, shrubs and banana trees. Ngurah, Salman, and Sudarsana [1860] construct
Cn-(super) magic labelings for some fans and ladders. For any connected graph H, Mary-
ati, Salman, Baskoro, and Irawati [1718] proved that the disjoint union of k isomorphic
copies of a connected graph H is a H-supermagic graph if and only if |V (H)| + |E(H)|
is even or k is odd. In [1716] Maryati, Baskoro, Salman, and Irawati give some necessary
conditions for any Pn-magic graph and provide some Pn-supermagic labelings of a cycle
with some pendent edges and its subdivisions.

The m-shadow of graph G, Dm(G), is a graph obtained by taking m copies of G,
namely, G1, G2, . . . , Gm, and then joining every vertex u in Gi, i ∈ {1, 2, . . . ,m − 1}, to
the neighbors of the corresponding vertex v in Gi+1. Agustin, Susanto, Dafik, Prihandini,
Alfarisi, and Sudarsana [56] studied the H-supermagic labelings of Dm(G) where G are
paths and cycles.

Kojima [1401] proved the following. Let G be a C4-free super edge-magic (p, q)-graph
with the minimum degree at least one and m ≥ 2. If q odd and m = 2 or |p− q| ≥ 2, then
Pm×G is C4-supermagic; if p is odd and m = 2 or |p− q| = 1 and m ≤ 5, then Pm×G is
C4-supermagic; if n ≥ 3 is odd and m is even, then P2 × (Cn �Km) is C4-supermagic; if
n ≥ 3 is odd and m is odd, then P2×(Cn�Km) is not C4-supermagic; if G is a caterpillar,
then Pm ×G is C4-supermagic for m ≥ 2; and Pm × Cn is C4-supermagic for m ≥ 2 and
n ≥ 3. The latter result solved an open problem in [1861]. Kojma also proved that if a
C4-free bipartite (p, p−1)-graph G with the minimum degree at least one and partite sets
U and V has a super edge-magic labeling f of G such that f(U) = {1, 2, . . . , |U |}, then
Pm × (2G) is C4-supermagic.

Maryati, Salman, Baskoro, Ryan, and Miller [1719] define a shackle as a graph obtained
from nontrivial connected graphs G1, G2, . . . , Gk (k ≥ 2) such that Gs and Gt have no
common vertex for every s and t in [1, k] with |s − t| ≥ 2, and for every i in [1, k −
1], Gi and Gi+1 share exactly one common vertex that are all distinct. They prove
that shackles and amalgamations constructed from copies of a connected graph H is H-
supermagic. (Recall for finite collection of graph G1, G2, . . . , Gk with a fixed vertex vi
from each Gi, an amalgamation, AmalGi, vi), is the graph obtained by identifying the vi.)
Ashari and Salman [202] gave sufficient conditions for (H1, H2)-supermagic labelings for
shackles involving cycles, flowers, and prisms.

Ngurah, Salman, and Susilowati [1861] proved the following: chain graphs with identi-
cal blocks each isomorphic to Cn are Cn-supermagic; fans are C3-supermagic; ladders and
books are C4-supermagic; K1,n+K1 are C3-supermagic; grids Pm×Pn are C4-supermagic
for m ≥ 3 and n = 3, 4, and 5. They pose the case that Pm × Pn are C4-supermagic for
n > 5 as an open problem. They also have some results on Pt-(super) magic labelings of
cycles.

Roswitha, Baskoro, Maryati, Kurdhi, and Susanti [2141] proved: the generalized Ja-
hangir graph Jk,s is Cs+2-supermagic; K2,n is C4-supermagic; and Wn for n even and n ≥ 4
is C3-supermagic. As an open problem they asked if Km,n, 2 < m ≤ n, admits a C2m-
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supermagic labeling. Roswitha and Baskoro [2142] proved that double stars, caterpillars,
firecrackers, and banana trees admit star-supermagic labelings.

Maryati, Salman, and Baskoro [1717] characterized all graphs G such that the disjoint
union of copies of G is G-supermagic. They also showed: the disjoint union of any paths is
mPn-supermagic for certain values of m and n; some subgraph amalgamations of graphs
G are G-supermagic; and for any subgraph H of G Amal(G, H, k) is G-supermagic.
Salman and Maryati [2167] proved that Amal(G,Pn, k) is G-supermagic.

Selvagopal and Jeyanthi proved: for any positive integer n, a the k-polygonal snake of
length n is Ck-supermagic [2203]; for m ≥ 2, n = 3, or n > 4, Cn × Pm is C4-supermagic
[1231]; P2 × Pn and P3 × Pn are C4-supermagic for all n ≥ 2 [1231]; the one-point union
of any number of copies of a 2-connected H is H-magic [1229]; graphs obtained by taking
copies H1, H2, . . . , Hn of a 2-connected graph H and two distinct edges ei, e

′
i from each Hi

and identifying e′i of Hi with ei+1 of Hi+1 where |V (H)| ≥ 4, |E(H)| ≥ 4 and n is odd or
both n and |V (H)|+ |E(H)| are even are H-supermagic [1229]. For simple graphs H and
G the H-supermagic strength of G is the minimum constant value of all H-magic total
labelings of G for which the vertex labels are {1, 2, . . . , |V |}. Jeyanthi and Selvagopal
[1230] found the Cn-supermagic strength of n-polygonal snakes of any length and the
H-supermagic strength of a chain of an arbitrary 2-connected simple graph.

Let H1, H2, . . . , Hn be copies of a graph H. Let ui and vi be two distinct vertices
of Hi for i = 1, 2, . . . , n. The chain graph Hn of H of length n is the graph obtained
by identifying the vertices ui and vi+1 for i = 1, 2, . . . , n − 1. In [1228] Jayanthi and
Selvagopal show that a chain graph of any 2-connected simple graph H is H-supermagic
and if H is a 2-connected (p, q) simple graph, then Hn is H-supermagic if p+ q is even or
p+ q + n is even.

The antiprism on 2n vertices has vertex set {x1,1, . . . , x1,n, x2,1, . . . , x2,n} and edge set
{xj,i, xj,i+1} ∪ {x1,i, x2,i} ∪ {x1,i, x2,i−1} (subscripts are taken modulo n). Jeyanthi, Sel-
vagopal, and Sundaram [1233] proved the following graphs are C3-supermagic: antiprisms,
fans, and graphs obtained from the ladders P2 × Pn with the two paths v1,1, . . . , v1,n and
v2,1, . . . , v2,n by adding the edges v1,jv2,j+1.

Jeyanthi and Selvagopal [1232] show that for any 2-connected simple graph H the edge
amalgamation of a finite number of copies of H is H-supermagic. They also show that
the graph obtained by picking one endpoint vi from each of k copies of K1,k then creating
a new graph by joining each vi to a fixed new vertex v is K1,k-supermagic.

An H-magic labeling in an H-decomposable of a graph G is a bijection f : V (G)∪E(G)
onto {1, 2, . . . , p + q} such that for every copy of H in the decomposition, the sum of
f(v) + f(e) over all v in V (H) and e in E(H) is constant. The labeling f is said to
be H − V -super magic if f(V (G)) = {1, 2, . . . , p}. Marimuthu and Kumar [1706] prove
that Kn,n (n ≥ 2) is H-V -super magic decomposable when H is K1,n. Marimuthu and
Kumar [1705] provide a necessary and sufficient condition for the existence of V -super
vertex-magic labeling and give E-super and V -super vertex-magic total labeling of certain
families of generalized Petersen graphs. They also prove that no wheel is E-super vertex-
magic, C3 is the only friendship graph that is V -super vertex-magic, and C3 is the only
friendship graph that is E-super vertex-magic.
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An H-magic labeling f is said to be an H-E-super magic labeling if f(E(G)) =
{1, 2, . . . , q}. A graph that admits an H-E-super magic labeling is called an H-E-super
magic decomposable graph. Subbiah and Pandimadevi [2477] study some elementary
properties of H-E-super magic labelings with H an m-factor and provide a necessary and
sufficient condition for an even regular graph to be H-E-super magic decomposable where
H is a 2-factor.

5.5 Magic Labelings of Type (a, b, c)

A magic-type method for labeling the vertices, edges, and faces of a planar graph was
introduced by Lih [1594] in 1983. Lih defines a magic labeling of type (1,1,0) of a planar
graph G(V,E) as an injective function from {1, 2, . . . , |V |+|E|} to V ∪E with the property
that for each interior face the sum of the labels of the vertices and the edges surrounding
that face is some fixed value. Similarly, Lih defines a magic labeling of type (1, 1, 1) of a
planar graphG(V,E) with face set F as an injective function from {1, 2, . . . , |V |+|E|+|F |}
to V ∪ E ∪ F with the property that for each interior face the sum of the labels of the
face and the vertices and the edges surrounding that face is some fixed value. Lih calls a
labeling involving the faces of a plane graph consecutive if for every integer s the weights
of all s-sided faces constitute a set of consecutive integers. Lih gave consecutive magic
labelings of type (1, 1, 0) for wheels, friendship graphs, prisms, and some members of the
Platonic family. In [236] Bača shows that the cylinders Cn × Pm have magic labelings
of type (1, 1, 0) when m ≥ 2, n ≥ 3, n 6= 4. In [246] Bača proves that the generalized
Petersen graph P (n, k) (see §2.7 for the definition) has a consecutive magic labeling if
and only if n is even and at least 4 and k ≤ n/2− 1.

Bača gave magic labelings of type (1, 1, 1) for fans [230], ladders [230], planar bipyra-
mids (that is, 2-point suspensions of paths) [230], grids [239], hexagonal lattices [238],
Möbius ladders [233], and Pn × P3 [234]. Kathiresan and Ganesan [1350] show that the
graph Pa,b consisting of b ≥ 2 internally disjoint paths of length a ≥ 2 with common end
points has a magic labeling of type (1, 1, 1) when b is odd, and when a = 2 and b ≡ 0 (mod
4). They also show that Pa,b has a consecutive labeling of type (1, 1, 1) when b is even
and a 6= 2. Ali, Hussain, Ahmad, and Miller [126] study magic labeling of type (1, 1, 1)
for wheels and subdivided wheels. They prove: wheels admits a magic labeling of type
and (1, 1, 1) and (0, 1, 1), for odd n wheels Wn n admit a magic labeling of type (0, 1, 0),
and subdivided wheels admit a magic labeling of type (1, 1, 0). As an open problem they
ask for a magic labeling of type (1, 1, 0) for Wn and n even. Ahmad [67] proves that
subdivided ladders admit magic labelings of type (1,1,1) and admit consecutive magic
labelings of type (1,1,0).

Bača [232], [231], [242], [240], [234], [241] and Bača and Holländer [271] gave magic
labelings of type (1, 1, 1) and type (1, 1, 0) for certain classes of convex polytopes. Kathire-
san and Gokulakrishnan [1352] provided magic labelings of type (1, 1, 1) for the families
of planar graphs with 3-sided faces, 5-sided faces, 6-sided faces, and one external infinite
face. Bača [237] also provides consecutive and magic labelings of type (0, 1, 1) (that is,
an injective function from {1, 2, . . . , |E| + |F |} to E ∪ F with the property that for each
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interior face the sum of the labels of the face and the edges surrounding that face is some
fixed value) and a consecutive labeling of type (1, 1, 1) for a kind of planar graph with
hexagonal faces. Tabraiz and Hussain [2568] provide a super magic labeling of type (1, 0,
0) for ladders and a super magic labeling of type (1, 0, 0) for subdivided ladders.

A magic labeling of type (1,0,0) of a planar graph G with vertex set V is an injective
function from {1, 2, . . . , |V |} to V with the property that for each interior face the sum of
the labels of the vertices surrounding that face is some fixed value. Kathiresan, Muthuvel,
and Nagasubbu [1354] define a lotus inside a circle as the graph obtained from the cycle
with consecutive vertices a1, a2, . . . , an and the star with central vertex b0 and end vertices
b1, b2, . . . , bn by joining each bi to ai and ai+1 (an+1 = a1). They prove that these graphs
(n ≥ 5) and subdivisions of ladders have consecutive labelings of type (1, 0, 0). Devaraj
[668] proves that graphs obtained by subdividing each edge of a ladder exactly the same
number of times has a magic labeling of type (1, 0, 0).

In Table 11 we use following abbreviations

M(a, b, c) magic labeling of type (a, b, c)

CM(a, b, c) consecutive magic labeling of type (a, b, c).

A question mark following an abbreviation indicates that the graph is conjectured to have
the corresponding property. The table was prepared by Petr Kovář and Tereza Kovářová.
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Table 11: Summary of Magic Labelings of Type (a, b, c)

Graph Labeling Notes
Wn CM(1,1,0) [1594]

friendship graphs CM(1,1,0) [1594]

prisms CM(1,1,0) [1594]

cylinders Cn × Pm M(1,1,0) m ≥ 2, n ≥ 3, n 6= 4 [236]

fans Fn M(1,1,1) [230]

ladders M(1,1,1) [230]

planar bipyramids (see §5.3) M(1,1,1) [230]

grids M(1,1,1) [239]

hexagonal lattices M(1,1,1) [238]

Möbius ladders M(1,1,1) [233]

Pn × P3 M(1,1,1) [234]

certain classes of M(1,1,1) [232], [242], [240], [234]
convex polytopes M(1,1,0) [241], [271]

certain classes of planar graphs M(0,1,1) [237]
with hexagonal faces CM(0,1,1)

CM(1,1,1)

lotus inside a circle (see §5.3) CM(1,0,0) n ≥ 5 [1354]

subdivisions of ladders M(1,0,0) [668]
CM(1,0,0) [1354]
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5.6 Sigma Labelings/1-vertex magic labelings/Distance Magic

In 1987 Vilfred [2736] (see also [2737]) defined a sigma-labeling of a graph G with n vertices
as a bijection f from the vertices of G to {1, 2, . . . , n} such that there is a constant k with
the property that, at any vertex v the sum

∑
f(u) taken over all neighbors u of v is

k. The concept of sigma labeling was independently studied in 2003 by Miller, Rodger,
and Simanjuntak in [1755] under the name 1-vertex magic. In a 2009 article Sugeng,
Fronček, Miller, Ryan, and Walker [2491] used the term distance magic labeling. For
convenience, we will use the term distance magic. In [2738] Vilfred and Jinnah give a
number of necessary conditions for a graph to have a distance magic labeling. One of
them is that if u and v are vertices of a graph with a distance labeling, then the order
of the symmetric difference of N(u) and N(v) (neighborhoods of u and v) is not 1 or 2.
This condition rules out a large class of graphs as having distance magic labelings. Rao,
Singh, and Parameswaran [2098] have shown Cm × Cn has a distance magic labeling if
and only if m = n ≡ 2 (mod 4) and Km × Kn, m ≥ 2, n ≥ 3 does not have a distance
magic labeling. In [429] Benna gives necessary and sufficient condition for Km,n to be a
distance magic graph and proves that if G1 and G2 are connected graphs with minimum
degree 1 and at least three vertices, then G1×G2 does not have a distance magic labeling.
Rao, Sighn, and Parameswaran [44] prove that every graph is an induced subgraph of a
regular graph that has a distance magic labeling. As open problems, Rao [2096] asks for a
characterize 4-regular graphs that have distance magic labelings and which graphs of the
form Cm × Cn, m = n ≡ 2 (mod 4) have distance magic labelings. Kovář, Fronček, and
Kovářová [1424] classified all orders n for which a 4-regular distance magic graph exists
and also showed that there exists a distance magic graph with k = 2t for every integer
t ≥ 6. Acharaya, Rao, Signh, and Parameswaran [43] proved Pm × Cn does not have a
distance magic labeling whenm is at least 3 and provide necessary and sufficient conditions
for Km,n to have a distance magic labeling. Kovár and Silber [1426] proved that an (n−3)-
regular distance magic graph with n vertices exists if and only if n ≡ 3 (mod 6) and that
its structure is determined uniquely. Moreover, they reduce constructions of Fronček to
a single construction and provide another sufficient condition for the existence a distance
magic graph with an odd number of vertices. Fronček, Kovář, and Kovářová [788] provide
a construction for distance magic graphs arising from arbitrary regular graphs based on
an application of magic rectangles. They also solve a problem posed by Shafiq, Ali, and
Simanjuntak [2303]. Godinho and Singh [899] investigate the distance magic labelings for
neighborhood expansions of graphs and present a method for embedding regular graphs
into distance magic graphs.

Among the results of Miller, Rodger, and Simanjuntak in [1755]: the only trees that
have a distance magic labeling are P1 and P3; Cn has a distance magic labeling if and only
if n = 4; Kn has a distance magic labeling if and only if n = 1; the wheel Wn = Cn + P1

has a distance magic labeling if and only if n = 4; the complete graph Kn,n,...,n with p
partite sets has a distance magic labeling if and only if n is even or both n and p are odd;
an r-regular graph where n is odd does not have a distance magic labeling; and G×K2n

has a distance magic labeling for any regular graph G. They also give necessary and
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sufficient conditions for complete tripartite graphs to have a distance magic labeling.
An orientable Γ-distance magic labeling of a graph, was introduced by Cichacz, Frey-

berg and Fronček [617] as a generalization of group distance magic labeling for oriented
graphs. They showed that an even regular circulant graph of order n is orientable Zn-
distance magic, the direct product Cn × Cm is orientable Znm-distance magic. They
also considered some products of circulant graphs. Moreover they proved that if G has
order n ≡ 2 (mod 4) and all vertices of odd degree, then there does not exist an ori-
entable Γ-distance magic labeling of G for any Abelian group Γ of order n. Dyrlaga
and Szopa in [704] gave necessary and sufficient conditions for lexicographic product
Km ◦Kn

∼= Km,m, . . . ,m︸ ︷︷ ︸
n

to be oriantable ζmn-distance magic. As a consequence, they

provide an infinite family of odd regular graphs possessing orientable ζn-distance magic
labeling. In [773] and [774] Freyberg and Keranen found orientable Zn-distance magic
labelings of the Cartesian product of cycles. In [775] they studied Zn-distance magic
labelings for the strong product of cycles.

Anholcer, Cichacz, Peterin, and Tepeh [165] proved that the direct product of two
cycles Cm and Cn is distance magic if and only if m = 4 or n = 4, or m,n ≡ 0 (mod
4) (the direct product of graphs G and H has the vertex set V (G) × V (H) and (g, h) is
adjacent to (g′, h′) if g is adjacent to g′ in G and h is adjacent to h′ in H). In [613] Cichacz
gave necessary and sufficient conditions for circulant graph Cn(1, 2, . . . , p) to be distance
magic for p odd. In [618] Cichacz and Fronček characterized all distance magic circulant
graphs Cn(1, p) for p odd. Cichacz, Fronček, Krop, and Raridan [619] proved that r-partite
graph Kn,n,...,n × C4 is distance magic if and only if r > 1 and n > 2 is even. Anholcer
and Cichacz [168] gave necessary and sufficient conditions for lexicographic product of
an r-regular graph G and Km,n to be distance magic. Cichacz and Görlich [623] gave
necessary and sufficient conditions for the direct product of an r-regular graph G and
Km,n to be distance magic. In [615] the necessary and sufficient conditions for complete
tripartite graphs to be group distance magic was given by Cichacz. In [196] Arumugam,
Kamatchi, and Kovář give several results on distance magic graphs and open problems.

A finite r-regular graph G has a p-partition (resp. closed p-partition) (p ≥ 2) if there
exists a partition of the set V (G) into V1, V2, . . . , Vp such that for every x ∈ V (G), all
V (x) ∩ Vi (respectively, V [x] ∩ V1) have the same size. In [625] Cichacz and Nikodem
proved the following for finite r-regular graphs G. If G is distance magic (resp. closed
distance magic) graph with a p-partition and p(t− 1) even then tG is also distance (resp.
closed distance) magic. If G has order t and H is p-regular such that tH is distance (resp.
closed distance) magic, then the lexicographic product of G and H is distance (resp.
closed distance) magic. If G has order t and H is such that tH is distance magic, then the
lexicographic product of G and H and the direct product of G and H are distance (resp.
closed distance) magic. If H is a p-regular distance magic graph with a 2-partition, then
the lexicographic product of G and H and the direct product of G and H are distance
magic. They further proved that if G = C3 or G is the strong product of Cn and Cm for
n = 3 and m odd, or m,n ≡ 3 (mod 6), then tG is closed distance magic if and only if t
is odd. (The strong direct product of G and H has vertex set V (G)× V (H) and (g, h) is
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adjacent to (g
′
, h
′
) if g = g

′
and h is adjacent to h

′
in H, or h = h

′
and g is adjacent to

g
′

in G.)
In [2222] Seoud, Maqsoud, and Aldiban determined whether or not the following fam-

ilies of graphs have a distance magic vertex labeling: Kn−{e}; Kn−{2e}; P k
n ; C2

n; Km×
Cn; Cm + Pn; Cm + Cn; Pm + Pn; K1,r,s; K1,r,m,n; K2,r,m,n; Km,n + Pk; Km,n +
Ck; Cm + Kn; Pm + Kn; Pm × Pn; Km,n × Pk; Km × Pn; the splitting graph of
Km,n; Kn +G; Km +Kn; Km +Cn; Km + Pn; Km,n +Kr; Cm × Pn; Cm ×K1,n; Cm ×
Kn,n; Cm×Kn,n+1; Km×Kn,r; and Km×Kn. Typically, distance magic labelings exist
only a few low parameter cases.

In [779] Fronček defined the notion of a Γ-distance magic graph as one that has a
bijective labeling of vertices with elements of an Abelian group Γ resulting in constant
sums of neighbor labels. A graph that is Γ-distance magic for an Abelian group Γ is called
group distance magic. Cichacz and Fronček [618] showed that for an r-regular distance
magic graph G on n vertices, where r is odd there does not exist an Abelian group Γ
of order n having exactly one involution (i.e., an element that is its own inverse) that is
Γ-distance magic. Fronček [779] proved that Cm × Cn is a Zmn-distance magic graph if
and only if mn is even. He also showed that C2n×C2n has a Z22n-distance magic labeling.
In [609] Cichacz showed some Γ-distance magic labelings for Cm×Cn where Γ 6≈ Zmn and
Γ 6≈ Z22n . Anholcer, Cichacz, Peterin, and Tepeh [167] proved that if an r1-regular graph
G1 is Γ1-distance magic and an r2-regular graph G2 is Γ2-distance magic, then the direct
product of graphs G1 and G2 is Γ1 × Γ2-distance magic. Moreover they showed that if
G is an r-regular graph of order n and m = 4 or m = 8 and r is even, then Cm × G is
group distance magic. They proved that Cm × Cn is Zmn-distance magic if and only if
m ∈ {4, 8} or n ∈ {4, 8} or m,n ≡ 0 (mod 4). They also showed that if m,n 6≡ 0 (mod
4) then Cm × Cn is not Γ-distance magic for any Abelian group Γ of order mn. Cichacz
[610] gave necessary and sufficient conditions for complete k-partite graphs of odd order p
to be Zp-distance magic. Moreover she showed that if p ≡ 2 (mod 4) and k is even, then
there does not exist a group Γ of order p that has a Γ-distance labeling for a k-partite
complete graph of order p. She also proved that Km,n is a group distance magic graph if
and only if n + m 6≡ 2 (mod 4). In [611] Cichacz proved that if G is an Eulerian graph,
then the lexicographic product of G and C4 is group distance magic. In the same paper
she also showed that if m + n is odd, then the lexicographic product of Km,n and C4 is
group distance magic. In [612] Cichacz gave necessary and sufficient conditions for direct
product of Km,n and C4 for m + n odd and for Km,n × C8 to be group distance magic.
In [614] Cichacz proved that for n even and r > 1 the Cartesian product the complete
r-partitie graph Kn,n,...,n and C4 is group distance magic. Godinho and Singh [898] obtain
group distance magic labelings of Cr

n for certain classes of abelian groups and provide
necessary conditions for existence of such labelings.

Cichacz [616] showed there exists an infinite family of odd regular graphs possessing
Γ-distance magic labeling for groups Γ with more than one involution. In [613] Cichacz
using a notion of a Γ-magic rectangle set MRSΓ(a, b; c) showed group distance labeling
for Cartesian and direct product of complete r-partite graphs. These results supported a
conjecture in [618] that says that if G is a distance magic graph, then G is group distance
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magic.

A directed Γ-distance magic labeling of an oriented graph
−→
G = (V,A) of order n is

a bijective mapping f from the vertex set of G to an abelian group Γ of order n with

the property that there exists a constant c ∈ Γ such that, for every vertex v ∈ V (
−→
G),

w(v) =
∑

u∈N in
G (v) f(u) −

∑
u∈Nout

G (v) f(u) = c, where N in
G (v) is the open in-neighborhood

and Nout
G (v) is the open out-neighborhood of vertex v, that is N in

G (v) = {u : uv ∈ A} and

Nout
G (v) = {u : vu ∈ A}. If for a graph G there exists an orientation

−→
G such that there is

a directed Γ-distance magic labeling f for
−→
G the graph G is called orientable Γ-distance

magic. Freyberg and Keranen [774] proved that Cm × Cn is orientable Zmn-distance
magic for all m,n ≥ 3.

In [166] Anholcer, Cichacz, Peterin, and Tepeh introduce the notion of balanced dis-
tance magic graphs. They say that a distance magic graph G with an even number
of vertices is balanced if there exists a bijection f from V (G) to {1, 2, . . . , |V (G)|} such
that for every vertex w the following holds: If u ∈ N(w) with f(u) = i, then there
exists v ∈ N(w), u 6= v with f(v) = |V (G)| − i + 1. They prove that a graph G is
balanced distance magic if and only if G is regular and V (G) can be partitioned in pairs
(ui, vi), i ∈ {1, 2, . . . , |V (G)|/2, such that N(ui) = N(vi) for all i. Using this characteri-
zation, the following theorems are proved: if G is a regular graph and H is a graph not
isomorphic to Kn where n is odd, then G�H is a balanced distance magic graph if and
only if H is a balanced distance magic graph; G×H is balanced distance magic if and only
if one of G and H is balanced distance magic and the other one is regular; and Cm × Cn
is distance magic if and only if n = 4 or m = 4 or m,n ≡ 0 (mod 4) and Cm × Cn is
balanced distance magic if and only if n = 4 or m = 4. In [169] they prove that every
balanced distance magic graph is also group distance magic; the Cartesian product of a
balanced distance magic graph and a regular graph is group distance magic; the direct
product of C4 or C8 and a regular graph is group distance magic; and they show that
C8 ×G is also group distance magic for any even-regular graph G. They also prove that
C4s × C4t is A × B-distance magic for any Abelian groups A and B of order 4s and 4t,
respectively. Moreover, they conjecture that C4m × C4n is a group distance magic graph.
They prove that Cm×Cn is Zmn-distance magic if and only if m ∈ {4, 8} or n ∈ {4, 8} or
both n and m are divisible by 4, and that Cm × Cn with orders not divisible by 4 is not
Γ-distance magic for any Abelian group Γ of order mn.

Let G = (V,E) be a graph on n vertices. A bijection f from the verticies of graph
G to {1, 2, . . . , |V (G)|} is called a nearly distance magic labeling of G if there exists a
positive integer k such that

∑
f(x) over all x ∈ N(v) = k or k+1 for all v . The constant

k is called a magic constant of the graph and any graph which admits such a labeling is
called a nearly distance magic graph. Godinho, Singh, and Arumugam [900] give several
basic results on nearly distance magic graphs and compute the magic constant k in terms
of the fractional total domination number of the graph.

A survey of results on distance magic (sigma, 1-vertex) labelings through 2009 is given
in [192].
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5.7 Other Types of Magic Labelings

In 2004 Baskar Babujee [392] and [393] introduced the notion of vertex-bimagic labeling
in which there exist two constants k1 and k2 such that the sums involved in a specified
type of magic labeling is k1 or k2. Thus a vertex-bimagic total labeling with bimagic
constants k1 and k2 is the same as a vertex-magic total labeling except for each vertex
v the sum of the label of v and all edges adjacent to v may be k1 or k2. Murugesan
and Senthil Amutha [1805] proved that the bistar Bn,n is vertex-bimagic total labeling
for n > 2. An edge bimagic total labeling edge bimagic total of a graph G(V,E) with p
vertices and q edges is a bijection f from the set of vertices and edges to such that for
every edge uv ∈ E, f(u) + f(uv) + f(v) is one of two oconstants k1 or k2, independent
of the choice of the edge. A bimagic labeling is of interest for graphs that do not have
a magic labeling of a particular type. Bimagic labelings for which the number of sums
equal to k1 and the number of sums equal to k2 differ by at most 1 are called equitable.
When all sums except one are the same the labeling is called almost magic. Although
the wheel Wn does not have an edge-magic total labeling when when n ≡ 3 (mod 4),
Marr, Phillips and Wallis [1712] showed that these wheels have both equitable bimagic
and almost magic labelings. They also show that whereas nK2 has an edge-magic total
labeling if and only if n is odd, nK2 has an edge-bimagic total labeling when n is even and
although even cycles do not have super edge-magic total labelings all cycles have super
edge-bimagic total labelings. They conjecture that there is a constant N such that Kn

has a edge-bimagic total labeling if and only if n is at most N . They show that such
an N must be at least 8. They also prove that if G has an edge-magic total labeling
then 2G has an edge-bimagic total equitable labeling. Amara Jothi, David, and Baskar
Babujee [145] provide edge-bimagic labelings for switching of paths, cycles, stars, crowns
and helms. They also examine whether operations on edge magic graphs results in edge
bimagic graphs or not.

Baskar Babujee and Babitha [396] call a graph with p vertices 1-vertex bimagic if there
is a bijective labeling f from the vertices to {1, 2, . . . , p} such that for each vertex u the
sum of all f(v) where v is adjacent to u is either a constant k1 or a constant k2 and
k1 6= k2. A graph with p vertices is called odd 1-vertex bimagic if there is a bijective
labeling f from the vertices to {1, 3, . . . , 2p − 1} such that for each vertex u the sum of
all f(v) where v is adjacent to u is either a constant k1 or a constant k2 and k1 6= k2. A
graph with p vertices is called even 1-vertex bimagic if there is a bijective labeling f from
the vertices to {0, 2, . . . , 2(p − 1)} such that for each vertex u the sum of all f(v) where
v is adjacent to u is either a constant k1 or a constant k2 and k1 6= k2.

Baskar Babujee and Babitha [396] prove that a necessary condition for the existence
of a 1-vertex bimagic vertex labeling f of a graph G is

∑
x∈V (G) d(x)f(x) = k1p1 + k2p2

where d(x) is the degree of vertex x and p1 and p2 are the number of vertices with common
count k1 and k2, respectively. Among their results are: if G has a 1-vertex bimagic vertex
labeling and G 6= C4, then G+K1 admits a 1- vertex bimagic vertex labeling; Cn a 1-vertex
bimagic if and only if n = 4; Km,n is 1-vertex bimagic; graphs obtained from Pn (n ≥ 3)
by adding edges joining every pair of vertices an odd distance apart are 1-vertex bimagic;
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n-partite graphs of the form Kp,p,...,p are 1-vertex bimagic for all p > 1 when n is even
and 1-vertex bimagic for all even p when n is odd; a regular or biregular graph admits
a 1-vertex bimagic labeling if and only if it the admits an odd 1-vertex bimagic labeling
and if and only it admits an even 1-vertex bimagic labeling.

In [2215] Semenyuta, Nedilko, and Nedilko introduce the notion of the equivalence of
vertex labelings on a given graph. They prove the equivalence of three bimagic labelings
for regular graphs and obtain a particular solution for the problem of the existence a
1-vertex bimagic vertex labeling for graphs of isomorphic Kn,n,m. They prove that the
sequence of biregular graphs Kn(ij) = ((Kn−1 − M) + K1) − (unui) − (unuj) admits a
1-vertex bimagic vertex labeling, where ui, uj is any pair of nonadjacent vertices in the
graph Kn−1 −M , un is the vertex of K1, and M is the perfect matching of the complete
graph Kn−1. They show that if an r-regular graph G of order n is a distance magic
graph, then the graph G+G has a 1-vertex bimagic vertex labeling with magic constants
(n+ 1)(n+ r)/2 +n2 and (n+ 1)(n+ r)/2 +nr. They also define two new types of graphs
that do not admit 1-vertex bimagic vertex labeling.

Baskar Babujee and Jagadesh [393], [400], [401], and [399] proved the following graphs
have super edge bimagic labelings: cycles of length 3 with a nontrivial path attached;
P3 �K1,n n even; Pn + K2 (n odd); P2 + mK1 (m ≥ 2); 2Pn (n ≥ 2); the disjoint union
of two stars; 3K1,n (n ≥ 2); Pn ∪ Pn+1 (n ≥ 2); C3 ∪K1,n; Pn; K1,n; K1,n,n; the graphs
obtained by joining the centers of any two stars with an edge or a path of length 2; the
graphs obtained by joining the centers of two copies of K1,n (n ≥ 3) with a path of length
2 then joining the center one of copies of K1,n to the center of a third copy of K1,n with
a path of length 2; combs Pn �K1; cycles; wheels; fans; gears; Kn if and only if n ≤ 5.

Given positive integers k and λ, Yao, Chen, Yao, and Cheng [2860] say that a total
labeling f of a connected graph G(V,E) from V ∪ E to {1, 2, . . . , |V | + |E|} such that
f(x) 6= f(y) for distinct x, y ∈ V ∪E and f(u)+f(v) = k+λf(uv) for each edge uv in E is
a (k, λ)-magically total labeling of G. They provide necessary and sufficient conditions for
graphs with (k, λ) )-magically total labelings to also have graceful, odd-graceful, felicitous,
and (a, d)-edge antimagic total labelings (see §6.2).

In [1635] López, Muntaner-Batle, and Rius-Font give a necessary condition for a com-
plete graph to be edge bimagic in the case that the two constants have the same parity.

In [397] Baskar Babujee, Babitha, and Vishnupriya make the following definitions. For
any natural number a, a graph G(p, q) is said to be a-additive super edge bimagic if there
exists a bijective function f from V (G)∪E(G) to {a+1, a+2, . . . , a+p+q} such that for
every edge uv, f(u)+f(v)+f(uv) = k1 or k2. For any natural number a, a graph G(p, q) is
said to be a-multiplicative super edge bimagic if there exists a bijective f from V (G)∪E(G)
to {a, 2a, . . . , (p+q)a} such that for every edge uv, f(u)+f(v)+f(uv) = k1 or k2. A graph
G(p, q) is said to be super edge-odd bimagic if there exists a bijection f from V (G)∪E(G)
to {1, 3, 5, . . . , 2(p + q)− 1} such that for every edge uv f(u) + f(v) + f(uv) = k1 or k2.
If f is a super edge bimagic labeling, then a function g from E(G) to {0, 1} with the
property that for every edge uv, g(uv) = 0 if f(u) + f(v) + f(uv) = k1 and g(uv) = 1 if
f(u) + f(v) + f(uv) = k2 is called a super edge bimagic cordial labeling if the number of
edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. They
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prove: super edge bimagic graphs are a-additive super edge bimagic; super edge bimagic
graphs are a-multiplicative super edge bimagic; if G is super edge-magic, then G + K1

is super edge bimagic labeling; the union of two super edge magic graphs is super edge
bimagic; and Pn, C2n and K1,n are super edge bimagic cordial.

For any nontrivial Abelian group A under addition a graph G is said to be A-magic if
there exists a labeling f of the edges of G with the nonzero elements of A such that the
vertex labeling f+ defined by f+(v) = Σf(vu) over all edges vu is a constant. In [2467]
and [2468] Stanley noted that Z-magic graphs can be viewed in the more general context
of linear homogeneous diophantine equations. Shiu, Lam, and Sun [2348] have shown
the following: the union of two edge-disjoint A-magic graphs with the same vertex set
is A-magic; the Cartesian product of two A-magic graphs is A-magic; the lexicographic
product of two A-magic connected graphs is A-magic; for an Abelian group A of even
order a graph is A-magic if and only if the degrees of all of its vertices have the same
parity; if G and H are connected and A-magic, G composed with H is A-magic; Km,n is
A-magic when m,n ≥ 2 and A has order at least 4; Kn with an edge deleted is A-magic
when n ≥ 4 and A has order at least 4; all generalized theta graphs (§4.4 for the definition)
are A-magic when A has order at least 4; Cn + Km is A-magic when n ≥ 3,m ≥ 2 and
A has order at least 2; wheels are A-magic when A has order at least 4; flower graphs
Cm@Cn are A-magic when m,n ≥ 2 and A has order at least 4 (Cm@Cn is obtained from
Cn by joining the end points of a path of length m− 1 to each pair of consecutive vertices
of Cn).

When the constant sum of an A-magic graph is zero the graph is called zero-sum
A-magic. The null set N(G) of a graph G is the set of all positive integers h such that
G is zero-sum Zh-magic. Akbari, Ghareghani, Khosrovshahi, and Zare [106] and Akbari,
Kano, and Zare [107] proved that the null set N(G) of an r-regular graph G, r ≥ 3, does
not contain the numbers 2, 3 and 4. Akbari, Rahmati, and Zare [108] proved the following:
if G is an even regular graph then G is zero-sum Zh-magic for all h; if G is an odd r-
regular graph, r ≥ 3 and r 6= 5 then N(G) contains all positive integers except 2 and 4;
if an odd regular graph is also 2-edge connected then N(G) contains all positive integers
except 2; and a 2-edge connected bipartite graph is zero-sum Zh-magic for h ≥ 6. They
also determine the null set of 2-edge connected bipartite graphs, describe the structure of
some odd regular graphs, r ≥ 3, that are not zero-sum 4-magic, and describe the structure
of some 2-edge connected bipartite graphs that are not zero-sum Zh-magic for h = 2, 3, 4.
They conjecture that every 5-regular graph admits a zero-sum 3-magic labeling.

In [1528] Lee, Saba, Salehi, and Sun investigate graphs that are A-magic where A =
V4 ≈ Z2⊕Z2 is the Klein four-group. Many of theorems are special cases of the results of
Shiu, Lam, and Sun [2348] given in the previous paragraph. They also prove the following
are V4-magic: a tree if and only if every vertex has odd degree; the star K1,n if and only if
n is odd; Km,n for all m,n ≥ 2;Kn − e (edge deleted Kn) when n > 3; even cycles with k
pendent edges if and only if k is even; odd cycles with k pendent edges if and only if k is
odd; wheels; Cn + K2; generalized theta graphs; graphs that are copies of Cn that share
a common edge; and G+K2 whenever G is V4-magic.

In [590] Choi, Georges, and Mauro explore Zk
2 -magic graphs in terms of even edge-
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coverings, graph parity, factorability, and nowhere-zero 4-flows. They prove that the
minimum k such that bridgeless G is zero-sum Zk

2 -magic is equal to the minimum number
of even subgraphs that cover the edges of G, known to be at most 3. They also show
that bridgeless G is zero-sum Zk

2 -magic for all k ≥ 2 if and only if G has a nowhere-zero
4-flow, and that G is zero-sum Zk

2 -magic for all k ≥ 2 if G is Hamiltonian, bridgeless
planar, or isomorphic to a bridgeless complete multipartite graph, and establish equiv-
alent conditions for graphs of even order with bridges to be Zk

2 -magic for all k ≥ 4. In
[864] Georges, Mauro, and Wang utilized well-known results on edge-colorings in order to
construct infinite families that are V4-magic but not Z4-magic.

Baskar Babujee and Shobana [412] prove that the following graphs have Z3-magic
labelings: C2n; Kn (n ≥ 4); Km,2m (m ≥ 3); ladders Pn × P2 (n ≥ 4); bistars B3n−1,3n−1;
and cyclic, dihedral and symmetric Cayley digraphs for certain generating sets. Siddiqui
[2380] proved that generalized prisms, generalized antiprisms, fans and friendship graphs
are Z3k-magic for k ≥ 1. In [596] Chou and Lee investigated Z3-magic graphs.

Chou and Lee [596] showed that every graph is an induced subgraph of an A-magic
graph for any nontrivial Abelian group A. Thus it is impossible to find a Kuratowski
type characterization of A-magic graphs. Low and Lee [1663] have shown that if a graph
is A1-magic then it is A2-magic for any subgroup A2 of A1 and for any nontrivial Abelian
group A every Eulerian graph of even size is A-magic. For a connected graph G, Low and
Lee define T (G) to be the graph obtained from G by adding a disjoint uv path of length
2 for every pair of adjacent vertices u and v. They prove that for every finite nontrivial
Abelian group A the graphs T (P2k) and T (K1,2n+1) are A-magic. Shiu and Low [2357]
show that Kk1,k2,...,kn(ki ≥ 2) is A-magic, for all A where |A| ≥ 3. In [2362] Shiu and Low
analyze the A-magic property for complete n-partite graphs and composition graphs with
deleted edges. Lee, Salehi and Sun [1531] have shown that for m,n ≥ 3 the double star
DS(m,n) is Z-magic if and only if m = n.

S. M. Lee [1490] calls a graph G fully magic if it is A-magic for all nontrivial abelian
groups A. Low and Lee [1663] showed that if G is an Eulerian graph of even size, then G
is fully magic. In [1490] Lee gives several constructions that produce infinite families of
fully magic graphs and proves that every graph is an induced subgraph of a fully magic
graph.

In [1448] Kwong and Lee call the set of all k for which a graph is Zk-magic the integer-
magic spectrum of the graph. They investigate the integer-magic spectra of the coronas
of some specific graphs including paths, cycles, complete graphs, and stars. Low and Sue
[1666] have obtained some results on the integer-magic spectra of tessellation graphs. Shiu
and Low [2358] provide the integer-magic spectra of sun graphs. Chopra and Lee [594]
determined the integer-magic spectra of all graphs consisting of any number of pairwise
disjoint paths with common end vertices (that is, generalized theta graphs). Low and
Lee [1663] show that Eulerian graphs of even size are A-magic for every finite nontrivial
Abelian group A whereas Wen and Lee [2808] provide two families of Eularian graphs that
are not A-magic for every finite nontrivial Abelian group A and eight infinite families of
Eulerian graphs of odd sizes that are A-magic for every finite nontrivial Abelian group A.
Low and Lee [1663] also prove that if A is an Abelian group and G and H are A-magic,
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then so are G×H and the lexicographic product of G and H. Low and Shiu [1665] prove:
K1,n×K1,n has a Zn+1-magic labeling with magic constant 0; if G×H is Z2-magic, then
so are G and H; if G is Zm-magic and H is Zn-magic, then the integer-magic spectra
of G × H contains all common multiples of m and n; if n is even and ki ≥ 3 then the
integer-magic spectra of Pk1 × Pk2 × · · · × Pkn = {3, 4, 5, . . .}. In [2360] Shiu and Low
determine all positive integers k for which fans and wheels have a Zk-magic labeling with
magic constant 0. Shiu and Low [2361] determined for which k ≥ 2 a connected bicyclic
graph without a pendent has a Zk-magic labeling.

Jeyanthi and Jeya Daisy [1149] prove that P 2
n (n > 4), C2

n, the total graph of Cn, and
the splitting graph of C2n are Zk-magic graphs. They also prove: the splitting graph of
Cn is Zk-magic when n is even and n is odd and k is even, the middle graph of Cn is Zk-
magic when n and k are odd, the m∆2n-snake graph is Zk-magic when k > m, the graph
obtained by joining the vertices ui and ui+1 of Cn by a path of length mi for 1 ≤ i ≤ n−1,
and u1 and un by a path of length mn is Zk-magic if either all m1,m2, . . . ,mn are even
or all are odd. In [1150] Jeyanthi and Jeya Daisy prove total graphs of the paths, flower
graphs, and Cm × Pn are Zk-magic. They also prove closed helms are Zk-magic when
k > 4 is even, lotuses inside a circle are Z4k-magic, and graphs consisting of two cycles
with a common edge are Zk-magic when at least one cycle is even. In [1155] Jeyanthi
prove the following graphs are Zk-magic: two odd cycles connected by a path; the graph
obtained by identifying a vertex of Cn with a pendent vertex of a star, m-splitting graphs
of paths, and m-middle graphs of paths. They prove that if G is Zm-magic with magic
constant a then G�Km is Zm-magic.

Jeyanthi and Jeya Daisy [1148] prove that the subdivision graphs of the following
families of graphs are Zk-magic: ladders, triangular ladders, the shadow graph of paths,
the total graph of paths, flowers, generalized prisms Cm × Pn for m even, m∆n-snakes,
lotuses inside a circle, the square graph of paths, gears of even cycles, closed helms of
even cycles, and antiprisms Amn for m even.

Let G be a graph and let G1, G2, . . . , Gn be n ≥ 2 copies of G. The graph obtained by
replacing each endpoint vertex of K1,n by the graphs G1, G2, . . . , Gn is called the open star
of G. Jeyanthi and Jeya Daisy [1152] proved that the open star graphs of shells, flowers,
double wheels, cylinders, wheels, generalised Peterson graphs, lotuses inside a circle, and
closed helms are Zk-magic graphs. They also prove that the super subdivision of any
graph is Zk-magic.

Jeyanthi and Jeya Daisy [1153] proved that the path union of n ≥ 2 copies of the
following families of graphs are Zk-magic: odd cycles; generalised Peterson graphs P (r,m)
when r is odd and 1 ≤ m ≤ r

2
; shell graphs Sr when r > 3; wheels Wr when r > 3; closed

helms CHr when (i) r > 3 is odd and (ii) r is even and k is even; double wheels DWr

when r > 3 is odd; flowers Flr when r > 2; Cr × P2 when r is odd; total graphs of paths
T (Pr) for all n, r > 4; lotuses inside a circle LCr when r > 3; and Cr �K1 for odd r.

Jeyanthi and Jeya Daisy [1154] proved that the following graphs are k-magic: shell
graphs Sn when n is odd or n is even and k is even; generalised Jahangir graphs Jn,s
when n and s have the same parity or n is even, s is odd, and k is even; (Pn + P1)× P2

when n is odd; double wheels 2Cn +K1; mongolian tents M(m,n) when m is even; flower
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snark graphs; slanting ladders (that is, graphs obtained from two paths u1, u2, . . . , un and
v1, v2, . . . , vn by joining each ui with vi+1, 1 ≤ i ≤ n− 1) when n is even; double step grid
graphs; double arrow graphs obtained from Pm × Pn by joining a new vertex with the m
vertices of the first copy of Pm and another new vertex with the m vertices of the last
copy of Pm when m is even; semi Jahangir graphs (the connected graph with vertex set
{p, xi, yk : 1 ≤ i ≤ n + 1, 1 ≤ k ≤ n} and the edge set {pxi : 1 ≤ i ≤ n + 1} ∪ {xiyi : 1 ≤
i ≤ n} ∪ {yixi+1 : 1 ≤ i ≤ n}); graphs obtained by connecting double wheels DWn1 and
DWn2 by a path when n1 and n2 are odd; graphs obtained by joining two copies of shell
graphs by a path; and the splitting graph of a Zk magic graph with magic constant 0.

Let G be a graph with n vertices {u1, u2, . . . , un} and consider n copies of
G, G1, G2, . . . , Gn, with vertex sets V (Gi) = {uji : 1 ≤ i ≤ n, 1 ≤ j ≤ n}. The cycle
of a graph G, denoted by C(n.G), is obtained by identifying the vertex uj1 of Gj with ui
of G for 1 ≤ i ≤ n, 1 ≤ j ≤ n. Jeyanthi and Jeya Daisy [1155] prove that the following
graphs are Zk-magic: C(n.Cr) except r is even, n is odd, and k is odd; generalised Peter-
son graphs C(n.P (r,m)) except r is even, n is odd, and k is odd; cycles of shell graphs;
cycles of wheel graphs; cycles of closed helms; cycles of double wheels C(n.DWr) except r
is even, n is odd, and k is odd; cycles of triangular ladder graphs; cycles of flower graphs;
and cycles of lotus inside a circle graphs. Jeyanthi and Jeya Daisy [1155] also prove that
if G is Zk-magic then C(n.G) is Zk-magic if n or k are even.

Shiu and Low [2359] have introduced the notion of ring-magic as follows. Given a
commutative ring R with unity, a graph G is called R-ring-magic if there exists a labeling
f of the edges of G with the nonzero elements of R such that the vertex labeling f+ defined
by f+(v) = Σf(vu) over all edges vu and vertex labeling f× defined by f×(v) = Πf(vu)
over all edges vu are constant. They give some results about R-ring-magic graphs.

In [535] Cahit says that a graph G(p, q) is total magic cordial (TMC) provided there
is a mapping f from V (G) ∪ E(G) to {0, 1} such that (f(a) + f(b) + f(ab)) mod 2 is a
constant modulo 2 for all edges ab ∈ E(G) and |f(0)− f(1)| ≤ 1 where f(0) denotes the
sum of the number of vertices labeled with 0 and the number of edges labeled with 0 and
f(1) denotes the sum of the number of vertices labeled with 1 and the number of edges
labeled with 1. He says a graph G is total sequential cordial (TSC) if there is a mapping
f from V (G) ∪ E(G) to {0, 1} such that for each edge e = ab with f(e) = |f(a) − f(b)|
it is true that |f(0) − f(1)| ≤ 1 where f(0) denotes the sum of the number of vertices
labeled with 0 and the number of edges labeled with 0 and f(1) denotes the sum of the
number of vertices labeled with 1 and the number of edges labeled with 1. He proves
that the following graphs have a TMC labeling: Km,n (m,n > 1), trees, cordial graphs,
and Kn if and only if n = 2, 3, 5, or 6. He also proves that the following graphs have a
TSC labeling: trees; cycles; complete bipartite graphs; friendship graphs; cordial graphs;
cubic graphs other than K4; wheels Wn (n > 3);K4k+1 if and only if k ≥ 1 and

√
k is

an integer; K4k+2 if and only if
√

4k + 1 is an integer; K4k if and only if
√

4k + 1 is an
integer; and K4k+3 if and only if

√
k + 1 is an integer. In [1137] Jeyanthi, Angel Benseera,

and Cahit prove mP2 is TMC if m 6≡ 2 ( mod 4), mPn is TMC for all m ≥ 1 and n ≥ 3,
and obtain partial results about TMC labelings of mKn. Neela and Selvaraj proved that
the complete tripartite graphs are TMC and complete multipartite graphs are TMC when
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the partite sets have even sizes
Jeyanthi and Angel Benseera [1135] investigated the existence of TMC labelings of the

one-point unions of copies of cycles, complete graphs and wheels. In [1136] Jeyanthi and
Angel Benseera prove that if Gi(pi, qi), i = 1, 2, 3, . . . , n are totally magic cordial graphs
with C = 0 such that pi+ qi, i = 1, 2, 3, ..., n are even, and |pi − 2mi| ≤ 1, where mi is the
number of vertices labeled with 0 in Gi, i = 1, 2, . . . , n, then G1 +G2 + · · ·+Gn is TMC;
if G is an odd graph with p+ q ≡ 2 ( mod 4), then G is not TMC; fans Fn are TMC for
n ≥ 2; wheels Wn (n ≥ 3) are TMC if and only if n 6≡ 3 (mod 4); mW4t+3 is TMC if
and only if m is even; mWn is TMC if n 6≡ 3 (mod 4); Cn +K2m+1 is TMC if and only if
n 6≡ 3 (mod 4); C2n+1 �Km is TMC if and only if m is odd; the disjoint union of K1,m

and K1,n is TMC if and only if m or n is even.
For a bijection f : V (G) ∪ E(G) → Zk such that for each edge uv ∈ E(G), f(u) +

f(v) + f(uv) is constant (mod k) nf (i) denotes the number vertices and edges labeled
by i under f . If |nf (i)− nf (j)| ≤ 1 for all 0 ≤ i < j ≤ k− 1, f is called a k-totally magic
cordial labeling of G. A graph is said to be k-totally magic cordial if it admits a k-totally
magic cordial labeling. In [1138] Jeyanthi, Angel Benseera, and Lau provide some ways to
construct new families of k-totally magic cordial (k-TMC) graphs from a known k-totally
magic cordial graph. Let G (respectively, H) be a (p, q)-graph (respectively, an (n,m)-
graph) that admits a k-TMC labeling f (respectively, g) with constant C such that nf (i)
and vf (i) = p

k
(or ng(i) and vg(i) = n

k
) are constants for all 0 ≤ i ≤ k − 1, they show

that G + H also admits a k-TMC labeling with constant C. They prove the following.
If G is an edge magic total graph, then G is k-TMC for k ≥ 2; if G is an odd graph
with p + q ≡ k (mod 2k) and k ≡ 2 (mod 4), then G is not k-TMC; if n ≡ 7 (mod 8),
Kn � K1 is not 2n-TMC; if n ≡ 2 (mod 4), Cn � C3 is not n-TMC; if n ≡ 1 (mod 2),
Cn�K5 is not 2n-TMC; if n ≡ 2 (mod 4), Cn×P2 is not n-TMC; Kn (n ≥ 3) is n-TMC;
Kn � K1 (n ≥ 3) is n-TMC; Sn is n-TMC for all n ≥ 1; Km,n (m ≥ n ≥ 2) is both
m-TMC and n-TMC; Wn is n-TMC for all odd n ≥ 3 and is 3-TMC for n ≡ 0 (mod 6);
mKn (n ≥ 2) is n-TMC if n ≥ 3 is odd; Kn + Kn is n-TMC if n ≥ 3 is odd; Sn + Sn
(n ≥ 1) is (n+ 1)-TMC; and if m ≥ 3 and n is odd, Cn×Pm (n ≥ 3) is n-TMC. In [1140]
Jeyanthi, Angel Benseera, and Lau call a graph G hypo-k-TMC if G− {v} is k-TMC for
each vertex v in V (G) and establish that some families of graphs admit and do not admit
hypo-k-TMC labeling.

A graph G(V,E) where V = {vi, 1 ≤ i ≤ n} and E = {vivi+1, 1 ≤ i ≤ n} is 0-edge
magic if there exists a bijection f : V (G)→ {1,−1} such that the induced edge labeling
defined by f ∗(uv) = f(u) + f(v) is 0 for all uv ∈ E. Paths, cycles, complete n-ary pseudo
trees, Pm×Cn where n ≡ 0 (mod 2), Qn, the graph Cm attached to mK1, m ≡ 0 (mod 2),

friendship graphs C
(m)
n , and the graph Pm × Pm × Pm are 0-edge magic graphs [1422],

[1108], [1838]. Jayapriya [1107] proved the splitting graphs spl(Pn), spl(Cn), spl(K1,n),
spl(Bm,n), and splitting graph of any tree admits 0-edge magic labelings. Laurejas and
Pedrano [1473] determine the 0-edge magic labeling of Pm × Pn, Cm × Cn, and the gen-
eralized Petersen graph. They also prove that odd cycles are not 0-edge magic.

A binary magic total labeling of a graph G is a function f : V (G) ∪ E(G) → {0, 1}
such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G). Jeyanthi and Angel
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Benseera [1139] define the totally magic cordial deficiency of G as the minimum number
of vertices taken over all binary magic total labeling of G that is necessary to add so that
that the resulting graph is totally magic cordial. The totally magic cordial deficiency of
G is denoted by µT (G). They provide µT (Kn) for some cases.

Let G be a graph rooted at a vertex u and fi be a binary magic total labeling of G
and fi(u) = 0 for i = 1, 2, . . . , k and nfi(0) = αi, nfi(1) = βi for i = 1, 2, . . . , k. Jeyanthi
and Angel Benseera [1139] determine the totally magic cordial deficiency of the one-point
union G(n) of n copies of G. They show that for n ≡ 3 (mod 4) the totally magic cordial

deficiency of Wn, W
(4t+1)
n , W

(n)
4t+1 and Cn + K2m+1 is 1; for m odd, µT (mW4t+3) = 1; and

for n ≡ 1 (mod 4), µT (K
(n)
4 ) = 1.

In 2001, Simanjuntak, Rodgers, and Miller [1755] defined a 1-vertex magic (also
known as distance magic labeling vertex labeling of G(V,E) as a bijection from V to
{1, 2, . . . , |V |} with the property that there is a constant k such that at any vertex v
the sum

∑
f(u) taken over all neighbors of v is k. Among their results are: H × K2k

has a 1-vertex-magic vertex labeling for any regular graph H; the symmetric complete
multipartite graph with p parts, each of which contains n vertices, has a 1-vertex-magic
vertex labeling if and only if whenever n is odd, p is also odd; Pn has a 1-vertex-magic
vertex labeling if and only if n = 1 or 3; Cn has a 1-vertex-magic vertex labeling if and
only if n = 4; Kn has a 1-vertex-magic vertex labeling if and only if n = 1; Wn has a
1-vertex-magic vertex labeling if and only if n = 4; a tree has a 1-vertex-magic vertex
labeling if and only if it is P1 or P3; and r-regular graphs with r odd do not have a
1-vertex-magic vertex labeling.

Miller, Rogers, and Simanjuntak [1755] the complete p-partite (p > 1) graph
Kn,n,...,n (n > 1) has a 1-vertex-magic vertex labeling if and only if either n is even
or np is odd. Shafiq, Ali, Simanjuntak [2303] proved mKn,n,...,n has a 1-vertex-magic ver-
tex labeling if n is even or mnp is odd and m ≥ 1, n > 1, p > 1; and mKn,n,...,n does not
have a 1-vertex-magic vertex labeling if np is odd, p ≡ 3 (mod 4), and m is even.

Recall if V (G) = {v1, v2, . . . , vp} is the vertex set of a graph G and H1, H2, . . . , Hp are
isomorphic copies of a graph H, then G[H] is the graph obtained from G by replacing
each vertex vi of G by Hi and joining every vertex in Hi to every neighbor of vi. Shafiq,
Ali, Simanjuntak [2303] proved if G is an r-regular graph (r ≥ 1) then G[Cn] has a 1-
vertex-magic vertex labeling if and only if n = 4. They also prove that for m ≥ 1 and
n > 1, mCp[Kn] has 1-vertex-magic vertex labeling if and only if either n is even or mnp
is odd or n is odd and p ≡ 3 (mod 4).

For a graph G Jeyanthi and Angel Benseera [1134] define a function f from V (G) ∪
E(G) to {0, 1} to be a totally vertex-magic cordial labeling (TVMC) with a constant C if
f(a)+

∑
b∈N(a) f(ab) ≡ C (mod 2) for all vertices a ∈ V (G) and |nf (0)−nf (1)| ≤ 1, where

N(a) is the set of vertices adjacent to the vertex a and nf (i) is the sum of the number
of vertices and edges with label i. They prove the following graphs have totally vertex-
magic cordial labelings: vertex-magic total graphs; trees; Kn; Km,n whenever |m−n| ≤ 1;
Pn +P2; friendship graphs with C = 0; and flower graphs Fln for n ≥ 3 with C= 0. They
also proved that if G is TVMC with C = 1, then the graph obtained by identifying any
vertex of G with any vertex of a tree is TVMC with C = 1; if G is a (p, q) graph with
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|p− q| ≤ 1, then G is TVMC with C = 1; and if G(p, q) is a TVMC graph with constant
C = 0 where p is odd, then G+K2m is TVMC with C = 1 if m is odd and with C = 0 if
m is even.

Jeyanthi, Angel Benseera, and Immaculate Mary [1133] showed that the following
graphs have totally magic cordial labelings: (p, q) graphs with |p− q| ≤ 1; flower graphs
Fln for n ≥ 3; ladders; and graphs obtained by identifying a vertex of Cm with each vertex
of Cn. They also proved that if G1(p1, q1) and G2(p2, q2) are two disjoint totally magic
cordial graphs with p1 = q1 or p2 = q2 then G1 ∪G2 is totally magic cordial. In Theorem
10 in [535] Cahit stated that Kn is totally magic cordial if and only if n ∈ {2, 3, 5, 6}.
Jeyanthi and Angel Benseera [1139] proved that Kn is totally magic cordial if and only
if
√

4k + 1 has an integer value when n = 4k;
√
k + 1 or

√
k have an integer value when

n = 4k + 1;
√

4k + 5 or
√

4k + 1 have an integer value when n = 4k + 2; or
√
k + 1 has

an integer value when n = 4k + 3.
A graph G is said to have a totally magic cordial TMC labeling with constant C if there

exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2)
for all ab ∈ E(G) and |nf (0)− nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number
of vertices and edges with label i. In [1136] Jeyanthi and Angel Benseera prove that if
Gi(pi, qi), i = 1, 2, 3, . . . , n are totally magic cordial graphs with C = 0 such that pi + qi,
i = 1, 2, 3, . . . , n are even, and |pi − 2mi| ≤ 1, where mi is the number of vertices labeled
with 0 in Gi, i = 1, 2, . . . , n, then G1 + G2 + · · · + Gn is TMC. They also prove the
following. If G be an odd graph with p + q ≡ 2 (mod 4), then G is not TMC; fan graph
Fn is TMC for n ≥ 2; the wheel graph Wn (n ≥ 3) is TMC if and only if n 6≡ 3(mod 4);
mW4t+3 is TMC if and only if m is even; mWn is TMC if n 6≡ 3 (mod 4) and m ≥ 1;
Cn + K2m+1 is TMC if and only if n 6≡ 3 (mod 4); C2n+1 �Km is TMC if and only if m
is odd; and the disjoint union of K1,m and K1,n is TMC if and only if m or n is even.

Balbuena, Barker, Lin, Miller, and Sugeng [341] call a vertex-magic total labeling of a
graph G(V,E) an a-vertex consecutive magic labeling if the vertex labels are {a+ 1, a+
2, . . . , a + |V |} where 0 ≤ a ≤ |E|. They prove: if a tree of order n has an a-vertex
consecutive magic labeling then n is odd and a = n− 1; if G has an a-vertex consecutive
magic labeling with n vertices and e = n edges, then n is odd and if G has minimum
degree 1, then a = (n + 1)/2 or a = n; if G has an a-vertex consecutive magic labeling
with n vertices and e edges such that 2a ≤ e and 2e ≥

√
6n − 1, then the minimum

degree of G is at least 2; if a 2-regular graph of order n has an a-vertex consecutive magic
labeling, then n is odd and a = 0 or n; and if a r-regular graph of order n has an a-vertex
consecutive magic labeling, then n and r have opposite parities.

Balbuena et al. also call a vertex-magic total labeling of a graph G(V,E) a b-edge
consecutive magic labeling if the edge labels are {b+1, b+2, . . . , b+|E|} where 0 ≤ b ≤ |V |.
They prove: if G has n vertices and e edges and has a b-edge consecutive magic labeling
and one isolated vertex, then b = 0 and (n − 1)2 + n2 = (2e + 1)2; if a tree with odd
order has a b-edge consecutive magic labeling then b = 0; if a tree with even order has a
b-edge consecutive magic labeling then it is P4; a graph with n vertices and e edges such
that e ≥ 7n/4 and b ≥ n/4 and a b-edge consecutive magic labeling has minimum degree
2; if a 2-regular graph of order n has a b-edge consecutive magic labeling, then n is odd
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and b = 0 or b = n; and if a r-regular graph of order n has an b-edge consecutive magic
labeling, then n and r have opposite parities.

Sugeng and Miller [2494] prove: If (V,E) has an a-vertex consecutive edge magic
labeling, where a 6= 0 and a 6= |E|, then G is disconnected; if (V,E) has an a-vertex
consecutive edge magic labeling, where a 6= 0 and a 6= |E|, then G cannot be the union of
three trees with more than one vertex each; for each nonnegative a and each positive n,
there is an a-vertex consecutive edge magic labeling with n vertices; the union of r stars
and a set of r− 1 isolated vertices has an s-vertex consecutive edge magic labeling, where
s is the minimum order of the stars; for every b every caterpillar has a b-edge consecutive
edge magic labeling; if a connected graph G with n vertices has a b-edge consecutive edge
magic labeling where 1 ≤ b ≤ n − 1, then G is a tree; the union of r stars and a set of
r − 1 isolated vertices has an r-edge consecutive edge magic labeling.

Baskar Babujee, Vishnupriya, and Jagadesh [415] introduced a labeling called a-vertex
consecutive edge bimagic total as a graph G(V,E) for which there are two positive integers
k1 and k2 and a bijection f from V ∪ E to {1, 2, . . . , |V | + |E|} such that f(u) + f(v) +
f(uv) = k1 or k2 for all edges uv and f(V ) = {a + 1, a + 2, . . . , a + |V |}, 0 ≤ a ≤ |V |.
They proved the following graphs have such labelings: Pn, K1,n, combs, bistars Bm,n,
trees obtained by adding a pendent edge to a vertex adjacent to the end point of a path,
trees obtained by joining the centers of two stars with a path of length 2, trees obtained
from P5 by identifying the center of a copy K1,n with the two end vertices and the middle
vertex. In [405] Baskar Babujee and Jagadesh proved that cycles, fans, wheels, and gear
graphs have a-vertex consecutive edge bimagic total labelings. Baskar Babujee, Jagadesh,
Vishnupriya [407] study the properties of a-vertex consecutive edge bimagic total labeling
for P3�K1,2n, Pn+K2 (n is odd and n ≥ 3), (P2∪mK1)+K2, (P2 +mK1) (m ≥ 2), Cn,
fans Pn +K1, double fans Pn + 2K1, and graphs obtained by appending a path of length
at least 2 to a vertex of C3. Baskar Babujee and Jagadesh [406] prove the following graphs
have a-vertex consecutive edge bimagic total labelings: 2Pn (n ≥ 2), Pn ∪ Pn+1 (n ≥ 2),
K2,n, Cn � K1, and that C3 ∪ K1,n an a-vertex consecutive edge bimagic labeling for
a = n+ 3.

Vishnupriya, Manimekalai, and Baskar Babujee [2750] define a labeling f of a graph
G(p, q) to be a edge bimagic total labeling if there exists a bijection f from V (G)∪E(G)→
{1, 2, . . . , p+q} such that for each edge e = (u, v) ∈ E(G) we have f(u)+f(e)+f(v) = k1

or k2, where k1 and k2 are two constants. They provide edge bimagic total labelings for
Bm,n, K1,n,n, and trees obtained from a path by appending an edge to one of the vertices
adjacent to an endpoint of the path. An edge bimagic total labeling is G(V,E) is called an
a-vertex consecutive edge bimagic total labeling if the vertex labels are {a+1, a+2, . . . , a+
|V |} where 0 ≤ a ≤ |E|. Baskar Babujee and Jagadesh [403] prove the following graphs
a-vertex consecutive edge-bimagic total labelings: the trees obtained from K1,n by adding
a new pendent edge to each of the existing n pendent vertices; the trees obtained by
adding a pendent path of length 2 to each of the n pendent vertices of K1,n; the graphs
obtained by joining the centers of two copies of identical stars by a path of length 2; and
the trees obtained from a path by adding new pendent edges to one pendent vertex of the
path. Baskar Babujee, Vishnupriya, and Jagadesh [415] proved the following graphs have
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such labelings: Pn, K1,n, combs, bistars Bm,n, trees obtained by adding a pendent edge
to a vertex adjacent to the end point of a path, trees obtained by joining the centers of
two stars with a path of length 2, trees obtained from P5 by identifying the center of a
copy K1,n with the two end vertices and the middle vertex. In [405] Baskar Babujee and
Jagadesh proved that cycles, fans, wheels, and gear graphs have a-vertex consecutive edge
bimagic total labelings. Baskar Babujee, Jagadesh, Vishnupriya [407] study the properties
of a-vertex consecutive edge bimagic total labeling for P3�K1,2n, Pn +K2 (n is odd and
n ≥ 3), (P2 ∪mK1) +K2, (P2 +mK1) (m ≥ 2), Cn, fans Pn +K1, double fans Pn + 2K1,
and graphs obtained by appending a path of length at least 2 to a vertex of C3.

Vishnupriya, Manimekalai, and Baskar Babujee [2750] prove that bistars, trees ob-
tained by adding a pendent edge to a vertex adjacent to the end point of a path, and
trees obtained subdividing each edge of a star have edge bimagic total labelings. Prathap
and Baskar Babujee [2037] obtain all possible edge magic total labelings and edge bimagic
total labelings for the star K1,n. Jayasekaran1 and Flower [1110] proved that the shadow
graph and the splitting graph of paths stars and cycles are edge trimagic total and super
edge trimagic total. Magic labelings of directed graphs are discussed in [1710] and [478].
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6 Antimagic-type Labelings

6.1 Antimagic Labelings

Hartsfield and Ringel [964] introduced antimagic graphs in 1990. A graph with q edges is
called antimagic if its edges can be labeled with 1, 2, . . . , q without repetition such that
the sums of the labels of the edges incident to each vertex are distinct.2 Among the graphs
they prove are antimagic are: Pn (n ≥ 3), cycles, wheels, and Kn (n ≥ 3). T. Wang [2774]
has shown that the toroidal grids Cn1×Cn2×· · ·×Cnk

are antimagic and, more generally,
graphs of the form G×Cn are antimagic if G is an r-regular antimagic graph with r > 1.
Cheng [584] proved that all Cartesian products or two or more regular graphs of positive
degree are antimagic and that if G is j-regular and H has maximum degree at most k,
minimum degree at least one (G and H need not be connected), then G×H is antimagic
provided that j is odd and j2 − j ≥ 2k, or j is even and j2 > 2k. Wang and Hsiao [2775]
prove the following graphs are antimagic: G × Pn (n > 1) where G is regular; G ×K1,n

where G is regular; compositions G[H] (see §2.3 for the definition) where H is d-regular
with d > 1; and the Cartesian product of any double star (two stars with an edge joining
their centers) and a regular graph. In [583] Cheng proved that Pn1×Pn2×· · ·×Pnt (t ≥ 2)
and Cm × Pn are antimagic. In [2437] Solairaju and Arockiasamy prove that various
families of subgraphs of grids Pm×Pn are antimagic. Liang and Zhu [1580] proved that if
G is k-regular (k ≥ 2), then for any graph H with |E(H)| ≥ |V (H)|−1 ≥ 1, the Cartesian
product H × G is antimagic. They also showed that if |E(H)| ≥ |V (H)| − 1 and each
connected component of H has a vertex of odd degree, or H has at least 2|V (H)|−2 edges,
then the prism of H is antimagic. Shang [2313] showed that all spiders are antimagic.
Lee, Lin, and Tsai [1484] proved that C2

n is antimagic and the vertex sums form a set of
successive integers when n is odd. Shang, Lin, and Liaw [2316] show that a star forest
containing no S1 and at most one S2 as components is antimagic. They also prove that
if a star forest mS2 is antimagic then m = 1 and mS2 ∪ Sn (n ≥ 3) is antimagic if and
only if m ≤ min{2n+ 1, 2n− 5 +

√
8n2 − 24n+ 17/2}. Wang, Miao, and Li [2786] show

that certain graphs with even factors are antimagic. Li [1574] gives antimagic labelings
for Ck

n for k = 2, 3, and 4. In [2792] Wang and Zhang showed that certain classes of
regular graphs of odd degree with particular type of perfect matchings are antimagic. As
a by-product, they get that generalized Petersen graphs and a subclass of Cayley graphs
of Zn are antimagic. Deng and Li [659] proved that caterpillars with maximum degree 3
are antimagic.

For a graph G and a vertex v of G, the vertex switching graph Gv is the graph obtained
from G by removing all edges incident to v and adding edges joining v to every vertex
not adjacent to v in G. Vaidya and Vyas [2691] proved that the graphs obtained by the
switching of a pendent vertex of a path, a vertex of a cycle, a rim vertex of a wheel, the
center vertex of a helm, or a vertex of degree 2 of a fan are antimagic graphs.

Phanalasy, Miller, Rylands, and Lieby [1925] in 2011 showed that there is a relation-

2A comprehensive expository treatment of antimagic labelings is given by Bača, Miller, Ryan, and
Semaničová-Feňovč́ıkováin [304].
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ship between completely separating systems and labeling of regular graphs. Based on
this relationship they proved that some regular graphs are antimagic. Phanalasy, Miller,
Iliopoulos, Pissis, and Vaezpour [1923] proved the Cartesian product of regular graphs
obtained from [1925] is antimagic. Ryan, Phanalasy, Miller, and Rylands introduced the
generalized web and flower graphs in [2148] and proved that these families of graphs are
antimagic. Rylands, Phanalasy, Ryan, and Miller extended the concept of generalized
web graphs to the single apex multi-generalized web graphs and they proved these graphs
to be antimagic in [2150]. Ryan, Phanalasy, Rylands and Miller extended the concept
of generalized flower to the single apex multi-(complete) generalized flower graphs and
constructed antimagic labeling for this family of graphs in [2149]. For more about an-
timagicness of generalized web and flower graphs see [1751]. Phanalasy, Ryan, Miller and
Arumugam [1924] introduced the concept of generalized pyramid graphs and they con-
structed antimagic labeling for these graphs. Bača, Miller, Phanalasy, and Feňovč́ıková
proved that some join graphs and incomplete join graphs are antimagic in [301]. More-
over, in [300] they proved that the complete bipartite graph Km,m and complete 3-partite
graph Km,m,m are antimagic and if G is a k-regular (connected or disconnected) graph
with p vertices and k ≥ 2, then the join of G and (p− k)K1, G+ (p− k)K1 is antimagic.
Arumugam, Miller, Phanalasy, and Ryan [197] provided antimagic labelings for a family
of generalized pyramid graphs. Daykin, Iliopoulas. Miller, and Phanalasy [651] show
several families of graphs recursively defined from a sequence of graphs that are gener-
alizations of corona graphs are antimagic. Lozano, Mora, Seara, and Tey [1667] proved
that caterpillars are antimagic.

Let G be a k-regular graph with p vertices and q edges. The generalized sausage graph,
denoted by S(G;m), is the graph obtained from G × Pm (G × P1 = G), by joining each
end vertex of the Pm to a new vertex (which we call apexes) with an edge. In particular,
when m = 1, each vertex of the graph G joins to two vertices with two edges. The
mixed generalized sausage graph, denoted by MS(G;m), is the graph obtained from the
generalized sausage graph S(G;m), m ≥ 3, by joining each vertex of each copy of the
dm/2e copies of G on the left hand side to the left hand side apex, except the nearest copy
to the apex, and similarly for the right hand side apex. The complete mixed generalized
sausage graph, denoted by CMS(G;m) is the graph obtained from the generalized sausage
graph by joining each vertex of each copy of G, except the two nearest copies of G to
the apexes, to each apex with an edge, and each corresponding pair of vertices of the
two nearest copies of G to the apexes with an edge. The complete mixed generalized
sausage graph CMS−(G;m) is the graph obtained from CMS(G;m) by deleting the edge
connecting each corresponding pair of vertices of the two nearest copies of G to the apexes.
In [1922] Phanalasy proved a families of generalized sausage graphs, mixed generalized
sausage graphs, and complete mixed generalized sausage graphs are antimagic.

A split graph is a graph that has a vertex set that can be partitioned into a clique and
an independent set. Tyshkevich (see [391]) defines a canonically decomposable graph as
follows. For a split graph S with a given partition of its vertex set into an independent
set A and a clique B (denoted by S(A,B)), and an arbitrary graph H the composition
S(A,B) ◦ H is the graph obtained by taking the disjoint union of S(A,B) and H and
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adding to it all edges having an endpoint in each of B and V (H). If G contains nonempty
induced subgraphs H and S and vertex subsets A and B such that G = S(A,B) ◦ H,
then G is canonically decomposable; otherwise G is canonically indecomposable. Barrus
[391] proved that every connected graph on at least 3 vertices that is split or canonically
decomposable is antimagic.

Hartsfield and Ringel [964] conjecture that every tree except P2 is antimagic and,
moreover, every connected graph except P2 is antimagic. In 2004 Alon, Kaplan, Lev,
Roditty, and Yuster [139] use probabilistic methods and analytic number theory to show
that this conjecture is true for all graphs with n vertices and minimum degree Ω(log n).
They also prove that if G is a graph with n ≥ 4 vertices and ∆(G) ≥ n − 2, then G is
antimagic and all complete partite graphs except K2 are antimagic. Sĺıva [2428] proved the
conjecture for graphs with a regular dominating subgraph. In 2016 Eccles [705] improved
the result of Alon et al. by proving that there exists an absolute constant d0 such that if
G is a graph with average degree at least d0 and G contains no isolated edge and at most
one isolated vertex, then G is antimagic.

Chawathe and Krishna [571] proved that every complete m-ary tree is antimagic.
Yilma [2868] extended results on antimagic graphs that contain vertices of large degree
by proving that a connected graph with ∆(G) ≥ |V (G)|−3, |V (G)| ≥ 9 is antimagic and
that if G is a graph with ∆(G) =deg(u) = |V (G)| − k, where k ≤ |V (G)|/3 and there
exists a vertex v in G such that the union of neighborhoods of the vertices u and v forms
the whole vertex set V (G), then G is antimagic.

Fronček [780] defines a handicap incomplete tournament of n teams with r rounds,
HIT(n, r), as a tournament in which every team plays r other teams and the total strength

of the opponents that team i plays is ~Sn,r(i) = t − i for every i and some fixed constant
t. (This means that the strongest team plays strongest opponents, and the lowest ranked
team plays weakest opponents.) In terms of distance magic graphs this restriction cor-
responds to finding a distance antimagic graph with the additional property that the
sequence w(1), w(2), . . . , w(n) (where team i is again the i-th ranked team) is an increas-
ing arithmetic progression with difference one. These graphs are called handicap distance
antimagic graphs. A handicap distance d-antimagic labeling of a graph G(V,E) with n

vertices is a bijection ~f : V → {1, 2, . . . , n} with the property that ~f(xi) = i and the se-
quence of the weights w(x1), w(x2), . . . , w(xn) forms an increasing arithmetic progression
with difference d. A graph G is a handicap distance d-antimagic graph if it admits a hand-
icap distance d-antimagic labeling, and handicap distance antimagic graph when d = 1.
In [780] Fronček establishes a relationship between handicap incomplete tournaments and
distance antimagic graphs and construct some new infinite classes of distance antimagic
graphs and infinite classes of handicap incomplete round robin tournaments. Fronček and
Shepanik [791] construct r-regular handicap distance antimagic graphs of order n ≡ 0
(mod 8) for all feasible values of r. Fronček [784] proved that regular handicap distance
antimagic graphs exist for every feasible odd order by proving that there exists a regular
handicap graph of an odd order n if and only if n = 9 or n ≥ 13. In [783] Fronček
constructed a class of regular 2-handicap distance antimagic graphs for every order n ≡ 0
(mod 16). In [785] he proved that a k-regular 2-handicap distance antimagic graph of
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order n ≡ 0 (mod 16) exists if and only if n ≥ 16 and 4 ≤ k ≤ n− 6.
Cranston [633] proved that for k ≥ 2, every k-regular bipartite graph is antimagic. For

non-bipartite regular graphs, Liang and Zhu [1581] proved that every cubic graph is an-
timagic. That result was generalized by Cranston, Liang, and Zhu [634], who proved that
odd degree regular graphs are antimagic. Hartsfield and Ringel [964] proved that every
2-regular graph is antimagic. Bérczi, Bernäth, and Vizer [439] use a slight modification
of an argument of Cranston et al. [634] to prove that k-regular graphs are antimagic for
k ≥ 2. The same was done by Chang, Liang, Pan, and Zhu [555] proved that every even
degree regular graph is antimagic.

Beck and Jackanich [428] showed that every connected bipartite graph except P2 with
|E| edges admits an edge labeling with labels from {1, 2, . . . , |E|}, with repetition allowed,
such that the sums of the labels of the edges incident to each vertex are distinct. They
call such a graph weak antimagic.

Wang, Liu, and Li [2784] proved: mP3 (m ≥ 2) is not antimagic; Pn ∪ Pn (n ≥ 4)
is antimagic; Sn ∪ Pn is antimagic; Sn ∪ Pn+1 is antimagic; Cn ∪ Sm is antimagic for
m ≥ 2

√
n + 2; mSn is antimagic; if G and H are graphs of the same order and G ∪ H

is antimagic, then so is G + H; and if G and H are r-regular graphs of even order, then
G+H is antimagic. In [2785] Wang, Liu, and Li proved that if G is an n-vertex graph with
minimum degree at least r and H is an m-vertex graph with maximum degree at most
2r−1 (m ≥ n), then G+H is antimagic. Bača, Kimáková, Semaničová-Feňovčikovǎ, and
Umar [278] prove the disjoint union of multiple copies of a (a, 1)-(super)-tree-antimagic
graph is also a (b, 1)-(super)-tree-antimagic for certain a and b.

For any given degree sequence pertaining to a tree, Miller, Phanalasy, Ryan, and
Rylands [1753] gave a construction for two vertex antimagic edge trees with the given
degree sequence and provided a construction to obtain an antimagic unicyclic graph with
a given degree sequence pertaining to a unicyclic graph.

Kaplan, Lev, and Roditty [1340] prove that every non-trivial rooted tree for which
every vertex that is a not a leaf has at least two children is antimagic (see [1579]) for
a correction of a minor error in the the proof). For a graph G with m vertices and an
Abelian group A they define G to be A-antimagic if there is a one-to-one mapping from
the edges of G to the nonzero elements of A such that the sums of the labels of the edges
incident to v, taken over all vertices v of G, are distinct. For any n ≥ 2 they show that
a non-trivial rooted tree with n vertices for which every vertex that is a not a leaf has at
least two children is Zn-antimagic if and only if n is odd. They also show that these same
trees are A-antimagic for elementary Abelian groups G with prime exponent congruent
to 1 (mod 3).

In [551] Chan, Low, and Shiu use [G,A] to denote the class of distinct A-antimagic
labelings of G. They prove: for a non-trivial Abelian group A that underlies some com-
mutative ring R with unity, if d is a unit in R and f ∈ [G,A], then df ∈ [G,A]; if A is an
Abelian group that contains a subgroup isomorphic to B and a graph G is B-antimagic,
then G is A-antimagic; P4m+r and C4m+r are Zk-antimagic for k ≥ 4m+ r and r = 0, 1, 3;
P4m+2 is Zk-antimagic for k ≥ 4m + 3; regular Hamiltonian graphs of order 4m + r are
Zk-antimagic for k ≥ 4m + r and r = 0, 1, 3, and Zk-antimagic for k ≥ 4m + 3 and
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r = 2; for odd n, Sn is Zk-antimagic for k ≥ n > 4; for even n, Sn is Zk-antimagic for
k ≥ n + 2 ≥ 6 but not Zn-antimagic or Zn+1-antimagic; trees of order n with exactly
one vertex of even degree are Zk-antimagic for k ≥ n; trees of order n with exactly two
vertices of even degree are Zk-antimagic for k ≥ n + 1; and double stars of order are
Zk-antimagic for k ≥ n+ 1 when n ≡ 2 (mod 4) and Zk-antimagic for k ≥ n when n 6≡ 2
(mod 4).

The integer-antimagic spectrum of a graph G is the set {k | G is Zk-antimagic (k ≥ 2}.
Shiu, Sun, and Low [2366] determine the integer-antimagic spectra of tadpoles and lol-
lipops. Shiu and Low [2363] determine the integer-antimagic spectra of complete bipartite
graphs and complete bipartite graphs with a deleted edge. Shiu [2335] determined the
integer-antimagic spectra of disjoint unions of cycles.

Liang, Wong, and Zhu [1579] study trees with many degree 2 vertices with a restriction
on the subgraph induced by degree 2 vertices and its complement. Denoting the set of
degree 2 vertices of a tree T by V2(T ) Liang, Wong, and Zhu proved that if V2(T ) and
V \ V2(T ) are both independent sets, or V2(T ) induces a path and every other vertex has
an odd degree, then T is antimagic. In [1669] Lozano, Mora, Seara, and Tey extended this
result by showing that trees whose vertices of even degree induce a path are antimagic.

In [2695] Vaidya and Vyas proved that the middle graphs, total graphs, and shadow
graphs of paths and cycles are antimagic. In [1430] and [1431] Krishnaa provided some
results for antimagic labelings for graphs derived from wheels and antimagic labelings of
helm related graphs.

Bertault, Miller, Pé-Rosés, Feria-Puron, and Vaezpour [450] approached labeling prob-
lems as combinatorial optimization problems. They developed a general algorithm to de-
termine whether a graph has a magic labeling, antimagic labeling, or an (a, d)-antimagic
labeling (see Section 6.3). They verified that all trees with fewer than 10 vertices are super
edge magic and all graphs of the form P r

2 × P s
3 with less than 50 vertices are antimagic.

In [292] Bača, MacDougall, Miller, Slamin, and Wallis survey results on antimagic, edge-
magic total, and vertex-magic total labelings.

A total labeling of a graph G is a bijection f from V (G)∪E(G) to {1, 2, . . . , |V (G)|+
|E(G)|}. When f(V (G)) = {1, 2, . . . , |V (G)|}, we say the total labeling is super. For a
labeling f the associated edge-weight of an edge uv is defined by wtf(uv) = f(uv)+f(u)+
f(v). The associated vertex-weight of a vertex v is defined by wtf (v) =

∑
u∈N(v) f(uv) +

f(v), where N(v) is the set of the neighbors of v. A labeling f is called edge-antimagic
total (vertex-antimagic total) if all edge-weights (vertex-weights) are pairwise distinct.
A graph that admits an edge-antimagic total (vertex-antimagic total) labeling is called
an edge-antimagic total (vertex-antimagic total) graph. A labeling that is simultaneously
edge-antimagic total and vertex-antimagic total is called a totally antimagic total labeling.
A graph that admits a totally antimagic total labeling is called a totally antimagic total
graph. A labeling g is said to be ordered (sharp ordered) if wtg(u) ≤ wtg(v) (wtg(u) <
wtg(v)) holds for every pair of vertices u, v ∈ V (G) such that g(u) < g(v). A graph that
admits a (sharp) ordered labeling is called a (sharp) ordered graph.

Miller, Phanalasy, and Ryan [1750] proved that all graphs have vertex-antimagic to-
tal labelings. Bača, Miller, Phanalasy, Ryan, Semaničová-Feňovč́ıková, and Abildgaard
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Sillasen [298] prove that mK1,mK2, Pn (n ≥ 2), and Cn are sharp ordered super totally
antimagic total. They prove if G is an ordered super edge-antimagic total graph then
G + K1 is a totally antimagic total graph. As a corollary they get that stars, friendship
graphs nK2 +K1, fans, and wheels are totally antimagic total. They also prove that if G is
a regular ordered super edge-antimagic total graph then G� nK1 is totally antimagic to-
tal. As a corollary of this result, they have double-stars K2� nK1 and crowns Cm� nK1

are totally antimagic total. They show that a union of regular totally antimagic total
graphs is a totally antimagic total graph.

Ahmed and Baskar Baskar [102] proved that complete bipartite graphs admit a totally
antimagic total labeling. The same result was proved by Akwu and Ajayi [115] who also
showed that the join of a complete bipartite graph and K1 is a totally antimagic total
graph. Ahmed, Baskar Babujee, Bača, Semaničová-Feňovč́ıková [87] proved that complete
graphs admit totally antimagic total labeling. They also considered the problem of finding
total labelings for prisms and for two special classes of graphs related to paths that are
simultaneously edge-magic and vertex-antimagic.

Miller, Phanalasy, Ryan, and Rylands [1752] provide a method whereby, given any
degree sequence pertaining to a tree, one can construct an antimagic tree based on this
sequence. By swapping the roles of edges and vertices with respect to a labeling, they
provide a method to construct an edge antimagic vertex labeling for any tree. Ahmad,
Semaničová-Feňovč́ıková, Siddiqui, and Kamran [98] construct α-labelings from graceful
labelings of smaller trees and transform this labeling to edge-antimagic vertex labeling
of trees. Shang [2314] shows that linear forests without either of the paths P2 or P3 as
components are antimagic. Shang [2315] proved that P2, P3, and P4-free linear forests are
antimagic.

In [974] Hefetz, Mütze, and Schwartz investigate antimagic labelings of directed
graphs. An antimagic labeling of a directed graph D with n vertices and m arcs is a
bijection from the set of arcs of D to the integers {1, . . . ,m} such that all n oriented
vertex sums are pairwise distinct, where an oriented vertex sum is the sum of labels of
all edges entering that vertex minus the sum of labels of all edges leaving it. Hefetz et
al. raise the questions “Is every orientation of any simple connected undirected graph
antimagic? and “Given any undirected graph G, does there exist an orientation of G
which is antimagic?” They call such an orientation an antimagic orientation of G. Re-
garding the first question, they state that, except for K1,2 and K3, they know of no other
counterexamples. They prove that there exists an absolute constant C such that for every
undirected graph on n vertices with minimum degree at least C log n every orientation
is antimagic. They also show that every orientation of Sn, n 6= 2, is antimagic; every
orientation of Wn is antimagic; and every orientation of Kn, n 6= 3, is antimagic. For the
second question they prove: for odd r, every undirected r-regular graph has an antimagic
orientation; for even r every connected undirected r-regular graph that admits a matching
that covers all but at most one vertex has an antimagic orientation; and if G is a graph
with 2n vertices that admits a perfect matching and has an independent set of size n such
that every vertex in the independent set has degree at least 3, then G has an antimagic
orientation. They conjecture that every connected undirected graph admits an antimagic
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orientation and ask if it true that every connected directed graph with at least 4 vertices
is antimagic. Motivated by the Hartsfield and Ringel on antimagic labelings of graphs,
in 2010 Hefetz, Mütze, and Schwartz [974] initiated the study of antimagic orientations
of graphs, and conjectured that every connected graph admits an antimagic orientation.
The conjecture has been veried to be true for regular graphs (see [[974], [1575], [2849]]),
and biregular bipartite graphs with minimum degree at least two by Shan and Yu [2312].
Yang, Carlson, Owens, Perry, Singgih, Song, Zhang, Zhang [2848] proved that every con-
nected graph G on n ≥ 9 vertices with maximum degree at least n−5 admits an antimagic
orientation. Li, Song, Wang, Yang, and Zhang [1575] proved that every 2-regular graph
has an antimagic orientation and for all integers d ≥ 2, every connected 2d-regular graph
has an antimagic orientation.

Sonntag [2456] investigated antimagic labelings of hypergraphs. He shows that certain
classes of cacti, cycle, and wheel hypergraphs have antimagic labelings. Javaid and Bhatti
[1099] extended some of Sonntag’s results to disjoint unions of hypergraphs. In [1828]
Nalliah investigated the existence of antimagic labelings of some families of digraphs using
hooked Skolem sequences. Marimuthu, Raja Durga, and Durga Devi [1708] investigated
the existence of super vertex in-antimagic total labelings of generalized de Bruijn digraphs.

Hefetz [973] calls a graph with q edges k-antimagic if its edges can be labeled with
1, 2, . . . , q + k such that the sums of the labels of the edges incident to each vertex are
distinct. In particular, antimagic is the same as 0-antimagic. More generally, given a
weight function ω from the vertices to the natural numbers Hefetz calls a graph with q
edges (ω, k)-antimagic if its edges can be labeled with 1, 2, . . . , q + k such that the sums
of the labels of the edges incident to each vertex and the weight assigned to each vertex
by ω are distinct. In particular, antimagic is the same as (ω, 0)-antimagic where ω is the
zero function. Using Alon’s combinatorial nullstellensatz [138] as his main tool, Hefetz
has proved the following: a graph with 3m vertices and a K3 factor is antimagic; a graph
with q edges and at most one isolated vertex and no isolated edges is (ω, 2q−4)-antimagic;
a graph with p > 2 vertices that admits a 1-factor is (p − 2)-antimagic; a graph with p
vertices and maximum degree n−k, where k ≥ 3 is any function of p is (3k−7)-antimagic
and, in the case that p ≥ 6k2, is (k−1)-antimagic. Hefetz, Saluz, and Tran [975] improved
the first of Hefetz’s results by showing that a graph with pm vertices, where p is an odd
prime and m is positive, and a Cp factor is antimagic.

A graph G = (V,E) is strongly antimagic if there is a bijective mapping f : E →
1, 2, . . . , |E| such that for any two vertices u 6= v, not only

∑
e∈E(u) f(e) 6=

∑
e∈E(v) f(e)

and also
∑

e∈E(u) f(e) <
∑

e∈E(v) f(e) whenever deg(u) < deg(v), where E(u) is the set

of edges incident to u. Chang, Chin, Li, and Pan [556] proved double spiders (the trees
contains exactly two vertices of degree at least 3) are strongly antimagic. They raise
the following two questions. Does there exist a strongly antimagic labellings for every
antimagic graph? Is there a k-antimagic graph but not (k + 1)-antimagic?

Ahmad, Bača, Lascsáková and Semaničová-Feňovč́ıková [80] call a labeling of a plane
graph d-antimagic if for every positive integer s, the set of s-sided face weights is Ws =
{as, as + d, as + 2d, . . . , as + (fs − 1)d} for some positive integers as as and d, where fs
is the number of the s-sided faces. (They allow different sets Ws for different s). A d-
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antimagic labeling is called super if the smallest possible labels appear on the vertices.
In [125] they investigated the existence of super d-antimagic labelings of type (1, 1, 0)
for disjoint union of plane graphs for several values of difference d. Bača, Numan, and
Semaničová-Feňovč́ıková [308] invesitgate the existence of super d-antimagic labelings of
generalized prisms. Hussainn and Tabraiz [1038] investigated super d-antimagic labeling
of type (1,1,1) on the snakes kC5; subdivided kC5; and isomorphic copies of kC5 for strings
(1, 1, . . . , 1) and (2, 2 . . . , 2).

Bača, Baskoro, Jendrǒl, and Miller [257] investigated various k-antimagic labelings for
graphs in the shape of hexagonal honeycombs. They use Hm

n to denote the honeycomb
graph with m rows, n columns, and mn 6-sided faces. They prove: for n odd Hm

n ,
has a 0-antimagic vertex labeling and a 2-antimagic edge labeling, and if n is odd and
mn > 1, Hm

n has a 1-antimagic face labeling. In [2364] Shiu and Low show how to
construct k-antimagic graphs from existing graphs G with particular labeling properties
by joining G to cycles and dumbell related graphs with an edge.

Huang, Wong, and Zhu [1033] say a graph G is weighted-k-antimagic if for any vertex
weight function w from the vertices of G to the natural numbers there is an injection
f from the edges of G to {1, 2, . . . , |E| + k} such that for any two distinct vertices u
and v,

∑
(f(e) + w(v)) 6=

∑
(f(e) + w(u)) over all edges incidence to v. They proved

that if G has odd prime power order pz and has total domination number 2 with the
degree of one vertex in the total dominating set not a multiple of p, then G is weighted-
1-antimagic, and if G has odd prime power order pz, p 6= 3 and has maximum degree at
least |V (G)| − 3, then G is weighted-1-antimagic. Wong and Zhu [2773] proved: graphs
that have a vertex that is adjacent to all other vertices are weighted-2-antimagic; graphs
with a prime number of vertices that have a Hamiltonian path are weighted-1-antimagic;
and connected graphs G 6= K2 on n vertices are weighted-b3n/2c-antimagic. Matamala
and Zamora [1721] proved that Km,n, 3 ≤ m ≤ n, n ≥ 3, is weighted-0-antimagic and
described a polynomial time algorithm that computes a (w, 0)-antimagic labeling of Km,n.
They also prove the following. Let H be an arbitrary complete partite graph with n ≥ 5
vertices not isomorphic to K1,n. Then, any graph containing H as a spanning subgraph
is weighted-0-antimagic and given a weight function w, a (w, 0)-antimagic labeling can be
computed in polynomial time. They prove that each connected graph G on n ≥ 3 vertices
having K1,n as a spanning subgraph is weighted-1-antimagic unless G is isomorphic to
K1,n and n is even.

A distance k-antimagic labeling of a graph G(V,E) is a bijection f from V to
{1, 2, . . . , |V |} with the property that there exists an ordering of the vertices of G such
that the sequence of the weights w(x1), w(x2), . . . , w(xn) forms an arithmetic progression
with difference k. When k = 1, then f is simply called a distance antimagic labeling.
A distance k-antimagic graph is a distance k-antimagic graph that admits a distance
k-antimagic labeling, and is called distance antimagic when k = 1. Cichacz, Froncek,
Sugeng and Zhou in [621] gave a necessary condition for a graph with an even number
of vertices to be distance antimagic with respect to an Abelian group with a unique in-
volution. They also gave sufficient conditions for a Cayley graph on an Abelian group
to be distance antimagic or magic with respect to the same group, and discussed the
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consequences of these results to Cayley graphs on elementary Abelian groups. In [950]
Handa, Godinho, and Singh investigate the existence of distance antimagic labelings of
ladders.

For a positive integer k, define fk : V (G) −→ {1 + k, 2 + k, . . . , n + k} by fk(x) =
f(x) + k. If wfk(u) 6= wfk(v) for every pair of vertices u, v ∈ V , for any k ≥ 0 then
f is said to be an arbitrarily distance antimagic labeling and the graph which admits
such a labeling is said to be an arbitrarily distance antimagic graph. Handa, Godinho,
and Singh [951] provide arbitrarily distance antimagic labelings for rPn, the generalized
Petersen graph P (n, k), n ≥ 5, the Harary graph H4,n for n 6= 6 and prove that join of
these graphs is distance antimagic.

For an arbitrary set of distances D ⊆ {0, 1, . . . , diam(G)}, a D-weight of a vertex
x in a graph G under a vertex labeling f : V → {1, 2, . . . , v} is defined as wD(x) =∑

y∈ND(x) f(y), where ND(x) = {y ∈ V | d(x, y) ∈ D}. A graph G is said to be D-distance
magic if all vertices has the same D-vertex-weight, it is said to be D-distance antimagic if
all vertices have distinct D-vertex-weights. In [2387] Simanjuntak and Wijaya gave some
necessary conditions for the existence of D-distance antimagic graphs and conjectured
that those conditions are sufficient. They also gave {1}-distance antimagic labelings for
cycles, suns, prisms, complete graphs, wheels, fans, and friendship graphs.

In [195] Arumugam and Kamatchi introduced the notion of (a, d)-distance antimagic
graphs as follows. Let G be a graph with vertex set V and f : V → {1, 2, . . . , |V |} be a
bijection. If for all v in G the set of sums

∑
f(u) taken over all neighbors u of v is the

arithmetic progression {a, a+ d, a+ 2d, . . . , a+ (|V | − 1)d}, f is called an (a, d)-distance
antimagic labeling and G is called a (a, d)-distance antimagic graph. Arumugam and
Kamatchi [195] proved: Cn is (a, d)-distance antimagic if and only if n is odd and d = 1;
there is no (1, d)-distance antimagic labeling for Pn when n ≥ 3; a graph G is (1, d)-
distance antimagic graph if and only if every component of G is K2; Cn×K2 is (n+ 2, 1)-
distance antimagic; and the graph obtained from C2n = (v1, v2, . . . , v2n) by adding the
edges v1vn+1 and viv2n+2−i for i = 2, 3, . . . , n is (2n+2, 1)-distance antimagic. In [780] and
[782] Froncek proved that disjoint copies of the Cartesian product of two complete graphs
and its complement are (a, 2)-distance antimagic and (a, 1)-distance antimagic. He also
proved that disjoint copies of the hypercube Q3 is (a, 1)-distance antimagic. Semeniuta
[2213] proved that the crown Pn�P1 does not admit an (a, 1)-distance antimagic labeling
for n ≥ 2 and a ≥ 2 and determines the values of a for which Pn can be an (a, 1)-distance
antimagic graph. The circulant graph is also investigated. Semenyuta [2214] proved
that Pn � P1 is not an (a, d)-distance antimagic graph for all a and d and that Qn is a
(2n + n − 1, n − 2)-distance antimagic graph. He found two types of graphs that do not
allow 1-vertex bimagic vertex labeling and established a relation between the distance
magic labeling of a regular graph G with 1-vertex bimagic vertex labeling G ∪G.

Kamatchi, Vijayakumar, Ramalakshmi, Nilavarasi, and Arumugam [1271] prove that
the hypercube is (a, d)-distance antimagic and the bistar K2(n, n) is distance antimagic.
They also show that if G is a regular distance antimagic graph, then 2G is also distance
antimagic and several families of disconnected graphs are distance antimagic graphs.

A connected graph G = (V,E) with m edges is called if for each set B of m positive
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integers there is an bijective function f : E → B such that the function f̃ : V → N defined
at each vertex v as the sum of all labels of edges incident to v is injective. Matamala
and Zamora [1720] proved that paths, cycles, split graphs, and graphs that contains the
complete bipartite graph K2,n as a spanning subgraph are universal antimagic.

In 2019 [305] Bača, Miller, Ryan, and Semaničová-Feňovč́ıková published a monograph
that focuses on variations of magic and antimagic type lsbelings and includes new results,
techniques, constructions, and open problems and conjectures.

In Table 12 we use the abbreviation A to mean antimagic. A question mark following
an abbreviation indicates that the graph is conjectured to have the corresponding property.
The table was prepared by Petr Kovář and Tereza Kovářová and updated by J. Gallian
in 2014.

Table 12: Summary of Antimagic Labelings

Graph Labeling Notes
Pn A for n ≥ 3 [964]

Cn A [964]

Wn A [964]

Kn A for n ≥ 3 [964]

every tree except K2 A? [964]

caterpillars A [1667]

regular graphs A [1581], [964], [555]

every connected graph A? [964]
except K2

n ≥ 4 vertices A [139]
∆(G) ≥ n− 2

all complete partite A [139]
graphs except K2

Cm × Pn A [583]

Pm1 × Pm2 × · · · × Pmk
A [583]

Continued on next page
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Table 12 – Continued from previous page

Graph Labeling Notes
Cm1 × Cm2 × · · · × Cmk

A [2774]

C2
n A [1484]

mP3 m ≥ 2 not A [2784]

6.2 (a, d)-Antimagic Labelings

The concept of an (a, d)-antimagic labelings was introduced by Bodendiek and Walther
[481] in 1993. A connected graph G = (V,E) is said to be (a, d)-antimagic if there
exist positive integers a, d and a bijection f : E → {1, 2, . . . , |E|} such that the induced
mapping gf : V → N , defined by gf (v) =

∑
{f(uv)| uv ∈ E(G)}, is injective and gf (V ) =

{a, a + d, . . . , a + (|V | − 1)d}. (In [1599] Lin, Miller, Simanjuntak, and Slamim called
these (a, d)-vertex-antimagic edge labelings). Bodendick and Walther ([483] and [484])
prove the Herschel graph is not (a, d)-antimagic and obtain both positive and negative
results about (a, d)-antimagic labelings for various cases of graphs called parachutes Pg,p.
(Pg,p is the graph obtained from the wheel Wg+p by deleting p consecutive spokes.) In [272]
Bača and Holländer prove that necessary conditions for Cn×P2 to be (a, d)-antimagic are
d = 1, a = (7n+4)/2 or d = 3, a = (3n+6)/2 when n is even, and d = 2, a = (5n+5)/2
or d = 4, a = (n + 7)/2 when n is odd. Bodendiek and Walther [482] conjectured
that Cn × P2 (n ≥ 3) is ((7n + 4)/2, 1)-antimagic when n is even and is ((5n + 5)/2, 2)-
antimagic when n is odd. These conjectures were verified by Bača and Holländer [272]
who further proved that Cn × P2 (n ≥ 3) is ((3n + 6)/2, 3)-antimagic when n is even.
Bača and Holländer [272] conjecture that Cn × P2 is ((n + 7)/2, 4)-antimagic when n is
odd and at least 7. Bodendiek and Walther [482] also conjectured that Cn×P2 (n ≥ 7) is
((n+7)/2, 4)-antimagic. Miller and Bača [1746] prove that the generalized Petersen graph
P (n, 2) is ((3n+6)/2, 3)-antimagic for n ≡ 0 (mod 4), n ≥ 8 and conjectured that P (n, k)
is ((3n+ 6)/2, 3)-antimagic for even n and 2 ≤ k ≤ n/2− 1 (see §2.7 for the definition of
P (n, k)). This conjecture was proved for k = 3 by Xu, Yang, Xi, and Li [2840]. Jirimutu
and Wang proved that P (n, 2) is ((5n+ 5)/2, 2)-antimagic for n ≡ 3 (mod 4) and n ≥ 7.
Xu, Xu, Lü, Baosheng, and Nan [2836] proved that P (n, 2) is ((3n + 6)/2, 2)-antimagic
for n ≡ 2 (mod 4) and n ≥ 10. Xu, Yang, Xi, and Li [2840] proved that P (n, 3) is
((3n+ 6)/2, 3)-antimagic for even n ≥ 10 and for n ≡ 0 (mod 4), n ≥ 8. In [1602] Lingqi,
Linna, Yuan show that P (n, 3) is (5n + 5)/2, 2)-antimagic for odd n ≥ 7. Feng, Hong,
Yang, and Jirimutu [754] show that P (n, 5) is (3n + 6)/2, 3)-antimagic for even n ≥ 12.
Bao, Zhao, Yang, Feng, and Jirimutu [344] proved that P (n, 7) is (3n+6

2
, 3)-antimagic for

even n ≥ 16. Ivančo [1081] investigated (a, 1)-antimagic labelings and their connection
with supermagic generalized double graphs. Bodendiek and Walther [485] proved that
the following graphs are not (a, d)-antimagic: even cycles; paths of even order; stars;
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C
(k)
3 ;C

(k)
4 ; trees of odd order at least 5 that have a vertex that is adjacent to three or

more end vertices; n-ary trees with at least two layers when d = 1; the Petersen graph;
K4 and K3,3. They also prove: P2k+1 is (k, 1)-antimagic; C2k+1 is (k+ 2, 1)-antimagic; if a
tree of odd order 2k + 1 (k > 1) is (a, d)-antimagic, then d = 1 and a = k; if K4k (k ≥ 2)
is (a, d)-antimagic, then d is odd and d ≤ 2k(4k − 3) + 1; if K4k+2 is (a, d)-antimagic,
then d is even and d ≤ (2k + 1)(4k − 1) + 1; and if K2k+1 (k ≥ 2) is (a, d)-antimagic,
then d ≤ (2k + 1)(k − 1). Lin, Miller, Simanjuntak, and Slamin [1599] show that no
wheel Wn (n > 3) has an (a, d)-antimagic labeling. In [2549] Susanto provided super
(a, d)-Cn-antimagic total labelings for various cases of mCn.

In [1089] Ivančo, and Semaničová show that a 2-regular graph is super edge-magic if
and only if it is (a, 1)-antimagic. As a corollary we have that each of the following graphs
are (a, 1)-antimagic: kCn for n odd and at least 3; k(C3 ∪ Cn) for n even and at least 6;
k(C4 ∪Cn) for n odd and at least 5; k(C5 ∪Cn) for n even and at least 4; k(Cm ∪Cn) for
m even and at least 6, n odd, and n ≥ m/2 + 2. Extending a idea of Kovář they prove
if G is (a1, 1)-antimagic and H is obtained from G by adding an arbitrary 2k-factor then
H is (a2, 1)-antimagic for some a2. As corollaries they observe that the following graphs
are (a, 1)-antimagic: circulant graphs of odd order; 2r-regular Hamiltonian graphs of odd
order; and 2r-regular graphs of odd order n < 4r. They further show that if G is an
(a, 1)-antimagic r-regular graph of order n and n− r − 1 is a divisor of the non-negative
integer a+ n(1 + r− (n+ 1)/2), then G⊕K1 is supermagic. As a corollary of this result
they have if G is (n − 3)-regular for n odd and n ≥ 7 or (n − 7)-regular for n odd and
n ≥ 15, then G⊕K1 is supermagic.

Bertault, Miller, Feria-Purón, and Vaezpour [450] approached labeling problems as
combinatorial optimization problems. They developed a general algorithm to determine
whether a graph has a magic labeling, antimagic labeling, or an (a, d)-antimagic labeling.
They verified that all trees with fewer than 10 vertices are super edge magic and all graphs
of the form P r

2 × P s
3 with less than 50 vertices are antimagic. Javaid, Hussain, Ali, and

Dar [1103] and Javaid, Bhatti, and Hussain [1100] constructed super (a, d)-edge-antimagic
total labelings for w-trees and extended w-trees (see 5.2 for the definitions) as well as super
(a, d)-edge-antimagic total labelings for disjoint union of isomorphic and non-isomorphic
copies of extended w-trees. In [1101] Javaid and Bhatt defined a generalized w-tree and
proved that they admit a super (a, d)-edge-antimagic total labeling. In [2782] Wang, Li,
and Wang proved that some classes of graphs derived from regular or regular bipartite
graphs are antimagic. A subdivided star T (n1, n2, . . . , nr) is a tree obtained by inserting
ni ≥ 1, 1 ≤ i ≤ r with r ≥ 3 vertices. In [2051] Raheem, Javaid, and Baig study a
super (a, d)-edge-antimagic total labelings of the subdivided stars T (n, n + 1, n3, . . . , nr)
when n is even and T (n, n, n+ 1, n4, . . . , nr) when n is odd for all possible values of d. In
[2052] Raheem and Baig proved the super edge antimagicness of subdivided stars for all
possible values of d. Bhatti, Tahir, and Javaid [467] give super (a, d)-edge antimagic total
labelings of some wheel-like graphs. In [198] investigate the existence of super (a, d)-edge
antimagic total labeling for friendship graphs and generalized friendship graphs.

For graphs G and F , if every edge of G belongs to a subgraph of G isomorphic to
F and there exists a total labeling λ of G such that for every subgraph F ′ of G that is
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isomorphic to F , the set {Σλ(F ′) : F ′ ∼= F, F ′ ⊆ G} forms an arithmetic progression
starting with a with common difference d, Lee, Tsai, and Lin [1483] say that G is (a, d)-
F -antimagic. Furthermore, if λ(V (G)) = {1, 2, . . . , |V (G)|} then G is said to be super
(a, d)-F -antimagic and λ is said to be a super (a, d)-F -antimagic labeling of G. Lee, Tsai,
and Lin [1483] proved that Pm × Pn (m,n ≥ 2) is super (a, 1)-C4-antimagic. In [2204]
Selvagopal, Jeyanthi, Muthuraja, and Semaničová-Feňovčiková investigated the existence
super (a, d)-star-antimagic labelings of a particular class of banana trees and construct a
star-antimagic graph.

The edge corona path graph Gm � Pn is the graph obtained from one copy of the gear
graph Gm and 3m copies of Pn, P i

n, by joining two end vertices of ei ∈ E(Gm) to every
vertex vj ∈ V (Pn) in the i-th copy of Gm with i = 1, 2, . . . , 3m and j = 1, 2, . . . , n. The
graph Gm · Cn is the graph obtained from Gm and 2m + 1 copies of Cn namely Ci

n by
joined every vertex vi ∈ Gm to all vertices vi ∈ Cn for i ∈ {1, 2, . . . , 2m + 1}. Nistyawati
and Martini [1870] proved that for every odd m, the gear edge corona path graph Gm �Pn
is super C4 � Pn-antimagic and for every odd m, the gear corona cycle graph Gm · Cn
is super C4 · Cn-antimagic. Roswitha, Martini, and S. A. Nugroho [2143] proved: for
n ≥ 5 the double cone DCn = Cn +K2 is (14 + 7n+ (n+ 1)2, 1)-C3-antimagic and (a, 1)-
C3-antimagic; DCn is (a, d)-Wn-antimagic; DC2n is (a, 1)-W2n-antimagic; and DC2n+1 is
(a, 2)-W2n+1-antimagic.

Yegnanarayanan [2866] introduced several variations of antimagic labelings and pro-
vides some results about them.

The antiprism on 2n vertices has vertex set {x1,1, . . . , x1,n, x2,1, . . . , x2,n} and edge set
{xj,i, xj,i+1} ∪ {x1,i, x2,i} ∪ {x1,i, x2,i−1} (subscripts are taken modulo n). For n ≥ 3 and
n 6≡ 2 (mod 4) Bača [244] gives (6n+ 3, 2)-antimagic labelings and (4n+ 4, 4)-antimagic
labelings for the antiprism on 2n vertices. He conjectures that for n ≡ 2 (mod 4), n ≥ 6,
the antiprism on 2n vertices has a (6n+3, 2)-antimagic labeling and a (4n+4, 4)-antimagic
labeling.

Nicholas, Somasundaram, and Vilfred [1867] prove the following: If Km,n where m ≤ n
is (a, d)-antimagic, then d divides ((m− n)(2a + d(m + n− 1)))/4 + dmn/2; if m + n is
prime, then Km,n, where n > m > 1, is not (a, d)-antimagic; if Kn,n+2 is (a, d)-antimagic,
then d is even and n + 1 ≤ d < (n + 1)2/2; if Kn,n+2 is (a, d)-antimagic and n is odd,
then a is even and d divides a; if Kn,n+2 is (a, d)-antimagic and n is even, then d divides
2a; if Kn,n is (a, d)-antimagic, then n and d are even and 0 < d < n2/2; if G has order n
and is unicylic and (a, d)-antimagic, then (a, d) = (2, 2) when n is even and (a, d) = (2, 2)
or (a, d) = ((n + 3)/2, 1) when n is odd; a cycle with m pendent edges attached at each
vertex is (a, d)-antimagic if and only if m = 1; the graph obtained by joining an endpoint
of Pm with one vertex of the cycle Cn is (2, 2)-antimagic if m = n or m = n− 1; if m+ n
is even the graph obtained by joining an endpoint of Pm with one vertex of the cycle Cn
is (a, d)-antimagic if and only if m = n or m = n− 1. They conjecture that for n odd and
at least 3, Kn,n+2 is ((n+ 1)(n2 − 1)/2, n+ 1)-antimagic and they have obtained several
results about (a, d)-antimagic labelings of caterpillars.

In [1668] Lozano, Mora, and Seara prove that any caterpillar of order n is (b(n −
1)/2, c − 2)-antimagic. Furthermore, if C is a caterpillar with a spine of order s, they
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prove that when C has at least b(3s+ 1)/2c leaves or b(s− 1)/2c consecutive vertices of
degree at most 2 at one end of a longest path, then C is antimagic. As a consequence
of a result by Wong and Zhu [2819], they also prove that if p is a prime number, any
caterpillar with a spine of order p, p− 1 or p− 2 is 1-antimagic.

In [2739] Vilfred and Florida proved the following: the one-sided infinite path is (1, 2)-
antimagic; P2n is not (a, d)-antimagic for any a and d; P2n+1 is (a, d)-antimagic if and
only if (a, d) = (n, 1); C2n+1 has an (n + 2, 1)-antimagic labeling; and that a 2-regular
graph G is (a, d)-antimagic if and only if |V (G)| = 2n + 1 and (a, d) = (n + 2, 1). They
also prove that for a graph with an (a, d)-antimagic labeling, q edges, minimum degree δ
and maximum degree ∆, the vertex labels lie between δ(δ + 1)/2 and ∆(2q −∆ + 1)/2.

Chelvam, Rilwan, and Kalaimurugan [572] proved that Cayley digraph of any finite
group admits a super vertex (a, d)-antimagic labeling depending on d and the size of the
generating set. They provide algorithms for constructing the labelings.

Irfan and Semaničová-Feňovčiková [1076] provide some classes of graphs that admit
a labeling that is simultaneously a super edge-magic total and a super vertex-antimagic
total and give some results for fans, sun graphs, caterpillars, and prisms.

For n > 1 and distinct odd integers x, y and z in [1,n− 1] Javaid, Ismail, and Salman
[1095] define the chordal ring of order n, CRn(x, y, z), as the graph with vertex set Zn,
the additive group of integers modulo n, and edges (i, i+x), (i, i+y), (i, i+ z) for all even
i. They prove that CRn(1, 3, 7) and CRn(1, 5, n−1) have (a, d)-antimagic labelings when
n ≡ 0 mod 4 and conjecture that for an odd integer ∆, 3 ≤ ∆ ≤ n − 3, n ≡ 0 mod 4,
CRn((1,∆, n− 1) has an ((7n+ 8)/4, 1)-antimagic labeling.

For an arbitrary set of distances D ⊆ {0, 1, . . . , diam(G)}, a D-weight of a vertex
x in a graph G under a vertex labeling f : V → {1, 2, . . . , v} is defined as wD(x) =∑

y∈ND(x) f(y), where ND(x) = {y ∈ V |d(x, y) ∈ D}. A graph G is said to be D-
distance magic if all vertices have the same D-vertex-weight, it is said to be D-distance
antimagic indexD-distance antimagic if all vertices have distinct D-vertex-weights, and
it is called (a, d)−D-distance antimagic if the D-vertex-weights constitute an arithmetic
progression with difference d and starting value a. In [2387] Simanjuntak and Wijaya
gave some necessary conditions for the existence of D-distance antimagic graphs and
conjectured that those conditions are sufficient. They also gave {1}-distance antimagic
labelings for cycles, suns, prisms, complete graphs, wheels, fans, and friendship graphs.
Arumugam and Kamatchi [195] characterized (a, d)-distance antimagic cycles and (a, d)-
distance antimagic labelings for paths and prisms. In [780] and [782] Fronček proved
that disjoint copies of the Cartesian product of two complete graphs and its complement
are (a, 2)-distance antimagic and (a, 1)-distance antimagic. He also proved that disjoint
copies of the hypercube Q3 is (a, 1)-distance antimagic. In [950] Handa, Godinho and
Singh investigate the existence of distance antimagic labeling of ladders.

In [2740] Vilfred and Florida call a graph G = (V,E) odd antimagic if there exist
a bijection f : E → {1, 3, 5, . . . , 2|E| − 1} such that the induced mapping gf : V → N ,
defined by gf (v) =

∑
{f(uv)| uv ∈ E(G)}, is injective and odd (a, d)-antimagic if there

exist positive integers a, d and a bijection f : E → {1, 3, 5, . . . , 2|E| − 1} such that the
induced mapping gf : V → N , defined by gf (v) =

∑
{f(uv)| uv ∈ E(G)}, is injective
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and gf (V ) = {a, a + d, a + 2d, . . . , a + (|V | − 1)d}. Although every (a, d)-antimagic
graph is antimagic, C4 has an antimagic labeling but does not have an (a, d)-antimagic
labeling. They prove: P2n+1 is not odd (a, d)-antimagic for any a and d; C2n+1 has an odd
(2n+2, 2)-antimagic labeling; if a 2-regular graph G has an odd (a, d)-antimagic labeling,
then |V (G)| = 2n+ 1 and (a, d) = (2n+ 2, 2); C2n is odd magic; and an odd magic graph
with at least three vertices, minimum degree δ, maximum degree ∆, and q ≥ 2 edges has
all its vertex labels between δ2 and ∆(2q −∆).

Combining the notions of 1-vertex-magic vertex labelings and antimagic labelings
Swaminathan and Jeyanthi [2562] introduced a new labeling as follows. For a graph
with p vertices a 1-1 mapping from the vertices to {1, 2, . . . , p} is called an (a, d)-1-vertex-
antimagic vertex labeling if the sums of the labels of the vertices adjacent to each vertex
taken over all vertices form the set {a, a+d, a+2d, . . . , a+(p−1)d}. They give some basic
properties of such labelings and provide some results for some classes of regular graphs.

For a graph G = (V,E), a bijection g from V (G)∪E(G) into {1, 2, . . . , |V (G)|+|E(G)|}
is called a (a, d)-edge-antimagic graceful labeling of G if the edge-weights w(xy) = |g(x)+
g(y) − g(xy)|, xy ∈ E(G), form an arithmetic progression starting from a and having
a common difference d. An (a, d)-edge-antimagic graceful labeling is called super (a, d)-
edge-antimagic graceful if g(V (G)) = {1, 2, . . . , |V (G)|}. Marimuthu and Krishnaveni
[1703] proved mCn has a super (0, 1)-edge-antimagic graceful labeling for every m ≥ 2
and n ≥ 3; and mKn and MPn have a super (a, 1)-edge-antimagic graceful labeling for
every m ≥ 2 and n ≥ 2.

For a connected graph G with q edges a bijection f : E → {1, 2, . . . , q} is called a local
antimagic labeling if for any two adjacent vertices u and v, w(u) 6= w(v), where w(u) =∑

e∈E(u) f(e), and E(u) is the set of edges incident to u. In [201] Arumugam, Premalatha,
Bača, and Semaničová-Feňovč́ıková proved several basic results on this new parameter and
conjectured that any connected graph other than K2 admits a local antimagic labeling.
This conjecture was proved by Haslegrave [966] using the probabilistic method, proves
that the local antimagic conjecture is true. Lau [1463] proved that every graph admits a
local antimagic total labeling.

In Table 13 we use the abbreviation (a, d)-A to mean that the graph has an (a, d)-
antimagic labeling. A question mark following an abbreviation indicates that the graph
is conjectured to have the corresponding property. The table was prepared by Petr Kovář
and Tereza Kovářová and updated by J. Gallian in 2008.
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Table 13: Summary of (a, d)-Antimagic Labelings

Graph Labeling Notes
P2n not (a, d)-A [485]

P2n+1 iff (n, 1)-A [485]

C2n not (a, d)-A [485]

C2n+1 (n+ 2, 1)-A [485]

stars not (a, d)-A [485]

C
(k)
3 , C

(k)
4 not (a, d)-A [485]

K3,3 not (a, d)-A [485]

K4 not (a, d)-A [485]

Petersen graph not (a, d)-A [485]

Wn not (a, d)-A n > 3 [1599]

antiprism on 2n (6n+ 3, 2)-A n ≥ 3, n 6≡ 2 (mod 4) [244]
vertices (see §6.2) (4n+ 4, 4)-A n ≥ 3, n 6≡ 2 (mod 4) [244]

(2n+ 5, 6)-A? n ≥ 4 [244]
(6n+ 3, 2)-A? n ≥ 6, n 6≡ 2 (mod 4) [244]
(4n+ 4, 4)-A? n ≥ 6, n 6≡ 2 (mod 4) [244]

Hershel graph (see [567]) not (a, d)-A [481], [483]

parachutes Pg,p (see §6.2) (a, d)-A for certain classes [481], [483]

prisms Cn × P2 ((7n+ 4)/2, 1)-A n ≥ 3, n even [482], [272]
((5n+ 5)/2, 2)-A n ≥ 3, n odd [482], [272]
((3n+ 6)/2, 3)-A n ≥ 3, n even [272]
((n+ 7)/2, 4)-A? n ≥ 7, [483], [272]

generalized Petersen ((3n+ 6)/2, 3)-A n ≥ 8, n ≡ 0 (mod 4) [273]
graph P (n, 2)
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6.3 (a, d)-Antimagic Total Labelings

Bača, Bertault, MacDougall, Miller, Simanjuntak, and Slamin [262] introduced the notion
of a (a, d)-vertex-antimagic total labeling in 2000. For a graph G(V,E), an injective
mapping f from V ∪ E to the set {1, 2, . . . , |V | + |E|} is a (a, d)-vertex-antimagic total
labeling if the set {f(v) +

∑
f(vu)} where the sum is over all vertices u adjacent to v for

all v in G is {a, a+d, a+2d, . . . , a+(|V |−1)d}. In the case where the vertex labels are 1,2,
. . . , |V |, (a, d)-vertex-antimagic total labeling is called a super (a, d)-vertex-antimagic total
labeling. Among their results are: every super-magic graph has an (a, 1)-vertex-antimagic
total labeling; every (a, d)-antimagic graph G(V,E) is (a+ |E|+1, d+1)-vertex-antimagic
total; and, for d > 1, every (a, d)-antimagic graph G(V,E) is (a+ |V |+ |E|, d− 1)-vertex-
antimagic total. They also show that paths and cycles have (a, d)-vertex-antimagic total
labelings for a wide variety of a and d. In [263] Bača et al. use their results in [262]
to obtain numerous (a, d)-vertex-antimagic total labelings for prisms, and generalized
Petersen graphs (see §2.7 for the definition). (See also [276] and [2496] for more results
on generalized Petersen graphs.)

Sugeng, Miller, Lin, and Bača [2496] prove: Cn has a super (a, d)-vertex-antimagic
total labeling if and only if d = 0 or 2 and n is odd, or d = 1; Pn has a super (a, d)-vertex-
antimagic total labeling if and only if d = 2 and n ≥ 3 is odd, or d = 3 and n ≥ 3; no
even order tree has a super (a, 1)-vertex antimagic total labeling; no cycle with at least
one tail and an even number of vertices has a super (a, 1)-vertex-antimagic labeling; and
the star Sn, n ≥ 3, has no super (a, d)-super antimagic labeling. As open problems they
ask whether Kn,n has a super (a, d)-vertex-antimagic total labeling and the generalized
Petersen graph has a super (a, d)-vertex-antimagic total labeling for specific values a, d,
and n. In [2050] Raheem proved that various subclasses of stars admit super (a, d)-edge
antimagic total labelings for d = 1, 2, and 3. Lin, Miller, Simanjuntak, and Slamin [1599]
have shown that for n > 20, Wn has no (a, d)-vertex-antimagic total labeling. Tezer and
Cahit [2584] proved that neither Pn nor Cn has (a, d)-vertex-antimagic total labelings for
a ≥ 3 and d ≥ 6. Kovář [1422] has shown that every 2r-regular graph with n vertices has
an (s, 1)-vertex antimagic total labeling for s ∈ {(rn + 1)(r + 1) + tn | t = 0, 1, . . . , r}.
Dafik, Slamin, Romdhani, and Arianti [641] studied the super (a, d)-antimagicness of
generalized flower and disk brake graphs.

Several papers have been written about vertex-antimagic total labeling of graphs that
are the disjoint union of suns. The sun graph Sn is Cn �K1. Rahim and Sugeng [2055]
proved that Sn1 ∪ Sn2 ∪ · · · ∪ Snt is (a, 0)-vertex-antimagic total (or vertex magic total).
Parestu, Silaban, and Sugeng [1892] and [1893] proved Sn1 ∪ Sn2 ∪ · · · ∪ Snt is (a, d)-
vertex-antimagic total for d = 1, 2, 3, 4, and 6 and particular values of a. In [2053]
Rahim, Ali, Kashif, and Javaid provide (a, d)-vertex antimagic total labelings of disjoint
unions of cycles, sun graphs, and disjoint unions of sun graphs. In [726] Enomoto et
al. proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph.
Javaid [1097] gave (a, d)-edge-antimagic total labelings for certain subclasses of subdivided
stars. Javaid [1098] gave a super (a, d)-edge-antimagic total labeling for the subdivided
star T (n, n, n+4, n+4, n5, n6, . . . , nr) for d = 0, 1, 2, where np = 2p−4(n+3)+1, 5 ≤ p ≤ r
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and n ≥ 3 is odd.
In [1855] Ngurah, Baskova, and Simanjuntak provide (a, d)-vertex-antimagic total la-

belings for the generalized Petersen graphs P (n,m) for the cases: n ≥ 3, 1 ≤ m ≤
b(n − 1)/2c, (a, d) = (8n + 3, 2); odd n ≥ 5, m = 2, (a, d) = ((15n + 5)/2, 1); odd
n ≥ 5, m = 2, (a, d) = ((21n+ 5)/2, 1); odd n ≥ 7, m = 3, (a, d) = ((15n+ 5)/2, 1); odd
n ≥ 7, m = 3, (a, d) = ((21n + 5)/2, 1); odd n ≥ 9, m = 4, (a, d) = ((15n + 5)/2, 1);
and (a, d) = ((21n+ 5)/2, 1). They conjecture that for n odd and 1 ≤ m ≤ b(m− 1)/2c,
P (n,m) has an ((21n + 5)/2, 1)-vertex-antimagic labeling. In [2501] Sugeng and Silaban
show: the disjoint union of any number of odd cycles of orders n1, n2, . . . , nt, each at least
5, has a super (3(n1 + n2 + · · · + nt) + 2, 1)-vertex-antimagic total labeling; for any odd
positive integer t, the disjoint union of t copies of the generalized Petersen graph P (n, 1)
has a super (10t + 2)n − bn/2c + 2, 1)-vertex-antimagic total labeling; and for any odd
positive integers t and n (n ≥ 3), the disjoint union of t copies of the generalized Petersen
graph P (n, 2) has a super (21tn+ 5)/2, 1)-vertex-antimagic total labeling.

Ail, Bača, Lin, and Semaničová-Feňovčiková [125] investigated super-(a, d)-vertex an-
timagic total labelings of disjoint unions of regular graphs. Among their results are: if
m and (m − 1)(r + 1)/2 are positive integers and G is an r-regular graph that admits
a super-vertex magic total labeling, then mG has a super-(a, 2)-vertex antimagic total
labeling; if G has a 2-regular super-(a, 1)-vertex antimagic total labeling, then mG has a
super-(m(a− 2) + 2, 1), 1)-vertex antimagic total labeling; mCn has a super-(a, d)-vertex
antimagic total labeling if and only if either d is 0 or 2 and m and n are odd and at
least 3 or d = 1 and n ≥ 3; and if G is an even regular Hamilton graph, then mG has a
super-(a, 1)-vertex antimagic total labeling for all positive integers m.

In [315] Bača, A. Semaničová-Feňovč́ıková, Wang, and Zhang investigate the exis-
tence of (a, 1)-vertex-antimagic edge labelings for disconnected 3-regular graphs. As an
extension of (a, d)-vertex-antimagic edge labeling they also introduce the concept of (a, d)-
vertex-antimagic edge deficiency for measuring how close a graph is away from being an
(a, d)-antimagic graph. In [200] Arumugam and Nalliah investigate the existence of a
super (a, d)-edge-antimagic total labelings of disconnected graphs.

Ahmad, Ali, Bača, Kovář and Semaničová-Feňovč́ıková [70] provided a technique that
allows one to construct several (a, r)-vertex-antimagic edge labelings for any 2r-regular
graph G of odd order provided the graph is Hamiltonian or has a 2-regular factor that
has (b, 1)-vertex-antimagic edge labeling. A similar technique allows them to construct a
super (a, d)-vertex-antimagic total labeling for any 2r-regular Hamiltonian graph of odd
order with differences d = 1, 2, . . . , r and d = 2r + 2.

For n ≥ 2 Dafik, Setiawani, and Azizah [680] define a shackle as a graph constructed
from connected graphs G1, G2, . . . , Gn, all isomorphic to G, such that Gs and Gt are
disjoint when |s− t| ≥ 2 and for every i = 1, 2, . . . , n− 1, Gi and Gi+1 share exactly one
common vertex v. In a generalized shackle a common subgraph is shared by each Gi and
Gi+1. Dafik, Setiawani, and Azizah prove that the generalized shackle of a fan of order
four and five admits a super (a, d)-edge antimagic total labeling for d = 0, 1, 2.

Sugeng and Bong [2490] show how to construct super (a, d)-vertex antimagic total
labelings for the circulant graphs Cn(1, 2, 3), for d = 0, 1, 2, 3, 4, 8. Thirusangu, Nagar,
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and Rajeswari [2590] show that certain Cayley digraphs of dihedral groups have (a, d)-
vertex-magic total labelings.

For a simple graph H we say that G(V,E) admits an H-covering if every edge in
E(G) belongs to a subgraph of G that is isomorphic to H. Inayah, Salman, and Siman-
juntak [1068] define an (a, d)-H-antimagic total labeling of G as a bijective function ξ
from V ∪ E → {1, 2, . . . , |V | + |E|} such that for all subgraphs H ′ isomorphic to H, the
H-weights w(H ′) =

∑
v∈V (H′) ξ(v) +

∑
e∈E(H′) ξ(e) constitute an arithmetic progression

a, a+ d, a+ 2d, . . . , a+ (t− 1)d where a and d are positive integers and t is the number of
subgraphs of G isomorphic to H. Such a labeling ξ is called a super (a, d)-H-antimagic
total labeling, if ξ(V ) = {1, 2, . . . , |V |}. Inayah et al. study some basic properties of such
labeling and give (a, d)-cycle-antimagic labelings of fans. Taimur, Numan, Mumtaz, and
Semaničová-Feňovč́ıková [2569] proved that if a graph G is super cycle-antimagic then
the subdivided graph of G also admits a super cycle-antimagic labeling and they showed
that the subdivided wheel is super (a, d)-cycle-antimagic for wide range of values. Lau-
rence and Kathiresan [1471] investigated super (a, d)-Pn-antimagic total labeling of stars.
Bača, Jeyanthi, Selvagopal, Muthu Raja, and Semaničová-Feňovč́ıková [214] proved the
existence of super (a, d)-H-antimagic labelings of fan graphs and ladders for H isomorphic
to a cycle.

In [2212] Semaničová-Feňovč́ıková, Bača, Lascsáková, Miller, and Ryan investigated
the super (a, d)-Cn-antimagic total labelings of wheels and super (a, d)-Pn-antimagic to-
tal labelings of cycles and paths. Ovais, Umar, Bača, and Semaničová-Feňovč́ıková [1881]
proved that fans admits a super (a, d)-Ck-antimagic labeling for d = 1, 3, 2k − 5, 2k −
1, 3k − 1, k − 7, k + 1, 3k − 9. They also prove that fans admits a super (a, d)-C3-
antimagic labeling for d = 0, 1, 2, 3, 4, 5, 6, 8, and a super (a, d)-C4-antimagic labeling
for d = 0, 1, 2, 3, 4, 5, 6, 7, 11. They propose an open problem to find a super (a, d)-Ck-
antimagic labeling of fans for d 6= 1, 3, k − 7, k + 1, 2k − 5, 2k − 1, 3k − 1, 3k − 9. Bača,
Miller, Ryan, and Semaničová-Feňovč́ıková [303] study super (a, d)-H-antimagic labelings
of a disjoint union of graphs for d = |E(H)| − |V (H)|.

For a vertex u of a graph G, Gu[Sn] is the graph obtained by identifying u with
the center of Sn. Then for any vertex w of Sn G + e, e = uw is a subgraph of Gu[Sn].
Kathiresan and Laurence [1353] prove that the graph Gu[Sn] admits a super-(a, d)-(G+e)-
antimagic total labeling if and only if d ∈ {0, 1, 2, . . . , |V (G)| + |E(G)| + 2}. Moreover,
they show that a caterpillar Sn1,n2,...,nk

has a super-(a, 4n2)-Sn,n-antimagic total labeling
for n1 = n2 = · · · = nk = n.

Jeyanthi, Muthuraja, Semaničová-Feňovč́ıková, and Dharshikha proved [1192] proved
that fans, triangular ladders, and middle graphs of cycles are super (a, d)-C3-antimagic
for some values of a and d. They also proved that ladder are super (a, d)-C4-antimagic
for 1 ≤ d ≤ 8. Inayah, Simanjuntak, and Salman [1069] proved that there exists a super
(a, d) − H-antimagic total labelings for shackles of a connected graph H. Nadzima and
Martini [1818] determined (a, d)-H-antimagic total labeling for certains cases of Wn�Pn
with H as C3 � Pn and Wn � Cn with H as C3 � Cn.

A graph G is said to have an (H1, H2, . . . , Hk)-covering if every edge in G belongs
to at least one of the Hi’s. Susilowati, Sania, and Estuningsih [2551] investigated such
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antimagic labelings for the ladders Pn×P2 with Ct-coverings for t = 4, 6, and 8 for some
value of d.

Simanjuntak, Bertault, and Miller [2386] define an (a, d)-edge-antimagic vertex labeling
for a graph G(V,E) as an injective mapping f from V onto the set {1, 2, . . . , |V |} such
that the set {f(u) +f(v)|uv ∈ E} is {a, a+d, a+ 2d, . . . , a+ (|E|−1)d}. (The equivalent
notion of (a, d)-indexable labeling was defined by Hegde in 1989 in his Ph. D. thesis–see
[978].) Similarly, Simanjuntak et al. define an (a, d)-edge-antimagic total labeling for a
graph G(V,E) as an injective mapping f from V ∪ E onto the set {1, 2, . . . , |V | + |E|}
such that the set {f(v) + f(vu) + f(v)|uv ∈ E} where v ranges over all of V is {a, a +
d, a+ 2d, . . . , a+ (|V | − 1)d}. Among their results are: C2n has no (a, d)-edge-antimagic
vertex labeling; C2n+1 has a (n + 2, 1)-edge-antimagic vertex labeling and a (n + 3, 1)-
edge-antimagic vertex labeling; P2n has a (n+2, 1)-edge-antimagic vertex labeling; Pn has
a (3, 2)-edge-antimagic vertex labeling; Cn has (2n+ 2, 1)- and (3n+ 2, 1)-edge-antimagic
total labelings; C2n has (4n+ 2, 2)- and (4n+ 3, 2)-edge-antimagic total labelings; C2n+1

has (3n + 4, 3)- and (3n + 5, 3)-edge-antimagic total labelings; P2n+1 has (3n + 4, 2)-,
(3n + 4, 3)-, (2n + 4, 4)-, (5n + 4, 2)-, (3n + 5, 2)-, and (2n + 6, 4)-edge-antimagic total
labelings; P2n has (6n, 1)- and (6n+2, 2)-edge-antimagic total labelings; and several parity
conditions for (a, d)-edge-antimagic total labelings. They conjecture: C2n has a (2n+3, 4)-
or a (2n+ 4, 4)-edge-antimagic total labeling; C2n+1 has a (n+ 4, 5)- or a (n+ 5, 5)-edge-
antimagic total labeling; paths have no (a, d)-edge-antimagic vertex labelings with d > 2;
and cycles have no (a, d)-antimagic total labelings with d > 5. The first and last of these
conjectures were proved by Zhenbin in [2914] and the last two were verified by Bača, Lin,
Miller, and Simanjuntak [286] who proved that a graph with v vertices and e edges that
has an (a, d)-edge-antimagic vertex labeling must satisfy d(e−1) ≤ 2v−1−a ≤ 2v−4. As a
consequence, they obtain: for every path there is no (a, d)-edge-antimagic vertex labeling
with d > 2; for every cycle there is no (a, d)-edge-antimagic vertex labeling with d > 1; for
Kn (n > 1) there is no (a, d)-edge-antimagic vertex labeling (the cases for n = 2 and n = 3
are handled individually); Kn,n (n > 3) has no (a, d)-edge-antimagic vertex labeling; for
every wheel there is no (a, d)-edge-antimagic vertex labeling; for every generalized Petersen
graph there is no (a, d)-edge-antimagic vertex labeling with d > 1. They also study the
relationship between graphs with (a, d)-edge-antimagic labelings and magic and antimagic
labelings. They conjecture that every tree has an (a, 1)-edge-antimagic total labeling.

Bača and Barrientos [248] prove that if a tree T has an α-labeling and {A,B} is the
bipartition of the vertices of T , then T also admits an (a, 1)-edge-antimagic vertex labeling
and it admits a (3, 2)-edge-antimagic vertex labeling if and only if ||A| − |B|| ≤ 1.

In [286] Bača, Lin, Miller, and Simanjuntak prove: if Pn has an (a, d)-edge-antimagic
total labeling, then d ≤ 6; Pn has (2n + 2, 1)-, (3n, 1)-, (n + 4, 3)-, and (2n + 2, 3)-edge-
antimagic total labelings; P2n+1 has (3n+ 4, 2)-,(5n+ 4, 3)-, (2n+ 4, 4)-, and (2n+ 6, 4)-
edge-antimagic total labelings; and P2n has (3n+3, 2)- and (5n+1, 2)-edge-antimagic total
labelings. Ngurah [1851] proved P2n+1 has (4n+ 4, 1)-, (6n+ 5, 3)-,(4n+ 4, 2)-,(4n+ 5, 2)-
edge-antimagic total labelings and C2n+1 has (4n + 4, 2)- and (4n + 5, 2)-edge-antimagic
total labelings. Silaban and Sugeng [2385] prove: Pn has (n + 4, 4)- and (6, 6)-edge-
antimagic total labelings; if Cm � Kn has an (a, d)-edge-antimagic total labeling, then
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d ≤ 5; Cm � Kn has (a, d)-edge-antimagic total labelings for m > 3, n > 1 and d = 2
or 4; and Cm � Kn has no (a, d)-edge-antimagic total labelings for m and d and n ≡ 1
mod 4. They conjecture that Pn (n ≥ 3) has (a, 5)-edge-antimagic total labelings. In
[2502] Sugeng and Xie use adjacency methods to construct super edge magic graphs
from (a, d)-edge-antimagic vertex graphs. Pushpam and Saibulla [2042] determined super
(a, d)-edge antimagic total labelings for graphs derived from copies of generalized ladders,
fans, generalized prisms and web graphs. Ahmad, Ali, Bača, Kovar, and Semaničová-
Feňovč́ıková, investigated the vertex-antimagicness of regular graphs and the existence of
(super) (a, d)-vertex antimagic total labelings for regular graphs in general.

In [319] Bača and Youssef used parity arguments to find a large number of conditions
on p, q and d for which a graph with p vertices and q edges cannot have an (a, d)-edge-
antimagic total labeling or vertex-antimagic total labeling. Bača and Youssef [319] made
the following connection between (a, d)-edge-antimagic vertex labelings and sequential
labelings: if G is a connected graph other than a tree that has an (a, d)-edge-antimagic
vertex labeling, then G+K1 has a sequential labeling.

In [2481] Sudarsana, Ismaimuza, Baskoro, and Assiyatun prove: for every n ≥ 2, Pn∪
Pn+1 has a (6n + 1, 1)- and a (4n + 3, 3)-edge-antimagic total labeling, for every odd
n ≥ 3, Pn ∪ Pn+1 has a (6n, 1)- and a (5n+ 1, 2)-edge-antimagic total labeling, for every
n ≥ 2, nP2 ∪ Pn has a (7n, 1)- and a (6n + 1, 2)-edge-antimagic total labeling. In [2478]
the same authors show that Pn ∪Pn+1, nP2 ∪Pn (n ≥ 2), and nP2 ∪Pn+2 are super edge-
magic total. They also show that under certain conditions one can construct new super
edge-magic total graphs from existing ones by joining a particular vertex of the existing
super edge-magic total graph to every vertex in a path or every vertex of a star and by
joining one extra vertex to some vertices of the existing graph. Baskoro, Sudarsana, and
Cholily [418] also provide algorithms for constructing new super edge-magic total graphs
from existing ones by adding pendent vertices to the existing graph. A corollary to one
of their results is that the graph obtained by attaching a fixed number of pendent edges
to each vertex of a path of even length is super edge-magic. Baskoro and Cholily [416]
show that the graphs obtained by attaching any numbers of pendent edges to a single
vertex or a fix number of pendent edges to every vertex of the following graphs are super
edge-magic total graphs: odd cycles, the generalized Petersen graphs P (n, 2) (n odd and
at least 5), and Cn × Pm (n odd, m ≥ 2).

Arumugam and Nalliah [199] proved: the friendship graph C
(n)
3 with n ≡ 0, 8 (mod 12)

has no super (a, 2)-edge-antimagic total labeling; C
(n)
n with n ≡ 2 (mod 4) has no super

(a, 2)-edge-antimagic total labeling; and the generalized friendship graph F2,p consisting
of 2 cycles of various lengths, having a common vertex, and having order p where p ≥ 5,
has a super (2p+ 2, 1)-edge-antimagic total labeling if and only if p is odd.

An (a, d)-edge-antimagic total labeling of G(V,E) is called a super (a, d)-edge-
antimagic total if the vertex labels are {1, 2, . . . , |V (G)|} and the edge labels are
{|V (G)|+ 1, |V (G)|+ 2, . . . , |V (G)|+ |E(G)|}. Bača, Baskoro, Simanjuntak, and Sugeng
[261] prove the following: Cn has a super (a, d)-edge-antimagic total labeling if and only
if either d is 0 or 2 and n is odd, or d = 1; for odd n ≥ 3 and m = 1 or 2, the generalized
Petersen graph P (n,m) has a super (11n + 3)/2, 0)-edge-antimagic total labeling and a
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super ((5n + 5)/2, 2)-edge-antimagic total labeling; for odd n ≥ 3, P (n, (n − 1)/2) has
a super ((11n + 3)/2, 0)-edge-antimagic total labeling and a super ((5n + 5)/2, 2)-edge-
antimagic total labeling. They also prove: if P (n,m), n ≥ 3, 1 ≤ m ≤ b(n − 1)/2c
is super (a, d)-edge-antimagic total, then (a, d) = (4n + 2, 1) if n is even, and either
(a, d) = ((11n + 3)/2, 0), or (a, d) = (4n + 2, 1), or (a, d) = ((5n + 5)/2, 2), if n is odd;
and for odd n ≥ 3 and m = 1, 2, or (n − 1)/2, P (n,m) has an (a, 0)-edge-antimagic
total labeling and an (a, 2)-edge-antimagic total labeling. (In a personal communica-
tion MacDougall argues that “edge-magic” is a better term than “(a, 0)-edge-antimagic”
for while the latter is technically correct, “antimagic” suggests different weights whereas
“magic” emphasizes equal weights and that the edge-magic case is much more important,
interesting, and fundamental rather than being just one subcase of equal value to all the
others.) They conjecture that for odd n ≥ 9 and 3 ≤ m ≤ (n−3)/2, P (n,m) has a (a, 0)-
edge-antimagic total labeling and an (a, 2)-edge-antimagic total labeling. Ngurah and
Baskoro [1854] have shown that for odd n ≥ 3, P (n, 1) and P (n, 2) have ((5n+ 5)/2, 2)-
edge-antimagic total labelings and when n ≥ 3 and 1 ≤ m < n/2, P (n,m) has a super
(4n + 2, 1)-edge-antimagic total labeling. In [1855] Ngurah, Baskova, and Simanjuntak
provide (a, d)-edge-antimagic total labelings for the generalized Petersen graphs P (n,m)
for the cases m = 1 or 2, odd n ≥ 3, and (a, d) = ((9n+ 5)/2, 2).

In [2479] Sudarsana, Baskoro, Uttunggadewa, and Ismaimuza show how to construct
new larger super (a, d)-edge-antimagic-total graphs from existing smaller ones.

In [1856] Ngurah, Baskoro, and Simanjuntak prove that mCn (n ≥ 3) has an (a, d)-
edge-antimagic total in the following cases: (a, d) = (5mn/2 + 2, 1) where m is even;
(a, d) = (2mn+2, 2); (a, d) = ((3mn+5)/2, 3) for m and n odd; and (a, d) = ((mn+3), 4)
for m and n odd; and mCn has a super (2mn+ 2, 1)-edge-antimagic total labeling.

Bača and Barrientos [249] have shown thatmKn has a super (a, d)-edge-antimagic total
labeling if and only if (i) d ∈ {0, 2}, n ∈ {2, 3} and m ≥ 3 is odd, or (ii) d = 1, n ≥ 2
and m ≥ 2, or (iii) d ∈ {3, 5}, n = 2 and m ≥ 2, or (iv) d = 4, n = 2, and m ≥ 3 is
odd. In [248] Bača and Barrientos proved the following: if a graph with q edges and q+ 1
vertices has an α-labeling, than it has an (a, 1)-edge-antimagic vertex labeling; a tree has
a (3, 2)-edge-antimagic vertex labeling if and only if it has an α-labeling and the number
of vertices in its two partite sets differ by at most 1; if a tree with at least two vertices
has a super (a, d)-edge-antimagic total labeling, then d is at most 3; if a graph has an
(a, 1)-edge-antimagic vertex labeling, then it also has a super (a1, 0)-edge-antimagic total
labeling and a super (a2, 2)-edge-antimagic total labeling.

Bača and Youssef [319] proved the following: if G is a connected (a, d)-edge-antimagic
vertex graph that is not a tree, then G+K1 is sequential; mCn has an (a, d)-edge-antimagic
vertex labeling if and only if m and n are odd and d = 1; an odd degree (p, q)-graph G
cannot have a (a, d)-edge-antimagic total labeling if p ≡ 2 (mod 4) and q ≡ 0 (mod 4),
or p ≡ 0 (mod 4), q ≡ 2 (mod 4), and d is even; a (p, q)-graph G cannot have a super
(a, d)-edge-antimagic total labeling if G has odd degree, p ≡ 2 (mod 4), q is even, and d
is odd, or G has even degree, q ≡ 2 (mod 4), and d is even; Cn has a (2n+ 2, 3)- and an
(n+ 4, 3)-edge-antimagic total labeling; a (p, q)-graph is not super (a, d)-vertex-antimagic
total if: p ≡ 2 (mod 4) and d is even; p ≡ 0 (mod 4), q ≡ 2 (mod 4), and d is odd; p ≡ 0
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(mod 8) and q ≡ 2 (mod 4).
In [2481] Sudarsana, Ismaimuza, Baskoro, and Assiyatun prove: for every n ≥ 2, Pn∪

Pn+1 has super (n + 4, 1)- and (2n + 6, 3)-edge antimagic total labelings; for every odd
n ≥ 3, Pn ∪ Pn+1 has super (4n + 5, 1)-,(3n + 6, 2)-, (4n + 3, 1)- and (3n + 4, 2)-edge
antimagic total labelings; for every n ≥ 2, nP2∪Pn has super (6n+ 2, 1)- and (5n+ 3, 2)-
edge antimagic total labelings; and for every n ≥ 1, nP2∪Pn+2 has super (6n+ 6, 1)- and
(5n + 6, 2)-edge antimagic total labelings. They pose a number of open problems about
constructing (a, d)-edge antimagic labelings and super (a, d)-edge antimagic labelings for
the graphs Pn ∪ Pn+1, nP2 ∪ Pn, and nP2 ∪ Pn+2 for specific values of d.

Dafik, Miller, Ryan, and Bača [637] investigated the super edge-antimagicness of the
disconnected graph mCn and mPn. For the first case they prove that mCn, m ≥ 2, has
a super (a, d)-edge-antimagic total labeling if and only if either d is 0 or 2 and m and
n are odd and at least 3, or d = 1, m ≥ 2, and n ≥ 3. For the case of the disjoint
union of paths they determine all feasible values for m,n and d for mPn to have a super
(a, d)-edge-antimagic total labeling except when m is even and at least 2, n ≥ 2, and d is 0
or 2. In [639] Dafik, Miller, Ryan, and Bača obtain a number of results about super edge-
antimagicness of the disjoint union of two stars and state three open problems. Nalliah
and Arumugam [1830] proved that K1,6 ∪ K1,5 does not have such a labeling and prove
that some special cases of K1,n+1 ∪K1,n do have them.

Sudarsana, Hendra, Adiwijaya, and Setyawan [2480] show that the t-joint copies of
wheel Wn have a super edge antimagic ((2n+2)t+2, 1)-total labeling for n ≥ 4 and t ≥ 2.

In [281] Bača, Lascsáková, and Semaničová investigated the connection between graphs
with α-labelings and graphs with super (a, d)-edge-antimagic total labelings. Among their
results are: If G is a graph with n vertices and n − 1 edges (n ≥ 3) and G has an α-
labeling, then mG is super (a, d)-edge-antimagic total if either d is 0 or 2 and m is odd,
or d = 1 and n is even; if G has an α-labeling and has n vertices and n − 1 edges with
vertex bipartition sets V1 and V2 where |V1| and |V2| differ by at most 1, then mG is super
(a, d)–edge-antimagic total for d = 1 and d = 3. In the same paper Bača et al. prove:
caterpillars with odd order at least 3 have super (a, 1)-edge-antimagic total labelings; if
G is a caterpillar of odd order at least 3 and G has a super (a, 1)-edge-antimagic total
labeling, then mG has a super (b, 1)-edge-antimagic total labeling for some b that is a
function of a and m.

In [636] Dafik, Miller, Ryan, and Bača investigated the existence of antimagic labelings
of disjoint unions of s-partite graphs. They proved: if s ≡ 0 or 1 (mod 4), s ≥ 4,m ≥
2, n ≥ 1 or mn is even , m ≥ 2, n ≥ 1, s ≥ 4, then the complete s-partite graph mKn,n,...,n

has no super (a, 0)-edge-antimagic total labeling; if m ≥ 2 and n ≥ 1, then mKn,n,n,n has
no super (a, 2)-antimagic total labeling; and for m ≥ 2 and n ≥ 1, mKn,n,n,n has an
(8mn + 2, 1)-edge-antimagic total labeling. They conjecture that for m ≥ 2, n ≥ 1 and
s ≥ 5, the complete s-partite graph mKn,n,...,n has a super (a, 1)-antimagic total labeling.

In [307] Bača, Muntaner-Batle, Semaničová-Feňovčiková, and Shafiq investigate super
(a, d)-edge-antimagic total labelings of disconnected graphs. Among their results are: If
G is a (super) (a, 2)-edge-antimagic total labeling and m is odd, then mG has a (super)
(a′, 2)-edge-antimagic-total labeling where a′ = m(a − 3) + (m + 1)/2 + 2; and if d a
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positive even integer and k a positive odd integer, G is a graph with all of its vertices
having odd degree, and the order and size of G have opposite parity, then 2kG has no
(a, d)-edge-antimagic total labeling. Bača and Brankovic [264] have obtained a number of
results about the existence of super (a, d)-edge-antimagic totaling of disjoint unions of the
form mKn,n. In [268] Bača, Dafik, Miller, and Ryan provide (a, d)-edge-antimagic vertex
labelings and super (a, d)-edge-antimagic total labelings for a variety of disjoint unions
of caterpillars. Bača and Youssef [319] proved that mCn has an (a, d)-edge-antimagic
vertex labeling if and only if m and n are odd and d = 1. Bača, Dafik, Miller, and
Ryan [269] constructed super (a, d)-edge-antimagic total labeling for graphs of the form
m(Cn �Ks) and mPn ∪ kCn while Dafik, Miller, Ryan, and Bača [638] do the same for
graphs of the form mKn,n,n and K1,m ∪ 2sK1,n. Both papers provide a number of open
problems. In [291] Bača, Lin, and Muntaner-Batle provide super (a, d)-edge-antimagic
total labeling of forests in which every component is a specific kind of tree. In [279] Bača,
Kov́ǎr, Semaničová-Feňovčiková, and Shafiq prove that every even regular graph and
every odd regular graph with a 1-factor are super (a, 1)-edge-antimagic total and provide
some constructions of non-regular super (a, 1)-edge-antimagic total graphs. Bača, Lin, and
Semaničová-Feňovčiková [293] show: the disjoint union of m graphs with super (a, 1)-edge
antimagic total labelings have super (m(a− 2) + 2, 1)-edge antimagic total labelings; the
disjoint union of m graphs with super (a, 3)-edge antimagic total labelings have super
(m(a − 3) + 3, 3)-edge antimagic total labelings; if G has a (a, 1)-edge antimagic total
labelings then mG has an (b, 1)-edge antimagic total labeling for some b; and if G has a
(a, 3)-edge antimagic total labelings then mG has an (b, 3)-edge antimagic total labeling
for some b.

Bača, Miller, Ryan, and Semaničová-Feňovč́ıková [303] prove that ifG admits a (super)
(a, d)-H-antimagic labeling, where d = |E(H)|−|V (H)|, then mG admits a (super) (b, d)-
H-antimagic labelling. By considering special H-coverings of a given H-antimagic graph
G they derive many corollaries. In [2211] Semaničová-Feňovč́ıková, Bača, and Lascsáková
provide two constructions of (super) H-antimagic graphs obtained from smaller (super)
H ′-antimagic graphs. Dafik, Slamin, Tana, Semaničová-Feňovč́ıková, and Bača [640]
show a connection between a constructions of H-antimagic labelings of graph and edge-
antimagic total labelings and describe how to obtain the H-antimagic graph using smaller
edge-antimagic graph. Bača, Semaničová-Feňovčikovǎ, Umar, and Welyyanti [314] gave
sufficient conditions for G1×G2 to admit an H-supermagic or a super (a, d)-H-antimagic
labeling but provide no examples of graphs that satisfy the given conditions.

For t ≥ 2 and n ≥ 4 the Harary graph, Ct
p, is the graph obtained by joining every

two vertices of Cp that are at distance t in Cp. In [2053] Rahim, Ali, Kashif, and Javaid
provide super (a, d)-edge antimagic total labelings for disjoint unions of Harary graphs and
disjoint unions of cycles. In [1035] Hussain, Ali, Rahim, and Baskoro construct various
(a, d)-vertex-antimagic labelings for Harary graphs and disjoint unions of identical Harary
graphs. For p odd and at least 5, Balbuena, Barker, Das, Lin, Miller, Ryan, Slamin,
Sugeng, and Tkac [329] give a super ((17p + 5)/2)-vertex-antimagic total labeling of Ct

p.
MacDougall and Wallis [1682] have proved the following: Ct

4m+3, m ≥ 1, has a super (a, 0)-
edge-antimagic total labeling for all possible values of t with a = 10m + 9 or 10m + 10;
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Ct
4m+1, m ≥ 3, has a super (a, 0)-edge-antimagic total labeling for all possible values

except t = 5, 9, 4m− 4, and 4m− 8 with a = 10m + 4 and 10m + 5; Ct
4m+1, m ≥ 1, has

a super (10m + 4, 0)-edge-antimagic total labeling for all t ≡ 1 (mod 4) except 4m − 3;
Ct

4m, m > 1, has a super (10m+ 2, 0)-edge-antimagic total labeling for all t ≡ 2 (mod 4);
Ct

4m+2, m > 1, has a super (10m+ 7, 0)-edge-antimagic total labeling for all odd t other
than 5 and for t = 2 or 6. In [1036] Hussain, Baskoro, and Ali prove the following: for
any p ≥ 4 and for any t ≥ 2, Ct

p admits a super (2p+ 2, 1)-edge-antimagic total labeling;
for n ≥ 4, k ≥ 2 and t ≥ 2, kCt

n admits a super (2nk+2, 1)-edge-antimagic total labeling;
and for p ≥ 5 and t ≥ 2, Ct

p admits a super (8p + 3, 1)-vertex-antimagic total labeling,
provided if p 6= 2t.

Bača and Murugan [312] have proved: if Ct
n, n ≥ 4, 2 ≤ t ≤ n − 2, is super (a, d)-

edge-antimagic total, then d = 0, 1, or 2; for n = 2k + 1 ≥ 5, Ct
n has a super (a, 0)-

edge-antimagic total labeling for all possible values of t with a = 5k + 4 or 5k + 5; for
n = 2k+1 ≥ 5, Ct

n has a super (a, 2)-edge-antimagic total labeling for all possible values of
t with a = 3k+3 or 3k+4; for n ≡ 0 (mod 4), Ct

n has a super (5n/2+2, 0)-edge-antimagic
total labeling and a super (3n/2+2, 0)-edge-antimagic total labeling for all t ≡ 2 (mod 4);
for n = 10 and n ≡ 2 (mod 4), n ≥ 18, Ct

n has a super (5n/2 + 2, 0)-edge-antimagic total
labeling and a super (3n/2 + 2, 0)-edge-antimagic total labeling for all t ≡ 3 (mod 4) and
for t = 2 and 6; for odd n ≥ 5, Ct

n has a super (2n + 2, 1)-edge-antimagic total labeling
for all possible values of t; for even n ≥ 6, Ct

n has a super (2n + 2, 1)-edge-antimagic
total labeling for all odd t ≥ 3; and for even n ≡ 0 (mod 4), n ≥ 4, Ct

n has a super
(2n+2, 1)-edge-antimagic total labeling for all t ≡ 2 (mod 4). They conjecture that there
is a super (2n+ 2, 1)-edge-antimagic total labeling of Ct

n for n ≡ 0 (mod 4) and for t ≡ 0
(mod 4) and for n ≡ 2 (mod 4) and for t even.

In [287] Bača, Lin, Miller, and Youssef prove: if the friendship C
(n)
3 is super (a, d)-

antimagic total, then d < 3; C
(n)
3 has an (a, 1)-edge antimagic vertex labeling if and only

if n = 1, 3, 4, 5, and 7; C
(n)
3 has a super (a, d)-edge-antimagic total labelings for d = 0 and

2; C
(n)
3 has a super (a, 1)-edge-antimagic total labeling; if a fan Fn (n ≥ 2) has a super

(a, d)-edge-antimagic total labeling, then d < 3; Fn has a super (a, d)-edge-antimagic total
labeling if 2 ≤ n ≤ 6 and d = 0, 1 or 2; the wheel Wn has a super (a, d)-edge-antimagic
total labeling if and only if d = 1 and n 6≡ 1 (mod 4); Kn, n ≥ 3, has a super (a, d)-edge-
antimagic total labeling if and only if either d = 0 and n = 3, or d = 1 and n ≥ 3, or
d = 2 and n = 3; and Kn,n has a super (a, d)-edge antimagic total labeling if and only if
d = 1 and n ≥ 2.

Bača, Lin, and Muntaner-Batle [288] have shown that if a tree with at least two vertices
has a super (a, d)-edge-antimagic total labeling, then d is at most three and Pn, n ≥ 2,
has a super (a, d)-edge-antimagic total labeling if and only if d = 0, 1, 2, or 3. They also
characterize certain path-like graphs in a grid that have super(a, d)-edge-antimagic total
labelings.

In [2495] Sugeng, Miller, and Bača prove that the ladder, Pn×P2, is super (a, d)-edge-
antimagic total if n is odd and d = 0, 1, or 2 and Pn × P2 is super (a, 1)-antimagic total
if n is even. They conjecture that Pn×P2 is super (a, 0)- and (a, 2)-edge-antimagic when
n is even. Sugeng, Miller, and Bača [2495] prove that Cm × P2 has a super (a, d)-edge-
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antimagic total labeling if and only if either d = 0, 1 or 2 and m is odd and at least 3, or
d = 1 and m is even and at least 4. They conjecture that if m is even, m ≥ 4, n ≥ 3,
and d = 0 or 2, then Cm × Pn has a super (a, d)-edge-antimagic total labeling. In [1482]
M.-J. Lee studied super (a, 1)-edge-antimagic properties of m(P4 × Pn) for m,n ≥ 1 and
m(Cn �Kt) for n even and m, t ≥ 1. He also proved that for n ≥ 2 the graph P4 × Pn
has a super (8n+ 2, 1)-edge antimagic total labeling.

Sugeng, Miller, and Bača [2495] define a variation of a ladder, Ln, as the graph obtained
from Pn×P2 by joining each vertex ui of one path to the vertex vi+1 of the other path for
i = 1, 2, . . . , n−1. They prove Ln, n ≥ 2, has a super (a, d)-edge-antimagic total labeling
if and only if d = 0, 1, or 2.

In [635] Dafik, Miller, and Ryan investigate the existence of super (a, d)-edge-antimagic
total labelings of mKn,n,n and K1,m ∪ 2sK1,n. Among their results are: for d = 0 or
2, mKn,n,n has a super (a, d)-edge-antimagic total labeling if and only if n = 1 and
m is odd and at least 3; K1,m ∪ 2sK1,n has a super (a, d)-edge-antimagic labeling for
(a, d) = (4n + 5)s + 2m + 4, 0), ((2n + 5)s + m + 5, 2), ((3n + 5)s + (3m + 9)/2, 1) and
(5s+ 7, 4).

In [252] Bača, Bashir, and Semaničová showed that for n ≥ 4 and d = 0, 1, 2, 3, 4, 5,
and 6 the antiprism An has a super d-antimagic labeling of type (1, 1, 1). The generalized
antiprism Anm is obtained from Cm×Pn by inserting the edges {vi,j+1, vi+1,j} for 1 ≤ i ≤ m
and 1 ≤ j ≤ n − 1 where the subscripts are taken modulo m. Sugeng et al. prove that
Anm, m ≥ 3, n ≥ 2, is super (a, d)-edge-antimagic total if and only if d = 1.

A toroidal polyhex (toroidal fullerene) is a cubic bipartite graph embedded on the torus
such that each face is a hexagon. Note that the torus is a closed surface that can carry a
toroidal polyhex such that all its vertices have degree 3 and all faces of the embedding are
hexagons. Bača and Shabbir [316] proved the toroidal polyhex Hn

m with mn hexagons,
m,n ≥ 2, admits a super (a, d)-edge-antimagic total labeling if and only if d = 1 and
a = 4mn+ 2.

Bača, Miller, Phanalasy, and A. Semaničová-Feňovč́ıková [299] investigated the exis-
tence of (super) 1-antimagic labelings of type (1, 1, 1) for disjoint union of plane graphs.
They prove that if a plane graph G(V,E, F ) has a (super) 1-antimagic labeling h of
type (1, 1, 1) such that h(zext) = |V (G)| + |E(G)| + |F (G)| where zext denotes the
unique external face then, for every positive integer m, the graph mG also admits a
(super) 1-antimagic labeling of type (1, 1, 1); and if a plane graph G(V,E, F ) has 4-
sided inner faces and h is a (super) d-antimagic labeling of type (1, 1, 1) of G such that
h(zext) = |V (G)| + |E(G)| + |F (G)| where d = 1, 3, 5, 7, 9 then, for every positive integer
m, the graph mG also admits a (super) d-antimagic labeling of type (1, 1, 1). They also
give a similar result about plane graphs with inner faces that are 3-sided.

Sugeng, Miller, Slamin, and Bača [2498] proved: the star Sn has a super (a, d)-
antimagic total labeling if and only if either d = 0, 1 or 2, or d = 3 and n = 1 or 2;
if a nontrivial caterpillar has a super (a, d)-edge-antimagic total labeling, then d ≤ 3; all
caterpillars have super (a, 0)-, (a, 1)- and (a, 2)-edge-antimagic total labelings; all cater-
pillars have a super (a, 1)-edge-antimagic total labeling; if m and n differ by at least 2
the double star Sm,n (that is, the graph obtained by joining the centers of K1,m and K1,n
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with an edge) has no (a, 3)-edge-antimagic total labeling.
Sugeng and Miller [2493] show how to manipulate adjacency matrices of graphs with

(a, d)-edge-antimagic vertex labelings and super (a, d)-edge-antimagic total labelings to
obtain new (a, d)-edge-antimagic vertex labelings and super (a, d)-edge-antimagic total
labelings. Among their results are: every graph can be embedded in a connected (a, d)-
edge-antimagic vertex graph; every (a, d)-edge-antimagic vertex graph has a proper (a, d)-
edge-antimagic vertex subgraph; if a graph has a (a, 1)-edge-antimagic vertex labeling and
an odd number of edges, then it has a super (a, 1)-edge-antimagic total labeling; every
super edge magic total graph has an (a, 1)-edge-antimagic vertex labeling; and every graph
can be embedded in a connected super (a, d)-edge-antimagic total graph.

Rahmawati, Sugeng, Silaban, Miller, and Bača [2059] construct new larger (a, d)-
edge-antimagic vertex graphs from an existing (a, d)-edge-antimagic vertex graph using
adjacency matrix for difference d = 1, 2. The results are extended for super (a, d)-edge-
antimagic total graphs with differences d = 0, 1, 2, 3.

Ajitha, Arumugan, and Germina [133] show that (p, p−1) graphs with α-labelings (see
§3.1) and partite sets with sizes that differ by at most 1 have super (a, d)-edge antimagic
total labelings for d = 0, 1, 2 and 3. They also show how to generate large classes of trees
with super (a, d)-edge-antimagic total labelings from smaller graceful trees.

Bača, Lin, Miller, and Ryan [285] define a Möbius grid, Mm
n , as the graph with vertex

set {xi,j| i = 1, 2, . . . ,m + 1, j = 1, 2, . . . , n} and edge set {xi,jxi,j+1| i = 1, 2, . . . ,m +
1, j = 1, 2, . . . , n − 1} ∪ {xi,jxi+1,j| i = 1, 2, . . . ,m, j = 1, 2, . . . , n} ∪ {xi,nxm+2−i,1| i =
1, 2, . . . ,m + 1}. They prove that for n ≥ 2 and m ≥ 4, Mm

n has no d-antimagic vertex
labeling with d ≥ 5 and no d-antimagic-edge labeling with d ≥ 9.

Ali, Bača, and Bashir, [123] investigated super (a, d)-vertex-antimagic total labelings
of the disjoint unions of paths. They prove: mP2 has a super (a, d)-vertex-antimagic total
labeling if and only if m is odd and d = 1; mP3, m > 1, has no super (a, 3)-vertex-
antimagic total labeling; mP3 has a super (a, 2)-vertex-antimagic total labeling for m ≡ 1
(mod 6); and mP4 has a super (a, 2)-vertex-antimagic total labeling for m ≡ 3 (mod 4).

Lee, Tsai, and Lin [1485] denote the subdivision of a star Sn obtained by inserting m
vertices into every edge of the star Sn by Snm. They proved that for n ≥ 3, the graph
kSnm is super (a, d)-edge antimagic total for certain values. In [1041] Ichishima, López,
Muntaner-Batle and Rius-Font proved that if G is tripartite and has a (super) (a, d)-
edge antimagic total labeling, then nG (n ≥ 3) has a (super) (a, d)-edge antimagic total
labeling for d = 1 and for d = 0, 2 when n is odd.

Let p, t1, t2, . . . , tk be integers such that 1 ≤ t1 < t2 < · · · < tk < p. A Toeplitz
graph, denoted by Tp〈t1 . . . , tk〉, is a graph with vertex set {v1, v2, . . . , vp} and edge set
{vivj : |i − j| ∈ {t1, t2, . . . , tk}}. Bača, Bashir, Nadeem, and Shabbir [251] give an
upper bound on the difference d when a Toeplitz graph Tp〈t1, t2, . . . tk〉 is super (a, d)-
edge-antimagic total. They also construct a super (a, 1)-edge-antimagic total labeling for
an arbitrary Toeplitz graph without isolated vertices and prove that the Toeplitz graph
Tp〈t1〉 admits a super (a, 3)-edge-antimagic total labeling. Moreover, when p and t1 satisfy
certain conditions Tp〈t1〉 also admits a super (a, d)-edge-antimagic total labeling for d = 0
and d = 2. When k = 2 they show the existence of a super (a, 2)-edge-antimagic total
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labeling for the Toeplitz graph Tp〈t1, t1 + 1〉.
Pandimadevi and Subbiah [1886] show the existence and nonexistence of (a, d)-vertex

antimagic total labeling for several class of digraphs and show how to construct labelings
for generalized de Bruijn digraphs.

In [874] Getzimah and Palani define vertex antimagic total labeling, edge antimagic
total labeling on Zp+q, and discuss these labelings for cycles, stars, complete bipartite
graphs, the subdivision graphs of ladders, and combs. They also investigate totally (a, d)-
edge antimagic graphs, totally super vertex graphs, edge antimagic graphs, and determine
the bounds for the vertices and the edges under total labelings.

Chang, Chen, Li, and Pan [554] investigated a weak version of antimagic labelings
called k-shifted-antimagic labelings that allow the consecutive numbers to start from k+1,
instead of starting from 1. They established connections among various concepts proposed
in the literature of antimagic labelings and extend previous results in three ways: some
classes of graphs, including trees and graphs whose vertices are of odd degrees, that have
not been verified to be antimagic are shown to be k-shifted-antimagic for sufficiently large
k; some graphs are proved k-shifted-antimagic for all k, whereas some are proved not for
some particular k; and disconnected graphs are also considered.

The book [297] by Bača and Miller has a wealth of material and open problems on
super edge-antimagic labelings. In [260] Bača, Baskoro, Miller, Ryan, Simanjuntak, and
Sugeng provide detailed survey of results on edge antimagic labelings and include many
conjectures and open problems. In 2015 Nalliah [1829] published a list of open problems
on super (a, d)-edge antimagic total labelings of graphs. In 2017 Brankovic, Jendrol, Lin,
Phanalasy, Ryan, Semaničová-Feňovč́ıková, Slamin, and Sugeng [253] provided a survey
of recent results on face-antimagic labelings. It was dedicated to the memory of Mirka
Miller, who introducted the concept of face-antimagic labeling of plane graphs in 2003.

In Tables 14, 15, 16 and 17 we use the abbreviations

(a, d)-VAT (a, d)-vertex-antimagic total labeling

(a, d)-SVAT super (a, d)-vertex-antimagic total labeling

(a, d)-EAT (a, d)-edge-antimagic total labeling

(a, d)-SEAT super (a, d)-edge-antimagic total labeling

(a, d)-EAV (a, d)-edge-antimagic vertex labeling

A question mark following an abbreviation indicates that the graph is conjectured to
have the corresponding property. The tables were prepared by Petr Kovář and Tereza
Kovářová and updated by J. Gallian in 2008.
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Table 14: Summary of (a, d)-Vertex-Antimagic Total and Super (a, d)-Vertex-
Antimagic Total Labelings

Graph Labeling Notes
Pn (a, d)-VAT wide variety of a and d [262]

Pn (a, d)-SVAT iff d = 3, d = 2, n ≥ 3 odd
or d = 3, n ≥ 3 [2496]

Cn (a, d)-VAT wide variety of a and d [261]

Cn (a, d)-SVAT iff d = 0, 2 and n odd or
d = 1 [2496]

generalized Petersen (a, d)-VAT [263]
graph P (n, k) (a, 1)-VAT n ≥ 3, 1 ≤ k ≤ n/2 [2497]

prisms Cn × P2 (a, d)-VAT [263]

antiprisms (a, d)-VAT [263]

Sn1 ∪ . . . ∪ Snt (a, d)-VAT d = 1, 2, 3, 4, 6 [1893], [2055]

Wn not (a, d)-VAT for n > 20 [1599]

K1,n not (a, d)-SVAT n ≥ 3 [2496]
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Table 15: Summary of (a, d)-Edge-Antimagic Total Labelings

Graph Labeling Notes
trees (a, 1)-EAT? [286]

Pn not (a, d)-EAT d > 2 [286]

P2n (6n, 1)-EAT [2386]
(6n+ 2, 2)-EAT [2386]

P2n+1 (3n+ 4, 2)-EAT [2386]
(3n+ 4, 3)-EAT [2386]
(2n+ 4, 4)-EAT [2386]
(5n+ 4, 2)-EAT [2386]
(3n+ 5, 2)-EAT [2386]
(2n+ 6, 4)-EAT [2386]

Cn (2n+ 2, 1)-EAT [2386]
(3n+ 2, 1)-EAT [2386]
not (a, d)-EAT d > 5 [286]

C2n (4n+ 2, 2)-EAT [2386]
(4n+ 3, 2)-EAT [2386]
(2n+ 3, 4)-EAT? [2386]
(2n+ 4, 4)-EAT? [2386]

C2n+1 (3n+ 4, 3)-EAT [2386]
(3n+ 5, 3)-EAT [2386]
(n+ 4, 5)-EAT? [2386]
(n+ 5, 5)-EAT? [2386]

Kn not (a, d)-EAT d > 5 [286]

Kn,n (a, d)-EAT iff d = 1, n ≥ 2 [287]

caterpillars (a, d)-EAT d ≤ 3 [2498]

Wn not (a, d)-EAT d > 4 [286]

generalized Petersen not (a, d)-EAT d > 4 [286]

graph P (n, k) ((5n+ 5)/2, 2)-EAT n ≥ 3 odd, k = 1, 2 [1854]
super (4n+ 2, 1)-EAT n ≥ 3, 1 ≤ k ≤ n/2 [1854]
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Table 16: Summary of (a, d)-Edge-Antimagic Vertex Labelings

Graph Labeling Notes
Pn (3, 2)-EAV [2386]

not (a, d)-EAV d > 2 [2386]

P2n (n+ 2, 1)-EAV [2386]

Cn not (a, d)-EAV d > 1 [286]

C2n not (a, d)-EAV [2386]

C2n+1 (n+ 2, 1)-EAV [2386]
(n+ 3, 1)-EAV [2386]

Kn not (a, d)-EAV for n > 1 [286]

Kn,n not (a, d)-EAV for n > 3 [286]

Wn not (a, d)-EAV [286]

C
(n)
3 (friendship graph) (a, 1)-EAV iff n = 1, 3, 4, 5, 7 [287]

generalized Petersen not (a, d)-EAV d > 1 [286]
graph P (n, k)
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Table 17: Summary of (a, d)-Super-Edge-Antimagic Total Labelings

Graph Labeling Notes
Cn �K1 (a, d)-SEAT variety of cases [241], [312]

Pn × P2 (ladders) (a, d)-SEAT n odd, d ≤ 2 [2495]
n even, d = 1 [2495]

(a, d)-SEAT? d = 0, 2, n even [2495]

Cn × P2 (a, d)-SEAT iff d ≤ 3 n odd [2495]
or d = 1, n ≥ 4 even [2495]

Cm × Pn (a, d)-SEAT? m ≥ 4 even,
n ≥ 3, d = 0, 2 [2495]

caterpillars (a, 1)-SEAT [2498]

C
(n)
3 (friendship graphs) (a, d)-SEAT d = 0, 1, 2 [287]

Fn (n ≥ 2) (fans) (a, d) SEAT only if d < 3 [287]
(a, d)-SEAT 2 ≤ n ≤ 6, d = 0, 1, 2 [287]

Wn (a, d)-SEAT iff d = 1, n 6≡ 1 (mod 4) [287]

Kn (n ≥ 3) (a, d) SEAT iff d = 0, n = 3 [287]
d = 1, n ≥ 3 [287]
d = 2, n = 3 [287]

trees (a, d)-SEAT only if d ≤ 3 [288]

Pn (n > 1) (a, d)-SEAT iff d ≤ 3 [288]

mKn (a, d)-SEAT iff d ∈ {0, 2}, n ∈ {2, 3},
m ≥ 3 odd [249]
d = 1,m, n ≥ 2 [249]
d = 3 or 5,n = 2,m ≥ 2 [249]
d = 4, n = 2, m ≥ 3 odd [249]

Cn (a, d)-SEAT iff d = 0 or 2, n odd [288]
d = 1 [261]

P (m,n) (a, d)-SEAT many cases [261]
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6.4 Face Antimagic Labelings and d-antimagic Labeling of Type
(1,1,1)

Bača [243] defines a connected plane graph G with edge set E and face set F to be (a, d)-
face antimagic if there exist positive integers a and d and a bijection g : E → {1, 2, . . . , |E|}
such that the induced mapping ψg : F → {a, a + d, . . . , a + (|F (G)| − 1)d}, where for a
face f, ψg(f) is the sum of all g(e) for all edges e surrounding f is also a bijection. In
[245] Bača proves that for n even and at least 4, the prism Cn × P2 is (6n + 3, 2)-face
antimagic and (4n+ 4, 4)-face antimagic. He also conjectures that Cn × P2 is (2n+ 5, 6)-
face antimagic. In [283] Bača, Lin, and Miller investigate (a, d)-face antimagic labelings of
the convex polytopes Pm+1×Cn. They show that if these graphs are (a, d)-face antimagic
then either d = 2 and a = 3n(m+ 1) + 3, or d = 4 and a = 2n(m+ 1) + 4, or d = 6 and
a = n(m + 1) + 5. They also prove that if n is even, n ≥ 4 and m ≡ 1 (mod 4), m ≥ 3,
then Pm+1×Cn has a (3n(m+ 1) + 3, 2)-face antimagic labeling and if n is at least 4 and
even and m is at least 3 and odd, or if n ≡ 2 (mod 4), n ≥ 6 and m is even, m ≥ 4,
then Pm+1×Cn has a (3n(m+ 1) + 3, 2)-face antimagic labeling and a (2n(m+ 1) + 4, 4)-
face antimagic labeling. They conjecture that Pm+1 × Cn has (3n(m + 1) + 3, 2)- and
(2n(m + 1) + 4, 4)-face antimagic labelings when m ≡ 0 (mod 4), n ≥ 4, and for m even
and m ≥ 4, that Pm+1×Cn has a (n(m+ 1) + 5, 6)-face antimagic labeling when n is even
and at least 4. Bača, Baskoro, Jendrǒl, and Miller [257] proved that graphs in the shape
of hexagonal honeycombs with m rows, n columns, and mn 6-sided faces have d-antimagic
labelings of type (1, 1, 1) for d = 1, 2, 3, and 4 when n odd and mn > 1.

In [295] Bača and Miller define the class Qm
n of convex polytopes with vertex set

{yj,i : i = 1, 2, . . . , n; j = 1, 2, . . . ,m + 1} and edge set {yj,iyj,i+1 : i = 1, 2, . . . , n; j =
1, 2, . . . ,m + 1} ∪ {yj,iyj+1,i : i = 1, 2, . . . , n; j = 1, 2, . . . ,m} ∪ {yj,i+1yj+1,i : 1 +
1, 2, . . . , n; j = 1, 2, . . . ,m, j odd} ∪ {yj,iyj+1,i+1 : i = 1, 2, . . . , n; j = 1, 2, . . . ,m, j even}
where yj,n+1 = yj,1. They prove that for m odd, m ≥ 3, n ≥ 3, Qm

n is (7n(m+1)/2+2, 1)-
face antimagic and when m and n are even, m ≥ 4, n ≥ 4, Qm

n is (7n(m+1)/2+2, 1)-face
antimagic. They conjecture that when n is odd, n ≥ 3, and m is even, then Qm

n is
((5n(m + 1) + 5)/2, 2)−face antimagic and ((n(m + 1) + 7)/2, 4)-face antimagic. They
further conjecture that when n is even, n > 4,m > 1 or n is odd, n > 3 and m is odd,
m > 1, then Qm

n is (3n(m + 1)/2 + 3, 3)-face antimagic. In [247] Bača proves that for
the case m = 1 and n ≥ 3 the only possibilities for (a, d)-antimagic labelings for Qm

n are
(7n+2, 1) and (3n+3, 3). He provides the labelings for the first case and conjectures that
they exist for the second case. Bača [243] and Bača and Miller [294] describe (a, d)-face
antimagic labelings for a certain classes of convex polytopes.

In [256] Bača et al. provide a detailed survey of results on face antimagic labelings
and include many conjectures and open problems.

For a plane graph G, Bača and Miller [296] call a bijection h from V (G)∪E(G)∪F (G)
to {1, 2, . . . , |V (G)|+ |E(G)| ∪ |F (G)|} a d-antimagic labeling of type (1, 1, 1) if for every
number s the set of s-sided face weights is Ws = {as, as+d, as+2d, . . . , as+(fs−1)d} for
some integers as and d, where fs is the number of s-sided faces (Ws varies with s). They
show that the prisms Cn × P2 (n ≥ 3) have a 1-antimagic labeling of type (1, 1, 1) and
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that for n ≡ 3 (mod 4), Cn×P2 have a d-antimagic labeling of type (1, 1, 1) for d = 2, 3, 4,
and 6. They conjecture that for all n ≥ 3, Cn × P2 has a d-antimagic labeling of type
(1, 1, 1) for d = 2, 3, 4, 5, and 6. This conjecture has been proved for the case d = 3 and
n 6= 4 by Bača, Miller, and Ryan [302] (the case d = 3 and n = 4 is open). The cases
for d = 2, 4, 5, and 6 were done by Lin, Slamin, Bača, and Miller [1600]. Bača, Lin, and
Miller [284] prove: for m,n > 8, Pm×Pn has no d-antimagic edge labeling of type (1, 1, 1)
with d ≥ 9; for m ≥ 2, n ≥ 2, and (m,n) 6= (2, 2), Pm × Pn has d-antimagic labelings of
type (1, 1, 1) for d = 1, 2, 3, 4, and 6. They conjecture the same is true for d = 5. Butt,
Numan, Shah, and Ali [521] prove that the generalized prims Cn × Pm have d-antimagic
face labelings of type (1,1,1) for n ≥ 5 and m ≥ 2.

Bača, Miller, and Ryan [302] also prove that for n ≥ 4 the antiprism (see §6.1 for the
definition) on 2n vertices has a d-antimagic labeling of type (1, 1, 1) for d = 1, 2, and 4.
They conjecture the result holds for d = 3, 5, and 6 as well. Lin, Ahmad, Miller, Sugeng,
and Bača [1597] did the cases that d = 7 for n ≥ 3 and d = 12 for n ≥ 11. Sugeng, Miller,
Lin, and Bača [2497] did the cases: d = 7, 8, 9, 10 for n ≥ 5; d = 15 for n ≥ 6; d = 18 for
n ≥ 7; d = 12, 14, 17, 20, 21, 24, 27, 30, 36 for n odd and n ≥ 7; and d = 16, 26 for n odd
and n ≥ 9.

Baca, Numan, and Semaničová-Feňovč́ıková [309] investigated the problem of labeling
the vertices, edges, and faces of a disjoint union of r copies Cn × Pm by the consecutive
integers starting from 1 in such a way that the sum of the labels of a face and the
labels of vertices and edges surrounding that face for all s-sided faces form an arithmetic
progression with common difference d.

Ali, Bača, Bashir, and Semaničová-Feňovč́ıková [124] investigated antimagic labelings
for disjoint unions of prisms and cycles. They prove: for m ≥ 2 and n ≥ 3, m(Cn × P2)
has no super d-antimagic labeling of type (1, 1, 1) with d ≥ 30; for m ≥ 2 and n ≥
3, n 6= 4, m(Cn × P2) has super d-antimagic labeling of type (1, 1, 1) for d = 0, 1, 2, 3, 4,
and 5; and for m ≥ 2 and n ≥ 3, mCn has (m(n + 1) + 3, 3)- and (2mn + 2, 2)-vertex-
antimagic total labeling. Bača and Bashir [250] proved that for m ≥ 2 and n ≥ 3, n 6=
4, m(Cn × P2) has super 7-antimagic labeling of type (1, 1, 1) and for n ≥ 3, n 6= 4 and
2 ≤ m ≤ 2n m(Cn × P2) has super 6-antimagic labeling of type (1, 1, 1).

Bača, Numan and Siddiqui [311] investigated the existence of the super d-antimagic
labeling of type (1, 1, 1) for the disjoint union of m copies of antiprism mAn. They
proved that for m ≥ 2, n ≥ 4, mAn has super d-antimagic labelings of type (1, 1, 1) for
d = 1, 2, 3, 5, 6. Ahmad, Bača, Lascsáková, and Semaničová-Feňovč́ıková [80] investigated
super d-antimagicness of type (1, 1, 0) for mG in a more general sense. They prove: if
there exists a super 0-antimagic labeling of type (1, 1, 0) of a plane graph G then, for
every positive integer m, the graph mG also admits a super 0-antimagic labeling of type
(1, 1, 0); if a plane graph G with 3-sided inner faces admits a super d-antimagic labeling
of type (1, 1, 0) for d = 0, 6 then, for every positive integer m, the graph mG also admits
a super d-antimagic labeling of type (1, 1, 0); if a plane graph G with 3-sided inner faces is
a tripartite graph with a super d-antimagic labeling of type (1, 1, 0) for d = 2, 4 then, for
every positive integer m, the graph mG also admits a super d-antimagic labeling of type
(1, 1, 0); if a plane graph G with 4-sided inner faces admits a super d-antimagic labeling of
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type (1, 1, 0) for d = 0, 4, 8 then the disjoint union of arbitrary number of copies of G also
admits a super d-antimagic labeling of type (1, 1, 0); if a plane graph G with k-sided inner
faces, k ≥ 3, admits a super d-antimagic labeling of type (1, 1, 0) for d = 0, 2k then, for
every positive integer m, the graph mG also admits a super d-antimagic labeling of type
(1, 1, 0); if a plane graph G with k-sided inner faces admits a super k-antimagic labeling
of type (1, 1, 0) for k even then, for every positive integer m, the graph mG also admits
a super k-antimagic labeling of type (1, 1, 0).

Bača, Jendrǎl, Miller, and Ryan [276] prove: for n even, n ≥ 6, the generalized
Petersen graph P (n, 2) has a 1-antimagic labeling of type (1, 1, 1); for n even, n ≥ 6, n 6=
10, and d = 2 or 3, P (n, 2) has a d-antimagic labeling of type (1, 1, 1); and for n ≡ 0
(mod 4), n ≥ 8 and d = 6 or 9, P (n, 2) has a d-antimagic labeling of type (1, 1, 1). They
conjecture that there is an d-antimagic labeling of type (1,1,1) for P (n, 2) when n ≡ 2
(mod 4), n ≥ 6, and d = 6 or 9.

In [266] Bača, Brankovic, and A. Semaničová-Feňovčikovǎ provide super d-antimagic
labelings of type (1,1,1) for friendship graphs Fn (n ≥ 2) and several other families of
planar graphs.

Bača, Brankovic, Lascsáková, Phanalasy, and Semaničová-Feňovč́ıková [265] provided
super d-antimagic labeling of type (1, 1, 0) for friendship graphs Fn, n ≥ 2, for d ∈
{1, 3, 5, 7, 9, 11, 13}. Moreover, they show that for n ≡ 1 (mod 2) the graph Fn also
admits a super d-antimagic labeling of type (1, 1, 0) for d ∈ {0, 2, 4, 6, 8, 10}.

Bača, Baskoro, and Miller [258] have proved that hexagonal planar honeycomb graphs
with an even number of columns have 2-antimagic and 4-antimagic labelings of type
(1, 1, 1). They conjecture that these honeycombs also have d-antimagic labelings of type
(1, 1, 1) for d = 3 and 5. They pose the odd number of columns case for 1 ≤ d ≤ 5 as
an open problem. Bača, Baskoro, and Miller [259] give d-antimagic labelings of a special
class of plane graphs with 3-sided internal faces for d = 0, 2, and 4. Bača, Lin, Miller,
and Ryan [285] prove for odd n ≥ 3, m ≥ 1 and d = 0, 1, 2 or 4, the Möbius grid Mm

n has
an d-antimagic labeling of type (1, 1, 1). Siddiqui, Numan, and Umar [2383] examined
the existence of super d-antimagic labelings of type (1,1,1) for Jahangir graphs for certain
differences d.

Bača, Numan, and Shabbir [310] studied the existence of super d-antimagic labelings
of type (1, 1, 1) for the toroidal polyhex Hn

m. They labeled the edges of a 1-factor by
consecutive integers and then in successive steps they labeled the edges of 2m-cycles
(respectively 2n-cycles) in a 2-factor by consecutive integers. This technique allowed
them to construct super d-antimagic labelings of type (1, 1, 1) for Hn

m with d = 1, 3, 5.
They suppose that such labelings exist also for d = 0, 2, 4.

Kathiresan and Ganesan [1351] define a class of plane graphs denoted by P b
a (a ≥

3, b ≥ 2) as the graph obtained by starting with vertices v1, v2, . . . , va and for each i =
1, 2 . . . , a − 1 joining vi and vi+1 with b internally disjoint paths of length i + 1. They
prove that P b

a has d-antimagic labelings of type (1, 1, 1) for d = 0, 1, 2, 3, 4, and 6. Lin
and Sugen [1601] prove that P b

a has a d-antimagic labeling of type (1, 1, 1) for d = 5, 7a−
2, a+ 1, a− 3, a− 7, a+ 5, a− 4, a+ 2, 2a− 3, 2a− 1, a− 1, 3a− 3, a+ 3, 2a+ 1, 2a+ 3, 3a+
1, 4a− 1, 4a− 3, 5a− 3, 3a− 1, 6a− 5, 6a− 7, 7a− 7, and 5a− 5. Similarly, Bača, Baskoro,
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and Cholily [255] define a class of plane graphs denoted by Cb
a as the graph obtained by

starting with vertices v1, v2, . . . , va and for each i = 1, 2 . . . , a joining vi and vi+1 with b
internally disjoint paths of length i+1 (subscripts are taken modulo a). In [255] and [254]
they prove that for a ≥ 3 and b ≥ 2, Cb

a has a d-antimagic labeling of type (1, 1, 1) for
d = 0, 1, 2, 3, a+ 1, a− 1, a+ 2, and a− 2.

In [267] Bača, Brankovic, and Semaničová-Feňovčikovǎ investigated the existence of
super d-antimagic labelings of type (1,1,1) for plane graphs containing a special kind
of Hamilton path. They proved: if there exists a Hamilton path in a plane graph G
such that for every face except the external face, the Hamilton path contains all but
one of the edges surrounding that face, then G is super d-antimagic of type (1,1,1) for
d = 0, 1, 2, 3, 5; if there exists a Hamilton path in a plane graph G such that for every face
except the external face, the Hamilton path contains all but one of the edges surrounding
that face and if 2(|F (G)| − 1) ≤ |V (G)|, then G is super d-antimagic of type (1, 1, 1) for

d = 0, 1, 2, 3, 4, 5, 6; if G is a plane graph with M = b |V (G)|
|F (G)|−1

c and a Hamilton path such
that for every face, except the external face, the Hamilton path contains all but one of the
edges surrounding that face, then for M = 1, G admits a super d-antimagic labeling of
type (1,1,1) for d = 0, 1, 2, 3, 5; and for M ≥ 2, G admits a super d-antimagic labeling of
type (1,1,1) for d = 0, 1, 2, 3, . . . ,M + 4. They also proved that Pn× P2 (n ≥ 3) admits a
super d-antimagic labeling of type (1,1,1) for d ∈ {0, 1, 2, . . . , 15} and the graph obtained
from Pn×Pm (n ≥ 2) by adding a new edge in every 4-sided face such that the added edges
are “parallel” admits a super d-antimagic labeling of type (1,1,1) for d ∈ {0, 1, 2, . . . , 9}.

In [1066] Imran, Siddiqui, and Numan examine the existence of super d-antimagic
labelings of type (1,1,1) for uniform subdivision of wheel for certain differences d.

In the following tables we use the abbreviations

(a, d)-FA (a, d)-face antimagic labeling

d-AT(1,1,1) d-antimagic labeling of type (1, 1, 1).

A question mark following an abbreviation indicates that the graph is conjectured to
have the corresponding property. The tables were prepared by Petr Kovář and Tereza
Kovářová and updated by J. Gallian in 2008.
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Table 18: Summary of Face Antimagic Labelings

Graph Labeling Notes
Qm
n (see §6.4) (7n(m+ 1)/2 + 2, 1)-FA m ≥ 3, n ≥ 3, m odd [295]

(7n(m+ 1)/2 + 2, 1)-FA m ≥ 4, n ≥ 4, m,n even [295]
((5n(m+ 1) + 5)/2, 2)-FA? m ≥ 2, n ≥ 3, m even, n odd [295]
((n(m+ 1) + 7)/2, 4)-FA? m ≥ 2, n ≥ 3, m even, n odd [295]
(3n(m+ 1)/2 + 3, 3)-FA? m > 1, n > 4, n even [295]
(3n(m+ 1)/2 + 3, 3)-FA? m > 1, n > 3, m odd, n odd [295]

Cn × P2 (6n+ 3, 2)-FA n ≥ 4, n even [245]
(4n+ 4, 4)-FA n ≥ 4, n even [245]
(2n+ 5, 6)-FA? [245]

Pm+1 × Cn (3n(m+ 1) + 3, 2)-FA n ≥ 4, n even and [283]
m ≥ 3, m ≡ 1 (mod 4),

(3n(m+ 1) + 3, 2)-FA and n ≥ 4, n even and [283]
(2n(m+ 1) + 4, 4)-FA m ≥ 3, m odd [283],

or n ≥ 6, n ≡ 2 (mod 4) and
m ≥ 4, m even

(3n(m+ 1) + 3, 2)-FA? m ≥ 4, n ≥ 4, m ≡ 0 (mod 4) [283]
(2n(m+ 1) + 4, 4)-FA? m ≥ 4, n ≥ 4, m ≡ 0 (mod 4) [283]
(n(m+ 1) + 5, 6)-FA? n ≥ 4, n even [283]

Table 19: Summary of d-antimagic Labelings of
Type (1,1,1)

Graph Labeling Notes
Pm × Pn not d-AT(1,1,1) m,n, d ≥ 9, [284]

Pm × Pn d-AT(1,1,1) d = 1, 2, 3, 4, 6;
m,n ≥ 2, (m,n) 6= (2, 2) [284]

Pm × Pn 5-AT(1,1,1) m,n ≥ 2, (m,n) 6= (2, 2) [284]

Cn × P2 1-AT(1,1,1) [296]
d-AT(1,1,1) d = 2, 3, 4 and 6 [296]

for n ≡ 3 (mod 4)
d-AT(1,1,1) d = 2, 4, 5, 6 for n ≥ 3 [1600]
d-AT(1,1,1) d = 3 for n ≥ 5 [302]

Continued on next page
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Table 19 – Continued from previous page

Graph Labeling Notes

Pm × Pn 5-AT(1,1,1)? [1600]
not d-AT m,n > 8, d ≥ 9 [1600]

antiprism on 2n d-AT(1,1,1) d = 1, 2 and 4 for n ≥ 4 [302]
vertices d-AT(1,1,1)? d = 3, 5 and 6 for n ≥ 4 [302]

Mm
n (Möbius grids) d-AT(1,1,1) n ≥ 3 odd, d = 0, 1, 2, 4 [285]

d = 7, n ≥ 3 [1597]
d = 12, n ≥ 11 [1597]
d = 7, 8, 9, 10, n ≥ 5 [2497]
d = 15, n ≥ 6 [2497]
d = 18 n ≥ 7 [2497]

P (n, 2) d-AT(1,1,1) d = 1; d = 2, 3, n ≥ 6,
n 6= 10 [276]

P (4n, 2) d-AT(1,1,1) d = 6, 9, n ≥ 2, n 6= 10 [276]

P (4n+ 2, 2) d-AT(1,1,1)? d = 6, 9, n ≥ 1, n 6= 10 [276]

honeycomb graphs d-AT(1,1,1) d = 2, 4 [258]
with even number d-AT(1,1,1)? d = 3, 5 [258]
of columns

Cn × P2 d-AT(1,1,1) d = 1, 2, 4, 5, 6 [1600], [296]

Cn × P2 3-AT(1,1,1) n 6= 4 [302]

6.5 Product Antimagic Labelings

Figueroa-Centeno, Ichishima, and Muntaner-Batle [759] have introduced multiplicative
analogs of magic and antimagic labelings. They define a graph G of size q to be product
magic if there is a labeling from E(G) onto {1, 2, . . . , q} such that, at each vertex v, the
product of the labels on the edges incident with v is the same. They call a graph G of
size q product antimagic if there is a labeling f from E(G) onto {1, 2, . . . , q} such that the
products of the labels on the edges incident at each vertex v are distinct. They prove: a
graph of size q is product magic if and only if q ≤ 1 (that is, if and only if it is K2, Kn or
K2 ∪Kn); Pn (n ≥ 4) is product antimagic; every 2-regular graph is product antimagic;
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and, if G is product antimagic, then so are G + K1 and G �Kn. They conjecture that
a connected graph of size q is product antimagic if and only if q ≥ 3. Kaplan, Lev, and
Roditty [1339] proved the following graphs are product antimagic: the disjoint union of
cycles and paths where each path has least three edges; connected graphs with n vertices
and m edges where m ≥ 4nln n; graphs G = (V,E) where each component has at least
two edges and the minimum degree of G is at least 8

√
ln |E| ln (ln |E|); all complete

k-partite graphs except K2 and K1,2; and G�H where G has no isolated vertices and H
is regular.

In [1934] Pikhurko characterizes all large graphs that are product antimagic graphs.
More precisely, it is shown that there is an n0 such that a graph with n ≥ n0 vertices is
product antimagic if and only if it does not belong to any of the following four classes:
graphs that have at least one isolated edge; graphs that have at least two isolated vertices;
unions of vertex-disjoint of copies of K1,2; graphs consisting of one isolated vertex; and
graphs obtained by subdividing some edges of the star K1,k+l.

In [759] Figueroa-Centeno, Ichishima, and Muntaner-Batle also define a graph G with
p vertices and q edges to be product edge-magic if there is a labeling f from V (G)∪E(G)
onto {1, 2, . . . , p+q} such that f(u) ·f(v) ·f(uv) is a constant for all edges uv and product
edge-antimagic if there is a labeling f from V (G) ∪E(G) onto {1, 2, . . . , p+ q} such that
for all edges uv the products f(u)·f(v)·f(uv) are distinct. They prove K2∪Kn is product
edge-magic, a graph of size q without isolated vertices is product edge-magic if and only
if q ≤ 1 and every graph other than K2 and K2 ∪Kn is product edge-antimagic.
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7 Miscellaneous Labelings

7.1 Sum Graphs

In 1990, Harary [958] introduced the notion of a sum graph. A graph G(V,E) is called a
sum graph if there is an bijection f from V to a set of positive integers S such that xy ∈ E
if and only if f(x) + f(y) ∈ S. Since the vertex with the highest label in a sum graph
cannot be adjacent to any other vertex, every sum graph must contain isolated vertices.
In 1991 Harary, Hentzel, and Jacobs [960] defined a real sum graph in an analogous way
by allowing S to be any finite set of positive real numbers. However, they proved that
every real sum graph is a sum graph. Bergstrand, Hodges, Jennings, Kuklinski, Wiener,
and Harary [442] defined a product graph analogous to a sum graph except that 1 is not
permitted to belong to S. They proved that every product graph is a sum graph and vice
versa.

For a connected graph G, let σ(G), the sum number of G, denote the minimum number
of isolated vertices that must be added to G so that the resulting graph is a sum graph
(some authors use s(G) for the sum number of G). A labeling that makes G together
with σ(G) isolated points a sum graph is called an optimal sum graph labeling. Ellingham
[709] proved the conjecture of Harary [958] that σ(T ) = 1 for every tree T 6= K1. Smyth
[2432] proved that there is no graph G with e edges and σ(G) = 1 when n2/4 < e ≤
n(n− 1)/2. Smyth [2433] conjectures that the disjoint union of graphs with sum number
1 has sum number 1. More generally, Kratochvil, Miller, and Nguyen [1428] conjecture
that σ(G ∪ H) ≤ σ(G) + σ(H) − 1. Hao [952] has shown that if d1 ≤ d2 ≤ · · · ≤ dn is
the degree sequence of a graph G, then σ(G) > max(di− i) where the maximum is taken
over all i. Bergstand et al. [441] proved that σ(Kn) = 2n− 3. Hartsfield and Smyth [965]
claimed to have proved that σ(Km,n) = d3m + n − 3e/2 when n ≥ m but Yan and Liu
[2845] found counterexamples to this assertion when m 6= n. Pyatkin [2043], Liaw, Kuo,
and Chang [1593], Wang, and Liu [2798], and He, Shen, Wang, Chang, Kang, and Yu [971]

have shown that for 2 ≤ m ≤ n, σ(Km,n) = dn
p

+ (p+1)(m−1)
2

e where p = d
√

2n
m−1

+ 1
4
− 1

2
e

is the unique integer such that (p−1)p(m−1)
2

< n ≤ (p+1)p(m−1)
2

.
Miller, Ryan, Slamin, and Smyth [1757] proved that σ(Wn) = n

2
+ 2 for n even and

σ(Wn) = n for n ≥ 5 and n odd (see also [2555]). Miller, Ryan, and Smyth [1759] prove
that the complete n-partite graph on n sets of 2 nonadjacent vertices has sum number
4n − 5 and obtain upper and lower bounds on the complete n-partite graph on n sets
of m nonadjacent vertices. Fernau, Ryan, and Sugeng [756] proved that the generalized

friendship graphs C
(t)
n (see §2.2) has sum number 2 except for C4. Gould and Rödl [920]

investigated bounds on the number of isolated points in a sum graph. A group of six
undergraduate students [909] proved that σ(Kn − edge) ≤ 2n− 4. The same group of six
students also investigated the difference between the largest and smallest labels in a sum
graph, which they called the spum. They proved spum of Kn is 4n − 6 and the spum
of Cn is at most 4n − 10. Kratochvil, Miller, and Nguyen [1428] have proved that every
sum graph on n vertices has a sum labeling such that every label is at most 4n. Konečný,
Kučera, Novotná, Pekárek, Šimsa, and Töpfer [1403] showed that if one allows for non-
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injective labelings or graphs with loops then there are sum graphs without a minimal sum
labeling, which partially answers the question posed by Miller, Ryan and Smyth in [1759].

At a conference in 2000 Miller [1745] posed the following two problems: Given any
graph G, does there exist an optimal sum graph labeling that uses the label 1; Find a
class of graphs G that have sum number of the order |V (G)|s for s > 1. (Such graphs
were shown to exist for s = 2 by Gould and Rödl in [920]).

In [2418] Slamet, Sugeng, and Miller show how one can use sum graph labelings
to distribute secret information to set of people so that only authorized subsets can
reconstruct the secret.

Chang [557] generalized the notion of sum graph by permitting x = y in the definition
of sum graph. He calls graphs that have this kind of labeling strong sum graphs and uses
i∗(G) to denote the minimum positive integer m such that G∪mK1 is a strong sum graph.
Chang proves that i∗(Kn) = σ(Kn) for n = 2, 3, and 4 and i∗(Kn) > σ(Kn) for n ≥ 5. He

further shows that for n ≥ 5, 3nlog23 > i∗(Kn) ≥ 12bn/5c − 3.
In 1994 Harary [959] generalized sum graphs by permitting S to be any set of integers.

He calls these graphs integral sum graphs. Unlike sum graphs, integral sum graphs need
not have isolated vertices. Sharary [2318] has shown that Cn and Wn are integral sum
graphs for all n 6= 4. Chen [578] proved that trees obtained from a star by extending each
edge to a path and trees all of whose vertices of degree not 2 are at least distance 4 apart
are integral sum graphs. He conjectures that all trees are integral sum graphs. In [578]
and [580] Chen gives methods for constructing new connected integral sum graphs from
given integral sum graphs by identifying vertices. Chen [580] has shown that every graph
is an induced subgraph of a connected integral sum graph. Chen [580] calls a vertex of a
graph saturated if it is adjacent to every other vertex of the graph. He proves that every
integral sum graph except K3 has at most two saturated vertices and gives the exact
structure of all integral sum graphs that have exactly two saturated vertices. Chen [580]
also proves that a connected integral sum graph with p > 1 vertices and q edges and no
saturated vertices satisfies q ≤ p(3p− 2)/8− 2. Wu, Mao, and Le [2821] proved that mPn
are integral sum graphs. They also show that the conjecture of Harary [959] that the sum
number of Cn equals the integral sum number of Cn if and only if n 6= 3 or 5 is false and
that for n 6= 4 or 6 the integral sum number of Cn is at most 1. Vilfred and Nicholas
[2733] prove that graphs G of order n with ∆(G) = n−1 and |V∆(G)| > 2 are not integral
sum graphs, except K3, and that integral sum graphs G of order n with ∆(G) = n−1 and
|V∆(G)| = 2 exist and are unique up to isomorphism. Chen [582] proved that if G(V,E) is
an integral sum other than K3 that has vertex of degree |V | − 1, then the edge-chromatic
number of G is |V | − 1.

He, Wang, Mi, Shen, and Yu [969] say that a graph has a tail if the graph contains a
path for which each interior vertex has degree 2 and an end vertex of degree at least 3.
They prove that every tree with a tail of length at least 3 is an integral sum graph.

B. Xu [2832] has shown that the following are integral sum graphs: the union of any
three stars; T ∪K1,n for all trees T ; mK3 for all m; and the union of any number of integral
sum trees. Xu also proved that if 2G and 3G are integral sum graphs, then so is mG for
all m > 1. Xu poses the question as to whether all disconnected forests are integral sum
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graphs. Nicholas and Somasundaram [1865] prove that all banana trees (see Section 2.1
for the definition) and the union of any number of stars are integral sum graphs.

Liaw, Kuo, and Chang [1593] proved that all caterpillars are integral sum graphs (see
also [2821] and [2832] for some special cases of caterpillars). This shows that the assertion
by Harary in [959] that K(1, 3) and S(2, 2) are not integral sum graphs is incorrect. They
also prove that all cycles except C4 are integral sum graphs and they conjecture that
every tree is an integral sum graph. Singh and Santhosh show that the crowns Cn �K1

are integral sum graphs for n ≥ 4 [2402] and that the subdivision graphs of Cn �K1 are
integral sum graphs for n ≥ 3 [2186]. Wang, Li, and Wei [2764] proved that there exists
a connected integral sum graph with any minimum degree and give an upper bound for
the relation between the vertex number and the edge number of a connected integral sum
graph with no saturated vertex.

For graphs with n vertices, Tiwari and Tripathi [2591] show that there exist sum
graphs with m edges if and only if m ≤ b(n − 12)/4c and that there exists integral
sum graphs with m edges if and only if m ≤ d3(n − 1)2/8e + b(n − 1)/2c, except for
m = d3(n− 1)2/8e+ b(n− 1)/2c− 1 when n is of the form 4k+ 1. They also characterize
sets of positive integers (respectively, integers) that are in bijection with sum graphs
(respectively, integral sum graphs) of maximum size for a given order.

The integral sum number, ζ(G), of G is the minimum number of isolated vertices
that must be added to G so that the resulting graph is an integral sum graph. Thus, by
definition, G is a integral sum graph if and only if ζ(G) = 0. Harary [959] conjectured that
ζ(Kn) = 2n− 3 for n ≥ 4. This conjecture was verified by Chen [577], by Sharary [2318],
and by B. Xu [2832]. Yan and Liu proved: ζ(Kn−E(Kr)) = n−1 when n ≥ 6, n ≡ 0 (mod
3) and r = 2n/3− 1 [2846]; ζ(Km.m) = 2m− 1 for m ≥ 2 [2846]; ζ(Kn\− edge) = 2n− 4
for n ≥ 4 [2846], [2832]; if n ≥ 5 and n − 3 ≥ r, then ζ(Kn\E(Kr)) ≥ n − 1 [2846];
if d2n/3e − 1 > r ≥ 2, then ζ(Kn\E(Kr)) ≥ 2n − r − 2 [2846]; and if 2 ≤ m < n,
and n = (i + 1)(im − i + 2)/2, then σ(Km,n) = ζ(Km,n) = (m − 1)(i + 1) + 1 while
if (i + 1)(im − i + 2)/2 < n < (i + 2)[(i + 1)m − i + 1]/2, then σ(Km,n) = ζ(Km,n) =
d((m−1)(i+1)(i+2)+2n)/(2i+2)e [2846]. Wang [2759] proved that σ(Kn+1\E(K1,r)) =
ζ(Kn+1\E(K1,r)) = 2n − 2 when r + 1, 2n − 3 when 2 ≤ r ≤ n − 1, and 2n − 4 when
r = n.

Nagamochi, Miller, and Slamin [1814] have determined upper and lower bounds on
the sum number a graph. For most graphs G(V,E) they show that σ(G) = Ω(|E|). He,
Yu, Mi, Sheng, and Wang [970] investigated ζ(Kn\E(Kr)) where n ≥ 5 and r ≥ 2. They
proved that ζ(Kn\E(Kr)) = 0 when r = n or n− 1;
ζ(Kn\E(Kr)) = n − 2 when r = n − 2; ζ(Kn\E(Kr)) = n − 1 when n − 3 ≥ r ≥
d2n/3e−1; ζ(Kn\E(Kr)) = 3n−2r−4 when d2n/3e−1 > r ≥ n/2; ζ(Kn\E(Kr)) = 2n−4
when d2n/3e−1 ≥ n/2 > r ≥ 2. Moreover, they prove that if n ≥ 5, r ≥ 2, and r 6= n−1,
then σ(Kn\E(Kr)) = ζ(Kn\E(Kr)).

Dou and Gao [692] prove that for n ≥ 3, the fan Fn = Pn + K1 is an integral sum
graph, ρ(F4) = 1, ρ(Fn) = 2 for n 6= 4, and σ(F4) = 2, σ(Fn) = 3 for n = 3 or n ≥ 6 and
n even, and σ(Fn) = 4 for n ≥ 6 and n odd.

Wang and Gao [2760] and [2761] determined the sum numbers and the integral sum
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numbers of the complements of paths, cycles, wheels, and fans as follows: 0 = ζ(P4) <
σ(P4) = 1; 1 = ζ(P5) < σ(P5) = 2; 3 = ζ(P6) < σ(P6) = 4; ζ(Pn) = σ(Pn) = 0, n =
1, 2, 3; ζ(Pn) = σ(Pn) = 2n − 7, n ≥ 7. ζ(Cn) = σ(Cn) = 2n − 7, n ≥ 7. ζ(Wn) =
σ(Wn) = 2n − 8, n ≥ 7. 0 = ζ(F5) < σ(F5) = 1; 2 = ζ(F6) < σ(F6) = 3; ζ(Fn) =
σ(Fn) = 0, n = 3, 4; ζ(Fn) = σ(Fn) = 2n− 8, n ≥ 7.

Wang, Yang and Li [2765] proved: ζ(Kn\E(Cn−1) = 0 for n =
4, 5, 6, 7; ζ(Kn\E(Cn−1) = 2n − 7 for n ≥ 8; σ(K4\E(Cn−1) = 1; σ(K5\E(Cn−1) =
2; σ(K6\E(Cn−1) = 5; σ(K7\E(Cn−1) = 7; σ(Kn\E(Cn−1) = 2n− 7 for n ≥ 8.

Wang and Li [2763] proved: a graph with n ≥ 6 vertices and degree greater than
(n + 1)/2 is not an integral sum graph; for n ≥ 8, ζ(Kn \ E(2P3)) = σ(Kn \ E(2P3)) =
ε(Kn \E(2P3)) = ε(Kn \E(2P3)) = 2n− 7; for n ≥ 7, ζ(Kn \E(K2)) = σ(Kn \E(K2)) =
2n− 4; and for n ≥ 7 and 1 ≤ r ≤ dn

2
e, ζ(Kn \ E(rK2)) = σ(Kn \ E(rK2)) = 2n− 5.

Chen [577] has given some properties of integral sum labelings of graphs G with
∆(G) < |V (G)| − 1 whereas Nicholas, Somasundaram, and Vilfred [1867] provided some
general properties of connected integral sum graphs G with ∆(G) = |V (G)| − 1. They
have shown that connected integral sum graphs G other than K3 with the property that
G has exactly two vertices of maximum degree are unique and that a connected integral
sum graph G other than K3 can have at most two vertices with degree |V (G)| − 1 (see
also [2745]).

Vilfred and Florida [2742] have examined one-point unions of pairs of small complete
graphs. They show that the one-point union of K3 and K2 and the one-point union of
K3 and K3 are integral sum graphs whereas the one-point union of K4 and K2 and the
one-point union of K4 and K3 are not integral sum graphs. In [2743] Vilfred and Florida
defined and investigated properties of maximal integral sum graphs.

Vilfred and Nicholas [2746] have shown that the following graphs are integral sum
graphs: banana trees, the union of any number of stars, fans Pn + K1 (n ≥ 2), Dutch

windmills K
(m)
3 , and the graph obtained by starting with any finite number of integral

sum graphs G1, G2, . . . , Gn and any collections of n vertices with vi ∈ Gi and creating a
graph by identifying v1, v2, . . . , vn. The same authors [2747] also proved that G+ v where
G is a union of stars is an integral sum graph.

Melnikov and Pyatkin [1740] have shown that every 2-regular graph except C4 is an
integral sum graph and that for every positive integer r there exists an r-regular integral
sum graph. They also show that the cube is not an integral sum graph. For any integral
sum graph G, Melnikov and Pyatkin define the integral radius of G as the smallest natural
number r(G) that has all its vertex labels in the interval [−r(G), r(G)]. For the family
of all integral sum graphs of order n they use r(n) to denote maximum integral radius
among all members of the family. Two questions they raise are: Is there a constant C
such that r(n) ≤ Cn and for n > 2, is r(n) equal to the (n− 2)th prime?

The concepts of sum number and integral sum number have been extended to hyper-
graphs. Sonntag and Teichert [2458] prove that every hypertree (i.e., every connected,
non-trivial, cycle-free hypergraph) has sum number 1 provided that a certain cardinality
condition for the number of edges is fulfilled. In [2459] the same authors prove that for
d ≥ 3 every d-uniform hypertree is an integral sum graph and that for n ≥ d + 2 the
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sum number of the complete d-uniform hypergraph on n vertices is d(n − d) + 1. They
also prove that the integral sum number for the complete d-uniform hypergraph on n
vertices is 0 when d = n or n − 1 and is between (d − 1)(n − d − 1) and d(n − d) + 1
for d ≤ n − 2. They conjecture that for d ≤ n − 2 the sum number and the integral
sum number of the complete d-uniform hypergraph are equal. Teichert [2578] proves
that hypercycles have sum number 1 when each edge has cardinality at least 3 and that
hyperwheels have sum number 1 under certain restrictions for the edge cardinalities.
(A hypercycle Cn = (Vn, En) has Vn = ∪ni=1{vi1, vi2, . . . , vidi−1}, En = {e1, e2, . . . , en} with

ei = {vi1, . . . , vidi = vi+1
1 } where i+ 1 is taken modulo n. A hyperwheel Wn = (V ′n, E ′n) has

V ′n = Vn ∪ {c} ∪ni=1 {v2
n+i, . . . , vdn+i−1

n+i}, E ′n = En ∪ {en+1, . . . , e2n} with en+i = {v1
n+i =

c, v2
n+i, . . . , vdn+i−1

n+i, vdn+i
n+i = v1

i}.)
Teichert [2577] determined an upper bound for the sum number of the d-partite com-

plete hypergraph Kd
n1,...,nd

. In [2579] Teichert defines the strong hypercycle Cdn to be the
d-uniform hypergraph with the same vertices as Cn where any d consecutive vertices
of Cn form an edge of Cdn. He proves that for n ≥ 2d + 1 ≥ 5, σ(Cdn) = d and for
d ≥ 2, σ(Cdd+1) = d. He also shows that σ(C3

5) = 3; σ(C3
6) = 2, and he conjectures that

σ(Cdn) < d for d ≥ 4 and d+ 2 ≤ n ≤ 2d.
In [1868] Nicholas and Vilfred define the edge reduced sum number of a graph as

the minimum number of edges whose removal from the graph results in a sum graph.
They show that for Kn, n ≥ 3, this number is (n(n − 1)/2 + bn/2c)/2. They ask for
a characterization of graphs for which the edge reduced sum number is the same as its
sum number. They conjecture that an integral sum graph of order p and size q exists if
and only if q ≤ 3(p2 − 1)/8 − b(p − 1)/4c when p is odd and q ≤ 3(3p − 2)/8 when p is
even. They also define the edge reduced integral sum number in an analogous way and
conjecture that for Kn this number is (n− 1)(n− 3)/8 + b(n− 1)/4c when n is odd and
n(n− 2)/8 when n is even.

For certain graphs G Vilfred and Florida [2741] investigated the relationships among
σ(G), ζ(G), χ(G), and χ′(G) where χ(G) is the chromatic number of G and χ′(G) is the
edge chromatic number of G. They prove: σ(C4) = ζ(C4) > χ(C4) = χ′(C4); for n ≥
3, ζ(C2n) < σ(C2n) = χ(C2n) = χ′(C2n); ζ(C2n+1) < σ(C2n+1) < χ(C2n+1) = χ′(C2n+1);
for n ≥ 4, χ′(Kn) ≤ χ(Kn) < ζ(Kn) = σ(Kn); and for n ≥ 2, χ(Pn×P2) < χ′(Pn×P2) =
ζ(Pn × P2) = σ(Pn × P2).

Alon and Scheinermann [140] generalized sum graphs by replacing the condition
f(x) + f(y) ∈ S with g(f(x), f(y)) ∈ S where g is an arbitrary symmetric polynomial.
They called a graph with this property a g-graph and proved that for a given symmetric
polynomial g not all graphs are g-graphs. On the other hand, for every symmetric poly-
nomial g and every graph G there is some vertex labeling such that G together with at
most |E(G)| isolated vertices is a g-graph.

Boland, Laskar, Turner, and Domke [490] investigated a modular version of sum
graphs. They call a graph G(V,E) a mod sum graph (MSG) if there exists a positive
integer n and an injective labeling from V to {1, 2, . . . , n − 1} such that xy ∈ E if and
only if (f(x) + f(y)) (mod n) = f(z) for some vertex z. Obviously, all sum graphs are
mod sum graphs. However, not all mod sum graphs are sum graphs. Boland et al. [490]
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have shown the following graphs are MSG: all trees on 3 or more vertices; all cycles on
4 or more vertices; and K2,n. They further proved that Kp (p ≥ 2) is not MSG (see also
[893]) and that W4 is MSG. They conjecture that Wp is MSG for p ≥ 4. This conjecture
was refuted by Sutton, Miller, Ryan, and Slamin [2556] who proved that for n 6= 4, Wn is
not MSG (the case where n is prime had been proved in 1994 by Ghoshal, Laskar, Pillone,
and Fricke [893]. In the same paper Sutton et al. also showed that for n ≥ 3, Kn,n is not
MSG. Ghoshal, Laskar, Pillone, and Fricke [893] proved that every connected graph is an
induced subgraph of a connected MSG graph and any graph with n vertices and at least
two vertices of degree n− 1 is not MSG.

Sutton, Miller, Ryan, and Slamin [2556] define the mod sum number, ρ(G), of a con-
nected graph G to be the least integer r such that G ∪ Kr is MSG. Recall the cocktail
party graph Hm,n, m, n ≥ 2, as the graph with a vertex set V = {v1, v2, . . . , vmn} par-
titioned into n independent sets V = {I1, I2, . . . , In} each of size m such that vivj ∈ E
for all i, j ∈ {1, 2, . . . ,mn} where i ∈ Ip, j ∈ Iq, p 6= q. The graphs Hm,n can be used
to model relational database management systems (see [2552]). Sutton and Miller [2554]
prove that Hm,n is not MSG for n > m ≥ 3 and ρ(Kn) = n for n ≥ 4. In [2553] Sutton,
Draganova, and Miller prove that for n odd and n ≥ 5, ρ(Wn) = n and when n is even,
ρ(Wn) = 2. Wang, Zhang, Yu, and Shi [2796] proved that fan Fn(n ≥ 2) are not mod
sum graphs and ρ(Fn) = 2 for even n at least 6. They also prove that ρ(Kn,n) = n for
n ≥ 3.

Dou and Gao [693] obtained exact values for ρ(Km,n) and ρ(Km − E(Kn)) for some
cases of m and n and bounds in the remaining cases. They call a graph G(V,E) a mod
integral sum graph if there exists a positive integer n and an injective labeling from V to
{0, 1, 2, . . . , n− 1} (note that 0 is included) such that xy ∈ E if and only if (f(x) + f(y))
(mod n) = f(z) for some vertex z. They define the mod integral sum number, ψ(G), of
a connected graph G to be the least integer r such that G ∪ Kr is a mod integral sum
graph. They prove that for m+n ≥ 3, ψ(Km,n) = ρ(Km,n) and obtained exact values for
ψ(Km − E(Kn)) for some cases of m and n and bounds in the remaining cases.

Wallace [2751] has proved that Km,n is MSG when n is even and n ≥ 2m or when n is
odd and n ≥ 3m− 3 and that ρ(Km,n) = m when 3 ≤ m ≤ n < 2m. He also proves that
the complete m-partite Kn1,n2,...,nm is not MSG when there exist ni and nj such that ni <
nj < 2ni. He poses the following conjectures: ρ(Km,n) = n when 3m− 3 > n ≥ m ≥ 3; if
Kn1,n2,...,nm where n1 > n2 > · · · > nm, is not MSG, then (m − 1)nm ≤ ρ(Kn1,n2,...,nm) ≤
(m − 1)n1; if G has n vertices, then ρ(G) ≤ n; and determining the mod sum number
of a graph is NP -complete (Sutton has observed that Wallace probably meant to say
‘NP -hard’). Miller [1745] has asked if it is possible for the mod sum number of a graph
G be of the order |V (G)|2.

In a sum graph G, a vertex w is called a working vertex if there is an edge uv in G
such that w = u+v. If G = H∪Hr has a sum labeling such that H has no working vertex
the labeling is called an exclusive sum labeling of H with respect G. The exclusive sum
number, ε(H), of a graph H is the smallest integer r such that G ∪Kr has an exclusive
sum labeling. The exclusive sum number is known in the following cases (see [1749] and
[1758]): for n ≥ 3, ε(Pn) = 2; for n ≥ 3, ε(Cn) = 3; for n ≥ 3, ε(Kn) = 2n − 3; for
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n ≥ 4, ε(Fn) = n (fan of order n + 1); for n ≥ 4, ε(Wn) = n; ε(C
(n)
3 ) = 2n (friendship

graph–see §2.2); m ≥ 2, n ≥ 2, ε(Km,n) = m + n − 1; for n ≥ 2, Sn = n (star of order
n + 1); ε(Sm,n) = max{m,n} (double star); H2,n = 4n − 5 (cocktail party graph); and
ε(caterpillar G) = ∆(G). Dou [691] showed that Hm,n is not a mod sum graph for m ≥ 3
and n ≥ 3; ρ(Hm,3) = m for m ≥ 3; Hm,n ∪ ρ(Hm,n)K1 is exclusive for m ≥ 3 and ≥ 4;
and m(n− 1) ≤ ρ(Hm,n) ≤ mn(n− 1)/2 for m ≥ 3 and n ≥ 4. Vilfred and Florida [2744]
proved that ε(P3×P3) = 4 and ε(Pn×P2) = 3. In [1006] Hegde and Vasudeva provide an
O(n2) algorithm that produces an exclusive sum labeling of a graph with n vertices given
its adjacency matrix.

In 2001 Kratochvil, Miller, and Nguyen proved that σ(G ∪ H) ≤ σ(G) + σ(H) − 1.
In 2003 Miller, Ryan, Slamin, Sugeng, and Tuga [1754] posed the problem of finding the
exclusive sum number of the disjoint union of graphs. In 2010 Wang and Li [2762] proved
the following. Let G1 and G2 be graphs without isolated vertices, Li be an exclusive
sum labeling of Gi ∪ ε(Gi)K1, and Ci be the isolated set of Li for i = 1 and 2. If
maxC1 and minC2 are relatively prime, then ε(G1 ∪ G2) ≤ ε(G1) + ε(G2) − 1. Wang
and Li also proved the following: ε(Kr,s) = s + r − 1; ε(Kr,s − E(K2)) = s − 1; for
s ≥ r ≥ 2, ε(Kr,s − E(rK2)) = s + r − 3. For n ≥ 5 they prove: ε(Kn − E(Kn)) =
0; ε(Kn − E(Kn−1)) = n − 1; for 2 ≤ r < n/2, ε(Kn − E(Kr)) = 2n − 4; for n/2 ≤
r ≤ n − 2, ε(Kn − E(Kr)) = 3n − 2r − 4, and ε(Cn � K1) is 3 or 4. They show that
ε(C3 � K1) = 3 and guess that for n ≥ 4, ε(Cn � K1) = 4. A survey of exclusive sum
labelings of graphs is given by Ryan in [2147].

If ε(G) = ∆(G), then G is said to be an ∆-optimum summable graph. An exclusive sum
labeling of a graph G using ∆(G) isolates is called a ∆-optimum exclusive sum labeling
of G. Tuga, Miller, Ryan, and Ryjáček [2604] show that some families of trees that are
∆-optimum summable and some that are not. They prove that if G is a tree that has at
least one vertex that has two or more neighbors that are not leaves then ε(G) = ∆(G).

Koh, Miller, Smyth, and Wang [1385] show the following: the graphs obtained by
identifying one end of a q-path with a vertex of a p-cycle are 1-optimum summable, and
that two of these graphs can be joined via a new edge to create a 2-optimum summable
graph; generalized θ-graphs are 2-optimum summable; θ(p, q, r) which consists of a pair of
vertices joined by 3 independent paths of lengths p, q and r (with a few small exceptions)
are 2-optimum summable; there exists a 3-optimum summable graph of order 4l + 3 for
all l ≥ 1; how to construct for all k ≥ 4 a k-optimum summable graph; and if G is a
k-optimum summable graph of order n, then n ≥ 2k.

In [1096] Javaid, Khalid, Ahmad, and Imran introduce a weaker version of sum labeling
of graphs as follows. Let H = (V,E) be a simple, finite, undirected graph with |V | = p.
H is a weak sum graph if there exists a labeling L (called a w-sum) of the vertices of V
by distinct positive integers such that (u, v) ∈ E if there exists a vertex w ∈ V such that
L(w) = L(u)+L(v). (A sum graph also requires the “only if” condition). If H is a w-sum
graph with the additional constraint that the labels L all fall in the range 1, . . . , p, then H
is called a super weak sumgraph (sw-sumgraph). Because sumgraphs must have isolated
vertices we may write H = G + Kδ, where G is connected and Kδ denotes δ isolated
vertices If δ is a minimum with respect to G, we say that the sumgraph (respectively, w-
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sumgraph, sw-sumgraph) H is δ-optimal and that G is δ-optimal summable (respectively,
w-summable, sw-summable). Javaid et al. prove: paths are 1-optimal sw-summable;
cycles are 2-optimal sw-summable; wheels are 3-optimal sw-summable; Kn is (n − 1)-
optimal sw-summable; and G = Kn1,n2,...,nq are t-optimal sw-summable, where t is the
minimum degree of any vertex in G. They also prove that for n ≥ 5, the Cayley graph
Cay(Zn,±1,±2) is 4-optimal w-summable. They conjecture that all connected graphs are
δ-optimal w-summable for some δ. See also [1385] and [1754].

Grimaldi [938] has investigated labeling the vertices of a graph G(V,E) with n vertices
with distinct elements of the ring Zn so that xy ∈ E whenever (x+ y)−1 exists in Zn.

In his 2001 Ph. D. thesis Sutton [2552] introduced two methods of graph labelings
with applications to storage and manipulation of relational database links specifically in
mind. He calls a graph G = (Vp ∪ Vi, E) a sum* graph of Gp = (Vp, Ep) if there is an
injective labeling λ of the vertices of G with non-negative integers with the property that
uv ∈ Ep if and only if λ(u) + λ(v) = λ(z) for some vertex z ∈ G. The sum∗ number,
σ∗(Gp), is the minimum cardinality of a set of new vertices Vi such that there exists a
sum* graph of Gp on the set of vertices Vp∪Vi. A mod sum* graph of Gp is defined in the
identical fashion except the sum λ(u) +λ(v) is taken modulo n where the vertex labels of
G are restricted to {0, 1, 2, . . . , n − 1}. The mod sum* number, ρ∗(Gp), of a graph Gp is
defined in the analogous way. Sum* graphs are a generalization of sum graphs and mod
sum* graphs are a generalization of mod sum graphs. Sutton shows that every graph
is an induced subgraph of a connected sum* graph. Sutton [2552] poses the following
conjectures: ρ(Hm,n) ≤ mn for m,n ≥ 2; σ∗(Gp) ≤ |Vp|; and ρ∗(Gp) ≤ |Vp|.

The following table summarizes what is known about sum graphs, mod sum graphs,
sum* graphs, and mod sum* graphs is reproduced from Sutton’s Ph. D. thesis [2552]. It
was updated by J. Gallian in 2006. A question mark indicates the value is unknown. The
results on sum* and mod sum* graphs are found in [2552].
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Table 20: Summary of Sum Graph Labelings

Graph σ(G) ρ(G) σ∗(G) ρ∗(G)

K2 = S1 1 1 0 0

stars, Sn, n ≥ 2 1 0 0 0

trees Tn, n ≥ 3 when Tn 6= Sn 1 0 1 0

C3 2 1 1 0

C4 3 0 2 0

Cn, n > 4 2 0 2 0

W4 4 0 2 0

Wn, n ≥ 5, n odd n n 2 0

Wn, n ≥ 6, n even n
2

+ 2 2 2 0

fan, F4, 2 1 1 0

fans, Fn, n ≥ 5, n odd ? 2 1 0

fans, Fn, n ≥ 6, n even 3 2 1 0

Kn, n ≥ 4 2n− 3 n n− 2 0

cocktail party graphs, H2,n 4n− 5 0 ? 0

C
(t)
n (n, t) 6= (4, 1) (see §2.2) 2 ? ? ?

Kn,n

⌈
4n−3

2

⌉
n(n ≥ 3) ? ?

Km,n, 2nm ≥ n ≥ 3 ? n ? ?

Km,n m ≥ 3n− 3, n ≥ 3, m odd ? 0 ? 0

Km,n, m ≥ 2n, n ≥ 3, m even ? 0 ? 0

Km,n, m < n
⌈
kn−k

2
+ m

k−1

⌉
? ? ?

k = d
√

1 + (8m+ n− 1)(n− 1)/2 e

Kn,n − E(nK2), n ≥ 6 2n− 3 n− 2 ? ?
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7.2 Prime and Vertex Prime Labelings3

The notion of a prime labeling originated with Entringer and was introduced in a paper
by Tout, Dabboucy, and Howalla [2594]. A graph with vertex set V is said to have a prime
labeling if its vertices are labeled with distinct integers 1, 2, . . . , |V | such that for each edge
xy the labels assigned to x and y are relatively prime. Around 1980, Entringer conjectured
that all trees have a prime labeling. Little progress was made on this conjecture until
2011 when Haxell, Pikhurko, Taraz [967] proved that all large trees are prime. Also, their
method allowed them to determine the smallest size of a non-prime connected order-n
graph for all large n, proving a conjecture of Rao [2099] in this range. Among the classes
of trees known to have prime labelings are: paths, stars, complete binary trees, spiders
(i.e., trees with one vertex of degree at least 3 and with all other vertices with degree at
most 2), olive trees (i.e., a rooted tree consisting of k branches such that the ith branch is
a path of length i), all trees of order up to 50, palm trees (i.e., trees obtained by appending
identical stars to each vertex of a path), banana trees, and binomial trees (the binomial
tree B0 of order 0 consists of a single vertex; the binomial tree Bn of order n has a root
vertex whose children are the roots of the binomial trees of order 0, 1, 2, . . . , n − 1 (see
[2169], [1933], [2594], [801], and [2127]). Tout, Dabboucy, and Howalla [2594] showed
t-toe caterpillars (the internal vertices on the spine are regular in degree) are prime and
that all caterpillars with maximum degree at most 5 are prime.

Seoud, Sonbaty, and Mahran [2255] provide necessary and sufficient conditions for a
graph to be prime. They also give a procedure to determine whether or not a graph is
prime. Other graphs with prime labelings include all cycles and the disjoint union of C2k

and Cn [663]. The complete graph Kn does not have a prime labeling for n ≥ 4 and
Wn is prime if and only if n is even (see [1572]). Lee, Wui, and Yeh [1572] proved that
friendship graphs have prime labelings. Diefenderfer et al. [679] and [678] proved that
the graph obtained by identifying a vertex of Cn with an endpoint of the star Sm where
1 ≤ m ≤ 9, chains of Cn where n = 4, 6, or 8, Cn × P2 where n − 1 is prime and n ≥ 4,
generalized books Sn × Pm where 3 ≤ m ≤ 7, and other families of uncylic graphs have
prime vertex labelings.

Seoud, Diab, and Elsakhawi [2230] have shown the following graphs are prime: fans;
helms; flowers (see §2.2); stars; K2,n; and K3,n unless n = 3 or 7. They also shown that
Pn + Km (m ≥ 3) is not prime. Berliner, Dean, Hook, Marr, Mbirka, and McBee give
consecutive cyclic prime labelings of certain classes of ladders. Although Kn,n does not
have a prime labeling when n > 2, Berliner et al. give minimal prime labelings for all n-
values 1 ≤ n ≤ 23 and give conditions on m and n for which Km,n are prime. They provide
specific values of n for m up to 13. Dissanayake, Abeysekara, Dhananjaya, Perera, and
Ranasinghe [682] provide necessary and sufficient conditions for K1,m,n to have a prime
labeling.

Tout, Dabboucy, and Howalla [2594] proved that Cm �Kn is prime for all m and n.
Vaidya and Prajapati [2660] proved that the graphs obtained by duplication of a vertex

3I am grateful to John Asplund and N. Bradley Fox for their helpful comments on the results in this
section.
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by a vertex in Pn and K1,n are prime graphs and the graphs obtained by duplication of a
vertex by an edge, duplication of an edge by a vertex, duplication of an edge by an edge in
Pn, K1,n, and Cn are prime graphs. They also proved that graph obtained by duplication
of every vertex by an edge in Pn, K1,n, and Cn are not prime graphs. Ghorbani and
Kamali [889] proved that ladders have prime labelings.

For m and n at least 3, Seoud and Youssef [2258] define S
(m)
n , the (m,n)-gon star, as

the graph obtained from the cycle Cn by joining the two end vertices of the path Pm−2 to
every pair of consecutive vertices of the cycle such that each of the end vertices of the path
is connected to exactly one vertex of the cycle. Seoud and Youssef [2258] have proved the

following graphs have prime labelings: books; S
(m)
n ;Pn + K2 if and only if n = 2 or n is

odd; Cn�K1 with a complete binary tree of order 2k−1 (k ≥ 2) attached at each pendent
vertex, and that Cm-snakes are prime (see §2.2) for the definition). They also prove that
every spanning subgraph of a prime graph is prime and every graph is a subgraph of a
prime graph. They conjecture that all unicycle graphs have prime labelings. Diefenderfer,
Hastings, Heath, Prawzinsky, Preston, White, and Whittemore [678] proved that certain
families of graphs that are special cases of Seoud and Youssef’s conjecture [2258] have
prime labelings. Seoud and Youssef [2258] proved the following graphs are not prime:
Cm + Cn; C2

n for n ≥ 4; P 2
n for n = 6 and for n ≥ 8; and Möbius ladders Mn for n even

(see §2.3 for the definition). They also give an exact formula for the maximum number
of edges in a prime graph of order n and an upper bound for the chromatic number of a
prime graph.

Youssef and Elsakhawi [2888] have shown: the union of stars Sm ∪ Sn, are prime; the
union of cycles and stars Cm ∪Sn are prime; Km ∪Pn is prime if and only if m is at most
3 or if m = 4 and n is odd; Kn�K1 is prime if and only if n ≤ 7; Kn�K2 is prime if and
only if n ≤ 16; 6Km ∪ Sn is prime if and only if the number of primes less than or equal
to m + n + 1 is at least m; and that the complement of every prime graph with order
at least 20 is not prime. Michael and Youssef [1744] determined all self-complementary
graphs that have prime labelings.

Salmasian [2169] has shown that every tree with n vertices (n ≥ 50) can be labeled
with n integers between 1 and 4n such that every two adjacent vertices have relatively
prime labels. Pikhurko [1933] has improved this by showing that for any c > 0 there is
an N such that any tree of order n > N can be labeled with n integers between 1 and
(1 + c)n such that labels of adjacent vertices are relatively prime.

Baskar Babujee and Vishnupriya [413] proved the following graphs have prime label-
ings: nP2, Pn ∪ Pn ∪ · · · ∪ Pn, bistars (that is, the graphs obtained by joining the centers
of two identical stars with an edge), and the graph obtained by subdividing the edge
joining edge of a bistar. Baskar Babujee [395] obtained prime labelings for the graphs:
(Pm ∪ nK1) +K2, (Cm ∪ nK1) +K2, (Pm ∪Cn ∪Kr) +K2, Cn ∪Cn+1, (2n− 2)C2n (n >
1), Cn ∪mPk and the graph obtained by subdividing each edge of a star once. In [404]
Baskar Babujee and Jagadesh prove the following graphs have prime labelings: bistars
Bm, n;P3 � K1,n; the union of K1,n and the graph obtained from K1,n by appending a
pendent edge to every pendent edge of K1,n; and the graph obtained by identifying the
center of K1,n with the two endpoints and the middle vertex of P5.
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In [2656] Vaidya and Prajapati prove the following graphs have prime labelings: a
t-ply graph of prime order; graphs obtained by joining center vertices of wheels Wm and
Wn to a new vertex w where m and n are even positive integers such that m+ n+ 3 = p
and p and p−2 are twin primes; the disjoint union of the wheel W2n and a path; the graph
obtained by identifying any vertex of a wheel W2n with an end vertex of a path; the graph
obtained from a prime graph of order n by identifying an end vertex of a path with the
vertex labeled with 1 or n; the graph obtained by identifying the center vertices of any
number of fans (that is, a “multiple shell”); the graph obtained by identifying the center
vertices of m wheels Wn1 ,Wn2 , . . . ,Wnm where each ni ≥ 4 is an even integer and each
ni is relatively prime to 2 +

∑i−1
k=1 nk for each i ∈ {2, 3, . . . ,m}. Prajapati and Suther

[2034] provided results about the existence of prime labelings of graphs obtained from
K2,n by the duplication of vertices and edges. In [2012] Prajapati and Gajjar provided
conditions under which the disjoint union of two graphs admit a prime labeling. They
showed that C2n+1 × P2 is not prime, Wn is prime if and only if 3 ≤ n ≤ 6, and, for a
prime p ≥ 3 , Cp−1×P2 is prime and a wheel graph of odd order is switching invariant. In
[2013] they proved that generalized Petersen graph P (n, k) is prime then n must be even
and k must be odd found some classes of generalized Petersen graphs that admit prime
labelings.

The Knödel graphs W∆,n with n even and degree ∆, where 1 ≤ ∆ ≤ b log2nc have
vertices pairs (i, j) with i = 1, 2 and 0 ≤ j ≤ n/2 − 1 where for every 0 ≤ j ≤ n/2 − 1
and there is an edge between vertex (1, j) and every vertex (2, (j + 2k − 1) mod n/2), for
k = 0, 1, . . . ,∆ − 1. Haque, Lin, Yang, and Zhao [957] have shown that W3,n is prime
when n ≤ 130.

In [2194] Schuchter and Wilson gave evidence for their conjecture that a generalized
Petersen graph P (n, k) is prime if and only if it is bipartite, which occurs for n even and
k. They show that it is true for all even n and odd k such that n ≤ 9000 and 1 ≤ k ≤ n

2
.

They conjectured that all cubic bipartite graphs with at least 8 vertices are prime and
verified it for all such graphs G, connected or not, satisfying 8 ≤ V (G) ≤ 22. Schroeder
[2195] proved that every bipartite graph is prime except K3,3. This result establishes that
the generalized Petersen graph P (n, k) is prime precisely when it is bipartite, the Knődel
graph W3,n is prime for all even n ≥ 4, and the union of any number of even cycles is
prime. He also classifies precisely when 1-regular graphs and 3-regular graphs are prime,
provides evidence to support a conjectured classification for r = 2, and conjectures cycle
Cn has a k-prime labeling where n ≥ 3 and k is odd.

Sundaram, Ponraj, and Somasundaram [2540] investigated the prime labeling behavior
of all graphs of order at most 6 and established that only one graph of order 4, one graph
of order 5, and 42 graphs of order 6 are not prime.

Given a collection of graphs G1, . . . , Gn and some fixed vertex vi from each Gi, Lee,
Wui, and Yeh [1572] define Amal{(Gi, vi)}, the amalgamation of {(Gi, vi)| i = 1, . . . , n},
as the graph obtained by taking the union of the Gi and identifying v1, v2, . . . , vn. They
proved Amal{(Gi, vi)} has a prime labeling when Gi are paths and when Gi are cycles.
They also showed that the amalgamation of any number of copies of Wn, n odd, with a
common vertex is not prime. They conjecture that for any tree T and any vertex v from

the electronic journal of combinatorics (2019), #DS6 245



T , the amalgamation of two or more copies of T with v in common is prime. They further
conjecture that the amalgamation of two or more copies of Wn that share a common point
is prime when n is even (n 6= 4). Vilfred, Somasundaram, and Nicholas [2749] have proved
this conjecture for the case that n ≡ 2 (mod 4) where the central vertices are identified.

Vilfred, Somasundaram, and Nicholas [2749] have also proved the following graphs are
prime: helms; Pm × Pn where n is prime, m ≤ 3 and m ≤ n; double fans Pn + K2 if and
only if n is odd; and cycles with a Pk-chord. They conjecture that Pm×Pn where m < n
and n is prime is prime and ladders Pn × P2 are prime. The conjecture about grids was
proved by Sundaram, Ponraj, and Somasundaram [2538]. In the same article they also
showed that Pn×Pn is prime when n is prime. Kanetkar [1321] proved: P6×P6 is prime;
Pn+1×Pn+1 is prime when n is a prime with n ≡ 3 or 9 (mod 10) and (n+ 1)2 + 1 is also
prime; and Pn × Pn+2 is prime when n is an odd prime with n 6≡ 2 (mod 7).

Seoud, El Sonbaty, and Abd El Rehim [2231] proved that for m = pn+t−1 − (t + n)
where pi is the ith prime number in the natural order Kn ∪ Kt,m is prime and graphs
obtained from K2,n, (n ≥ 2) by adding p and q edges out from the two vertices of degree
n of K2,n are prime. They also proved that if G is not prime, then G ∪K1,n is prime if
π(n+m+ 1) ≥ m where m is the order of G and π(x) is the number of primes less than
or equal to x.

Recall that C
(k)
n is the graph obtained from the k ≥ 2 copies of the cycle Cn by

identifying exactly one vertex of each of these k copies of Cn. Patel and Vasava [1909]

proved the following: C
(j)
n ∪ C(k)

m is a prime graph if and only if either n is even or m is
even; C

(2)
2n ∪C

(2)
2m∪C

(2)
k is a prime graph for all n,m and k; C2n∪C2n∪C2n∪C2n∪C2m∪Ck

is a prime graph for all n,m and k; and G =
(⋃N

k=1 C
(2)
nk

)
∪
(⋃M

j=1 C
(2)
mj

)
is not a prime

graph if M ≤ N − 2 They also provided conditions for which G = C
(2)
2n ∪ C

(2)
2m+1 ∪ C

(2)
2k+1

is a prime graph.
For any finite collection {Gi, uivi} of graphs Gi, each with a fixed edge uivi, Carlson

[544] defines the edge amalgamation Edgeamal{(Gi, uivi)} as the graph obtained by taking
the union of all the Gi and identifying their fixed edges. The case where all the graphs are
cycles she calls generalized books. She proves that all generalized books are prime graphs.
Moreover, she shows that graphs obtained by taking the union of cycles and identifying
in each cycle the path Pn are also prime.

In [394] Baskar Babujee proves that the maximum number of edges in a simple graph
with n vertices that has a prime labeling is

∑n
k=2 φ(k). He also shows that the planar

graphs having n vertices and 3(n − 2) edges (i.e., the maximum number of edges for a
planar graph with n vertices) obtained from Kn (n ≥ 5) with vertices v1, v2, . . . , vn by
deleting the edges joining vs and vt for all s and t satisfying 3 ≤ s ≤ n−2 and s+2 ≤ t ≤ n
has a prime labeling if and only if n is odd.

By showing that for every even n ≤ 2.468× 109 there exists 1 ≤ s ≤ n− 1 such that
both n+ s and 2n+ s are prime, Schluchter, Schroeder, Cokus, Ellingson, Harris, Rarity,
and Wilson [2193] prove the generalized Peterson graph P (n, 1) (which is isomorphic to
Cn × P2) is prime for all even 4 ≤ n ≤ 2.468 × 109. For a fixed n they also describe a
method for labeling P (n, k) that is a prime labeling for multiple values of k. Using this
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method, they prove P (n, k) is prime for all even n ≤ 50 and odd k < n/2.
Yao, Cheng, Zhongfu, and Yao [2862] have shown: a tree of order p with maximum

degree at least p/2 is prime; a tree of order p with maximum degree at least p/2 has a
vertex subdivision that is prime; if a tree T has an edge u1u2 such that the two components
T1 and T2 of T − u1u2 have the properties that dT1(u1) ≥ |T1|/2 and dT2(u2) ≥ |T2|/2,
then T is prime when |T1| + |T2| is prime; if a tree T has two edges u1u2 and u2u3

such that the three components T1, T2, and T3 of T − {u1u2, u2u3} have the properties
that dT1(u1) ≥ |T1|/2, dT2(u2) ≥ |T2|/2, and dT3(u3) ≥ |T3|/2, then T is prime when
|T1|+ |T2|+ |T3| is prime.

Vaidya and Prajapati [2657] define a vertex switching Gv of a graph G as the graph
obtained by taking a vertex v of G, removing all the edges incident to v and adding edges
joining v to every other vertex that is not adjacent to v in G. They say a prime graph G
is switching invariant if for every vertex v of G, the graph Gv obtained by switching the
vertex v in G is also a prime graph. They prove: Pn and K1,n are switching invariant;
the graph obtained by switching the center of a wheel is a prime graph; and the graph
obtained by switching a rim vertex of Wn is a prime graph if n+ 1 is a prime. They also
prove that the graph obtained by switching a rim vertex in Wn is not a prime graph if
n+ 1 is an even integer greater than 9.

Prajapati and Gajjar [2012] prove the following graphs are prime: graphs obtained
from Pm+1 and m copies of Cn by identifying each edge of Pm+1 with an edge of a
corresponding copy of Cn; graphs obtained from Cm and m copies of Cn by identifying
each edge of Cm with an edge of corresponding copy of Cn; for a prime p ≥ 3 and p − 2
copies of Cp+1, the graph obtained by identifying one vertex of each copy of Cp+1 with
corresponding pendent vertex of K1,p−2; for a prime p ≥ 3, Cp−1 × P2; and for a prime
p ≥ 3, the graphs obtained by joining every rim vertex of a wheel graph Wp−1 with the
corresponding vertex of Cp−1. They also prove that the complement of Wn is prime if and
only if 3 ≤ n ≤ 6; for odd n ≥ 3 Cn × P2 is not prime; and W2n is switching invariant.

Selvaraju and Moha [2205] proved that the one-point union of any number of cycles
and the one-point union of any number of wheels at the center are prime graphs. Haque,
Xiaohui, Yuansheng, and Pingzhong proved that the generalized Petersen graph P (n, k)
is prime for all even n ≤ 2500 when k = 1 [954] and for all even n ≤ 100 when k = 3
[956]. They show P (n, 3) is not prime for odd n and conjecture that P (n, 3) are prime
for all even n.

In [2236] Seoud, El-Sonbaty, and Mahran discuss the primality of some corona graphs
G � H and conjecture that Kn �Km is prime if and only if n ≤ π(nm + n) + 1, where
π(x) is the number of primes less than or equal to x. For m ≤ 20 they give the exact
values of n for which Kn �Km is prime. They also show that Km,n is prime if and only
if min{m,n} ≤ π(m+ n)− π((m+ n)/2) + 1.

Klee, Lehmann, and Park [1382] we extended the notion of prime labeling to the
Gaussian integers. They showed that paths, stars, spiders, graphs obtained by joining the
centers of two stars with a path, and some firecrackers admit Gaussian prime labelings.

The Prime Ladder Conjecture states that every ladder Pn × P2 is prime. This was
proved by Dean [652] in 2017. He conjectures that every integer n ≥ 50 has a canonical
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partition with at most three terms and he states that this conjecture was verified by
computer up to 5,000,000.

Lau, Chu, Suhadak, Foo, and Ng [1465] introduced SD-prime cordial labelings as
follows. Given a finite, simple graph G with n vertices and a bijection f : V (G) →
{1, 2, . . . , n}, for each edge uv let S = f(u) + f(v) and D = |f(u) − f(v)|. For each
edge uv define f ′ induced by f by assigning f ′(uv) = 1 if gcd(S,D) = 1 and f ′(uv) = 0
otherwise. Then f ′ is said to be SD-prime cordial if f ′(uv) = 1 for all edges uv. They
provide results about paths, complete bipartite graphs, stars, double stars, wheels, fans,
double fans, ladders, and grids. They conjecture that Pm × Pn is SD-prime for all m ≥ 2
and n ≥ 2. Lau, Shiu, Ng, and Jeyanthi [1470] give sufficient conditions for a theta graph
to have an SD-prime cordial labeling, provide a way to construct new SD-prime cordial
graphs from existing ones, and investigate SD-primae cordialness of some general graphs.
Lourdusamy and Patrick [1652] provide a way to construct SD-prime cordial graphs from
an existing graph G with an SD-prime cordial labeling by identifying a vertex of G having
a particular label with a vertex of maximum degree of a star or fan or with an endpoint
of a path. In [1653] Lourdusamy and Patrick investigated SD-prime cordial labelings of
subdivision graphs, splitting graphs, shadow graphs of stars and bistars, T (Pn), T (Cn), the
graph obtained by duplication of each vertex of a path and a cycle by an edge, Qn, A(Tn),
triangular ladders, Pn �K1, Cn �K1, and jewel graphs.

The following definitions appear in [1976], [1963], [1964], and [1965]. A double trian-
gular snake DTn consists of two triangular snakes that have a common path; a double
quadrilateral snake DQn consists of two quadrilateral snakes that have a common path;
an alternate triangular snake A (Tn) is the graph obtained from a path u1, u2, . . . , un by
joining ui and ui+1 (alternatively) to new vertex vi (that is, every alternate edge of a
path is replaced by C3); a double alternate triangular snake DA (Tn) is obtained from a
path u1, u2, . . . , un by joining ui and ui+1 (alternatively) to two new vertices vi and wi;
an alternate quadrilateral snake A (Qn) is obtained from a path u1, u2, . . . , un by joining
ui and ui+1 (alternatively) to new vertices vi and wi respectively and then joining vi and
wi (that is, every alternate edge of a path is replaced by a cycle C4); a double alternate
quadrilateral snake DA (Qn) is obtained from a path u1, u2, . . . , un by joining ui and ui+1

(alternatively) to new vertices vi, xi and wi and yi respectively and then joining vi and
wi and xi and yi.

Prajapati and Vantiya [2035] proved that the following snake graphs have SD-prime
cordial labelings: triangular (except for n = 3), alternate triangular, quadrilateral, alter-
nate quadrilateral, double triangular, double alternate triangular, double quadrilateral,
and double alternate quadrilateral. Lourdusamy, Wency, and Patrick [1661] proved that
the union of stars and paths, subdivision of combs, subdivision of ladders, and the graph
obtained by attaching a star at one end of a path are SD-prime graphs. They proved that
the union of two SD-prime cordial graphs need not be SD-prime cordial graphs. Also, they
proved that given a positive integer n, there is SD-prime cordial graph with n vertices.

Vaidya and Prajapati [2656] have introduced the notion of k-prime labeling. A k-prime
labeling of a graph G is an injective function f : V (G) → {k + 1, k + 2, k + 3, . . . , k +
|V (G)| − 1} for some positive integer k that induces a function f+ on the edges of G
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defined by f+(uv) = gcd(f(u), f(v)) such that gcd(f(u), f(v)) = 1 for all edges uv. A
graph that admits a k-prime labeling is called a k-prime graph. They prove the following
are prime graphs: a tadpole (that is, a graph obtained by identifying a vertex of a cycle
to an end vertex of a path); the union of a prime graph of order n and a (n + 1)-prime
graph; the graph obtained by identifying the vertex labeled with n in an n-prime graph
with either of the vertices labeled with 1 or n in a prime graph of order n.

A dual of prime labelings has been introduced by Deretsky, Lee, and Mitchem [663].
They say a graph with edge set E has a vertex prime labeling if its edges can be labeled
with distinct integers 1, . . . , |E| such that for each vertex of degree at least 2 the greatest
common divisor of the labels on its incident edges is 1. Deretsky, Lee, and Mitchem
show the following graphs have vertex prime labelings: forests; all connected graphs;
C2k ∪Cn; C2m ∪C2n ∪C2k+1; C2m ∪C2n ∪C2t ∪Ck; and 5C2m. They further prove that a
graph with exactly two components, one of which is not an odd cycle, has a vertex prime
labeling and a 2-regular graph with at least two odd cycles does not have a vertex prime
labeling. They conjecture that a 2-regular graph has a vertex prime labeling if and only
if it does not have two odd cycles. Let G =

⋃t
i=1C2ni

and N =
∑t

i=1 ni. In [493] Borosh,
Hensley and Hobbs proved that there is a positive constant n0 such that the conjecture
of Deretsky et al. is true for the following cases: G is the disjoint union of at most seven
cycles; G is a union of cycles all of the same even length 2n where n ≤ 150 000 or where
n ≥ n0; ni ≥ (logN)4 log log logn for all i = 1, . . . , t; and when each C2ni

is repeated at most
ni times. They end their paper with a discussion of graphs whose components are all even
cycles, and of graphs with some components that are not cycles and some components
that are odd cycles.

In [223] Bapat proved the following graphs have vertex prime labelings: kayak paddles
KP (k,m, l); books; irregular books not necessarily with pages of the same size; triangular
snakes; m-fold triangular snakes of length n obtained from a path v1, v2, . . . , vn, vn+1 by
joining vi and vi+1 to new m vertices wi1, w

i
2, . . . , w

i
m, for i = 1, 2, . . . , n giving edges viw

i
j

and wijvi+1), for j = 1, . . . ,m, i = 1, 2, . . . , n; m-fold petal sunflowers obtained from a cycle
v1, v2, . . . , vn by joining vi and vi+1 to new m vertices wi1, w

i
2, . . . , w

i
m, for i = 1, 2, . . . , n

giving edges viw
i
j and wijvi+1) for j = 1, . . . ,m, i = 1, 2, . . . , n(vn+1 = v1); and one-point

unions of cycles not necessarily of the same length.
A bijection f from V (G to {1, 2, . . . , |V | + |E|} is said to be a total prime if for each

edge uv the labels assigned to u and v are relatively prime and for each vertex of degree
at least 2, the labels on the incident edges are relatively prime. A graph that admits a
total prime labeling is called a total prime graph. In [2022] Prajapati and Gajjar defined
a braided star graph as follows. Let a0 be the apex vertex and a1, a2, . . . , an−1, an be
consecutive n rim vertices of Wn, (n ≥ 3). Let b1, b2, b3, . . . , b2n−1, b2n be consecutive 2n
vertices of C2n (n > 1); and let c1, c2, c3, . . . , c2n−1, c2n be consecutive 2n vertices of a
second copy of C2n. Join each ai to b2i−1 by an edge and b2i to c2i by an edge. For each
i, join a new vertcies di to each c2i−1 and c2i+1 by an edge taking the subscripts modulo
n. They proved that braided stars are prime, total prime, and vertex prime.

Jothi [1264] calls a graph G highly vertex prime if its edges can be labeled with dis-
tinct integers {1, 2, . . . , |E|} such that the labels assigned to any two adjacent edges are
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relatively prime. Such labeling is called a highly vertex prime labeling. He proves: if G
is highly vertex prime then the line graph of G is prime; cycles are highly vertex prime;
paths are highly vertex prime; Kn is highly vertex prime if and only if n ≤ 3; K1,n is
highly vertex prime if and only if n ≤ 2; even cycles with a chord are highly vertex prime;
Cp ∪ Cq is not highly vertex prime when both p and q are odd; and crowns Cn �K1 are
highly vertex prime.

For a finite simple graph G(V,E) with n vertices and v ∈ V let N(v) denote the open
neighborhood of v. Patel and Shrimali [1906] say a bijective function f :→ {1, 2, 3, . . . , n}
is a neighborhood-prime labeling of G, if for every vertex v ∈ V with deg(v) > 1,
gcd {f(u) : u ∈ N(v)} = 1. A graph that admits a neighborhood-prime labeling is called
a neighborhood-prime graph. In [1906], [1907], and [1908] they prove the following graphs
have a prime-neighborhood labeling: graphs with a vertex of degree |V | − 1; paths; Cn
if and only if n 6≡ 2 (mod 4); helms; closed helms; flowers; graphs obtained by the du-
plication of an arbitrary vertex of cycle or path; G1 + G2 where each of G1 and G2 have
at least 2 verticies; Cn ∪ Cm is a neighborhood-prime graph if and only if n ≡ 0 (mod 4)
and m ≡ 0 (mod 4), or n ≡ 0 (mod 4) and m ≡ 1 (mod 2); Wm ∪Wn; the union of a
finite number of paths; Pm × Pn; and the tensor product of two paths of the same order.
They also prove that if G is neighborhood-prime graph and v is a vertex in G that is not
adjacent to any pendent vertices, then the graph obtained by duplicating the vertex v is
neighborhood-prime [1906].

Patel [1903] showed that the generalized Petersen graph P (n, k) is neighborhood-
prime when the greatest common divisor of n and k is 1, 2, or 4 and that P (n, 8) is
neighborhood-prime for all n. Rozario Raj and Sheriff [2146] gave neighborhood-prime
labelings for books with triangular and rectangle pages. Shrimali, Rathod, and Vihol
[2376] proved the following graphs are neighborhood-prime: graphs obtained from the
helm Hn by identifying each vertex of degree 1 with a vertex of Wn, graphs obtained from
the helm Hn by identifying each vertex of degree 1 with a vertex of the fan Fn graphs
obtained by identifying each pendent vertex of Hn with a vertex of outer cycle of closed
helm of Hn, and graphs obtained by identifying each pendent vertex of Hn by vertex of
outer cycle of the Petersen graph.

Let G(V,E) be a graph with p vertices and Q edges. Rajesh Kumar and Mathew
Varkey [2073] call a bijection from V (G)∪E(G) to {1, 2, . . . , p+ q} an total neighborhood
prime labeling if for for each vertex of degree at least two, the gcd of labeling on its
neighborhood vertices is 1 and for each vertex of degree at least two, the gcd of labeling on
the induced edges is 1. They proved that paths, combs, and C4n+2 are total neighborhood
prime graphs. Shrimali and Pandya [2374] proved that the following graphs have total
neighborhood prime labelings: combs Pn�K1, Pm∪Pn, (Pm�K1)∪ (Pn�K1), Wm∪Wn,
graphs obtained from a copy of Pn and n copies K1,n by joining the ith vertex of Pn with
an edge to the center vertex of the ith copy of K1,m, Cn�mK1, and subdivisions of bistars
Bm,n. Shrimali, Rathod, and Vihol [2376] proved that following graphs are neighborhood-
prime graphs: the graph obtained by identifying each pendent vertex of a helm Hn with
a rim vertex of the wheel Wn; the graph obtained by identifying each pendent vertex of a
helm Hn with a vertex of maximum degree of the fan Pn+K1; and the graph obtained by
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identifying each pendent vertex of Hn with a vertex of outer cycle of closed helm graph
Hn.

In [2072] Rajesh Kumar and Mathew Varkey extend the neighborhood prime labeling
concept to Gaussian integers. Using the spiral order on the Gaussian integers, they showed
the following graphs have Gaussian neighborhood prime labelings: graphs obtained by
connecting the centers of two stars with a path, combs Pn �K1, spiders, Cn where n 6= 2
mod 4, C4 (n ≥ 4) with a cord, graphs obtained by switching of any vertex Cn, and graphs
obtained by duplicating arbitrary vertex of Cn.

In [1887] Pandya and Shrimali introduce a vertex-edge neighborhood prime label-
ing of graphs as follows. For a graph G an injective function f : V (G) ∪ E(G) →
{1, 2, . . . , |V (G)| + |E(G|} is said to be a vertex-edge neighborhood prime labeling if it
has the following properties: If u has degree 1, then gcd{f(w), f(uw)} = 1 taken over
all vertices w adjacent to u; if u has degree greater than 1, then gcd{f(w)} = 1 taken
over all vertices w adjacent to u and gcd{f(wu)} = 1 taken over all vertices w adjacent
to u. A graph that admits vertex-edge neighborhood prime labeling is called a vertex-
edge neighborhood prime graph. They give vertex-edge neighborhood prime labelings for
paths, helms, Cn ⊕K1, bistars, the central edge subdivision of bistars, and subdivisions
of edges of bistars. They observe that every vertex-edge neighborhood prime graph is a
total neighborhood prime graph and that a total neighborhood prime graph that does not
have a vertex of degree 1 is vertex-edge neighborhood prime.

Patel and Ghodasara [1904] proved the following graphs are neighborhood-prime: one

point union C
(k)
n (k ≥ 2, n ≥ 3) of k copies of cycle Cn, the barycentric subdivision of

wheels and gears, the middle and total graph of crowns Cn � K1 (n ≥ 3), the square
of crowns, tadpoles T (n, l) (n ≥ 3, l ≥ 1), cycles, and umbrellas. In [656] Delman,
Koilraj, and Raj gave neighborhood-prime labelings of arbitrary super subdivision of
helms, tadpoles, and triangular snakes.

In [2032] Prajapati and Shah introduce an odd prime labeling as follows. Let G(V,E)
be a graph. A bijection f from V to {1, 3, . . . , 2|V | − 1} is called an odd prime labeling if
for each edge uv, gcd(f(u), f(v)) = 1. A graph that admits odd prime labeling is called
an odd prime graph. They prove paths, ladders, complete bipartite graphs, wheels, gears,
flowers, helms, closed helms, and generalized Petersen graphs P (n, 2) are odd prime and
conjecture that generalized Petersen graphs P (n, k) and every prime graph is an odd
prime graph. In [2033] they proved the following graphs are odd prime graphs: graphs
obtained by duplication of a vertex of paths, stars, and wheels, and graphs obtained by
dupilcation of an edge of cycles, stars, and wheels.

For a graph G(V,E) with p vertices and q edges Shiu, Lau, and Lee [2350] call a
bijection f from E to {1, 2, . . . , q} an edge-prime labeling if for each edge uv in E, we have
gcd(f+(u), f+(v)) = 1, where f+(u) = Σf(uw) over all uw ∈ E. A graph that admits an
edge-prime labeling is called an edge-prime graph. A bijection f from E to {1, 2, . . . , q}
is an semi-edge-prime labeling if for each edge uv in E, we have gcd(f+(u), f+(v)) = 1 or
f+(u) = f+(v). They obtained a necessary and sufficient condition for the disjoint union
of paths to be edge-prime, proved that all 2-regular graphs are edge-prime, proved that
many bipartite and tripartite graphs are edge-prime (or not edge-prime), and showed that
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certain bipartite and tripartite graphs are semi-edge-prime graphs. In [1468] Lau, Lee,
and Shiu proved that if G is a cubic graph and every component is of order 4, 6 or 8, then
G is edge-prime if and only if G 6≈ K4 or nK3,3 and n = 2 or 3 (mod 4). They conjectured
that a connected cubic graph G is not edge-prime if and only if G ≈ K4.

In [1092] Jagadesh and Baskar Babujee introduced an edge vertex prime labeling of
a graph G as an injection f from V (G) ∪ E(G) to {1, 2, . . . , |V (G)| + |E(G)|} such that
for every edge uv, the labels f(u), f(v), and f(uv) are pairwise relatively prime. A graph
that admits such a labeling is called an edge vertex prime graph. They proved that
paths, cycles, and stars are are edge vertex prime. In [1896] and [1897] Parmar proved
that wheels, fans, friendship graphs, and K2,n are edge vertex prime. Simaringa and
Muthukumaran [2388] proved that following graphs have edge vertex prime labelings:
triangular and rectangular books, butterfly graphs, Kn ∪ K1,m, K1,m + K1, Km ∪ Kn,
Jahangir graphs Jn,3 and Jn,4. In [2389] Simaringa and Muthukumaran investigated the
existence of edge vertex prime labelings for crowns, unions of cycles, and wheel relate
graphs. Shrimali and Parmar [2375] proved that the following graphs have edge vertex
prime labelings: bistars B(m,n), n-centipede trees, coconut trees obtained from the path
Pn by appending m new pendent edges at an end vertex of Pn), double coconut trees
(graphs obtained by attaching n > 1 pendent vertices to one end of the path Pr and
m > 1 pendent vertices to the other end of path Pr), and special classes of banana trees
and fire crackers.

A {coprime labeling of vertices of a graphG with distinct labels from the set {1, . . . ,m}
for some integer m ≥ n such that adjacent labels are relatively prime. The minimum value
m for which G has a coprime labeling is defined as the minimum coprime number , denoted
by pr(G), and a coprime labeling of G with largest label being pr(G) is called a minimum
coprime labeling of G. Obviously, if G is a prime graph of order n, then pr(G) = n. In
[208] Asplund and Fox focus on the problem of determining the minimum coprime number
for graphs that have been shown to not be prime. Amomg them are Kn (n ≥ 4), W2n+1,
and the union of odd cycles. C. Lee [1479] determined the minimum coprime number of
coronas of complete graphs with empty graphs, the joins of two paths, and prisms. She
also proved that gears are prime, double wheels DWn are prime if and only if n is even,
and the graph that obtained by attaching P2 to each vertex of Cn followed by attaching
the star Sm at its center to each pendent vertex is prime.

The tables following summarize the state of knowledge about prime labelings and
vertex prime labelings. In the table, P means prime labeling exists, and VP means
vertex prime labeling exists. A question mark following an abbreviation indicates that
the graph is conjectured to have the corresponding property.
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Table 21: Summary of Prime Labelings

Graph Types Notes
Pn P [801]

stars P [801]

complete binary trees P [801]

spiders P [801]

trees P? [1572]

Cn P [663]

Cn ∪ C2m P [663]

Kn P iff n ≤ 3 [1572]

Wn P iff n is even [2594]

helms P [2230]

fans P [2230]

flowers P [2230]

K2,n P [2230]

K3,n P n 6= 3, 7 [2230]

Pn +Km not P n ≥ 3 [2230]

Pn +K2 P iff n = 2 or n is odd [2230]

books P [2258]

Cm + Cn not P [2258]

C2
n not P n ≥ 4 [2258]

P 2
n not P n ≥ 6, n 6= 7 [2258]

Continued on next page
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Table 21 – Continued from previous page
Graph Types Notes

Mn (Möbius ladders) not P n even [2258]

Sm ∪ Sn P [2888]

Cm ∪ Sn P [2888]

Km ∪ Sn P iff no. of primes ≤ m+ n+ 1
is at least m [2888]

Kn �K1 P iff n ≤ 7 [2888]

Pm × Pn (grids) P m ≤ 3, m > n, n prime [2749]

Cn �Ki (crowns) P [2594]

Pn �K2 P iff n 6= 2 [2749]

Cm-snakes (see §2.2) P [544]

unicyclic P? [2230]

Table 22: Summary of Vertex Prime Labelings

Graph Types Notes
Cm + Cn not P [2258]

C2
n not P n ≥ 4 [2258]

Pn not P n = 6, n ≥ 8 [2258]

M2n (Möbius ladders) not P [2258]

connected graphs VP [663]

forests VP [663]

Continued on next page
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Table 22 – Continued from previous page
Graph Types Notes
C2m ∪ Cn VP [663]

C2m ∪ C2n ∪ C2k+1 VP [663]

C2m ∪ C2n ∪ C2t ∪ Ck VP [663]

5C2m VP [663]

G ∪H VP if G, H are connected and
one is not an odd cycle [663]

2-regular graph G not VP G has at least
2 odd cycles

[663]
VP? iff G has at most

1 odd cycle [663]

7.3 Edge-graceful Labelings

In 1985, Lo [1626] introduced the notion of edge-graceful graphs. A graph G(V,E) is said
to be edge-graceful if there exists a bijection f from E to {1, 2, . . . , |E|} such that the
induced mapping f+ from V to {0, 1, . . . , |V |−1} given by f+(x) = (

∑
f(xy)) (mod |V |)

taken over all edges xy is a bijection. Note that an edge-graceful graph is antimagic (see
§6.1). A necessary condition for a graph with p vertices and q edges to be edge-graceful
is that q(q + 1) ≡ p(p + 1)/2 (mod p). Lee [1489] notes that this necessary condition
extends to any multigraph with p vertices and q edges. It was conjectured by Lee [1489]
that any connected simple (p, q)-graph with q(q + 1) ≡ p(p − 1)/2 (mod p) vertices is
edge-graceful. Lee, Kitagaki, Young, and Kocay [1495] prove that the conjecture is true
for maximal outerplanar graphs. Lee and Murthy [1481] proved that Kn is edge-graceful
if and only if n 6≡ 2 (mod 4). (An edge-graceful labeling given in [1626] for Kn for
n 6≡ 2 (mod 4) is incorrect.) Lee [1489] notes that a multigraph with p ≡ 2 (mod 4)
vertices is not edge-graceful and conjectures that this condition is sufficient for the edge-
gracefulness of connected graphs. Lee [1488] has conjectured that all trees of odd order
are edge-graceful. Small [2429] has proved that spiders for which every vertex has odd
degree with the property that the distance from the vertex of degree greater than 2 to
each end vertex is the same are edge-graceful. Keene and Simoson [1365] proved that all
spiders of odd order with exactly three end vertices are edge-graceful. Cabaniss, Low, and
Mitchem [525] have shown that regular spiders of odd order are edge-graceful. For a (p, q)
connected edge-graceful graph G with q = kp + r, where kis aninteger and 0 ≤ r < p.
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Kayathri and Amutha [1357] proved that every edge-graceful labeling f of G induces
((k + 1)!)r(k!)p−r edge-graceful labelings of G.

Lee and Seah [1534] have shown that Kn,n,...,n is edge-graceful if and only if n is odd
and the number of partite sets is either odd or a multiple of 4. Lee and Seah [1533] have
also proved that Ck

n (the kth power of Cn) is edge-graceful for k < bn/2c if and only if
n is odd and Ck

n is edge-graceful for k ≥ bn/2c if and only if n 6≡ 2 (mod 4) (see also
[525]). Lee, Seah, and Wang [1539] gave a complete characterization of edge-graceful P k

n

graphs. Shiu, Lam, and Cheng [2343] proved that the composition of the path P3 and any
null graph of odd order is edge-graceful. Uma and Mazuda Shanofer [2605] prove that
C2n+1 � K2 is edge graceful and the graphs obtained by starting with Cn and, for each
edge of Cn, adjoining a copy of Cn that shares an edge with the starting copy (the flower
graph FLn) is not edge-graceful.

Lo [1626] proved that all odd cycles are edge-graceful and Wilson and Riskin [2815]
proved the Cartesian product of any number of odd cycles is edge-graceful. Lee, Ma,
Valdes, and Tong [1509] investigated the edge-gracefulness of grids Pm×Pn. The necessity
condition of Lo [1626] that a (p, q) graph must satisfy q(q+1) ≡ 0 or p/2 (mod p) severely
limits the possibilities. Lee et al. prove the following: P2 × Pn is not edge-graceful for all
n > 1; P3 × Pn is edge-graceful if and only if n = 1 or n = 4; P4 × Pn is edge-graceful if
and only if n = 3 or n = 4; P5 × Pn is edge-graceful if and only if n = 1; P2m × P2n is
edge-graceful if and only if m = n = 2. They conjecture that for all m,n ≥ 10 of the form
m = (2k + 1)(4k + 1), n = (2k + 1)(4k + 3), the grids Pm × Pn are edge-graceful. Riskin
and Weidman [2123] proved: if G is an edge-graceful 2r-regular graph with p vertices and
q edges and (r, kp) = 1, then kG is edge-graceful when k is odd; when n and k are odd,
kCr

n is edge-graceful; and if G is the cartesian product of an odd number of odd cycles
and k is odd, then kG is edge-graceful. They conjecture that the disjoint union of an odd
number of copies of a 2r-regular edge-graceful graph is edge-graceful.

Shiu, Lee, and Schaffer [2353] investigated the edge-gracefulness of multigraphs derived
from paths, combs, and spiders obtained by replacing each edge by k parallel edges. Lee,
Ng, Ho, and Saba [1519] construct edge-graceful multigraphs starting with paths and
spiders by adding certain edges to the original graphs. Lee and Seah [1535] have also
investigated edge-gracefulness of various multigraphs.

Lee and Seah (see [1489]) define a sunflower graph SF (n) as the graph obtained by
starting with an n-cycle with consecutive vertices v1, v2, . . . , vn and creating new vertices
w1, w2, . . . , wn with wi connected to vi and vi+1 (vn+1 is v1). In [1536] they prove that
SF (n) is edge-graceful if and only if n is even. In the same paper they prove that C3

is the only triangular snake that is edge-graceful. Lee and Seah [1533] prove that for
k ≤ n/2, Ck

n is edge-graceful if and only if n is odd, and for k ≥ n/2, Ck
n is edge-graceful

if and only if n 6≡ 2 (mod 4). Lee, Seah, and Lo (see [1489]) have proved that for n odd,
C2n ∪ C2n+1, Cn ∪ C2n+2, and Cn ∪ C4n are edge-graceful. They also show that for odd k
and odd n, kCn is edge-graceful. Lee and Seah (see [1489]) prove that the generalized
Petersen graph P (n, k) (see Section 2.7 for the definition) is edge-graceful if and only if
n is even and k < n/2. In particular, P (n, 1) = Cn × P2 is edge-graceful if and only if n
is even.
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Schaffer and Lee [2192] proved that Cm × Cn (m > 2, n > 2) is edge-graceful if and
only if m and n are odd. They also showed that if G and H are edge-graceful regular
graphs of odd order then G ×H is edge-graceful and that if G and H are edge-graceful
graphs where G is c-regular of odd order m and H is d-regular of odd order n, then G×H
is edge-magic if gcd(c, n) = gcd(d,m) = 1. They further show that if H has odd order,
is 2d-regular and edge-graceful with gcd(d,m) = 1, then C2m × H is edge-magic, and if
G is odd-regular, edge-graceful of even order m that is not divisible by 3, and G can be
partitioned into 1-factors, then G× Cm is edge-graceful.

In 1987 Lee (see [1537]) conjectured that C2m ∪ C2n+1 is edge-graceful for all m and
n except for C4 ∪ C3. Lee, Seah, and Lo [1537] have proved this for the case that m = n
and m is odd. They also prove: the disjoint union of an odd number copies of Cm is edge-
graceful when m is odd; Cn ∪ C2n+2 is edge-graceful; and Cn ∪ C4n is edge-graceful for n
odd. Bu [506] gave necessary and sufficient conditions for graphs of the form mCn ∪Pn−1

to be edge-graceful.
Kendrick and Lee (see [1489]) proved that there are only finitely many n for which

Km,n is edge-graceful and they completely solve the problem for m = 2 and m = 3. Ho,
Lee, and Seah [1015] use S(n; a1, a2, . . . , ak) where n is odd and 1 ≤ a1 ≤ a2 ≤ · · · ≤
ak < n/2 to denote the (n, nk)-multigraph with vertices v0, v1, . . . , vn−1 and edge set
{vivj| i 6= j, i− j ≡ at (mod n) for t = 1, 2, . . . , k}. They prove that all such multigraphs
are edge-graceful. Lee and Pritikin (see [1489]) prove that the Möbius ladders (see §2.2
for definition) of order 4n are edge-graceful. Lee, Tong, and Seah [1555] have conjectured
that the total graph of a (p, p)-graph is edge-graceful if and only if p is even. They have
proved this conjecture for cycles. In [1372] Khodkar and Vinhage proved that there exists
a super edge-graceful labeling of the total graph of K1,n and the total graph of Cn. Wang
and Zang [2794] proved that a regular graph of odd degree is edge-graceful if it contains
either a quasi-prism factor or a claw factor.

Kuang, Lee, Mitchem, and Wang [1442] have conjectured that unicyclic graphs of odd
order are edge-graceful. They have verified this conjecture in the following cases: graphs
obtained by identifying an endpoint of a path Pm with a vertex of Cn when m + n is
even; crowns with one pendent edge deleted; graphs obtained from crowns by identifying
an endpoint of Pm, m odd, with a vertex of degree 1; amalgamations of a cycle and a
star obtained by identifying the center of the star with a cycle vertex where the resulting
graph has odd order; graphs obtained from Cn by joining a pendent edge to n− 1 of the
cycle vertices and two pendent edges to the remaining cycle vertex.

In [2795] Wang and Zhang introduced the notion called edge-graceful deficiency, which
is a parameter to measure how close a graph is away from being an edge-graceful graph.
The edge-graceful deficiency of a graph G is the minimum value of k such that the edge
labeling f E → {1, 2, . . . , q+k} is edge-graceful. They proved that an odd regular graph is
edge-graceful if it contains a quasi-prism factor or a claw factor and completely determine
the edge-graceful deficiency of Hamiltonian regular graphs of even degree.

Gayathri and Subbiah [861] say a graph G(V,E) has a strong edge-graceful labeling
if there is an injection f from the E to {1, 2, 3, . . . , 〈3|E|/2〉} such that the induced
mapping f+ from V defined by f+(u) = (Σf(uv)) (mod 2|V |) taken all edges uv is an
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injection. They proved the following graphs have strong edge graceful labelings: Pn(n ≥
3), Cn, K1,n(n ≥ 2), crowns Cn �K1, and fans Pn +K1(n ≥ 2). In his Ph.D. thesis [2476]
Subbiah provided edge-graceful and strong edge-graceful labelings for a large variety of
graphs. Among them are bistars, twigs, y-trees, spiders, flags, kites, friendship graphs,
mirror of paths, flowers, sunflowers, graphs obtained by identifying a vertex of a cycle
with an endpoint of a star, and K2 �Cn, and various disjoint unions of path, cycles, and
stars.

Hefetz [973] has shown that a graph G(V,E) of the form G = H ∪ f1 ∪ f2 ∪ · · · ∪ fr
where H = (V,E ′) is edge-graceful and the fi’s are 2-factors is also edge-graceful and that
a regular graph of even degree that has a 2-factor consisting of k cycles each of length t
where k and t are odd is edge-graceful.

Bača and Holländer [273] investigated a generalization of edge-graceful labeling called
(a, b)-consecutive labelings. A connected graph G(V,E) is said to have an (a, b)-
consecutive labeling where a is a nonnegative integer and b is a positive proper divisor
of |V |, if there is a bijection from E to {1, 2, . . . , |E|} such that if each vertex v is as-
signed the sum of all edges incident to v the vertex labels are distinct and they can be
partitioned into |V |/b intervals
Wj = [wmin = (j − 1)b + (j − 1)a, wmin + jb + (j − 1)a − 1], where 1 ≤ j ≤ p/b and
wmin is the minimum value of the vertices. They present necessary conditions for (a, b)-
consecutive labelings and describe (a, b)-consecutive labelings of the generalized Petersen
graphs for some values of a and b.

A graph with p vertices and q edges is said to be k-edge-graceful if its edges can be
labeled with k, k + 1, . . . , k + q − 1 such that the sums of the edges incident to each
vertex are distinct modulo p. In [1558] Lee and Wang show that for each k 6= 1 there
are only finitely many trees that are k-edge graceful (there are infinitely many 1-edge
graceful trees). They describe completely the k-edge-graceful trees for k = 0, 2, 3, 4, and 5.
Gayathri and Sarada Devi [843] obtained some necessary conditions and characterizations
for k-edge-gracefulness of trees. They also proved that specific families of trees are edge-
graceful and k-edge-graceful and conjecture that all odd trees are k-edge-graceful.

Gayathri and Sarada Devi [669] defined a k-even edge-graceful labeling of a (p, q) graph
G(V,E) as an injection f from E to {2k − 1, 2k, 2k + 1, . . . , 2k + 2q − 2} such that the
induced mapping f+ of V defined by f+(x) =

∑
f(xy) ( mod 2s) taken over all edges xy,

are distinct and even, where s = max{p, q} and k is a positive integer. A graph G that
admits a k-even-edge-graceful labeling is called a k-even-edge-graceful graph. In [669],
[844], [845], and [846] Gayathri and Sarada Devi investigate the k-even edge-gracefulness
of a wide variety of graphs. Among them are: paths; stars; bistars; cycles with a pendent
edge; cycles with a cord; crowns Cn � K1; graphs obtained from Pn by replacing each
edge by a fixed number of parallel edges; and sparklers (paths with a star appended at
an endpoint of the path).

In 1991 Lee [1489] defined the edge-graceful spectrum of a graph G as the set of all
nonnegative integers k such that G has a k-edge graceful labeling. In [1561] Lee, Wang,
Ng, and Wang determine the edge-graceful spectrum of the following graphs: G � K1

where G is an even cycle with one chord; two even cycles of the same order joined by an
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edge; and two even cycles of the same order sharing a common vertex with an arbitrary
number of pendent edges attached at the common vertex (butterfly graph). Lee, Chen, and
Wang [1492] have determined the edge-graceful spectra for various cases of cycles with a
chord and for certain cases of graphs obtained by joining two disjoint cycles with an edge
(i.e., dumbbell graphs). More generally, Shiu, Ling, and Low [2355] call a connected with
p vertices and p+1 edges bicyclic. In particular, the family of bicyclic graphs includes the
one-point union of two cycles, two cycles joined by a path and cycles with one cord. In
[2356] they determine the edge-graceful spectra of bicyclic graphs that do not have pendent
edges. Kang, Lee, and Wang [1325] determined the edge-graceful spectra of wheels and
Wang, Hsiao, and Lee [2777] determined the edge-graceful spectra of the square of Pn
for odd n. Results about the edge-graceful spectra of three types of (p, p+ 1)-graphs are
given by Chen, Lee, and Wang [574]. In [2778] Wang and Lee determine the edge-graceful
spectra of the one-point union of two cycles, the corona product of the one-point union
of two cycles with K1, and the cycles with one chord.

Lee, Levesque, Lo, and Schaffer [1503] investigate the edge-graceful spectra of cylin-
ders. They prove: for odd n ≥ 3 and m ≡ 2 (mod) 4, the spectra of Cn × Pm is ∅; for
m = 3 and m ≡ 0, 1 or 3 (mod 4), the spectra of C4×Pm is ∅; for even n ≥ 4, the spectra
of Cn × P2 is all natural numbers; the spectra of Cn × P4 is all odd positive integers if
and only if n ≡ 3 (mod) 4; and Cn × P4 is all even positive integers if and only if n ≡ 1
(mod) 4. They conjecture that C4×Pm is k-edge-graceful for some k if and only if m ≡ 2
(mod) 4. Shiu, Ling, and Low [2356] determine the edge-graceful spectra of all connected
bicyclic graphs without pendent edges.

A graph G(V,E) is called super edge-graceful if there is a bijection f from E to
{0,±1,±2, . . . ,±(|E|−1)/2} when |E| is odd and from E to {±1,±2, . . . ,±|E|/2} when
|E| is even such that the induced vertex labeling f ∗ defined by f ∗(u) = Σf(uv) over all
edges uv is a bijection from V to {0,±1,±2, . . . ,±(p− 1)/2} when p is odd and from V
to {±1,±2, . . . ,±p/2} when p is even. Lee, Wang, Nowak, and Wei [1562] proved the
following: K1,n is super-edge-magic if and only if n is even; the double star DS(m,n)
(that is, the graph obtained by joining the centers of K1,m and K1,n by an edge) is super
edge-graceful if and only if m and n are both odd. They conjecture that all trees of odd
order are super edge-graceful. In [1550] Lee, Su, and Wei exhibit a family of trees of
odd orders which are super edge-graceful. Chung, Lee, Gao and Schaffer [607] posed the
problems of characterizing the paths and tress of diameter 4 that are super edge-graceful.

In [606] Chung, Lee, and Gao prove various classes of caterpillars, combs, and amal-
gamations of combs and stars of even order are super edge-graceful. Lee, Sun, Wei, Wen,
and Yiu [1551] proved that trees obtained by starting with the paths the P2n+2 or P2n+3

and identifying each internal vertex with an endpoint of a path of length 2 are super
edge-graceful.

Shiu [2329] has shown that Cn×P2 is super-edge-graceful for all n ≥ 2. More generally,
he defines a family of graphs that includes Cn × P2 and generalized Petersen graphs
are follows. For any permutation θ on n symbols without a fixed point the θ-Petersen
graph P (n; θ) is the graph with vertex set {u1, u2, . . . , un} ∪ {v1, v2, . . . , vn} and edge set
{uiui+1, uiwi, wiwθ(i) | 1 ≤ i ≤ n} where addition of subscripts is done modulo n. (The
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graph P (n; θ) need not be simple.) Shiu proves that P (n; θ) is super-edge-graceful for
all n ≥ 2. He also shows that certain other families of connected cubic multigraphs are
super-edge-graceful and conjectures that every connected cubic of multigraph except K4

and the graph with 2 vertices and 3 edges is super-edge-graceful.
In [2341] Shiu and Lam investigated the super-edge-gracefulness of fans and wheel-like

graphs. They showed that fans F2n and wheels W2n are super-edge-graceful. Although F3

and W3 are not super-edge-graceful the general cases F2n+1 and W2n+1 are open. For a
positive integer n1 and even positive integers n2, n3, . . . , nm they define an m-level wheel
as follows. A wheel is a 1-level wheel and the cycle of the wheel is the 1-level cycle. An
i-level wheel is obtained from an (i−1)-level wheel by appending ni/2 pairs of edges from
any number of vertices of the i− 1-level cycle to ni new vertices that form the vertices in
the i-level cycle. They prove that all m-level wheels are super-edge-graceful. They also
prove that for n odd Cm � Kn is super-edge-graceful, for odd m ≥ 3 and even n ≥ 2
Cm�Kn is edge-graceful, and for m ≥ 3 and n ≥ 1 Cm�Kn is super-edge-graceful. For a
cycle Cm with consecutive vertices v1, v2, . . . , vm and nonnegative integers n1, n2, . . . , nm
they define the graph A(m;n1, n2, . . . , nm) as the graph obtained from Cm by attaching
ni edges to the vertex vi for 1 ≤ i ≤ m. They prove A(m;n1, n2, . . . , nm) is super-edge-
graceful if m is odd and A(m;n1, n2, . . . , nm) is super-edge-graceful if m is even and all
the ni are positive and have the same parity. Chung, Lee, Gao, and Schaffer [607] provide
super edge-graceful labelings for various even order paths, spiders and disjoint unions
of two stars. In [604] Chung and Lee characterize spiders of even orders that are not
super-edge-graceful and exhibit some spiders of even order of diameter at most four that
are super-edge-graceful. They raised the question of which paths are super edge-graceful.
This was answered by Cichacz, Fronček, and Xu [622] who showed that the only paths
that are not super edge-graceful are P2 and P4. Cichacz et al. also proved that the only
cycles that are not super edge-graceful are C4 and C6. Gao and Zhang [837] proved that
some cases of caterpillars are super edge-graceful.

In [607] Chung, Lee, Gao, and Schaffer asked for a characterize trees of diameter 4 that
are super edge-graceful. Krop, Mutiso, and Raridan [1439] provide a super edge-graceful
labelings for all caterpillars and even size lobsters of diameter 4 that permit such labelings.
They also provide super edge-graceful labelings for several families of odd size lobsters of
diameter 4. They were unable to find general methods that describe super edge-graceful
labelings for a few families of odd size lobsters of diameter 4, although they are able to
show that certain lobsters in these families are super-edge graceful. They conclude with
three conjectures about rooted trees of height 2 and diameter 4.

Although it is not the case that a super edge-graceful graph is edge-graceful, Lee,
Chen, Yera, and Wang [1491] proved that if G is a super edge-graceful with p vertices
and q edges and q ≡ −1 (mod p) when q is even, or q ≡ 0 (mod p) when q is odd, then
G is also edge-graceful. They also prove: the graph obtained from a connected super
edge-graceful unicyclic graph of even order by joining any two nonadjacent vertices by
an edge is super edge-graceful; the graph obtained from a super edge-graceful graph with
p vertices and p + 1 edges by appending two edges to any vertex is super edge-graceful;
and the one-point union of two identical cycles is super edge-graceful. Collins, Magnant,
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and Wang [630] present a stronger concept of “tight” super-edge-graceful labeling. Such a
super-edge graceful labeling has an additional constraint on the edge and vertices with the
largest and smallest labels. They use this concept to recursively construct tight super-edge
graceful trees of any order.

Gayathri, Duraisamy, and Tamilselvi [848] calls a (p, q)-graph with q ≥ p even edge-
graceful if there is an injection f from the set of edges to {1, 2, 3, . . . , 2q} such that the
values of the induced mapping f+ from the vertex set to {0, 1, 2, . . . , 2q − 1} given by
f+(x) = (Σf(xy))(mod 2q) over all edges xy are distinct and even. In [848] and [847]
Gayathri et al. prove the following: cycles are even edge-graceful if and only if the cycles
are odd; even cycles with one pendent edge are even edge-graceful; wheels are even edge-
graceful; gears (see §2.2 for the definition) are not even edge-graceful; fans Pn + K1 are
even edge-graceful; C4∪Pm for all m are even edge-graceful; C2n+1∪P2n+1 are even edge-

graceful; crowns Cn�K1 are even edge-graceful; C
(m)
n (see §2.2 for the definition) are even

edge-graceful; sunflowers (see §3.7 for the definition) are even edge-graceful; triangular
snakes (see §2.2 for the definition) are even edge-graceful; closed helms (see §2.2 for the
definition) with the center vertex removed are even edge-graceful; graphs decomposable
into two odd Hamiltonian cycles are even edge-graceful; and odd order graphs that are
decomposable into three Hamiltonian cycles are even edge-graceful.

In [847] Gayathri and Duraisamy generalized the definition of even edge-graceful to
include (p, q)-graphs with q < p by changing the modulus from 2q the maximum of 2q and
2p. With this version of the definition, they have shown that trees of even order are not
even edge-graceful whereas, for odd order graphs, the following are even edge-graceful:
banana trees (see §2.1 for the definition); graphs obtained joining the centers of two stars
by a path; Pn�K1,m; graphs obtained by identifying an endpoint from each of any number
of copies of P3 and P2; bistars (that is, graphs obtained by joining the centers of two stars
with an edge); and graphs obtained by appending the endpoint of a path to the center
of a star. They define odd edge-graceful graphs in the analogous way and provide a few
results about such graphs.

Lee, Pan, and Tsai [1525] call a graph G with p vertices and q edges vertex-graceful
if there exists a labeling f V (G) → {1, 2, . . . , p} such that the induced labeling f+ from
E(G) to Zq defined by f+(uv) = f(u)+f(v) (mod q) is a bijection. Vertex-graceful graphs
can be viewed the dual of edge-graceful graphs. They call a vertex-graceful graph strong
vertex-graceful if the values of f+(E(G) are consecutive. They observe that the class of
vertex-graceful graphs properly contains the super edge-magic graphs and strong vertex-
graceful graphs are super edge-magic. They provide vertex-graceful and strong vertex-
graceful labelings for various (p, p+ 1)-graphs of small order and their amalgamations.

Shiu and Wong [2368] proved the one-point union of an m-cycle and an n-cycle is
vertex-graceful only if m+n ≡ 0 (mod 4); for k ≥ 2, C(3, 4k−3) is strong vertex-graceful;
C(2n + 3, 2n + 1) is strong vertex-graceful for n ≥ 1; and if the one-point union of two
cycles is vertex-graceful, then it is also strong vertex-graceful. In [2443] Somashekara and
Veena found the number of (n, 2n − 3) strong vertex graceful graphs. Gao, Zhang, and
Xu [824] proved that Cn, Cn � K1 and Cn � K1,t are vertex-graceful if n is odd; Cn is
super vertex-graceful if n 6= 4, 6; and Cn �K1 is super vertex-graceful if n is even. They
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proposed two conjectures on (super)vertex-graceful labelings.
As a dual to super edge-graceful graphs Lee and Wei [1565] define a graph G(V,E) to

be super vertex-graceful if there is a bijection f from V to {±1,±2, . . . ,±(|V |−1)/2} when
|V | is odd and from V to {±1,±2, . . . ,±|V |/2} when |V | is even such that the induced
edge labeling f ∗ defined by f+(uv) = f(u)+f(v) over all edges uv is a bijection from E to
{0,±1,±2, . . . ,±(|E|−1)/2} when |E| is odd and from E to {±1,±2, . . . ,±|E|/2} when
|E| is even. They show: for m and n1, n2, . . . , nm each at least 3, Pn1 × Pn2 × · · · × Pnm

is not super vertex-graceful; for n odd, books K1,n×P2 are not super vertex-graceful; for
n ≥ 3, P 2

n × P2 is super vertex-graceful if and only if n = 3, 4, or 5; and Cm × Cn is not
super vertex-graceful. They conjecture that Pn × Pn is super vertex-graceful for n ≥ 3.

In [1569] Lee and Wong generalize super edge-vertex graphs by defining a graph
G(V,E) to be P (a)Q(1)-super vertex-graceful if there is a bijection f from V to
{0,±a,±(a+ 1), . . . ,±(a− 1 + (|V | − 1)/2)} when |V | is odd and from V to {±a,±(a+
1), . . . ,±(a−1+|V |/2)} when |V | is even such that the induced edge labeling f ∗ defined by
f+(uv) = f(u) + f(v) over all edges uv is a bijection from E to {0,±1,±2, . . . ,±(|E| −
1)/2} when |E| is odd and from E to {±1,±2, . . . ,±|E|/2} when |E| is even. They
show various classes of unicyclic graphs are P (a)Q(1)-super vertex-graceful. In [1502]
Lee, Leung, and Ng more simply refer to P (1)Q(1)-super vertex-graceful graphs as super
vertex-graceful and show how to construct a variety of unicyclic graphs that are super
vertex-graceful. They conjecture that every unicyclic graph is an induced subgraph of
a super vertex-graceful unicyclic graph. Lee and Leung [1501] determine which trees of
diameter at most 6 are super vertex-graceful graphs and propose two conjectures. Lee,
Ng, and Sun [1521] found many classes of caterpillars that are super vertex-graceful. In
[832] Gao shows that the generalized butterfly graph Bt

n is super vertex-graceful when

t > 0 is even, B0
n is super vertex-graceful when n ≡ 0 or 3 (mod 4), and C

(t)
3 is super

vertex-graceful if and only if t = 1, 2, 3, 5, or 7.
In [593] Chopra and Lee define a graph G(V,E) to be Q(a)P (b)-super edge-graceful if

there is a bijection f from E to {±a,±(a+1), . . . ,±(a+(|E|−2)/2)} when |E| is even and
from E to {0,±a,±(a+ 1), . . . ,±(a+ (|E|−3)/2)} when |E| is odd and f+(u) is equal to
the sum of f(uv) over all edges uv is a bijection from V to {±b,±(b+ 1), . . . , (|V |−2)/2}
when |V | is even and from V to {0,±b,±(b + 1), . . . ,±(|V | − 3)/2} when |V | is odd.
They say a graph is strongly super edge-graceful if it is Q(a)P (b)-super edge-graceful for
all a ≥ 1. Among their results are: a star with n pendent edges is strongly super edge-
graceful if and only if n is even; wheels with n spokes are strongly super edge-graceful
if and only if n is even; coronas Cn �K1 are strongly super edge-graceful for all n ≥ 3;
and double stars DS(m,n) are strongly super edge-graceful in the case that m is odd and
at least 3 and n is even and at least 2 and in the case that both m and n are odd and
one of them is at least 3. Lee, Song, and Valdés [1542] investigate the Q(a)P (b)-super
edge-gracefulness of wheels Wn for n = 3, 4, 5, and 6.

In [1566] Lee, Wang, and Yera proved that some Eulerian graphs are super edge-
graceful, but not edge-graceful, and that some are edge-graceful, but not super edge-
graceful. They also showed that a Rosa-type condition for Eulerian super edge-graceful
graphs does not exist and pose some conjectures, one of which was: For which n, is Kn
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is super edge-graceful? It was known that the complete graphs Kn for n = 3, 5, 6, 7, 8 are
super edge-graceful and K4 is not super edge-graceful. Khodkar, Rasi, and Sheikholeslami,
[1371] answered this question by proving that all complete graphs of order n ≥ 3, except
4, are super edge-graceful.

In 1997 Yilmaz and Cahit [2869] introduced a weaker version of edge-graceful called
E-cordial. Let G be a graph with vertex set V and edge set E and let f a function from
E to {0, 1}. Define f on V by f(v) =

∑
{f(uv)|uv ∈ E} (mod 2). The function f is

called an E-cordial labeling of G if the number of vertices labeled 0 and the number of
vertices labeled 1 differ by at most 1 and the number of edges labeled 0 and the number
of edges labeled 1 differ by at most 1. A graph that admits an E-cordial labeling is
called E-cordial. Yilmaz and Cahit prove the following graphs are E-cordial: trees with
n vertices if and only if n 6≡ 2 (mod 4); Kn if and only if n 6≡ 2 (mod 4); Km,n if and
only if m + n 6≡ 2 (mod 4); Cn if and only if n 6≡ 2 (mod 4); regular graphs of degree 1

on 2n vertices if and only if n is even; friendship graphs C
(n)
3 for all n (see §2.2 for the

definition); fans Fn if and only if n 6≡ 1 (mod 4); and wheels Wn if and only if n 6≡ 1
(mod 4). They observe that graphs with n ≡ 2 (mod 4) vertices can not be E-cordial.
They generalized E-cordial labelings to Ek-cordial (k > 1) labelings by replacing {0, 1}
by {0, 1, 2, . . . , k − 1}. Of course, E2-cordial is the same as E-cordial (see §3.7).

Liu, liu, and Wu [1622] provide two necessary conditions for a graph to be Ek-cordial
and prove that Pn (n ≥ 3) is Ep-cordial for odd p. They also discuss the E2-cordiality of
graphs that have a subgraph that is a 1-factor.

In [2688] Vaidya and Vyas prove that the following graphs are E-cordial: the mirror
graphs (see §2.3 for the definition) even paths, even cycles, and the hypercube are E-
cordial. In [2653] they show that the middle graph, the total graph, and the splitting
graph of a path are E-cordial and the composition of P2n with P2. (See §2.7 for the
definitions of middle, total and splitting graphs.) In [2654] Vaidya and Lekha [2654]
prove the following graphs are E-cordial: the graph obtained by duplication of a vertex
(see §2.7 for the definition) of a cycle; the graph obtained by duplication of an edge (see
§2.7 for the definition) of a cycle; the graph obtained by joining of two copies of even
cycle by an edge; the splitting graph of an even cycle; and the shadow graph (see §3.8 for
the definition) of a path of even order.

Vaidya and Vyas [2689] proved the following graphs have E-cordial labelings: K2n×P2;
P2n × P2; Wn × P2 for odd n; and K1,n × P2 for odd n. Vaidya and Vyas [2690] proved
that the Möbius ladders, the middle graph of Cn, and crowns Cn � K1 are E-cordial
graphs for even n while bistars Bn,n and its square graph B2

n,n are E-cordial graphs for
odd n. In [2692] and [2693] Vaidya and Vyas proved the following graphs are E-cordial:
flowers, closed helms, double triangular snakes, gears, graphs obtained by switching of an
arbitrary vertex in Cn except n ≡ 2 (mod 4), switching of rim vertex in wheel Wn except
n ≡ 1 (mod 4), switching of an apex vertex in helms, and switching of an apex vertex in
closed helms. Sugumaran and Vishnu Prakash [2518] proved that the following graphs
are E-cordial: theta graphs, duplication of any vertex in theta graphs, switching of any
vertex in theta graphs, the fusion of any two vertices in theta graphs, and the open star
of n copies of a fixed theta graph (that is, the graph obtained by replacing each endpoint
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vertex of K1,n by copies of the theta graph).
Seoud and Jaber [2241] proved that the butterfly BFn,m, helms Hn, the graph 〈Wn :

Wm〉 obtained by joining apex vertices of two wheels with a new vertex are prime cordial,
and determine the prime cordial graphs of order 7. They also gave an algorithm to
calculate the maximum number of edges in a 3-equitable prime cordial graph.

For a graph G(V,E) and the group S3 of all permutations of {1, 2, 3} Chandra and
Kala [552] define a function g : V (G) → S3 such that xy ∈ E if g(x) and g(y) have
relatively prime orders. Let nj(g) denote the number of vertices of G having label j under
g. Then g is called a group S3 cordial prime labeling if |ni(g) − nj(g)| ≤ 1 for every
i, j ∈ S3. A graph that admits a group S3 cordial prime labeling is called a group S3

cordial prime graph. Chandra and Kala [552] prove that all paths, cycles, gears, ladders,
and fans are group S3 cordial prime and characterize wheels that are group S3 cordial
prime.

In her PhD thesis [2700] Vanitha defines a (p, q) graph G to be directed edge-graceful if
there exists an orientation of G and a labeling of the arcs of G with {1, 2, . . . , q} such that
the induced mapping g on V defined by g(v) = |f+(v) − f−(v)| (mod p) is a bijection
where, f+(v) is the sum of the labels of all arcs with head v and f−(v) is the sum of the
labels of all arcs with tail v. She proves that a necessary condition for a graph with p
vertices to be directed edge-graceful is that p is odd. Among the numerous graphs that
she proved to be directed edge-graceful are: odd paths, odd cycles, fans F2n (n ≥ 2),
wheels W2n, nC3-snakes, butterfly graphs Bn (two even cycles of the same order sharing
a common vertex with an arbitrary number of pendent edges attached at the common
vertex), K1,2n (n ≥ 2), odd order y-trees with at least 5 vertices, flags Fl2n (the cycle
C2n with one pendent edge), festoon graphs Pn �mK1, the graphs Tm,n,t obtained from
a path Pt (t ≥ 2) by appending m edges at one endpoint of Pt and n edges at the other
endpoint of Pt, C

n
3 , P3 ∪K1,2n+1, P5 ∪K1,2n+1, and K1,2n ∪K1,2m+1.

Devaraj [667] has shown that M(m,n), the mirror graph of K(m,n), is E-cordial when
m + n is even and the generalized Petersen graph P (n, k) is E-cordial when n is even.
(Recall that P (n, 1) is Cn × P2.)

The table following summarizes the state of knowledge about edge-graceful labelings.
In the table EG means edge-graceful labeling exists. A question mark following an ab-
breviation indicates that the graph is conjectured to have the corresponding property.

Table 23: Summary of Edge-graceful Labelings

Graph Types Notes
Kn EG iff n 6≡ 2 (mod 4) [1481]

odd order trees EG? [1488]

Kn,n,...,n (k terms) EG iff n is odd or
k 6≡ 2 (mod 4) [1534]

Continued on next page
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Table 23 – Continued from previous page
Graph Types Notes

Ck
n, k < bn/2c EG iff n is odd [1533]

Ck
n, k ≥ bn/2c EG iff n 6≡ 2 (mod 4) [1533]

P3[Kn] EG n is odd [1533]

M4n (Möbius ladders) EG [1489]

odd order dragons EG [1442]

odd order unicycilc graphs EG? [1442]

P2m × P2n EG iff m = n = 2 [1509]

Cn ∪ P2 EG n even [1537]

C2n ∪ C2n+1 EG n odd [1537]

Cn ∪ C2n+2 EG [1537]

Cn ∪ C4n EG n odd [1537]

C2m ∪ C2n+1 EG? (m,n) 6= (4, 3) odd [1538]

P (n, k) generalized Petersen EG n even, k < n/2 [1489]
graph

Cm × Cn EG? (m,n) 6= (4, 3) [1538]
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7.4 Line-graceful Labelings

Gnanajothi [894] has defined a concept similar to edge-graceful. She calls a graph with n
vertices line-graceful if it is possible to label its edges with 0, 1, 2, . . . , n such that when each
vertex is assigned the sum modulo n of all the edge labels incident with that vertex the
resulting vertex labels are 0, 1, . . . , n− 1. A necessary condition for the line-gracefulness
of a graph is that its order is not congruent to 2 (mod 4). Among line-graceful graphs are
(see [pp. 132–181][894]) Pn if and only if n 6≡ 2 (mod 4); Cn if and only if n 6≡ 2 (mod 4);
K1,n if and only if n 6≡ 1 (mod 4); Pn�K1 (combs) if and only if n is even; (Pn�K1)�K1

if and only if n 6≡ 2 (mod 4); (in general, if G has order n, G�H is the graph obtained
by taking one copy of G and n copies of H and joining the ith vertex of G with an edge
to every vertex in the ith copy of H); mCn when mn is odd; Cn � K1 (crowns) if and
only if n is even; mC4 for all m; complete n-ary trees when n is even; K1,n ∪K1,n if and
only if n is odd; odd cycles with a chord; even cycles with a tail; even cycles with a tail
of length 1 and a chord; graphs consisting of two triangles having a common vertex and
tails of equal length attached to a vertex other than the common one; the complete n-ary
tree when n is even; trees for which exactly one vertex has even degree. She conjectures
that all trees with p 6≡ 2 (mod 4) vertices are line-graceful and proved this conjecture for
p ≤ 9.

Gnanajothi [894] has investigated the line-gracefulness of several graphs obtained from
stars. In particular, the graph obtained from K1,4 by subdividing one spoke to form a
path of even order (counting the center of the star) is line-graceful; the graph obtained
from a star by inserting one vertex in a single spoke is line-graceful if and only if the star
has p 6≡ 2 (mod 4) vertices; the graph obtained from K1,n by replacing each spoke with
a path of length m (counting the center vertex) is line-graceful in the following cases:
n = 2; n = 3 and m 6≡ 3 (mod 4); and m is even and mn+ 1 ≡ 0 (mod 4).

Gnanajothi studied graphs obtained by joining disjoint graphs G and H with an
edge. She proved such graphs are line-graceful in the following circumstances: G = H;
G = Pn, H = Pm and m+n 6≡ 0 (mod 4); and G = Pn�K1, H = Pm�K1 and m+n 6≡ 0
(mod 4).

In [2647] and [2648] Vaidya and Kothari proved following graphs are line graceful: fans
Fn for n 6≡ 1 (mod 4); Wn for n 6≡ 1 (mod 4); bistars Bn,n if and only if for n ≡ 1, 3 (mod
4); helms Hn for all n; S ′(Pn) for n ≡ 0, 2 (mod 4); D2(Pn) for n ≡ 0, 2 (mod 4); T (Pn),
M(Pn), alternate triangular snakes, and graphs obtained by duplication of each edge of
Pn by a vertex are line graceful graphs.

7.5 Radio Labelings

In 2001 Chartrand, Erwin, Zhang, and Harary [563] were motivated by regulations for
channel assignments of FM radio stations to introduce radio labelings of graphs. A radio
labeling of a connected graph G is an injection c from the vertices of G to the natural
numbers such that d(u, v) + |c(u) − c(v)| ≥ 1 + diam(G) for every two distinct vertices
u and v of G. The radio number of c, rn(c), is the maximum number assigned to any
vertex of G. The radio number of G, rn(G), is the minimum value of rn(c) taken over
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all radio labelings c of G. Chartrand et al. and Zhang [2904] gave bounds for the radio
numbers of cycles. The exact values for the radio numbers for paths and cycles were
reported by Liu and Zhu [1612] as follows: for odd n ≥ 3, rn(Pn) = (n − 1)2/2 + 2; for
even n ≥ 4, rn(Pn) = n2/2 − n + 1; rn(C4k) = (k + 2)(k − 2)/2 + 1; rn(C4k+1) = (k +
1)(k−1)/2; rn(C4k+2) = (k+2)(k−2)/2+1; and rn(C4k+3) = (k+2)(k−1)/2. However,
Chartrand, Erwin, and Zhang [562] obtained different values than Liu and Zhu for P4 and
P5. Chartrand, Erwin, and Zhang [562] proved: rn(Pn) ≤ (n−1)(n−2)/2+n/2+1 when n
is even; rn(Pn) ≤ n(n−1)/2+1 when n is odd; rn(Pn) < rn(Pn+1) (n > 1); for a connected
graph G of diameter d, rn(G) ≥ (d+1)2/4+1 when d is odd; and rn(G) ≥ d(d+2)/4+1
when d is even. Benson, Porter, and Tomova [437] have determined the radio numbers
of all graphs of order n and diameter n− 2. In [1608] Liu obtained lower bounds for the
radio number of trees and the radio number of spiders (trees with at most one vertex of
degree greater than 2) and characterized the graphs that achieve these bounds. Bantva,
Vaidya, and Zhou [420] and [421] give a lower bound for the radio number of trees and
a necessary and sufficient condition for their bound to be achieved. They determine the
radio number for symmetric trees (that is, trees whose non-leaf vertices all have the same
degree and whose leaf vertices all have the same eccentricity), banana trees, and firecracker
trees. In [1400] Kola and Panigrahi provide the radio number for a class of caterpillars.
Nazeer, Khan, Kousar, and Nazeer [1835] investigated the radio number for some families
of generalized caterpillar graphs.

Chartrand, Erwin, Zhang, and Harary [563] proved: rn(Kn1,n2,...,nk
) = n1 + n2 + · · ·+

nk +k−1; if G is a connected graph of order n and diameter 2, then n ≤ rn(G) ≤ 2n−2;
and for every pair of integers k and n with n ≤ k ≤ 2n−2, there exists a connected graph
of order n and diameter 2 with rn(G) = k. They further provide a characterization of
connected graphs of order n and diameter 2 with prescribed radio number.

Fernandez, Flores, Tomova, and Wyels [755] proved rn(Kn) = n; rn(Wn) = n + 2;
and the radio number of the gear graph obtained from Wn by inserting a vertex between
each vertex of the rim is 4n + 2. Morris-Rivera, Tomova, Wyels, and Yeager [1787]
determine the radio number of Cn × Cn. Martinez, Ortiz, Tomova, and Wyels [1714]
define generalized prisms, denoted Zn,s, s ≥ 1, n ≥ s, as the graphs with vertex set
{(i, j) | i = 1, 2 and j = 1, ..., n} and edge set {((i, j), (i, j ± 1))} ∪ {((1, i), (2, i+ σ)) |σ =
−
⌊
s−1

2

⌋
. . . , 0, . . . ,

⌊
s
2

⌋
}. They determine the radio number of Zn,s for s = 1, 2 and 3. In

[221] and [222] Bantva determines the radio number for three families of trees obtained
by taking a graph operation on a given tree or a family of trees and the radio number
for the middle graph of paths. Zhang, Nazeer, Habib, Zia, and Ren [2902] determined
the radio number for the generalized Petersen graphs P (4k + 2, 2) and provided a lower
bound for P (4k, 2).

In [2094] Ramyal and Sooryanarayana generalized the notion of radio labeling as fol-
lows. Let M be a subset of non-negative integers and (M, ?) be a monoid with the
identity e. A radio ?-labeling of graph G(V,E) is a mapping f : V → M such that
|f(u) − f(v)| ? d(u, v) ≥ diam(G) + 1 − e, for all u, v ∈ V . The radio ?-number rn ? (f)
of a radio ? -labeling f of G is the maximum label assigned to a vertex of G. The radio
?-number of G, denoted by rn ? (G), is the minimum of rn ? (f) taken over all radio
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?-labeling f of G. They completely determine rn ? (G) of some transformation graphs of
paths and cycles where ? is the usual multiplication of integers.

Sooryanarayana and Ranghunath [2460] define a radio labeling f of a graph G to
be a consecutive radio labeling of G if f(V (G)) = {1, 2, . . . , |V (G)|}. They call a graph
for which a consecutive radio labeling exists radio graceful. In her Ph.D. thesis [1844]
Niedzialomski (see also [1845]) investigated the existence of radio graceful labelings of
Cartesian products of graphs. Among her results are: for n ≥ 3 and 1 ≤ t ≤ n − 1 the
Cartesian product of t copies of Kn is radio graceful; for 2 ≤ p ≤ n2 the Cartesian product
of p · dn/pe copies of Kn is radio graceful; the Cartesian product Kn1 × Kn2 , . . . ,×Kns

is radio graceful when n1, n2, . . . , ns are relatively prime; certain families of generalized
Petersen graphs are radio graceful; and the Cartesian product of t ≥ 1 + n(n2 − 1)/6
copies of Kn is not radio graceful. Locke and Niedzialomski [1627] proved that Kn×P is
radio graceful where P is the Peterson graph. Wyels and Tomova [1627] proved that that
P × P is radio graceful.

The generalized gear graph Jt,n is obtained from a wheel Wn by introducing t-vertices
between every pair (vi, vi+1) of adjacent vertices on the n-cycle of wheel. Ali, Rahim, Ali,
and Farooq [130] gave an upper bound for the radio number of generalized gear graph,
which coincided with the lower bound found in and [2054]. They proved for t < n − 1
and n ≥ 7, rn(Jt,n) = (nt2 + 4nt + 3n + 4)/2. They pose the determination of the radio
number of Jt,n when n ≤ 7 and t > n− 1 as an open problem.

Saha and Panigrahi [2152] determined the radio number of the toroidal grid Cm ×Cn
when at least one of m and n is an even integer and gave a lower bound for the radio
number when both m and n are odd integers. Liu and Xie [1610] determined the radio
numbers of squares of cycles for most values of n. In [1611] Liu and Xie proved that
rn(P 2

n) is bn/2c + 2 if n ≡ 1 (mod 4) and n ≥ 9 and rn(P 2
n) is bn/2 + 1c otherwise. In

[1609] Liu found a lower bound for the radio number of trees and characterizes the trees
that achieve the bound. She also provides a lower bound for the radio number of spiders
in terms of the lengths of their legs and characterizes the spiders that achieve this bound.
Sweetly and Joseph [2566] prove that the radio number of the graph obtained from the
wheel Wn by subdividing each edge of the rim exactly twice is 5n−3. Marinescu-Ghemeci
[1709] determined the radio number of the caterpillar obtained from a path by attaching
a new terminal vertex to each non-terminal vertex of the path and the graph obtained
from a star by attaching k new terminal vertices to each terminal vertex of the star.
Ahmad and Marinescu-Ghemeci [95] determined the radio numbers of Mongolian tents,
diamonds, fans, and double fans.

Sooryanarayana and Raghunath [2460] determined the radio number of C3
n, for n ≤ 20

and for n ≡ 0 or 2 or 4 (mod 6). Sooryanarayana, Vishu Kumar, Manjula [2461] determine
the radio number of P 3

n , for n ≥ 4. Lo and Alegria [1625] completely determine the radio
number for the fourth-power of Pn for n ≥ 6, except when n ≡ 1 (mod 8). Saha and
Panigrahi [2153] prove that for an n-vertex simple connected graph G, the difference
between the upper and lower bounds of the radio number of G2 is at most b(n − 1)/2c.
They also determine the radio number for square of graphs belonging to some specific
class and apply this to find the radio number for square of hypercube Q2

n (n 6≡ 0 (mod
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4)), the square of toroidal grid T 2
m,n (m+n ≡ 1, 2, 3, 4, 6 (mod 8)), and the square of some

generalized prism graphs. Wang, Xu, Yang, Zhang, Luo, and Wang [2770] determine the
radio number of ladder graphs. Jiang [1249] completely determined the radio number of
the grid graph Pm×Pn (m,n > 2). In [2686] Vaidya and Vihol determined upper bounds
on radio numbers of cycles with chords and determined the exact radio numbers for the
splitting graph and the middle graph of Cn. In [1577] Li, Mak, and Zhou determine
the radio number of complete m-ary trees. Kim, Hwang, and Song [1373] determine the
radio numbers of Pn with n ≥ 4 and Km with m ≥ 3. Bantva [220] improved the lower
bound for the radio number of graphs given by Das et al. in [647] and gave necessary and
sufficient condition to achieve the lower bound. He also determined the radio number for
cartesian product of paths Pn and the Peterson graph P and provided a short proof for
the radio number of cartesian product of paths Pn and complete graphs Km given by Kim
[1373]. In [1836] Nazeer, Kousar, and Nazeer give radio and radio antipodal labelings
for certain circulant graphs. In [1837] Nazeer, Kousar, and Munir determined the radio
number and radio antipodal number of non-bipartite cubic graphs of order 2k. Shen,
Dong, Zheng, and Guo [2324] use C(m, t) to denote the caterpiller consisting of a path
x1x2 · · ·xm with t pendent edges at each inner vertex. They determine the exact value
of the radio number of C(m, t) for all integers m ≥ 4 and t ≥ 2, and explicitly construct
an optimal radio labeling. They also show that the radio number and the construction of
optimal radio labelings of paths are the special cases of C(m, t) with t = 2. An edge-joint
graph G is a 1-edge connected graph having an edge uv such that eccentricity of u equuls
the eccentricity of v and deletion of uv disconnects G. In [1834] Naseem, Shabbir, and
Shaker gave a lower bound for the radio number of edge-joint graphs. Adefokun and Ajayi
[51] proved that for m ≥ 4 and n even rn(Sm×Pn) = mn2/2 + n− 1 and that for n even
rn(S3 × Pn) = 3n2/2 + n.

In [543] Canales, Tomova, and Wyels investigated the question of which radio numbers
of graphs of order n are achievable. They proved that the achievable radio numbers of
graphs of order n must lie in the interval [n, rn(Pn)], and that these bounds are the

best possible. They also show that for odd n, the integer rn(Pn) − 1 = (n−1)2

2
+ 2 is an

unachievable radio number for any graph of order n. In [2436] Sokolowsky settled the
question of exactly which radio numbers are achievable for a graph of order n.

For any connected graph G and positive integer k Chartrand, Erwin, and Zhang,
[561] define a radio k-coloring as an injection f from the vertices of G to the natural
numbers such that d(u, v) + |f(u) − f(v)| ≥ 1 + k for every two distinct vertices u and
v of G. Using rck(f) to denote the maximum number assigned to any vertex of G by
f , the radio k-chromatic number of G, rck(G), is the minimum value of rck(f) taken
over all radio k-colorings of G. Note that rc1(G) is χ(G), the chromatic number of G,
and when k = diam(G), rck(G) is rn(G), the radio number of G. Chartrand, Nebesky,
and Zang [569] gave upper and lower bounds for rck(Pn) for 1 ≤ k ≤ n − 1. Kchikech,
Khennoufa, and Togni [1358] improved Chartrand et al.’s lower bound for rck(Pn) and
Kola and Panigrahi [1402] improved the upper bound for certain special cases of n. The
exact value of rcn−2(Pn) for n ≥ 5 was given by Khennoufa and Togni in [1367] and the
exact value of rcn−3(Pn) for n ≥ 8 was given by Kola and Panigrahi in [1402]. Kola and
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Panigrahi [1402] gave the exact value of rcn−4(Pn) when n is odd and n ≥ 11 and an
upper bound for rcn−4(Pn) when n is even and n ≥ 12. In [2151] Saha and Panigrahi
provided an upper and a lower bound for rck(C

r
n) for all possible values of n, k and r and

showed that these bounds are sharp for antipodal number of Cr
n for several values of n and

r. Kchikech, Khennoufa, and Togni [1359] gave upper and lower bounds for rck(G×H)
and rck(Qn). In [1358] the same authors proved that rck(K1,n) = n(k − 1) + 2 and for
any tree T and k ≥ 2, rck(T ) ≤ (n− 1)(k − 1). Karst, Langowitz, Oehrlein, and Troxell
[1341] provide general lower bounds for rck(Cn) for all cycles Cn when k ≥ diam(Cn) and
show that these bounds are exact values when k = diam(Cn) + 1.

A radio k-coloring of G when k = diam(G)−1 is called a radio antipodal labeling. The
minimum span of a radio antipodal labeling of G is called the radio antipodal number of G
and is denoted by an(G). Khennoufa and Togni [1364] determined the radio number and
the radio antipodal number of the hypercube by using a generalization of binary Gray
codes. They proved that rn(Qn) = (2n−1−1)dn+3

2
e+1 and an(Qn) = (2n−1−1)dn

2
e+ε(n),

with ε(n) = 1 if n ≡ 0 mod 4, and ε(n) = 0 otherwise.
Sooryanarayana and Raghunath [2460] say a graph with n vertices is radio graceful if

rn(G) = n. They determine the values of n for which C3
n is radio graceful.

The survey article by Panigrahi [1888] includes background information and further
results about radio k-colorings.

7.6 Representations of Graphs modulo n

In 1989 Erdős and Evans [729] defined a representation modulo n of a graph G with
vertices v1, v2, . . . , vr as a set {a1, . . . , ar} of distinct, nonnegative integers each less than
n satisfying gcd(ai − aj, n) = 1 if and only if vi is adjacent to vj. They proved that
every finite graph can be represented modulo some positive integer. The representation
number, Rep(G), is smallest such integer. Obviously the representation number of a graph
is prime if and only if a graph is complete. Evans, Fricke, Maneri, McKee, and Perkel
[742] have shown that a graph is representable modulo a product of a pair of distinct
primes if and only if the graph does not contain an induced subgraph isomorphic to
K2∪2K1, K3∪K1, or the complement of a chordless cycle of length at least five. Nešetřil
and Pultr [1841] showed that every graph can be represented modulo a product of some
set of distinct primes. Evans et al. [742] proved that if G is representable modulo n and
p is a prime divisor of n, then p ≥ χ(G). Evans, Isaak, and Narayan [743] determined
representation numbers for specific families as follows (here we use qi to denote the ith
prime and for any prime pi we use pi+1, pi+2, . . . , pi+k to denote the next k primes larger
than pi): Rep(Pn) = 2 · 3 · · · · · qdlog2(n−1)e; Rep(C4) = 4 and for n ≥ 3, Rep(C2n) =

2 · 3 · · · · · qdlog2(n−1)e+1
; Rep(C5) = 3 · 5 · 7 = 105 and for n ≥ 4 and not a power of 2,

Rep(C2n+1) = 3 · 5 · · · · · qdlog2ne+1
; if m ≥ n ≥ 3, then Rep(Km−Pn) = pipi+1 where pi

is the smallest prime greater than or equal to m− n+ dn/2e; if m ≥ n ≥ 4, and pi is the
smallest prime greater than or equal to m− n+ dn/2e, then Rep(Km −Cn) = qiqi+1 if n
is even and Rep(Km−Cn) = qiqi+1qi+2 if n is odd; if n ≤ m− 1, then Rep(Km−K1,n) =
psps+1 · · · ps+n−1 where ps is the smallest prime greater than or equal to m− 1; Rep(Km)
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is the smallest prime greater than or equal to m; Rep(nK2) = 2 · 3 · · · · · qdlog2ne+1
; if

n,m ≥ 2, then Rep(nKm) = pipi+1 · · · pi+m−1, where pi is the smallest prime satisfying
pi ≥ m, if and only if there exists a set of n − 1 mutually orthogonal Latin squares of
order m; Rep(mK1) = 2m; and if t ≤ (m− 1)!, then Rep(Km + tK1) = psps+1 · · · ps+m−1

where ps is the smallest prime greater than or equal to m. Narayan [1832] proved that
for r ≥ 3 the maximum value for Rep(G) over all graphs of order r is psps+1 · · · ps+r−2,
where ps is the smallest prime that is greater than or equal to r− 1. Agarwal and Lopez
[60] determined the representation numbers for complete graphs minus a set of stars.

Evans [741] used matrices over the additive group of a finite field to obtain various
bounds for the representation number of graphs of the form nKm. Among them are
Rep(4K3) = 3 · 5 · 7 · 11; Rep(7K5) = 5 · 7 · 11 · 13 · 17 · 19 · 23; and Rep((3q − 1)/2)Kq) ≤
pqpq+1 · · · p(3q−1)/2) where q is a prime power with q ≡ 3 (mod 4), pq is the smallest prime
greater than or equal to q, and the remaining terms are the next consecutive (3q − 3)/2
primes; Rep(2q−2)Kq) ≤ pqpq+1 · · · p(3q−3)/2) where q is a prime power with q ≡ 3 mod 4,
and pq is the smallest prime greater than or equal to q; Rep((2q−2)Kq) ≤ pqpq+1 · · · p2q−3.

In [1831] Narayan asked for the values of Rep(C2k+1) when k ≥ 3 and Rep(G) when
G is a complete multipartite graph or a disjoint union of complete graphs. He also asked
about the behavior of the representation number for random graphs. Yahyaei and Katre
[2841] gave upper and lower bounds for the representation number of a caterpillar and
exact values in some cases.

Akhtar, Evans, and Pritikin [112] characterized the representation number of K1,n

using Euler’s phi function, and conjectured that this representation number is always of
the form 2a or 2ap, where a ≥ 1 and p is a prime. They proved this conjecture for “small”
n and proved that for sufficiently large n, the representation number of K1,n is of the
form 2a, 2ap, or 2apq, where a ≥ 1 and p and q are primes. In [113] they showed that for
sufficiently large n ≥ m, rep(Km,n) = 2a, 3a, 2apb, or 2apq, where a, b ≥ 1 and p and q are
primes; and for sufficiently large order, rep(Kn1,n2,...,nt = pa, paqb, or paqbu, where p, q, u
are primes with p, q < u. Akhtar [114] determined the representation number of graphs
of the form K2 ∪ nK1 (he uses the notation K2 + nK1) and studies their prime decom-
positions. Using relations between representation modulo r and product representations,
he determined representation number of binary trees and gave an improved lower bound
for hypercubes.

7.7 Product and Divisor Cordial Labelings

Sundaram, Ponraj, and Somasundaram [2535] introduced the notion of product cordial
labelings. A product cordial labeling of a graph G with vertex set V is a function f
from V to {0, 1} such that if each edge uv is assigned the label f(u)f(v), the number
of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1,
and the number of edges labeled with 0 and the number of edges labeled with 1 differ by
at most 1. A graph with a product cordial labeling is called a product cordial graph. In
[2535] and [2544] Sundaram, Ponraj, and Somasundaram prove the following graphs are
product cordial: trees; unicyclic graphs of odd order; triangular snakes; dragons; helms;
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Pm ∪ Pn; Cm ∪ Pn; Pm ∪ K1,n; Wm ∪ Fn (Fn is the fan Pn + K1); K1,m ∪ K1,n; Wm ∪
K1,n; Wm ∪ Pn; Wm ∪ Cn; the total graph of Pn (the total graph of Pn has vertex set
V (Pn) ∪E(Pn) with two vertices adjacent whenever they are neighbors in Pn); Cn if and

only if n is odd; C
(t)
n , the one-point union of t copies of Cn, provided t is even or both t and

n are even; K2 +mK1 if and only if m is odd; Cm∪Pn if and only if m+n is odd; Km,n∪Ps
if s > mn; Cn+2∪K1,n; Kn∪Kn,(n−1)/2 when n is odd; Kn∪Kn−1,n/2 when n is even; and
P 2
n if and only if n is odd. They also prove that Km,n (m,n > 2), Pm × Pn (m,n > 2)

and wheels are not product cordial and if a (p, q)-graph is product cordial graph, then
q ≤ (p− 1)(p+ 1)/4 + 1.

In [2237] Seoud and Helmi obtained the following results: Kn is not product cordial
for all n ≥ 4; Cm is product cordial if and only if m is odd; the gear graph Gm is
product cordial if and only if m is odd; all web graphs are product cordial; the corona of
a triangular snake with at least two triangles is product cordial; the C4-snake is product
cordial if and only if the number of 4-cycles is odd; Cm � Kn is product cordial; and
they determine all graphs of order less than 7 that are not product cordial. Seoud and
Helmi define the conjunction G1ˆG2 of graphs G1 and G2 as the graph with vertex set
V (G1)× V (G2) and edge set {(u1, v1)(u2, v2)| u1u2 ∈ E(G1), v1v2 ∈ E(G2)}. They prove:
PmˆPn (m,n ≥ 2) and PmˆSn (m,n ≥ 2) are product cordial. Nada, Diab, Elrokh, and
Sabra [1816] proved that Pn � Cm is product cordial if and only if (n,m) 6= (1, 3) (mod
4). Gao, Lau, and Lee [834] investigated the friendly index and product-cordial index sets
of a family of Möbius-like cubic graphs. Rokad [2132] proved the following graphs are
product cordial: double wheels DWn = 2Cn +K1, path unions of finite number of copies
of double wheels, the graphs obtained by joining two copies of double wheels by a path
of arbitrary length, DWn ⊕K1,n, and DFn ⊕K1,n (DFn = Pn +K2).

Vaidya and Kanani [2639] prove the following graphs are product cordial: the path
union of k copies of Cn except when k is odd and n is even; the graph obtained by joining
two copies of a cycle by path; the path union of an odd number copies of the shadow
of a cycle (see §3.8 for the definition); and the graph obtained by joining two copies of
the shadow of a cycle by a path of arbitrary length. In [2642] Vaidya and Kanani prove
the following graphs are product cordial: the path union of an even number of copies of
Cn(Cn); the graph obtained by joining two copies of Cn(Cn) by a path of arbitrary length;
the path union of any number of copies of the Petersen graph; and the graph obtained by
joining two copies of the Petersen graph by a path of arbitrary length.

Vaidya and Barasara [2608] prove that the following graphs are product cordial: friend-
ship graphs; the middle graph of a path; odd cycles with one chord except when the chord
joins the vertices at a diameter distance apart; and odd cycles with two chords that share
a common vertex and form a triangle with an edge of the cycle and neither chord joins
vertices at a diameter apart. In [2623] Vaidya and Barasara investigated the product
cordial labeling of the line graph of the middle graphs of paths, triangular snakes, armed
crowns, the square of paths, the splitting graphs of paths, and the total graph of paths.

In [2628] Vaidya and Dani prove the following graphs are product cordial:

< S
(1)
n : S

(2)
n : . . . : S

(k)
n > except when k odd and n even; < K

(1)
1,n : K

(2)
1,n : . . . : K

(k)
1,n >; and

< W
(1)
n : W

(2)
n : . . . : W

(k)
n > if and only if k is even or k is odd and n is even with k > n.

the electronic journal of combinatorics (2019), #DS6 272



(See §3.7 for the definitions.)
Vaidya and Barasara [2609] proved the following graphs are product cordial: closed

helms, web graphs, flower graphs, double triangular snakes obtained from the path Pn if
and only if n is odd, and gear graphs obtained from the wheel Wn if and only if n is odd.
Vaidya and Barasara [2610] proved that the graphs obtained by the duplication of an
edge of a cycle, the mutual duplication of pair of edges of a cycle, and mutual duplication
of pair of vertices between two copies of Cn admit product cordial labelings. Moreover,
if G and G′ are the graphs such that their orders or sizes differ at most by 1 then the
new graph obtained by joining G and G′ by a path Pk of arbitrary length admits product
cordial labeling.

Vaidya and Barasara [2611] define the duplication of a vertex v of a graph G by a new
edge u′v′ as the graph G′ obtained from G by adding the edges u′v′, vu′ and vv′ to G.
They define the duplication of an edge uv of a graph G by a new vertex v′ as the graph G′

obtained from G by adding the edges uv′ and vv′ to G. They proved the following graphs
have product cordial labelings: the graph obtained by duplication of an arbitrary vertex
by a new edge in Cn or Pn (n > 2); the graph obtained by duplication of an arbitrary edge
by a new vertex in Cn (n > 3) or Pn (n > 3); and the graph obtained by duplicating all
the vertices by edges in path Pn. They also proved that the graph obtained by duplicating
all the vertices by edges in Cn (n > 3) and the graph obtained by duplicating all the edges
by vertices in Cn are not product cordial.

Recall (see [1976], [1963], [1964], [1965]) a double triangular snake DTn consists of two
triangular snakes that have a common path; a double quadrilateral snake DQn consists of
two quadrilateral snakes that have a common path; an alternate triangular snake A (Tn) is
the graph obtained from a path u1, u2, . . . , un by joining ui and ui+1 (alternatively) to new
vertex vi (that is, every alternate edge of a path is replaced by C3); a double alternate
triangular snake DA (Tn) is obtained from a path u1, u2, . . . , un by joining ui and ui+1

(alternatively) to two new vertices vi and wi; an alternate quadrilateral snake A (Qn) is
obtained from a path u1, u2, . . . , un by joining ui and ui+1 (alternatively) to new vertices
vi and wi respectively and then joining vi and wi (that is, every alternate edge of a path is
replaced by a cycle C4); a double alternate quadrilateral snake DA (Qn) is obtained from
a path u1, u2, . . . , un by joining ui and ui+1 (alternatively) to new vertices vi, xi and wi
and yi respectively and then joining vi and wi and xi and yi.

Vaidya and Barasara [2613] prove that the shell graph Sn is product cordial for odd
n and not product cordial for even n. They also show that D2(Cn); D2(Pn); C2

n; M(Cn);
S ′(Cn); circular ladder CLn; Möbius ladder Mn; step ladder S(Tn) and Hn,n does not
admit product cordial labeling.

Vaidya and Vyas [2696] prove the following graphs are product cordial: alternate
triangular snakes A(Tn) except n ≡ 3 (mod4); alternate quadrilateral snakes A(QSn)
except except n ≡ 2 (mod4); double alternate triangular snakes DA(Tn) and double
alternate quadrilateral snakes DA(QSn). Vaidya and Vyas [2697] prove the following
graphs are product cordial: the splitting graph of bistar S ′(Bn,n); duplicating each edge
by a vertex in bistar Bn,n and duplicating each vertex by an edge in bistar Bn,n. They
also proved that D2(Bn,n) is not product cordial.
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Ghodasara and Vaghasiya [887] prove the following graphs admit product cordial la-
belings: the path union of an odd number of copies of Cn with a chord except for n = 4,
the path union of an odd number of copies of Cn with twin chords except when n = 6, the
path union of Cn (n > 6) with three cords that form two triangles and a cycle of length
n − 3, the graph obtained by joining two copies of the same cycle that has one chord
by a path, the graph obtained by joining two copies of same cycle that has twin chords
by a path, and the graph obtained by joining two copies of Cn (n ≥ 7) with three cords
that form two triangles and a cycle of length n− 3 by a path. Ghodasara and Vaghasiya
[888] prove the following graphs are product cordial: the path union of helms, the path
union of closed helms, the path union of gear graphs Gn for odd n, the graph obtained by
joining two copies of the same helm by a path, the graph obtained by joining two copies
of the same closed helm by a path, and the graph obtained by joining two copies of the
same gear graph by a path.

In [225] Bapat proves the following graphs are product cordial: graphs obtained by
identifying an endpoint of Pn with each vertex of C3, graphs obtained by identifying an
endpoint of Pn with each vertex of C4, graphs obtained by identifying the degree m vertex
of K1,m with each vertex of C3, and graphs obtained by identifying the degree m vertex
of K1,m with each vertex of the shell Cn,n−3) (Cn with n− 3 chords that share a common
endpoint) if and only n is even or n is odd and m is even. In [224] Bapat proves K5�Cn
and kayak paddles are product cordial, the one-point union of n copies of Km is product
cordial if and only if n is even, and graphs obtained by identifying one edge of K5 with
each edge of Pn is product cordial if and only if n is even.

Prajapati and Raval [2028] investigated product cordial labelings of the graphs ob-
tained by duplication of verticies and edges of gears and graphs obtained by the vertex
switching operation of gears. In [2029] Prajapati and Raval proved that the book Bm,n is
a product cordial graph if and only if m and n both are odd and m ≥ 3. They showed
that graphs obtained from books by duplicating or deleting vertices or edges are product
cordial. For graphs with an even number of vertices they proved that the duplication of
each of the vertices of a product cordial graph with an edge is a product cordial graph
and that for graphs that have an odd number of vertices and even number of edges the
duplication of each of the vertices of a product cordial graph with an edge is a product
cordial graph.

Kwong, Lee, and Ng [1456] determine the product-cordial index sets of Möbius ladders
and the graphs obtained by subdividing an edge of K4 and an edge of a Möbius ladder that
is not a rung and joining the two new vertices by an edge. They show that no Möbius
ladder is product cordial. Gao, Sun, Zhang, Meng, and Lau [830] provide sufficient
conditions for a graph to admit (or not admit) a product cordial labeling. Gao, Lau, and
Lee [829] investigated the friendly index and product-cordial index sets of a family of cubic
graphs known as Möbius-like graphs. Prajapati and Raval [2027] proved that windmills,
barbells, the one point union at the apex of copies of a wheel (generalized wheel), and the
one point union of copies of a wheel connected at one common rim vertex of the wheel are
product cordial graphs. They also showed that duplicating all rim edges with a vertex and
duplicating all the vertices with an edge of generalized wheels, and the graphs obtained
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by switching an apex vertex in a generalized wheel are product cordial graphs. Patel,
Prajapati, and Kansagara [1905] proved that graphs obtained from the barbell graph by
duplicating all vertices by edges and duplicating all edges by vertices in the path joining
complete graphs are product cordial and the graphs obtained by switching a vertex of
path in the barbell graph are product cordial.

In [2156] Salehi called the set {|ef (0) − ef (1)| : f is a friendly labeling of G} the
product-cordial set of G. He determines the product-cordial sets for paths, cycles, wheels,
complete graphs, bipartite complete graphs, double stars, and complete graphs with an
edge deleted. Salehi and Mukhin [2165] say a graph G of size q is fully product-cordial
if its product cordial set is {q − 2k : 0 ≤ k ≤ bq/2c}. They proved: Pn (n ≥ 2) is fully
product-cordial; trees with a perfect matching are fully product-cordial; and P2 × Pn is
not fully product-cordial. They determine the product-cordial sets of P2×Pn, Pn×P2m,
and Pn × P2m+1, where m ≥ n. Because the product-cordial set is the multiplicative
version of the friendly index set, Kwong, Lee, and Ng [1454] called it the product-cordial
index set of G. They determined the exact values of the product-cordial index set of Cm
and Cm×Pn and that Pm×Pn has the maximum product cordial-index 2mn−m−n. In
[1455] Kwong, Lee, and Ng determined the friendly index sets and product-cordial index
sets of 2-regular graphs and the graphs obtained by identifying the centers of any number
of wheels. In [2159] z Salehi, Churchman, Hill, and Jordan determine the product-cordial
index sets of certain classes of trees.

In [2340] Shiu and Kwong define the full product-cordial index of G under f as FPCI(G)
= {i∗f (G) | f is a friendly labeling of G}. They provide a relation between the friendly
index and the product-cordial index of a regular graph. As applications, they determine
the full product-cordial index sets of Cm and Cm × Cn, which was asked by Kwong,
Lee, and Ng in [1454]. Shiu [2332] determined the product-cordial index sets of grids
Pm × Pn. Recall the twisted cylinder graph is the permutation graph on 4n (n ≥ 2)
vertices, P (2n;σ), where σ = (1, 2)(3, 4) · · · (2n−1, 2n) (the product of n transpositions).
Shiu and Lee [2352] determined the full friendly index sets and the full product-cordial
index sets of twisted cylinders.

Jeyanthi and Maheswari define a mapping f : V (G) → {0, 1, 2} to be a 3-product
cordial labeling if |vf (i)− vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1 for any i, j ∈ {0, 1, 2}, where
vf (i) denotes the number of vertices labeled with i, ef (i) denotes the number of edges
xy with f(x)f(y) ≡ i (mod 3). A graph with a 3-product cordial labeling is called a
3-product cordial graph. In [1162] they prove that for a (p, q) 3-product cordial graph:

p ≡ 0 (mod 3) implies q ≤ p2−3p+6
3

; p ≡ 1 (mod 3) implies q ≤ p2−2p+7
3

; and p ≡ 2 (mod

3) implies q ≤ p2−p+4
3

. They prove the following graphs are 3-product cordial: paths;

stars; Cn if and only if n ≡ 1, 2 (mod 3); Cn ∪ Pn, Cm � Kn;Pm � Kn for m ≥ 3 and
n ≥ 1;Wn when n ≡ 1 (mod 3); and the graph obtained by joining the centers of two
identical stars to a new vertex. They also prove that Kn is not 3-product cordial for
n ≥ 3 and if G1 is a 3-product cordial graph with 3m vertices and 3n edges and G2 is
any 3-product cordial graph, then G1 ∪ G2 is a 3-product cordial graph. In [1163] they

prove that ladders, < W
(1)
n : W

(2)
n : . . . : W

(k)
n > (see §3.7 for the definition), graphs

obtained by duplicating an arbitrary edge of a wheel, graphs obtained by duplicating an
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arbitrary vertex of a cycle or a wheel are 3-product cordial. They also prove that the
graphs obtained by from the ladders Ln = Pn × P2 (n ≥ 2) by adding the edges uivi+1

for 1 ≤ i ≤ n − 1, where the consecutive vertices of two copies of Pn are u1, u2, . . . , un
and v1, v2, . . . , vn and the edges are uivi. They call these graphs triangular ladders . The
graph B∗n,n is obtained from the bistar Bn,n with V (Bn,n) = {u, v, ui, vi | 1 ≤ i ≤ n}
and E(Bn,n) = {uv, uui, vvi, vui, uvi | 1 ≤ i ≤ n} by joining u with vi and v with ui
for 1 ≤ i ≤ 4. Jeyanthi and Maheswari [1170] proved: the splitting graphs S ′(K1,n)
and S ′(Bn,n) are 3-product cordial graphs; B∗n,n is a 3-product cordial graph if and only
if n ≡ 0, 1 (mod 3); and the shadow graph D2(Bn,n) is a 3-product cordial graph if
and only if n ≡ 0, 1 mod 3. Jeyanthi, Maheswari, and Vijaya Laksmi [1185] prove the
following: graphs obtained by switching an apex vertex in a closed helm are 3-product
cordial; Wn are 3-product cordial if and only if n ≡ 2 (mod 3); double fans are 3-product
cordial if and only if n ≡ 0 (mod 3); books are 3-product cordial; and permutation graphs
P (K2 +mK1;T ) are 3-product cordial if and only if m ≡ 2 (mod 3). In [1189] Jeyanthi,
Maheswari, and Vijayalaksmi investigated the 3-product cordial behavior of alternate
triangular snakes, double alternate triangular snakes, and triangular snakes.

Sundaram and Somasundaram [2539] also have introduced the notion of total product
cordial labelings. A total product cordial labeling of a graph G with vertex set V is a
function f from V to {0, 1} such that if each edge uv is assigned the label f(u)f(v) the
number of vertices and edges labeled with 0 and the number of vertices and edges labeled
with 1 differ by at most 1. A graph with a total product cordial labeling is called a
total product cordial graph. In [2539] and [2537] Sundaram, Ponraj, and Somasundaram
prove the following graphs are total product cordial: every product cordial graph of even
order or odd order and even size; trees; all cycles except C4; Kn,2n−1; Cn with m edges
appended at each vertex; fans; double fans; wheels; helms; Cn × P2; K2,n if and only if
n ≡ 2 (mod 4); Pm×Pn if and only if (m,n) 6= (2, 2); Cn + 2K1 if and only if n is even or
n ≡ 1 (mod 3); Kn× 2K2 if n is odd, or n ≡ 0 or 2 (mod 6), or n ≡ 2 (mod 8). Y.-L. Lai,
the reviewer for MathSciNet [1458], called attention to some errors in [2537]. Pedrano and
Rulete [1912] determined the total product cordial labeling of Pm×Cn, Cm×Cn and the
generalized Petersen graph P (m,n). In [1913] Pedrano and Rulete determined the total
product cordial labeling of Pm�Cn, Pm�Pn, Cm�Pn, Pm�Fn, Pm�Wn, and Pm�Kn.
Villar [2719] proved Pn � Cm (n ≥ 2,m ≥ 3) is product cordial, Pn � Pm (n,m ≥ 2) is
product cordial except when n and m are both even, and P2n+1 � Km (n ≥ 1,m ≥ 4)
is not product cordial. Gao, Sun, Zhang, Meng, and Lau [830] proved that Pm

n+1 is total
product cordial. Ramanjaneyulu, Venkaiah, and Kothapalli [2081] give total product
cordial labeling for a family of planar graphs for which each face is a 4-cycle.

Vaidya and Vihol [2679] prove the following graphs have total product cordial labelings:
a split graph; the total graph of Cn; the star of Cn (recall that the star of a graph G is
the graph obtained from G by replacing each vertex of star K1,n by a graph G); the
friendship graph Fn; the one point union of k copies of a cycle; and the graph obtained
by the switching of an arbitrary vertex in Cn.

Sundaram, Ponraj, and Somasundaram [2542] introduced the notion of EP-cordial
labeling (extended product cordial) labeling of a graph G as a function f from the
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verticies of a graph to {−1, 0, 1} such that if each edge uv is assigned the label f(u)f(v),
then |vf (i) − vf (j)| ≤ 1 and |ef (i) − ef (j)| ≤ 1 where i, j ∈ {−1, 0, 1} and vf (k) and
ef (k) denote the number of vertices and edges respectively labeled with k. An EP-
cordial graph is one that admits an EP-cordial labeling. In [2542] Sundaram, Ponraj, and
Somasundaram prove the following: every graph is an induced subgraph of an EP-cordial
graph, Kn is EP-cordial if and only if n ≤ 3; Cn is EP-cordial if and only if n ≡ 1, 2 (mod
3), Wn is EP-cordial if and only if n ≡ 1 (mod 3); and caterpillars are EP-cordial. They
prove that all K2,n, paths, stars and the graphs obtained by subdividing each edge of of
a star exactly once are EP-cordial. They also prove that if a (p, q) graph is EP-cordial,
then q ≤ 1 + p/3 + p2/3. They conjecture that every tree is EP-cordial.

Ponraj, Sivakumar, and Sundaram [1998] introduced the notion of k-product cordial
labeling of graphs. Let f be a map from V (G) to {0, 1, 2, . . . , k − 1}, where 2 ≤ k ≤ |V |.
For each edge uv assign the label f(u)f(v) (mod k). f is called a k-product cordial
labeling if |vf (i)−vf (j)| ≤ 1 and |ef (i)−ef (j)| ≤ 1, i, j ∈ {0, 1, 2, . . . , k−1}, where vf (x)
and ef (x) denote the number of vertices and edges labeled with x. A graph with a k-
product cordial labeling is called a k-product cordial graph. Observe that 2-product cordial
labeling is simply a product cordial labeling and 3-product cordial labeling is an EP-cordial
labeling. In [1998] and [1999] Ponraj et al. prove the following are 4-product cordial: Pn if
and only n ≤ 11, Cn if and only if n = 5, 6, 7, 8, 9, or 10, Kn if and only if n ≤ 2, Pn�K1,
Pn� 2K1, K2,n if and only if n ≡ 0, 3 (mod 4), Wn if and only if n = 5 or 9, Kn + 2K2 iff
n ≤ 2, and the subdivision graph of K1,n. Sivakumar [2414] proved the following coronas
are 4-total product cordial: Pn�K1, Pn�2K1, S(Pn�K1), S(Pn�2K1), S(Cn�K1) and
S(Cn � 2K1). Jeyanthi, Maheswari, and Vijayalakshmi [1184] investigated the 3-product
cordial behavior of alternate triangular snakes, double alternate triangular snakes, and
triangular snake graphs. In [1186] they establish that vertex switching graphs of wheels,
gears, and degree splitting of bistars are 3-product cordial graphs.

Let f be a map from V (G) to {0, 1, 2, . . . , k − 1} where 2 ≤ k ≤ |V |. For each edge
uv assign the label f(u)f(v) (mod k). Ponraj, Sivakumar, and Sundaram [2000] define
f to be a k-total product cordial labeling if |f(i) − f(j)| ≤ 1, i, j ∈ {0, 1, 2, . . . , k − 1},
where f(x) denote the number of vertices and edges labeled with x. A graph with a k-
total product cordial labeling is called a k-total product cordial graph . A 2-total product
cordial labeling is simply a total product cordial labeling. In [2000], [2001], [2002], [2003]
and [2004], Ponraj et al. proved the following graphs are 3-total product cordial: Pn, Cn
if and only if n 6= 3 or 6, K1,n if and only if n ≡ 0, 2 (mod 3), Pn � K1, Pn � 2K1,
K2 + mK1 if and only if m ≡ 2 (mod 3), helms, wheels, Cn � 2K1, Cn � K2, dragons
Cm@Pn (obtained by identitying an endpoint of Pn with a vertex of Cm), Cn�K1, bistars
Bm,n, and the subdivision graphs of K1,n, Cn �K1, K2,n, Pn �K1, Pn � 2K1, Cn �K2,
wheels and helms. They also proved that every graph is a subgraph of a connected k-total
product cordial graph, Bm,n is (n + 2)-total product cordial, and Km,n is (n + 2)-total
product cordial. Sharon Philomena and Thirusangu [1928] proved that the flower graph
is 3-total product cordial. Ahmada, Bača, Naseemc, and Semaničová-Feňovč́ıková [82]
described a method for obtaining a 3-total edge product cordial labeling of the hexagonal
grid from a smaller hexagonal grid. In [66] Ahmad proved that the generalized Petersen
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graphs P (n,m) are 3-total edge product cordial. In [213] Azaizeh, Hasni, Lau, and Ahmad
proved that complete graphs, bipartite graphs and generalised friendship graphs have 3-
total edge product cordial labelings. Ahmad, Ali, Bilal, Zafar, and Zahid [69] prove
that webs, helms, gears, and Ln � 2K1 (Ln is the laddar with 2n vertices) have 3-total
edge product cordial labelings. Ivančo [1082] characterized graphs admitting a 2-total
edge product cordial labeling and proved that dense graphs and regular graphs of degree
2(k − 1) admit a k-total edge product cordial labeling. Javed and Jamil [1105] proved
that the rhombic grid graphs Rm

1 , Rm
2 and Rm

3 are 3-total edge product cordial for m ≥ 1
and that the rhombic grid graph Rm

n is 3-total edge product cordial for m,n ≥ 1.
In [1444] Kumari and Mehra call a vertex labeling f of a graph G with 0 and 1 with

the induced edge labeling f given by f(uv) = f(u)f(v) a vertex product cordial labeling if
the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by
at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1
differ by at most 1. They prove the following graphs have vertex product cordial labelings:
P 2
n if and only if n is odd, the path unions of k copies of P 2

n , Pn �K1, helms, gears Gn

for odd n, graphs obtained from Cn after switching of a vertex, Cn �K1, Cn � K̄m, and
certain banana trees.

For a graph G Sundaram, Ponraj, and Somasundaram [2543] defined the index of
product cordiality, ip(G), of G as the minimum of {|ef (0) − ef (1)|} taken over all the
0-1 binary labelings f of G with |vf (i) − vf (j)| ≤ 1 and f(uv) = f(u)f(v), where ef (k)
and vf (k) denote the number of edges and the number of vertices labeled with k. They
established that ip(Kn) = bn/2c2; ip(Cn) = 2 if n is even; ip(Wn) = 2 or 4 according as n
is even or odd; ip(K2,n) = 4 or 2 according as n is even or odd; ip(K2 + nK1) = 3 if n is
even; ip(G× P2) ≤ 2ip(G); ip(G1 ∪G2) ≤ ip(G1) + ip(G2) + 2 min{∆(G1),∆(G2)} where
G1 and G2 are graphs of odd order; and ip(G1�G2) ≤ ip(G1) + ip(G2) + 2δ(G2) + 3 where
G1 and G2 have odd order.

In [2581] Tenguria and Verma called a mapping f from V (G) to {0, 1, 2} such that each
edge uv is labeled (f(u)+f(v)) mod 3 a 3-total super sum cordial labeling if |f(i)−f(j)| ≤ 1
for i, j ∈ {0, 1, 2}, where f(x) denotes the total number of vertices and edges labeled
with x and for each edge uv, |f(u) − f(v)| ≤ 1. A graph that has a 3-total super sum
cordial labeling is called 3-total super sum cordial graph. They proved Pm∪Pn, Cm∪Cn,
and K1,m ∪ K1,n are 3-total super sum cordial graphs. (These results also appeared in
[2582] and [2583]).

Vaidya and Vyas [2687] define the tensor product G1(Tp)G2 of graphs G1 and G2 as
the graph with vertex set V (G1)× V (G2) and edge set
{(u1, v1)(u2, v2)| u1u2 ∈ E(G1), v1v2 ∈ V (G2)}. They proved the following graphs are
product cordial: Pm(Tp)Pn; C2m(Tp)P2n; C2m(Tp)C2n; the graph obtained by joining two
components of Pm(Tp)Pn an by arbitrary path; the graph obtained by joining two com-
ponents of C2m(Tp)P2n by an arbitrary path; and and the graph obtained by joining two
components of C2m(Tp)C2n by an arbitrary path.

In [1938] Ponraj introduced the notion of an (α1, α2, . . . , αk)-cordial labeling of a graph.
Let S = {α1, α2, . . . , αk} be a finite set of distinct integers and f be a function from a
vertex set V (G) to S. For each edge uv of G assign the label f(u)f(v). He calls f an
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(α1, α2, . . . , αk)-cordial labeling of G if |vf (αi)− vf (αj)| ≤ 1 for all i, j ∈ {1, 2, . . . , k} and
|ef (αiαj)− ef (αrαs)| ≤ 1 for all i, j, r, s ∈ {1, 2, . . . , k}, where vf (t) and ef (t) denote the
number of vertices labeled with t and the number of edges labeled with t, respectively. A
graph that admits an (α1, α2, . . . , αk)-cordial labeling is called an (α1, α2, . . . , αk)-cordial
graph Note that an (−α, α)-cordial graph is simply a cordial graph and a (0, α)-cordial
graph is a product cordial graph. Ponraj proved that K1,n is (α1, α2, . . . , αk)-cordial if
and only if n ≤ k and for α1 6= 0, α2 6= 0, α1 + α2 6= 0 proved the following: Kn is
(α1, α2)-cordial if and only if n ≤ 2; Pn is (α1, α2)-cordial; Cn is (α1, α2)-cordial if and
only if n > 3; Km,n (m,n > 2) is not (α1, α2)-cordial; the bistar Bn,n+1 is (α1, α2)-cordial;
Bn+2,n is (α1, α2)-cordial if and only if n ≡ 1, 2 (mod 3); Bn+3,n is (α1, α2)-cordial if and
only if n ≡ 0, 2 (mod 3); and Bn+r,n, r > 3 is not (α1, α2)-cordial. He also proved that if
G is an (α1, α2)-cordial graph with p vertices and q edges, then q ≤ 3p2/8− p/2 + 9/8. In
[1938] Ponraj proved that combs Pn�K1 are (α1, α2)-cordial; coronas Cn�K1 are (α1, α2)-

cordial for n ≡ 0, 2, 4, 5 (mod 6); C
(t)
3 is not (α1, α2)-cordial; Wn is not (α1, α2)-cordial;

and Kn + 2K2 is (α1, α2)-cordial if and only if n = 2.
In [2703] Varatharajan, Navanaeethakrishnan Nagarajan define a divisor cordial label-

ing of a graph G with vertex set V as a bijection f from V to {1, 2, . . . , |V |} such that
an edge uv is assigned the label 1 if one f(u) or f(v) divides the other and 0 otherwise,
then the number of edges labeled with 0 and the number of edges labeled with 1 differ by
at most 1. If graph that has a divisor cordial labeling, it is called a divisor cordial graph.
They proved the standard graphs such as paths, cycles, wheels, stars and some complete
bipartite graphs are divisor cordial. They also proved that complete graphs are not divisor
cordial. In [2704] they proved dragons, coronas, wheels, and complete binary trees are
divisor cordial. For t copies S1, S2, . . . , St of an n-star K1,n they define 〈S1, S2, . . . , St〉 as
the graph obtained by starting with S1, S2, . . . , St and joining the central vertices of Sk−1

and Sk to a new vertex xk−1. They prove that 〈S1, S2〉 and 〈S1, S2, S3〉 are divisor cordial.
Vaidya and Shah [2668] proved that the splitting graphs of stars and bistars are divisor

cordial and the shadow graphs and the squares of bistars are divisor cordial. In [2670]
they proved that helms, flower graphs, and gears are divisor cordial graphs. They also
proved that graphs obtained by switching of a vertex in a cycle, switching of a rim vertex
in a wheel, and switching of an apex vertex in a helm admit divisor cordial labelings. Raj
and Valli [2062] proved the following graphs divisor cordial: the duplication of a vertex
of a cycle; graphs obtained by joining two wheels of the same size by a path of length
at least 3; Gv �K1, where Gv is a graph obtained by switching any vertex of a cycle of
size at least 4; graphs obtained by joining the apex vertices of two shells of the same size
to an isolated vertex; graphs obtained by joining the centers of two wheels of the same
size to an isolated vertex; and a class of graphs obtained by removing certain edges from
complete graphs. Bosmia and Kanani [523] proved that the graphs of the form G �K1

where G any of the following admits a divisor cordial labeling: K1,n, K2,n, K3,n, a wheel,
a helm, a flower, a fan, a double fan, and a barycentric subdivision of a star. Bosmia
and Kanani [524] prove that the following graphs admit divisor cordial labelings: bistars,
the splitting graph of bistars, the degree splitting graph of bistars, the shadow graph of
bistars, the restricted square graph of bistars, the barycentric subdivision of bistars, and
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the corona product of a bistar with K1. Thirusangu and Madhu [2589] proved that the
extended duplicate graph of star and bistar graphs are divisor cordial graphs.

In [1777] Sugumaran and Mohan proved that the following graphs are divisor cordial
graphs: degree splitting graph of K1,n,n), the splitting graph of the graph obtained from
two isolated vertices are joined by n paths of length 2, the W− graph (the graph obtained
from two copies of K1,n and identifying the last pendent vertex of the first copy with the
first pendent edge of the secnd copy), B(n)�um K1, where B(n) = 2Pn +K1 (bow graph,
the Herschel graph Hs and switching of an apex vertex in the Herschel graph (see [491,
p. 53]). In [2508] Sugumaran and Suresh proved that the following graphs are divisor
cordial graphs: fans, Petersen graphs, Cm �K1, friendship graphs Fn, and the switching
of a end vertex in path Pn, switching of any one of the inner vertices of Petersen graph
Pe.

Motivated by the concept of divisor cordial labeling, Lourdusamy and Patrick [1649]
introduced a new concept of divisor cordial labeling called sum divisor cordial labeling. Let
G = (V (G), E(G)) be a simple graph and f be a bijection from V (G) to {1, 2, . . . , |V (G)|}.
For each edge uv, assign the label 1 if 2 divides f(u)+f(v) and the label 0 otherwise. The
function f is called a sum divisor cordial labeling if the number of edges labeled with 0
and the number of edges labeled with 1 differ by at most 1. A graph which admits a sum
divisor cordial labeling is called a {it sum divisor cordial . They prove that paths, combs,
stars, complete bipartite, K2 +mK1, bistars, jewels, crowns, flowers, gears, subdivisions of
stars, the graph obtained from K1,3 by attaching the root of K1,n at each pendent vertex
of K1,3, and the square Bn,n are sum divisor cordial graphs.

In [2520], [2521], [2522], and [2523] Sugumaran and Rajesh proved that the following
graphs are sum divisor cordial: swastiks, path unions of finite number of copies of swastiks,
cycles of k copies of swastiks, when k is odd, jelly fish, Petersen graphs, theta graphs,
the fusion of any two vertices in the cycle of swastiks, duplication of any vertex in the
cycle of swastiks, the switchings of a central vertex in swastiks, the path unions of two
copies of a swastik, the star graph of the theta graphs, the Herschel graph, the fusion of
any two adjacent vertices of degree 3 in Herschel graphs, the duplication of any vertex
of degree 3 in the Herschel graph, the switching of central vertex in Herschel graph, the
path union of two copies of the Herschel graph, H-graph Hn, when n is odd, C3@K1,n

(obtained by identifying the center of K1,n with a vertex of C3), < F 1
n4F 2

n > (the graph
obtained by joining the apex vertices of F 1

n and F 2
n by an edge and by joining the two

apex vertices to a new vertex v′) and open star of swastik graphs S(t.Swn), when t is odd.
In [2524], [2525] and [2526] Sugumaran and Rajesh proved that the following graphs are
sum divisor cordial graphs: H-graph Hn, when n is even, duplication of all edges of the
H-graph Hn, when n is even, Hn �K1, P (r.Hn), C(r.Hn), plus graphs, umbrella graphs,
path unions of odd cycles, kites, complete binary trees, drums graph (two copies of Cn
that share exactly one vertex v and two copies of Pn that have an end point at v, twigs
( graphs obtained from a aath by attaching exactly two pendent edges to each internal
vertices of the path), fire crackers of the form Pn � Sn, where n is even, and the double
arrow graph DAnm, where |m − n| ≤ 1 and n is even (obtained from Pm × Pn by adding
two new vertices u and v such that each of the top row vertices of Pm×Pn are connected

the electronic journal of combinatorics (2019), #DS6 280



to u by an edge and the bottom row vertices of Pm × Pn are connected to v by an edge).
Sugumaran and Rajesh [2507] proved that the following graphs are sum divisor cordial:
Pn + Pn (n is odd), Pn@K1,m (obtained by identifying an endpoint of Pn with the center
of K1,n), Cn@K1,m (n is odd), the graph obtained from W2n by attaching the apex vertex
of a copy of K1,m to each rim vertex, the graph obtained by joining the central vertices of
two copies of K1,n,n by an edge and to a new vertex, the graph obtained by starting with
Cn and, for each edge of Cn, adjoining a copy of Cn that shares an edge with the starting
copy (the flower graph FLn). In [49] Adalja and Ghodasara provide sum divisor cordial
labelings for the graphs resulting from the duplication of graph elements in stars, cycles,
and paths.

Murugesan [1806] introduced a square divisor cordial labeling. Let G be a simple
graph and f :→ {1, 2, . . . , |V (G)|} a bijection. For each edge uv, assign the label 1 if
either (f(u))2 divides f(v) or (f(v))2 divides f(u) and the label 0 otherwise. Call f a
square divisor cordial labeling if |ef (0)− ef (1)| ≤ 1. A graph with a square divisor cordial
labeling is called a square divisor cordial graph. Murugesan proved that the following are
square divisor cordial graphs: Pn (n ≤ 12), Cn (3 ≤ n ≤ 11), wheels, some stars, some
complete bipartite graphs, and some complete graphs. Vaidya and Shah [2674] proved
that the following are square divisor cordial graphs: flowers, bistars, shadow graphs of
stars, splitting graphs of stars and bistars, degree splitting graphs of paths and bistars.

Kanani and Bosmia [1272] define a cube divisor cordial labeling f of a simple graph G
as a bijection from V (G) to {1, 2, . . . , |V (G)|} such that, when each edge uv is assigned
the label 1 if (f(u))3 divides f(v) or (f(v))3 divides f(u) and the label 0 otherwise, it
holds that |ef (0)−ef (1)| ≤ 1. A graph with a cube divisor cordial labeling is called a cube
divisor cordial graph. They proved that the following graphs admit cube divisor cordial
labelings: Kn if and only if n = 1, 2, 3; K1,n if and only if n = 1, 2, 3; K2,n for all n; K3,n

if and only if n = 1, 2; bistars Bn,n for all n ; and the graph obtained by joining leaves of
one star of a bistar with the center of the opposite star of the bistar. Kanani and Bosmia
[1272] prove: the edge deleted graph of a cube divisor cordial graph is also a cube divisor
cordial graph; Pn is a cube divisor cordial graph if and only if n = 1, 2, 3, 4, 5, 6, 8; Cn is a
cube divisor cordial graph if and only if n = 3, 4, 5; and wheels, flowers and fans are cube
divisor cordial,

The Lucas sequence of numbers is a linear recurrence relation satisfying the conditions:
l1 = 1, l2 = 3 and ln = ln−1 + ln−2, n ≥ 3. Let G = (V,E) be a simple graph and
f : V (G)→ {l1, l2, . . . , l|V (G)|} be a bijection such that each edge uv, assign the label 1 if
either f(u) divides f(v) or f(v) divides f(u) and label 0 otherwise. In [2528] Sugumaran
and Rajesh call such an f a Lucas divisor cordial labeling if |ef (0)− ef (1)| ≤ 1. A graph
with a Lucas divisor cordial labeling is called a Lucas divisor cordial graph. In [2528]
Sugumaran and Rajesh proved that the following graphs are Lucas divisor cordial graphs:
bistars, jelly fish, square graphs of bistars, switching of a vertex in cycles, and switching
of a pendent vertex in paths.

A variation of divisor cordial labeling called vertex odd divisor cordial labeling was
introduced by Muthaiyan and Pugalenthi (see [1807]) as follows. Let G be a graph with
p vertices and a bijection f from V (G) to {1, 3, 5, . . . , 2p− 1} such that if each edge uv is
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assigned the label 1 if f(u) divides f(v) or f(v) divides f(u), and the label 0 otherwise.
The function f is called a vertex odd divisor cordial labeling if |ef (0) − ef (1)| ≤ 1. A
graph with vertex odd divisor cordial labeling is called a vertex odd divisor cordial graph.
Muthaiyan and Pugalenthi (see [1807]) proved paths, cycles, K2,n, K1,n ∪ K1,m, helms,

flowers, < K
(1)
1,n, K

(2)
1,n >, the switching of the apex vertex in helms, and the splitting graph

of stars are vertex odd divisor cordial graphs under some conditions. In [1807] Muthaiyan
and Pugalenthi proved the following graphs have vertex odd divisor cordial labelings:
wheels, the switching of a pendent vertex in paths and cycles, bistars Bn,n, the subdivision

graph of K1,n, B
2
n,n, DS(Bn,n), the splitting graph of Bn,n, and < K

(1)
1,n, K

(2)
1,n, K

(3)
1,n >.

Let G1 and G2 be two copies of any graph G that has an apex vertex. The graph
obtained by joining the apex vertices of G1 and G2 by an edge and bThe graph obtained
by joining the apex vertices of G1 and G2 by an edge and by joining the two apex vertices
to a new vertex v′, is denoted G14G2.y joining the two apex vertices to a new vertex v′,
is denoted G14G2. For any vertex u of Km,n the graph obtained by joining u to a new
pendent vertex is denoted by Km,n�u(K1). In [2512] Sugumaran and Suresh proved that
the following graphs are vertex odd divisor cordial graphs: the shadow graph of K1,n,
K2,n � u(K1), K1,n4K1,n, the subdivision of the edge between the apex vertices of Bn,n,
and the graph K1,n ∗ Pn+2 (the graph obtained by identifying an end vertex of Pn+2 with
the apex vertex of K1,n). In [2511] they showed that the graphs Fn4Fn, K1,n4K1,n4K1,n,
K1,n4K1,n4K1,n4K1,n, theta graphs, and switching of a vertex in a Petersen graph are
vertex odd divisor cordial graphs. In [2513] they proved that gears, switching of an apex
vertex in S(K1,n), P2 +mK1, C(n, n− 3), and C(n, n− 4) are vertex odd divisor cordial
graphs. In [2509] they showed that the globe Gl(n), jewels, G∗Wn (appending the central
vertex of wheel Wn with any one of the vertices of G), G ∗ C(n, n − 3), and wheels are
vertex odd divisor cordial graphs.

Let f : V (G) → {1, 2, . . . , |V (G)|} be an injective map. For each edge uv assign the
label r where r is the remainder when f(u) is divided by f(v) or f(v) is divided by f(u)
according as f(u) ≥ f(v) or f(v) ≥ f(u). The function f is called a remainder cordial
labeling of G if |ef (0)− ef (1)| ≤ 1 where ef (0) and ef (1) respectively denote the number
of edges labelled with even integers and number of edges labelled with odd integers. A
graph G with admits a remainder cordial labeling is called a remainder cordial graph. In
[1953] investigated the remainder cordial behavior of S(K1,n), S(Bn,n), S(Wn) and union
of some star related graphs.

7.8 Edge Product Cordial Labelings

Vaidya and Barasara [2614] introduced the concept of edge product cordial labeling as
edge analogue of product cordial labeling. An edge product cordial labeling of graph G
is an edge labeling function f : E(G) → {0, 1} that induces a vertex labeling function
f ∗ : V (G) → {0, 1} defined as f ∗(u) =

∏
{f(uv) | uv ∈ E(G)} such that the number of

edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 and the
number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at
most 1. A graph with an edge product cordial labeling is called an edge product cordial

the electronic journal of combinatorics (2019), #DS6 282



graph.
In [2614], [2616], [2617], [2618], and [2621] Vaidya and Barasara proved the following

graphs are edge product cordial: Cn for n odd; trees with order greater than 2; unicyclic
graphs of odd order; C

(t)
n , the one point union of t copies of Cn for t even or t and n both

odd; Cn �K1; armed crowns Cm � Pn ; helms; closed helms; webs; flowers; gears; shells
Sn for odd n; tadpoles Cn@Pm for m + n even or m + n odd and m > n while not edge
product cordial for m+n odd and m < n; triangular snakes; for odd n, double triangular
snakes DTn, quadrilateral snakes Qn and double quadrilateral snakes DQn; P 2

n for odd
n; M(Pn), T (Pn); S ′(Pn) for even n; the tensor product of Pm and Pn; and the tensor
product of Cn and Cm if m and n are even. In [2622] Vaidya and Barasara investigate
product and edge product cordial labelings of the degree splitting graphs of paths, shells,
bistars, and gear graphs.

Vaidya and Barasara proved the following graphs are not edge product cordial: Cn for
n even; Kn for n ≥ 4; Km,n for m,n ≥ 2; wheels; the one point union of t copies of Cn
for t odd and n even; shells Sn for even n; tadpoles Cn@Pm for m + n odd and m < n;
for n even double triangular snake DTn, quadrilateral snake Qn and double quadrilateral
snake DQn; double fans; C2

n for n > 3; P 2
n for even n; D2(Cn), D2(Pn); M(Cn); T (Cn);

S ′(Cn); S ′(Pn) for odd n; Pm × Pn and Cm × Cn; the tensor product of Cn and Cm if m
or n odd; and Pn[P2] and Cn[P2].

Prajapati and Shah [2031] proved the following graphs are edge product cordial: graphs
obtained from a crown by duplication of a vertex, duplication of a vertex by an edge, or
duplication of an edge by a vertex; graphs obtained from a gear graph by duplication of
each of the vertices of degree three by an edge; and the graph obtained from a helm by
duplication of each of the pendent vertices by a new vertex. In [2025] Prajapati and Patel
provided results about the existence of edge product cordial labelings closed webs, lotus
inside a circle, and sunflower graphs.

Vaidya and Barasara [2619] introduced the concept of a total edge product cordial
labeling as edge analogue of total product cordial labeling. An total edge product cordial
labeling of graph G is an edge labeling function f : E(G)→ {0, 1} that induces a vertex
labeling function f ∗ : V (G)→ {0, 1} defined as f ∗(u) =

∏
{f(uv) | uv ∈ E(G)} such that

the number of edges and vertices labeled with 0 and the number of edges and vertices
labeled with 1 differ by at most 1. A graph with total edge product cordial labeling is
called a total edge product cordial graph.

In [2619] and [2620] Vaidya and Barasara proved the following graphs are total edge
product cordial: Cn for n 6= 4; Kn for n > 2; Wn; Km,n except K1,1 and K2,2; gears;

C
(t)
n , the one point union of t copies of Cn; fans; double fans; C2

n; M(Cn); D2(Cn); T (Cn);
S ′(Cn); P 2

n for n > 2; M(Cn); D2(Cn) for n > 2; T (Cn); S ′(Cn). Moreover, they prove
that every edge product cordial graph of either even order or even size admits total edge
product cordial labeling. Bača, Irfan, Javad, and Semaničová-Feňočová [275] investigated
the existence of total edge product cordial labeling of toroidal fullerenes and for Klein-
bottle fullerenes. Prajapati and Patel [2026] proved that the one point union of t copies
of a wheel with a rim vertex in common is edge product cordial if and only is t is even;
all pentagonal snakes (obtained from the path by replacing every edge of a path by C5)
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are edge product cordial; and a double pentagonal snakes (two pentangonal snakes that
have a common path) is edge product cordial if and only is t is odd.

7.9 Difference Cordial Labelings

Ponraj, Sathish Narayanan, and Kala [1975] introduced the notion of difference cordial
labelings. A difference cordial labeling of a graph G is an injective function f from V (G)
to {1, . . . , |V (G)|} such that if each edge uv is assigned the label |f(u)−f(v)|, the number
of edges labeled with 1 and the number of edges not labeled with 1 differ by at most 1.
A graph with a difference cordial labeling is called a difference cordial graph.

The following definitions appear in [1976], [1963], [1964], and [1965]. A double trian-
gular snake DTn consists of two triangular snakes that have a common path; a double
quadrilateral snake DQn consists of two quadrilateral snakes that have a common path;
an alternate triangular snake A (Tn) is the graph obtained from a path u1, u2, . . . , un by
joining ui and ui+1 (alternatively) to new vertex vi (that is, every alternate edge of a
path is replaced by C3); a double alternate triangular snake DA (Tn) is obtained from a
path u1, u2, . . . , un by joining ui and ui+1 (alternatively) to two new vertices vi and wi;
an alternate quadrilateral snake A (Qn) is obtained from a path u1, u2, . . . , un by joining
ui and ui+1 (alternatively) to new vertices vi and wi respectively and then joining vi and
wi (that is, every alternate edge of a path is replaced by a cycle C4); a double alternate
quadrilateral snake DA (Qn) is obtained from a path u1, u2, . . . , un by joining ui and ui+1

(alternatively) to new vertices vi, xi and wi and yi respectively and then joining vi and
wi and xi and yi.

In [1964] and [1965] Ponraj and Sathish Narayanan define the irregular triangular snake
ITn as the graph obtained from the path Pn : u1, u2, . . . , un with vertex set V (ITn) =
V (Pn) ∪ {vi : 1 ≤ i ≤ n ≤ 2} and the edge set E(ITn) = E(Pn) ∪ {uivi, viui+2 :
1 ≤ i ≤ n − 2}. The irregular quadrilateral snake IQn is obtained from the path Pn :
u1, u2, . . . , un with vertex set V (IQn) = V (Pn) ∪ {vi, wi : 1 ≤ i ≤ n− 2} and edge set
E (IQn) = E (Pn)∪{uivi, wiui+2, viwi : 1 ≤ i ≤ n− 2}. They proved the following graphs
are difference cordial: triangular snakes Tn, quadrilateral snakes, alternate triangular
snakes, alternate quadrilateral snakes, irregular triangular snakes, irregular quadrilateral
snakes, double triangular snakes DTn if and only if n ≤ 6, double quadrilateral snakes,
double alternate triangular snakes DA (Tn), and double alternate quadrilateral snakes.

In [1975], [1962], [1976], and [1963] Ponraj, Sathish Narayanan, and Kala proved the
following graphs have difference cordial labelings: paths; cycles; wheels; fans; gears; helms;
K1,n if and only if n ≤ 5; Kn if and only if n ≤ 4; K2,n if and only if n ≤ 4; K3,n if and
only if n ≤ 4; bistar B1,n if and only if n ≤ 5; B2,n if and only if n ≤ 6; B3,n if and only if
n ≤ 5; DTn�K1; DTn�2K1; DTn�K2; DQn�K1; DQn�2K1; DQn�K2; DA (Tn)�K1;
DA (Tn)� 2K1; DA (Tn)�K2; DA (Qn)�K1; DA (Qn)� 2K1; and DA (Qn)�K2. They
also proved: if G is a (p, q) difference cordial graph, then q ≤ 2p − 1; if G is a r-regular
graph with r ≥ 4, then G is not difference cordial; if m ≥ 4 and n ≥ 4, then Km,n is not
difference cordial; if m + n > 8 then the bistar Bm,n is not difference cordial; and every
graph is a subgraph of a connected difference cordial graph. If G is a book, sunflower,
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lotus inside a circle, or square of a path, they prove that G�mK1 (m = 1, 2) and G�K2

is difference cordial.
In [1977], [1979], and [1978] Ponraj, Sathish Narayanan, and Kala proved that the

following graphs are difference cordial: crowns Cn �K1; combs Pn �K1; Pn � Cm; Cn �
Cm; Wn � K2; Wn � 2K1; Gn � K1 where Gn is the gear graph; Gn � 2K1; Gn � K2;
(Cn × P2)�K1; (Cn × P2)�2K1; (Cn × P2)�K2; Ln�K1; Ln�2K1; and Ln�K2. Ponraj,
Sathish Narayanan and Kala proved that the following subdivision graphs are difference
cordial: S (Tn); S (Qn); S (DTn); S (DQn); S (A (Tn)); S (DA (Tn)); S (AQn); S (DAQn);
S (K1,n); S (K2,n); S (Wn); S (Pn �K1); S (Pn � 2K1); S (LCn); S (P 2

n); S (K2 +mK1);
subdivision graphs of sunflowers S (SFn); subdivisions graphs flowers S (Fln); S (Bm)
(Bm is a book with m pages); S (Cn × P2); S (Bm,n); subdivisions n-cubes; S (J (m,n));
S (W (t, n)); subdivisions of Young tableaus S (Yn,n); and if S (G) is difference cordial,
then S (G�mK1) is difference cordial. For graphs G that are a tree, a unicycle, or when
|E(G)| = |V (G)|+ 1, they proved that G� Pn and G�mK1 (m = 1, 2, 3) are difference
cordial.

In [2020] Prajapati and Gajjar define a holiday star as follows. Let v1, v2, . . . , v4n−1, v4n

be the consecutive 4n vertices of C4n (n ≥ 3). Let u0 be the central vertex and
u1, u2, . . . , u2n−1, u2n be end vertices of K1,2n. Join u0 to v4i−3 by an edge; for each i
from 1 to n. In [2021] they define a Kusadama flower graph as follows. Let v0 be the apex
vertex and v1, v2, v3, . . . , v2n−1, v2n be 2n consecutive rim vertices of the wheel W2n (n ≥ 3).
Subdivide the spoke edge v0v2i−1 by a vertex wi and at each wi join two copies of path
of length 2; P `

2 = v0, u2i−1, wi and P r
2 = v0, u2i, wi, for each i ∈ [n]. In [2020] and [2021]

Prajapati and Gajjar proved that the holiday star graph and the Kusudama flower graph
admit cordial, E-cordial, difference cordial, prime, vertex prime, and total prime label-
ings. In [2022] Prajapati and Gajjar define a braided star graph as follows: Let a0 be
the apex vertex and a1, a2, . . . , an−1, an be consecutive n rim vertices of Wn (n ≥ 3); let
b1, b2, b3, . . . , b2n−1, b2n be 2n consecutive vertices of the cycle C2n; let c1, c2, . . . , c2n−1, c2n

be consecutive 2n vertices of C2n. Join each ai to b2i−1 by an edge and b2i to c2i by an
edge. Take a new vertex di and join each di to c2i−1 and c2i+1 by an edge for each i ∈ [n]
where subscripts are taken modulo n. Prajapati and Gajjar [2022] proved that braided
star graph are cordial, E-cordial and difference cordial.

Recall the splitting graph of G, S ′(G), is obtained from G by adding for each vertex
v of G a new vertex v′ so that v′ is adjacent to every vertex that is adjacent to v and the
shadow graph D2(G) of a connected graph G is constructed by taking two copies of G,
G′ and G′′, and joining each vertex u′ in G′ to the neighbors of the corresponding vertex
u′ in G′′.

Ponraj and Sathish Narayanan [1964], [1965] proved the following graphs are difference
cordial: S

′
(Pn); S

′
(Cn); S

′
(Pn �K1); and S

′
(K1,n) if and only if n ≤ 3. They proved

following are not difference cordial: S
′
(Wn); S

′
(Kn); S

′
(Cn × P2); the splitting graph of

a flower graph; DS (SFn); DS (LCn); DS (Fln); D2 (G) where G is a (p, q) graph with
q ≥ p; and DS (Bm,n) (m 6= n) with m+ n > 8.

Let G (V,E) be a graph with V = S1 ∪ S2 ∪ · · · ∪ St ∪ T where each Si is a set of
vertices having at least two vertices and having the same degree. Panraj and Sathish
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Narayanan [1964], [1965] define the degree splitting graph of G denoted by DS (G) as the
graph obtained from G by adding vertices w1, w2, . . . , wt and joining wi to each vertex of
Si (1 ≤ i ≤ t). They proved the following graphs are difference cordial: DS (Pn); Wn;
DS (Cn); DS (Kn) if and only if n ≤ 3; DS (K1,n) if and only if n ≤ 4; DS (Wn) if and
only if n = 3; DS (Kc

n + 2K2) if and only if n = 1; DS (K2 +mK1) if and only if n ≤ 3;
DS (Kn,n) if and only if n ≤ 2; DS (Tn) if and only if n ≤ 5; DS (Qn) if and only if n ≤ 5;
DS (Ln) if and only if n ≤ 5; DS (Bn,n) if and only if n ≤ 2; DS (B1,n) if and only n ≤ 4;
DS (B2,n) if and only n ≤ 4; D2 (Pn); D2 (Kn) if and only if n ≤ 2; and D2 (K1,m) if and
only if m ≤ 2.

In [1966], Ponraj and Sathish Narayanan proved the following graphs are difference
cordial: Tn�K1, Tn�2K1, Tn�K2, A(Tn)�K1, A(Tn)�2K1 and A(Tn)�K2 where Tn and
A(Tn) are triangular snake and alternate triangular snake respectively. In [1980, 1981]
Ponraj, Sathish Narayanan, and Kala proved the following graphs are difference cor-
dial: Cn × P2; Möbius ladders; the n-cube; sunflower graphs; lotuses inside a circle;
pyramids; books with n pentagonal pages; mongolian tents; graphs obtained from a lad-
der by subdividing each step exactly once; permutation graphs P (P2k, f) where f =
(1 2)(3 4) · · · (k k+1) · · · (2k−1 2k); and P (Pn, I), P (Cn, I), P (Pn�K1, I), P (Pn�2K1, I)
where I is the identity permutation. Ponraj, Sathish Narayanan, and Kala [1980] [1981]
proved the following graphs are not difference cordial: G1(p1, q1)×G2(p2, q2) with q1 ≥ p1

and q2 ≥ p2; Cm × Cn; G × Kn where G connected graph and n ≥ 5, G + K1 where
|E(G) > |V (G) + 1; G1 + G2 where G1 and G2 are connected and |E(G1)| > 1 and
E(G2)| > 3; permutation graphs P (G × K2, f) where |E(G)| ≥ |V (G)| and f is any
permutation; P (Wn, f) for any permutation f ; P (S

′
(G), f) where S

′
(G) is the splitting

graph of G, |E(G)| ≥ |V (G)|, and f is any permutation; and P (Fln, f) where Fln is a
flower graph and f is any permutation. They also obtained the following necessary and
sufficient conditions for difference cordiality: Km×P2 if and only if m ≤ 3; for a connected
graph G, G ×Wn if and only if G = K1; books Bm if and only if m ≤ 6; G + G if and
only if |V (G)| ≤ 3 and |E(G)| ≤ 1; K2 +mK1 if and only if m ≤ 4; Kn + 2K2 if and only
if n ≤ 2; the double fan DFn if and only if n ≤ 4; the t-fold wheel Wn + Kt if and only
if t ≤ 2 and n = 3; cocktail party graphs Hn,n if and only n ≤ 6; P (Kn, I) if and only if
n ≤ 3; P (K2 + mK1, I) if and only if m ≤ 3; and P (Km,n, I) (m,n > 1) if and only if
m = n = 2 and n = 3, 4, 5.

In [1946], Ponraj, Maria Adaickalam, and Kala introduced a new graph labeling called
a k-difference cordial labeling. Let G be a (p, q)-graph and 2 ≤ k ≤ |V (G)|. Let f :
V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u)− f(v)|. They
say f is a k-difference cordial labeling of G if |vf (i)− vf (j)| ≤ 1 and |ef (0)− ef (1)| ≤ 1,
where vf (x) denotes the number of vertices labeled with x, ef (1) denotes the number of
edges labeled with 1, and ef (0) denotes the number of edges that are not labeled with 1. A
graph witha k-difference cordial labeling is called a k-difference cordial graph. They proved
the following: every graph is a subgraph of a connected k-difference cordial graph; if k is
even, then k-copies of K1,p is k-difference cordial; and if n ≡ 0 (mod k) and k ≥ 6, then
K1,n is not k-difference cordial. They further prove the following are 3-difference cordial
graphs: paths; Cn where n ≡ 0, 3 (mod 4); Km,n (m ≤ n) and m is even; combs; double
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combs; quadrilateral snakes; bistars; subdivisions of a star; subdivisions of a bistar; C
(t)
4 ;

Kn if and only if n ∈ {1, 2, 3, 4, 6, 7, 9, 10}; and K1,n if and only if n ∈ {1, 2, 3, 4, 5, 6, 7, 9}.
In [1941], [1942], [1943], Ponraj and Maria Adaickalam proved the following are 3-

difference cordial graphs: K1,n �K2, Pn � 3K1, Cn �K2, mC4, splitting graph of a star,
fan, double fan, Wn where n ≡ 0, 1 (mod 3), helms, flower, sunflower graph, lotus inside
a circle, closed helm, double wheel DWn where V (DWn) = V (Wn) ∪ {vi : 1 ≤ i ≤ n}
and edge set E(DWn) = E(Wn) ∪ {uvi : 1 ≤ i ≤ n} ∪ {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {v1vn},
degree splitting graph of a bistar, spl(K1,n) ∪ K1,n, spl(K1,n) ∪ Pn, K3,n ∪ spl(K1,n),
DFn ∪ spl(K1,n), S(K1,n) ∪ S(Bn,n), K2,n ∪ S(K1,n), Fn ∪ S(K1,n), Wn ∪ S(K1,n), Bn,n ∪
S(Bn,n), K2,n ∪ Bn,n, (Cn �K1) ∪ (Pn �K1), Fn ∪ Fn, jelly fish, Pn ∪K1,n, K1,n ∪K2,n,
K1,n ∪ S(K1,n), are Let Cn be the cycle u1u2 . . . unu1. If G is (p, q) 3-difference cordial
graph with p ≡ 0 (mod 2) and q ≡ 0 (mod 3), then G ∪ G also 3-difference cordial.
Let G be the graph obtained from Cn with V (G) = V (Cn) ∪ {vi : 1 ≤ i ≤

⌈
n
2

⌉
} and

E(G) = {uivi, ui+1vi : 1 ≤ i ≤ n}. Then G is 3-difference cordial. The graph Gn with
the vertex set V (Gn) = {ui, vi, wi : 1 ≤ i ≤ n} and E(Gn) = {uiui+1, vivi+1 : 1 ≤ i ≤
n− 1} ∪ {unu1, v1u1} ∪ {uivi, viwi : 1 ≤ i ≤ n} is 3-difference cordial. Let C3 be the cycle
u1u2u3u1. Let G be a graph obtained from C3 with V (G) = V (C3)∪{vi, wi, zi : 1 ≤ i ≤ n}
and E(G) = E(C3) = {u1vi, u2wi, u3zi : 1 ≤ i ≤ n}. Then G is 3-difference cordial
if n ≡ 0, 2, 3 (mod 4). If n ≡ 0, 1 (mod 3), then K1,n ∪ K1,n is 3-difference cordial.
Ponraj, Adaickalam, and Kala [1947] proved the following graphs have 3-difference cordial
labelings: DA(Tn)�K1, DA(Tn)�2K1, DA(Tn)�K2, DA(Qn)�K1, and DA(Qn)�2K1

(Tn is a triangular snake.) In [1944] Ponraj, Adaickalam, Maria Adaickalam, and Kala
investigated the 3-difference cordial labeling behavior of ladders, books, dumbbell graphs,
and umbrella graphs.

For graphs G and H and a vertex v of G the graph G �v H is obtained by joining
any particular vertex of H to vertex v. In [1778] Sugumaran and Mohan proved that
the following graphs are difference cordial graphs: the path union of r copies of P 2

n

(that is, P (r.P 2
n))–see Section 2.7 for the definition), the cycle union of r copies of C2

n,
(that is, C(r.C2

n)), the open star of r copies the square graph P 2
n (that is, S(r.P 2

n)), the
graph C2

n �vn Pk, and the graph C2
n �vn P 2

k . In [1779] they proved that the plus graph
Pln, the path union of plus graph P (r.P ln), the cycle union of plus graph C(r.P ln), the
barycentric subdivision of Pln, the hanging pyramid HPyn graph, and the path union of
hanging pyramid P (r.HPyn). In [2506] they proved that switching of a pendent vertex in
path Pn, switching of an apex vertex in CHn, the graph obtained by duplication of each
vertex of path Pn by an edge, the barycentric subdivision of Cn �K1, the path union of
r copies of fan P (r.Fn), the cycle union of r copies of fan C(r.Fn), and the open star of r
copies of fan S(r.Fn) are difference cordial graphs.

7.10 Prime Cordial Labelings

Sundaram, Ponraj, and Somasundaram [2536] have introduced the notion of prime cordial
labelings. A prime cordial labeling of a graph G with vertex set V is a bijection f from
V to {1, 2, . . . , |V |} such that if each edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1
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and 0 if gcd(f(u), f(v)) > 1, then the number of edges labeled with 0 and the number of
edges labeled with 1 differ by at most 1. In [2536] Sundaram, Ponraj, and Somasundram
prove the following graphs are prime cordial: Cn if and only if n ≥ 6; Pn if and only if
n 6= 3 or 5; K1,n (n odd); the graph obtained by subdividing each edge of K1,n if and
only if n ≥ 3; bistars; dragons; crowns; triangular snakes if and only if the snake has
at least three triangles; ladders; K1,n if n is even and there exists a prime p such that
2p < n+ 1 < 3p; K2,n if n is even and if there exists a prime p such that 3p < n+ 2 < 4p;
and K3,n if n is odd and if there exists a prime p such that 5p < n + 3 < 6p. They
also prove that if G is a prime cordial graph of even size, then the graph obtained by
identifying the central vertex of K1,n with the vertex of G labeled with 2 is prime cordial,
and if G is a prime cordial graph of odd size, then the graph obtained by identifying the
central vertex of K1,2n with the vertex of G labeled with 2 is prime cordial. They further
prove that Km,n is not prime cordial for a number of special cases of m and n. Sundaram
and Somasundaram [2539] and Youssef [2882] observed that for n ≥ 3, Kn is not prime
cordial provided that the inequality φ(2) + φ(3) + · · · + φ(n) ≥ n(n − 1)/4 + 1 is valid
for n ≥ 3 (φ is the Euler phi-function). This inequality was proved by Yufei Zhao [2912].
Haque, Lin, Yang, and Zhao [955] show that with the exception of P (4, 1), all generalized
Petersen graphs are prime cordial. Haque, Lin, Yang, and Zhang [953] show that the
flower snark and related graphs are prime cordial. In [891] Ghosh, Mohanty, and Pal gave
an algorithmic approach to find cordial labelings of Cartesian product of two balanced
bipartite graphs. The algorithm works for signed product cordial lablings, total signed
product cordial labelings, and prime cordial labelings of such graphs.

Seoud and Salim [2247] give an upper bound for the number of edges of a graph with
a prime cordial labeling as a function of the number of vertices. For bipartite graphs they
give a stronger bound. They prove that Kn does not have a prime cordial labeling for
2 < n < 500 and conjecture that Kn is not prime cordial for all n > 2. They determine
all prime cordial graphs of order at most 6. For a graph with n vertices to admit a prime
cordial labeling, Seoud and Salim [2249] proved that the number of edges must be less
than n(n− 1)− 6n2/π2 + 3. As a corollary they get that Kn (n > 2) is not prime cordial
thereby proving their earlier conjecture.

In [877] Ghodasara and Jena prove that the following graphs are prime cordial: Cn
with one chord, Cn with twin chords (that is, two cords that form a triangle with an
edge of the cycle), Cn with three cords that form two triangles and a cycle of length
n− 3 (n ≥ 7), the graph obtained by joining two copies of Cn with one chord by a path,
and the graph obtained by joining two copies of the same cycle with twin chords by a
path is prime cordial.

In [410] Baskar Babujee and Shobana proved sun graphs Cn �K1; Cn with a path of
length n− 3 attached to a vertex; and Pn (n ≥ 6) with n− 3 pendent edges attached to
a pendent vertex of Pn have prime cordial labelings. Additional results on prime cordial
labelings are given in [411].

In [2682] and [2683] Vaidya and Vihol prove following graphs are prime cordial: the
total graph of Pn and the total graph of Cn for n ≥ 5 (see §2.7 for the definition); P2[Pm]
for all m ≥ 5; the graph obtained by joining two copies of a fixed cycle by a path; and the
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graph obtained by switching of a vertex of Cn except for n = 5 (see §3.6 for the definition);
the graph obtained by duplicating each edge by a vertex in Cn except for n = 4 (see §2.7
for the definition); the graph obtained by duplicating a vertex by an edge in cycle Cn (see
§2.7 for the definition); the path union of any number of copies of a fixed cycle (see §3.7
for the definition); and the friendship graph Fn for n ≥ 3. Vaidya and Shah [2662] prove
following results: P 2

n is prime cordial for n = 6 and n ≥ 8; C2
n is prime cordial for n ≥ 10;

the shadow graphs of K1,n (see §3.8 for the definition) for n ≥ 4 and the bistar Bn,n are
prime cordial graphs.

Let Gn be a simple nontrival connected cubic graph with vertex set V (Gn) =
{ai, bi, ci, di : 0 ≤ i ≤ n − 1}, and edge set E(Gn) = {aiai+1, bibi+1, cici+1, diai, dibi, dici :
0 ≤ i ≤ n − 1}, where the edge labels are taken modulo n. Let Hn be a graph obtained
from Gn by replacing the edges bn−1b0 and cn−1c0 with bn−1c0 and cn−1b0 respectively. For
odd n ≥ 5, Hn is called a flower snark whereas Gn, H3 and all Hn with even n ≥ 4, are
called the related graphs of a flower snark. Mominul Haque, Lin, Yang, and Zhang [1782]
proved that flower snarks and related graphs are prime cordial for all n ≥ 3.

In [2665] Vaidya and Shah prove that the following graphs are prime cordial: split
graphs of K1,n and Bn,n; the square graph of Bn,n; the middle graph of Pn for n ≥ 4;
and Wn if and only if n ≥ 8. Vaidya and Shah [2665] prove following graphs are prime
cordial: the splitting graphs of K1,n and Bn,n; the square of Bn,n; the middle graph of Pn
for n ≥ 4; and wheels Wn for n ≥ 8.

In [2669] [2671] Vaidya and Shah proved following graphs are prime cordial: gear
graphs Gn for n ≥ 4; helms; closed helms CHn for n ≥ 5; flower graphs Fln for n ≥ 4;
degree splitting graphs of Pn and the bistar Bn,n; double fans Dfn for n = 8 and n ≥ 10;
the graphs obtained by duplication of an arbitrary rim edge by an edge in Wn where
n ≥ 6; and the graphs obtained by duplication of an arbitrary spoke edge by an edge in
wheel Wn where n = 7 and n ≥ 9.

Let G(p, q) with p ≥ 4 be a prime cordial graph and K2,n be a bipartite graph with
bipartition V = V1 ∪ V2 with V1 = {v1, v2} and V2 = {u1, u2, . . . , un}. If G1 is the graph
obtained by identifying the vertices v1 and v2 of K2,n with the vertices of G having labels
2 and 4 respectively, Vaidya and Prajapati [2660] proved that G1 admits a prime cordial
labeling if n is even; if n, p, q are odd and with ef (0) = bq/2c; and if n is odd, p is even
and q is odd with ef (0) = dq/2e. Prajapati and Gajjar [2024] proved the following graphs
are prime cordial: Cn × P2 except for n = 1, 2 and 4, Cn × P4 (n ≥ 3), C3 × Pn (n > 1),
C5 × Pn (n > 1), C6 × Pn (n > 1), C2p × Pn where p is an odd prime and n > 1, and
C4 × Pn (n > 2).

In [2505] Sugumaran and Mohan proved the following graphs are prime cordial: the
cycle butterfly graph Bn,m (two copies of Cn that share a common vertex with m pendent
vertices attached to the common vertex), W− graph (obtained by starting with the two
copies of K1,n and merging the last pendent vertex in the first copy of K1,n with the initial
pendent vertex in the second copy of K1,n), Hn graph (the graph obtained from two paths
u1, u2, . . . , un and v1, v2, . . . , vn by joining the vertices u(n+1)/2 and v(n+1)/2 if n is odd and
joining un/2 and vn/2+1 if n is even), and duplication of all edges of an Hn graph. In [2504]
Sugumaran and Mohan proved that the following graphs are prime cordial: Hn�K1, the
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path union of r copies of Hn, the cycle union of r copies of an Hn, the open star of r
copies of an Hn−graph (obtained by replacing each pendent vertex of K1,n by a copy of
Hn.

In [2510] Sugumaran and Suresh proved that the following graphs are prime cordial
graphs: the duplication of each vertex by an edge of paths, stars, jelly fish, bistars, and
Cn � K1. Sugumaran and Vishnu Prakash [2515] proved that the following graphs are
prime cordial graphs: duplication of any vertex of degree 3 in theta graph , switching of
any vertex of degree 3 in theta graph, fusion of any two vertices in theta graph, the path
union of two copies of theta graph, and two copies of theta graph joined by a path of
any length. They further proved that the theta graph is not a prime cordial labeling. In
[2516] they showed that one point union of path graph P t

n(tn.Tα), the open star of theta
graph, and any path union of even number of theta graphs are prime cordial graphs. Also
they proved [2514] the subdivision of bistar Bn,n, Pn

⊙
K1,n−1, (that is, each ith vertex

of path Pn is append with the apex vertex of ith copy of K(1, n − 1)), the disconnected
graph Pn

⋃
Pm are prime cordial graphs.

Vaidya and Prajapati [2658] call a graph strongly prime cordial if for any vertex v
there is a prime labeling f of G such that f(v) = 1. They prove the following: the
graphs obtained by identifying any two vertices of K1,n are prime cordial; the graphs
obtained by identifying any two vertices of Pn are prime cordial; Cn, Pn, and K1,n are
strongly prime cordial; and Wn is a strongly prime cordial for every even integer n ≥ 4.
Prajapati and Gajjar [2014] proved that generalized prism graphs Yn,2 is prime cordial
except for n = 1, 2 and 4; Yn,4 is prime cordial for n ≥ 3; Y3,n, Y5,n, Y6,n and Y2p,n (for
odd prime p) are prime cordial for n > 1; and Y4,n is prime cordial for n > 2. They
also proved the following graphs are prime cordial: Cn × P2 except for n = 1, 2 and 4,
Cn × P4 (n ≥ 3), C3 × Pn (n > 1), C5 × Pn (n > 1), C6 × Pn (n > 1), C2p × Pn where p
is an odd prime and n > 1, and C4 × Pn (n > 2).

In [1992] Ponraj, Singh, Kala, and Sathish Narayanan introduced a new graph labeling
called k-prime cordial labeling. Let G be a (p, q)-graph and 2 ≤ p ≤ k and let f : V (G)→
{1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). They say that
f is a k-prime cordial labeling of G if |vf (i)− vf (j)| ≤ 1 for i, j ∈ {1, 2, . . . , k} and
|ef (0)− ef (1)| ≤ 1, where vf (x) denotes the number of vertices labeled with x, and ef (1)
and ef (0), respectively, denote the number of edges labeled with 1 and not labeled with
1. A graph with a k-prime cordial labeling is a k-prime cordial graph. They proved that
every graph is a subgraph of a connected k-prime cordial graph; if k is even, then Pn,
n 6= 3, is k-prime cordial; Cn, n 6= 3, is k-prime cordial when k is even; and the bistar Bn,n

is k-prime cordial for all even k. They studied 3-prime cordiality of paths, cycles, and
olive trees. They also proved that if T is a 3-prime cordial tree, then T �K1 is 3-prime
cordial; K1,n is 3-prime cordial if and only if n ≤ 3; Kn is 3-prime cordial if and only if
n < 3; combs Pn �K1 are 3-prime cordial; and Cn �K1 is 3-prime cordial if and only if
n 6= 3. They proved that K2 +mK1, K2,n, and wheels are not 3-prime cordial graphs. In
[1993] Ponraj, Singh, and Sathish Narayana proved if G is 3-prime cordial, then G∪Pn is
a 3-prime cordial for n > 12, the splitting graph of a star is not a 3-prime cordial graph,
and the jelly fish J(m,n) is 3-prime cordial if 10m ≥ n+ 2.
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For a 4-prime cordial graph G Ponraj and Singh [1991] proved G ∪ Pn (n ≥ 5), G ∪
2mKn,n, and G ∪ 2mK1,n are 4-prime cordial. For a (4t, q) 4-prime cordial graph G they
prove that G + K1 and G + 2K1 are 4-prime cordial. Ponraj, Singh, and Kala [1994]
prove that Pm × Pn and subdivisions of wheels and helms are 4-prime cordial. They also
show that if G is bipartite then G∪G is 4-prime cordial; and if G is 4-prime cordial then
G � K1 is 4-prime cordial. Ponraj, Singh, and Kala [1995] proved the following graphs
are 4-prime cordial: 2m(Kn,n), 2m(Pn × P2), m(Cn ⊕K1), mBn,n, and 2W2n+1.

Murugesan, Jayaraman, and Shiama (see [2517]) defined a 3-equitable prime cordial
labeling of a graph G as a bijection f from V (G) to {1, 2, . . . , |V (G)|} such that if an edge
uv is assigned the label 1 when gcd(f(u), f(v)) = 1 and gcd(f(u)+f(v), f(u)−f(v)) = 1,
the label 2 when gcd(f(u), f(v)) = 1 and gcd(f(u) + f(v), f(u)− f(v)) = 2, and the label
0 otherwise, then the number of edges labeled with i and the number of edges labeled
with j differ by at most 1 for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2. A graph that has a 3-equitable
prime cordial labeling is called a 3-equitable prime cordial graph. Sugumaran and Vishnu
Prakash [2517] proved the following graphs are 3-equitable prime cordial graphs: bistars,
combs, ladders, kites, and slanting ladders. In [2519] they showed that theta graphs, the
duplication of any vertex in theta graphs, switching of any vertex in theta graphs, the
fusion of any two vertices in theta graphs, path unions of two copies of theta graphs, open
star graphs of copies of a fixed theta graph are 3-equitable prime cordial graphs.

7.11 Parity Combination Cordial Labelings

In [1990] Ponraj, Sathish Narayanan, and Ramasamy introduced a new graph labeling
called parity combination cordial labeling. Let G be a (p, q)-graph. Let f be an injective
map from V (G) to {1, 2, . . . , p}. For each edge xy, assign the label

(
x
y

)
or
(
y
x

)
according as

x > y or y > x. Call f a parity combination cordial labeling if f is a one to one map and
|ef (0)− ef (1)| ≤ 1, where ef (0) and ef (1) denote the number of edges labeled with an
even number and odd number, respectively. A graph with a parity combination cordial
labeling is called a parity combination cordial graph. They proved that the following
are parity combination cordial graphs: paths, cycles, stars, triangular snakes, alternate
triangular snakes, olive trees, combs, crowns, fans, umbrellas, P 2

n , helms, dragons, bistars,
butterfly graphs, and graphs obtained from Cn and K1,m by unifying a vertex of Cn and
a pendent vertex of K1,m. They also proved that Wn admits a parity combination cordial
labeling if and only if n ≥ 4 and conjectured that for n ≥ 4, Kn is not a parity combination
cordial graph. In [1996], Ponraj, Rajpal Singh, and Sathish Narayanan proved that if G
is a parity combination cordial graph, then G ∪ Pn is also parity combination cordial if
n 6= 2, 4.

7.12 Mean Labelings

Somasundaram and Ponraj [2446] have introduced the notion of mean labelings of graphs.
A graph G with p vertices and q edges is called a mean graph if there is an injective function
f from the vertices of G to {0, 1, 2, . . . , q} such that when each edge uv is labeled with
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(f(u) + f(v))/2 if f(u) + f(v) is even, and (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd, then
the resulting edge labels are distinct.

In [2446], [2447], [2448], [2449], [2006], and [2007] they prove the following graphs are
mean graphs: Pn, Cn, K2,n, K2 +mK1, Kn + 2K2, Cm ∪ Pn, Pm× Pn, Pm ×Cn, Cm �
K1, Pm�K1, triangular snakes, quadrilateral snakes, Kn if and only if n < 3, K1,n if and
only if n < 3, bistars Bm,n (m > n) if and only if m < n + 2, the subdivision graph of

the star K1,n if and only if n < 4, the friendship graph C
(t)
3 if and only if t < 2, the one

point union of two copies a fixed cycle, dragons (the one point union of Cm and Pn, where
the chosen vertex of the path is an end vertex), the one point union of a cycle and K1,n

for small values of n, and the arbitrary super subdivision of a path, which is obtained by
replacing each edge of a path by K2,m. They also prove that Wn is not a mean graph for
n > 3 and enumerate all mean graphs of order less than 5.

Gayathri and Gopi [856] prove the following are mean graphs: double triangular
snakes; double quadrilateral snakes; generalized antiprisms; graphs obtained by joining
the 2 vertices of K2,n of degree n with an edge; and graphs obtained from Cn with consec-
utive vertices v1, v2, . . . , vn by adding the chords joining vi and vn−i+2 for 2 ≤ i ≤ bn/2c.
In [854] Gayathri and Gopi gave various necessary conditions for mean labelings.

Lourdusamy and Seenivasan [1657] prove that kCn-snakes are means graphs and every
cycle has a super subdivision that is a mean graph. They define a generalized kCn-snake
in the same way as a Cn-snake except that the sizes of the cycle blocks can vary (see
Section 2.2). They prove that generalized kCn-snakes are mean graphs. Recall that Pa,b
denotes the graph obtained by identifying the endpoints of b internally disjoint paths each
of length a. Vasuki and Nagarajan [2708] proved that the following graphs admit mean
labelings: Pr,2m+1 for all r and m; Pr,2m for all m and 2 ≤ r ≤ 6; P 2m+1

r for all r and m;
and P 2m

r for all m and 2 ≤ r ≤ 6. Anusa, Sandhya, and Somasundaram [152] proved that
triangular ladders, triangular snakes, double triangular snakes, quadrilateral snakes, and
double quadrilateral snakes are mean graphs.

Lourdusamy and Seenivasan [1658] define an edge linked cyclic snake, EL(kCn), as
the connected graph obtained from k copies of Cn (n ≥ 4) by identifying an edge of the
(i + 1)th copy to an edge of the ith copy for i = 1, 2, . . . , k − 1 in such a way that the
consecutive edges so chosen are not adjacent. They proved that all EL(kC2n) are mean
graphs and some cases of EL(C2n−1) are mean graphs. They also define a generalized
edge linked cyclic snake in the same way but allow the cycle lengths (at least 4) to vary.
They prove that certain cases of generalized edge linked cyclic snakes are mean graphs.

Barrientos and Krop [370] proved that there exist n! graphs of size n that admit mean
labelings. They give two necessary conditions for the existence of a mean labeling of a
graph G with m vertices and n edges: if G is a mean graph, then n + 1 ≥ m; if G is
a mean graph with n edges and maximum degree ∆(G), then ∆(G) ≤ n+3

2
when n is

odd and ∆(G) ≤ n+2
2

when n is even. They proved that the disjoint union of n copies of
C3 is a mean graph and if a mean r-regular graph has n vertices, then r < n − 2. They
established a connection between α-labelings and mean labelings by proving that every
tree that admits an α-labeling is a mean graph when the size of its stable sets differ by at
most one. When the tree is a caterpillar, this difference can be up to two. Barrientos and
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Krop call a mean labeling of a bipartite graph an α-mean labeling if the labels assigned
to vertices of the same color have the same parity. They show that the complementary
labeling of a α-mean labeling is also an α-mean labeling. They use graphs with α-
mean labelings to construct new mean graphs. One construction consists of connecting a
pair of corresponding vertices of two copies of an α-mean graph by an edge. The other
construction identifies a pair of suitable vertices from two α-mean graphs. Barrientos
and Krop also proved that every quadrilateral snake admits an α-mean labeling. They
conjecture that all trees of size n and maximum degree at most d(n + 1)/2e are mean
graphs and state some open problems. In [365] Barrientos proves that all trees with up
to four end-vertices except K1,4 are mean graphs. Bailey and Barrientos [327] prove the
following are mean graphs: Cn ∪ Cm, Cn ∪ Pm, K2 + nK1, 2K2 + nK1, Cn ×K2.

In [327] Bailey and Barrientos study several operations with mean graphs. They prove
that the coronas G�K1 and G�K2 are mean graphs when G is an α-mean graph. Also,
if G and H are mean graphs with n vertices and n− 1 edges and H is an α-mean graph,
then G × H is a mean graph. They prove that given two mean graphs G and H, there
exists a mean graph obtained by identifying an edge from G with an edge from H and
uses this result to prove that the graphs Rn (n ≥ 2) of order 2n and size 4n−3 with vertex
set V (Rn) = {v1, v2, . . . , v2n} and edge set E(Rn) = {vivi+1 | 1 ≤ i ≤ n− 1 and n + 1 ≤
i ≤ 2n − 1} ∪ {vivn+i | 1 ≤ i ≤ n} ∪ {vivn+i−1 | 2 ≤ i ≤ n} (rigid ladders) are mean
graphs.

Barrientos, Abdel-Aal, Minion, and Williams [366] use An to denote the set of all α-
mean labeled graphs of size n such that the difference of the cardinalities of the bipartite
sets of the verticies of the graphs is at most one.They prove that the class An is equivalent
to the class of α-labeled graphs of size n with bipartite sets that differ by at most one.
They also prove that when G ∈ An, the coronas G �mK1, G � P2, and G � P3 admit
mean labelings.

In [2625] Vaidya and Bijukumar define two methods of creating new graphs from cycles
as follows. For two copies of a cycle Cn the mutual duplication of a pair of vertices vk
and v′k respectively from each copy of Cn is the new graph G such that N(vk) = N(v′k).
For two copies of a cycle Cn and an edge ek = vkvk+1 from one copy of Cn with incident
edges ek−1 = vk−1vk and ek+1 = vk+1vk+2 and an edge e′m = umum+1 in the second copy
of Cn with incident edges e′m−1 = um−1um and e′m+1 = um+1um+2, the mutual duplication
of a pair of edges ek and e′m respectively from two copies of Cn is the new graph G such
that N(vk)− vk+1 = N(um)− um+1 = {vk−1, um−1} and N(vk+1)− vk = N(um+1)− um =
{vk+2, um+2}. They proved that the graph obtained by mutual duplication of a pair of
vertices each from each copy of a cycle and the mutual duplication of a pair of edges from
each copy of a cycle are mean graphs. Moreover, they proved that the shadow graphs of
the stars K1,n and bistars Bn,n are mean graphs.

Vasuki and Nagarajan [2710] proved the following graphs are admit mean labelings:
the splitting graphs of paths and even cycles; Cm � Pn; Cm � 2Pn; Cn ∪ Cn; disjoint
unions of any number of copies of the hypercube Q3; and the graphs obtained from by
starting with m copies of Cn and identifying one vertex of one copy of Cn with the
corresponding vertex in the next copy of Cn.) Jeyanthi and Ramya [1207] define the
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jewel graph Jn as the graph with vertex set {u, x, v, y, ui : 1 ≤ i ≤ n} and edge set
{ux, vx, uy, vy, xy, uui, vui : 1 ≤ i ≤ n}. They proved that the jewel graphs, jelly fish
graphs (see §7.26 for the definition), and the graph obtained by joining any number of
isolated vertices to the two endpoints of P3 are mean graphs. Ramya and Jeyanthi [2088]
proved several families of graphs constructed from Tp-tree are mean graphs. Ahmad,
Imran, and Semaničová-Feňovčiková [91] studied the relation between mean labelings
and (a, d)-edge-antimagic vertex labelings. They show that two classes of caterpillars
admit mean labelings. Revathi [2114] proved that the shadow graphs of bistars, combs,
and the splitting graph of combs have mean labelings.

Recall from Section 2.7 that given connected graphs G1, G2, . . . , Gn, Kaneria, Makadia,
and Jariya [1296] define a cycle of graphs C(G1, G2, . . . , Gn) as the graph obtained by
adding an edge joining Gi to Gi+1 for i = 1, . . . , n−1 and an edge joining Gn to G1. (The
resulting graph can vary depending on which vertices of the Gi are chosen.) When the
n graphs are isomorphic to G the notation C(n · G) is used. Also recall Kanneria and
Makadia [1289] define a step grid graph Stn as the graph obtained by starting with paths
Pn, Pn, Pn−1, . . . , P2 (n ≥ 3) arranged vertically parallel with the vertices in the paths
forming horizontal rows and edges joining the vertices of the rows. In [1320], [1306], and
[1309], Kaneria, Viradia, and Makadia proved the following graphs are mean graphs: the
path union of any number of copies of a mean graph; C(2t ·Pn); C(2t ·Cn); C(2t ·Pn×Pm);
C(2r · B2

n,n) (B2
n,n is the square of the bistar Bn,n); C(2r ·M(Cn)) (M(Cn) is the middle

graph of Cn); C(2r · (P2n + 2K1)); step grid graphs; the path union of finitely copies of
the step grid graphs; cycles of step grid graphs C(2r · Stn); and C(2t ·K2,m).

For a fixed vertex v of Cm Avadayappan and Vasuki [211] use (Pm;Cn) to denote the
graph obtained from m copies of Cn and the path Pm : u1u2 · · ·um by joining ui with v of
the ith copy of Cn with an edge for 1 ≤ i ≤ m. They define (Pm;Q3), (P2n;Sm) , (Pn;S1)
and (Pn;S2), where v is a fixed vertex of the cube Q3 and v is the center of the star Sk, in
an analogous way. For Cn : v1v2 . . . vnv1 they use [Pm;Cn] to denote the graph obtained
from m copies of Cn with vertices v11 , v12 , . . . , v1n , v21 , . . . , v2n , . . . , vm1 , . . . , vmn by joining
vij and v(i+1)j with an edge, for some j and 1 ≤ i ≤ m − 1. They define [Pm;Q3] and

[Pm;C
(2)
m ], where C

(2)
m is the friendship graph, similarly. In [211] they prove these families

are mean graphs.
Ramya, Ponraj, and Jeyanthi [2091] called a mean graph super mean if vertex labels

and the edge labels are {1, 2, . . . , p + q}. They prove following graphs are super mean:
paths, combs, odd cycles, P 2

n , Ln�K1, Cm∪Pn (n ≥ 2), the bistars Bn,n and Bn+1,n. They
also prove that unions of super mean graphs are super mean and Kn and K1,n are not
super mean when n > 3. In [1212] Jeyanthi, Ramya, and Thangavelu prove the following
are super mean: nK1,4; the graphs obtained by identifying an endpoint of Pm (m ≥ 2)
with each vertex of Cn; the graphs obtained by identifying an endpoint of two copies of
Pm (m ≥ 2) with each vertex of Cn; the graphs obtained by identifying an endpoint of
three copies of Pm (m ≥ 2); and the graphs obtained by identifying an endpoint of four
copies of Pm (m ≥ 2). In [1208] Jeyanthi and Ramya prove the following graphs have
super mean labelings: the graph obtained by identifying the endpoints of two or more
copies of P5; the graph obtained from Cn (n ≥ 4) by joining two vertices of Cn distance 2
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apart with a path of length 2 or 3; Jeyanthi and Rama [1210] use S(G) to denote the graph
obtained from a graph G by subdividing each edge of G by inserting a vertex. They prove
the following graphs have super mean labelings: S(Pn�K1), S(Bn,n), Cn�K2; the graphs
obtained by joining the central vertices of two copies of K1,m by a path Pn (denoted by
〈Bm,m : Pn〉); generalized antiprisms (see §6.2 for the definition), and the graphs obtained
from the paths v1, v2, v3, . . . , vn by joining each vi and vi+1 to two new vertices ui and wi
(double triangular snakes).

Lourdusamy and Seenivasan [1659] introduced the notion of super vertex mean la-
beling as follows. For a (p, q)-graph and an injective function f from the edges to
the set {1, 2, 3, . . . , p + q} that induces for each vertex v the label defined by f ∗(v) =
(Round

∑
e∈Ev

f(e))/d(v), where Ev denotes the set of edges in G that are incident to
the vertex v, d(v) is the degree of v, and Round(x) is the integer nearest to x, such that
the set of all edge labels and the induced vertex labels is {1, 2, 3, . . . , p + q} is called a
super vertex mean labeling of G and G is called a super vertex mean graph. In [1645]
they investigated the all graphs of order up to 5 and regular graphs of order up to 7 for
the property of being super vertex mean and proved that all linear triangular snakes are
super vertex mean. Lourdusamy, George, and Seenivasan [1647] proved that all cycles
except C4 are super vertex mean and Lourdusamy and George [1646] proved that linear
Cn snakes with at least 2 blocks are super vertex mean graphs for the following cases:
n = 4, 5, 6, and 7; n ≥ 8 even; n ≥ 9 and n ≡ 1 mod 4; and n ≥ 11 and n ≡ 3 mod 4.
Inayah, Sudarsana, Musdalifah, and Mangesa [1070] have showed that the total graphs of
paths and cycles are super mean graphs.

A graph G with q edges is called a k-mean graph if there is an injective function f
from the vertices of G to {0, 1, 2, . . . , k + q − 1} such that when each edge uv is labeled
with (f(u) + f(v))/2 if f(u) + f(v) is even, and (f(u) + f(v) + 1)/2 if f(u) + f(v) is
odd, the resulting edge labels are {k, k+ 1, k+ 2, . . . , k+ q− 1}. A graph G with q edges
is said to have a restricted k-mean labeling if there is an injective function f from the
vertices of G to {k−1, k, k+1, . . . , k+q−1} such that when each edge uv is labeled with
{k, k+ 1, k+ 2, . . . , k+ q− 1}, the resulting edge labels {k, k+ 1, k+ 2, . . . , k+ q− 1} are
distinct where k is a positive integer. A graph that admits a restricted k-mean labeling is
called a restricted k-mean graph. Gayathri and Gopi proved some properties of k-mean
labelings in [857]. In [858] they proved that if G1 and G2 are restricted k-mean graphs for
all k, then G1 ∪G2 is restricted k-mean for all k, and if G1 is a restricted k-mean graph
for all k ≥ k1 and G2 is a restricted k-mean graphs for all k, then G1 ∪ G2 is restricted
k-mean for all k ≥ k1.

A mean graph is called k-super mean if vertex labels and the edge labels are {k, k +
1, k+2, . . . , p+q+k−1}. Jeyanthi, Ramya, Thangavelu [1213] give super mean labelings
for Cm ∪ Cn and k-super mean labelings for a variety of graphs.

Vasuki and Nagarajan [2709] define Hn, called the H-graph of a path Pn, as the graph
obtained from two copies of Pn with vertices v1, v2, . . . , vn and u1, u2, . . . , un by joining
the vertices v(n+1)/2 and u(n+1)/2 if n is odd, and the vertices vn

2
+1 and un

2
if n is even,

and a cyclic snake mCn as the the graph obtained from m copies of Cn by identifying the
vertex v(k+2)j in the jth copy of the vertex v1j+1

in the (j + 1)th copy if n = 2k + 1 and
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identifying the vertex v(k+1)j in the jth copy with the vertex v1j+1
in the (j + 1)th copy

if n = 2k. They establish the super meanness of even cycles, H-graphs, the coronas of
H-graphs, 2-coronas of H-graphs, coronas of cycles, mCn-snakes (n 6= 4), dragons Pn(Cm)
for m 6= 4, and Cm × Pn for m = 3 and 5. Vasuki, Sugirtha, and Venkateswari [2712]
proved that the subdivision of the following graphs are super mean graphs: Hn, Hn�K1,
Hn with two pendent edges attached to each vertex, Cn �K1 (n ≥ 3), slanting ladders,
triangular snakes with a pendent edge at each vertex, and Cm@Cn (the graph obtained by
attaching paths Pn to Cm by identifying the endpoints of the paths with each successive
pairs of vertices of Cm).

Let G(V,E) be a simple graph of order p and size q. Then G is said to be a relaxed
mean graph if it is possible to label the vertices x ∈ V with distinct elements f(x) from
{0, 1, 2 . . . , q−1, q+1} in such a way that when each edge uv is labeled with (f(u)+f(v))/2
if f(u)+f(v) is even and (f(u)+f(v)+1)/2 if f(u)+f(v) is odd, then the resulting edge
labels {1, 2, 3, . . . , q} are distinct. Such an f is called a relaxed mean labeling of G. Balaji,
Ramesh, and Sudhaker [328] prove that the disjoint union of any path with n − 1 edges
joining the pendent vertices of distinct paths is a relaxed mean graph and K1,m is not a
relaxed mean graph for m ≥ 5. They also prove that the graph consisting of two stars
K1,m and Kn,1 with an edge in common is a relaxed mean graph if and only if |m−n| ≤ 5.

In [190] Arockiaraj, Rajesh Kannan, and Durai Baskar introduced the F -centroidal
mean labeling of graphs by defining a function f to be an F -centroidal mean labeling
of a graph G(V,E) with q edges if f : V (G) → {1, 2, 3, . . . , q + 1} is injective and the

induced function f ∗ : E(G)→ {1, 2, 3, . . . , q} defined as f ∗(uv) =
⌊

2 [f(u)2+f(u)f(v)+f(v)2]
3 [f(u)+f(v)]

⌋
for all uv ∈ E(G) is bijective. A graph that admits an F -centroidal mean labeling
is called an F -centroidal mean graph. In [182] they discussed the F -centroidal mean-
ness of the tree Pn(X1, X2, . . . Xn) obtained from a path on n vertices by attaching
Xi pendent vertices at each ith vertex of the path for 1 ≤ i ≤ n, the twig graph
TW (Pn), the graph Pn ◦ Sm for m ≤ 4, Pm × Pn for m ≤ 3, ladders, Pn ◦ K2, P

b
a

for a ≥ 2 and b ≤ 3, the middle graphs and splitting graphs of paths, the total
graphs of paths, P 2

n , and P (1, 2, . . . , n− 1) the graph obtained by replacing each ith edge
of Pn by identifying its end vertices with the vertices of the two element component of K2,i.

Arockiaraj, Rajesh Kannan, and Durai Baskar introduced super F -centroidal mean
graphs [189] as follows. Let G be a graph and f : V (G) → {1, 2, 3, . . . , p + q} be an
injection. With f ∗ defined as for the F -centroidal case f is called a super F-centroidal
mean labeling if f(V (G)) ∪ {f ∗(uv) : uv ∈ E(G)} = {1, 2, 3, . . . , p + q}. A graph that
admits a super F -centroidal mean labeling is called a super F-centroidal mean graph. They
proved that the following graphs are super F -centroidal mean graphs: paths, cycles, the
union of any number of paths, the mirror graph of Pn, Pn ◦ Sm, TW (Pn), Pn ∪ Cm, P 2

n ,
and dragons Pn(Cm) the graph obtained from Cm by identifying an end vertex of Pn at a
vertex of Cm.

In [331] and [332] Balaji, Ramesh, and Subramanian use the term “Skolem mean”
labeling for super mean labeling. They prove: Pn is Skolem mean; K1,m is not Skolem
mean if m ≥ 4; K1,m ∪K1,n is Skolem mean if and only if |m− n| ≤ 4; K1,l ∪K1,m ∪K1,n
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is Skolem mean if |m−n| = 4 + l for l = 1, 2, 3, . . . ,m = 1, 2, 3, . . . , and l ≤ m < n; K1,l∪
K1,m ∪K1,n is not Skolem mean if |m− n| > 4 + l for l = 1, 2, 3, . . . ,m = 1, 2, 3, . . . , n ≥
l + m + 5 and l ≤ m < n; K1,l ∪K1,l ∪K1,m ∪K1,n is Skolem mean if |m − n| = 4 + 2l
for l = 2, . . . ,m = 2, 3, 4 . . . , n = 2l + m + 4 and l ≤ m < n; K1,l ∪ K1,l ∪ K1,m ∪ K1,n

is not Skolem mean if |m − n| > 4 + l for l = 1, 2, 3, . . . ,m = 1, 2, 3, . . . , n ≥ l + m + 5
and l ≤ m < n; K1,l ∪ K1,l ∪ K1,m ∪ K1,n is not Skolem mean if |m − n| > 4 + 2l for
l = 2, . . . ,m = 2, 3, 4 . . . , n ≥ 2l + m + 5 and l ≤ m < n; K1,l ∪ K1,l ∪ K1,m ∪ K1,n

is Skolem mean if |m − n| = 7 for m = 1, 2, 3, . . . , n = m + 7 and 1 ≤ m < n; and
K1,l ∪K1,l ∪K1,m ∪K1,n is not Skolem mean if |m− n| > 7 for m = 1, 2, 3, . . . , n ≥ m+ 8
and 1 ≤ m < n. Balaji [330] proved that K1,l∪K1,m∪K1,n is Skolem mean if |m−n| < 4+l
for integers 1,m ≥ 1 and l ≤ m < n. In [2305] Shainy and Balaji determined necessary
and sufficient conditions for the disjoint union of three stars to be Skolem mean.

In [1234] Jeyanthi, Selvi, and Ramya prove that Cm∪Cn, (Pn +K1)∪ (n− 2)K2 (n >
2), (Pn + K2) ∪ (2n − 3)K2 (n ≥ 2) and Wn ∪ (n − 1)K2 (n ≥ 3) are Skolem difference
mean graphs. In [1235] they show that the union of any finite number of paths, the union
of any finite number of stars, G ∪ nK2 where G is Skolem difference mean and all the
vertex labels are odd, Cm∪Pm (m ≥ 2), Km,n∪ (m−1)(n−1)K2, and K1,1,n∪ (n−1)K2.
are skolem difference mean graphs.

In [1214] Jeyanthi, Ramya, and Thangavelu proved the following graphs have super
mean labelings: the one point union of any two cycles, graphs obtained by joining any
two cycles by an edge (dumbbell graphs), C2n+1 �C2m+1, graphs obtained by identifying
a copy of an odd cycle Cm with each vertex of Cn, the quadrilateral snake Qn, where n is
odd, and the graphs obtained from an odd cycle u1, u2, . . . , un by joining the vertices ui
and ui+1 by the path Pm (m is odd) for 1 ≤ i ≤ n−1 and joining vertices un and u1 by the
path Pm. Jeyanthi, Ramya, Thangavelu, and Aditanar [1212] give super mean labelings
of Cm∪Cn and Tp-trees. Vasuki and Arockiaraj [2707] proved that nC4, n > 1, triangular
grid graphs, the edge mCn-snakes, and the braid graphs are super mean graphs. They
further proved that the graphs obtained by identifying an edge of two cycles Cm and Cn
is a super mean graph.

In [1206] Jeyanthi and Ramya define Sm,n as the graph obtained by identifying one
endpoint of each of n copies of Pm and < Sm,n : Pm > as a graph obtained by identifying
one end point of a path Pm with the vertex of degree n of a copy of Sm,n and the other
endpoint of the same path to the vertex of degree n of another copy of Sm,n. They prove
the following graphs have super mean labelings: caterpillars, < Sm,n : Pm+1 >, and the
graphs obtained from P2m and 2m copies of K1,n by identifying a leaf of ith copy of K1,n

with ith vertex of P2m. They further establish that if T is a Tp-tree, then T �K1, T �K2,
and, when T has an even number of vertices, T �Kn (n ≥ 3) are super mean graphs.

Gopi [914] calls a graph G with p vertices and q edges a F -root square mean graph if
there is a injective function f from the vertices of V (G) to {1, 2, . . . , q + 1} such that for
each edge uv the induced function f ∗(uv) = b

√
(f(u)2 + f(v)2)/2c is bijective. He proved

that triangular snakes Tn (n ≥ 2), A(Tn) (n ≥ 3), D(Tn) (n ≥ 2), quadrilateral snakes,
A(Qn), D(Qn) (n ≥ 3) are F -root square mean graphs.

Kannan, Vikrama Prasad, and Gopi [1332] call a graph G with p vertices and q
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edges a super root mean graph if there is an injective function f from the vertices
of G to {1, 2, . . . , p + q} such that for each edge uv the induced function f ∗(uv) =
b
√

(f(u)2 + f(v)2)/2c or f ∗(uv) = d
√

(f(u)2 + f(v)2)/2e yields the set of vertex labels
and edge labels {1, 2, . . . , p + q}. They proved the following are super root square mean
graphs: Pm∪Pm (m,n ≥ 3); Pm∪(Pn ·K1) (m,n ≥ 3); (Pm ·K1)∪(Pn ·K1) (m,n ≥ 3); the
union of a path and a triangular snake; and the union of Pn ·K1 and a triangular snake.
Gopi and Kalaiyarasi [916] prove that the following graphs have a super root square mean
labeling: P 2

n (n ≥ 4), slanting ladders SLn(n ≥ 3), triangular snakes with a pendent edge
attached to each vertex, and quadrilateral snakes with a pendent edge attached to each
vertex.

Let G be a graph and let f : V (G) → {1, 2, . . . , n} be a function such that the label
of the edge uv is (f(u) + f(v))/2 or (f(u) + f(v) + 1)/2 according as f(u) + f(v) is even
or odd and f(V (G)) ∪ {f ∗(e) : e ∈ E(G)} ⊆ {1, 2, . . . , n}. If n is the smallest positive
integer satisfying these conditions together with the condition that all the vertex and edge
labels are distinct and there is no common vertex and edge labels, then n is called the
super mean number of a graph G and it is denoted by Sm(G). Nagarajan, Vasuki, and
Arockiaraj [1827] proved that for any graph of order p, Sm(G) ≤ 2p − 2 and provided an
upper bound of the super mean number of the graphs: K1,n n ≥ 7; tK1,n, n ≥ 5, t > 1;
the bistar B(p, n), p > n; the graphs obtained by identifying a vertex of Cm and the center
of K1,n, n ≥ 5; and the graphs obtained by identifying a vertex of Cm and the vertex of
degree 1 of K1,n. They also gave the super mean number for the graphs Cn, tK1,4, and
B(p, n) for p = n and n+ 1.

Manickam and Marudai [1695] defined a graph G with q edges to be an odd mean
graph if there is an injective function f from the vertices of G to {1, 3, 5, . . . , 2q − 1}
such that when each edge uv is labeled with (f(u) + f(v))/2 if f(u) + f(v) is even, and
(f(u) + f(v) + 1)/2 if f(u) + f(v) is odd, then the resulting edge labels are distinct.
Such a function is called a odd mean labeling. For integers a and b at least 2, Vasuki
and Nagarajan [2711] use P b

a to denote the graph obtained by starting with verticies
y1, y2, . . . , ya and connecting yi to yi+1 with b internally disjoint paths of length i+ 1 for
i = 1, 2, . . . , a − 1 and j = 1, 2, . . . , b. For integers a ≥ 1 and b ≥ 2 they use P b

〈2a〉 to
denote the graph obtained by starting with verticies y1, y2, . . . , ya+1 and connecting yi to
yi+1 with b internally disjoint paths of length 2i for i = 1, 2, . . . , a and j = 1, 2, . . . , b. They
proved that the graphs P2r,m, P2r+1,2m+1, and Pm

〈2r〉 are odd mean graphs for all values of
r and m.

Jeyanthi and Gomathi [1141] proved the edge linked cyclic snake EL(kCn) (n ≥ 6) is
an odd mean graph. In [1141] they constructed new families of odd mean graphs from
linking existing odd mean graphs.

For a Tp-tree T with m vertices T@Pn is the graph obtained from T and m copies
of Pn by identifying one pendent vertex of ith copy of Pn with ith vertex of T . For a
Tp-tree T with m vertices T@2Pn is the graph obtained from T by identifying the pendent
vertices of two vertex disjoint paths of equal lengths n − 1 at each vertex of T . Ramya,
Selvi and Jeyanthi [2093] prove that Pm �Kn (m ≥ 2, n ≥ 1) is an odd mean graph, Tp
trees are odd mean graphs, and, for any Tp tree T , the graphs T@Pn, T@2Pn, 〈T õK1,n〉
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are odd mean graphs.
For a Tp-tree T with m vertices let T ôCn denote the graph obtained from T and m

copies of Cn by identifying a vertex of ith copy of Cn with ith vertex of T and T õCn denote
the graph obtained from T and m copies of Cn by joining a vertex of ith copy of Cn with
ith vertex of T by an edge. In [1237] Selvi, Ramya, and Jeyanthi prove that for a Tp tree
T the graphs T ôCn (n > 3, n 6= 6) and T õCn, (n > 3, n 6= 6) are odd mean graphs.

Ramya, Selvi, and Jeyanthi [2092] prove that for a Tp-tree T the following graphs are
odd mean graphs: T@Pn, T@2Pn, Pm�Kn, and the graph obtained from T and m copies
of K1,n by joining the central vertex of ith copy of K1,n with ith vertex of T by an edge.

For a graph G and some fixed vertex v of G, Pooranam, Vaski, and Suganthi [2008]
proved the following graphs have odd mean labelings: graphs obtained from a path Pm :
u1u2 · · ·um and G by joining ui to v to the ith copy of G. Their results include the cases
where G = C4n, a star, or the cube Q3. For a graph G and some fixed vertex v of G
they also proved the existence of odd mean labelings for graphs obtained from a path
Pm : u1u2 · · ·um and G by identitying ui with v in the ith copy of G, where G is Q3 or
C

(2)
4n and v is the vertex of C

(2)
4n of degree 4.

A graph G is said to be vertex odd mean graphvertex odd mean if there exist an
injective function f : V (G) to {1, 3, 5, . . . , 2|E(G)|−1} such that the induced mapping f ∗ :
E(G) to the set of positive integers defined by f ∗(uv) = (f(u)+f(v))/2 is injective. Such a
function is called a vertex odd mean labeling. A graph G is called a vertex even mean graph
if there exist an injective function f : V (G) to {2, 4, 6, . . . , 2|E(G)|} such that the induced
mapping f ∗ : E(G) to the set of positive integers defined by f ∗(uv) = (f(u) + f(v))/2
is injective. Such a function is called a vertex even mean labeling. A bijective mapping
f : V (G) to {0, 1, 2, . . . , |V (G)| − 1} is said to be a square sum labeling if the induced
function f ∗ from E(G) to the positive integers defined by f ∗(xy) = (f(x)2 + (f(y))2 is
injective. A graph that has a square sum labeling is called a square sum graph. Maheswari
and Srividya [1685] proved that every cycle Cn (n ≥ 6) with parallel P3 chords admit a
vertex odd mean labeling, a vertex even mean labeling, and a square sum labeling. In
[1684] they proved that the following graphs are square sum graphs: cycles with parallel
chords, graphs obtained by attaching an arbitrary number of pendant edges at a vertex of
degree 2 of a cycle with parallel chords, duplication of a vertex of degree 2 of a cycle with
parallel chords, crowns with parallel chords, chains of even cycles with parallel chords,
and graphs obtained from copies of Cn by joining a vertex from each copy of Cn to a
common vertex.

Gayathri and Amuthavalli [840] (see also [150]) say a (p, q)-graph G has a (k, d)-odd
mean labeling if there exists an injection f from the vertices of G to {0, 1, 2, . . . , 2k −
1 + 2(q − 1)d} such that the induced map f ∗ defined on the edges of G by f ∗(uv) =
d(f(u)+f(v))/2e is a bijection from edges of G to {2k−1, 2k−1+2d, 2k−1+4d, . . . , 2k−
1 + 2(q − 1)d}. When d = 1 a (k, d)-odd mean labeling is called k-odd mean. For n ≥ 2
they prove the following graphs are k-odd mean for all k: Pn; combs Pn � K1; crowns
Cn � K1 (n ≥ 4); bistars Bn,n; Pm � Kn (m ≥ 2); Cm � Kn; K2,n; Cn except for
n = 3 or 6; the one-point union of Cn (n ≥ 4) and an endpoint of any path; grids
Pm × Pn (m ≥ 2); (Pn × P2) �K1; arbitrary unions of paths; arbitrary unions of stars;
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arbitrary unions of cycles; the graphs obtained by joining two copies of Cn (n ≥ 4) by
any path; and the graph obtained from Pm × Pn by replacing each edge by a path of
length 2. They prove the following graphs are not k-odd mean for any k: Kn; Kn with
an edge deleted; K3,n (n ≥ 3); wheels; fans; friendship graphs; triangular snakes; Möbius
ladders; books K1,m×P2 (m ≥ 4); and webs. For n ≥ 3 they prove K1,n is k-odd mean if
and only if k ≥ n− 1. Gayathri and Amuthavalli [841] prove that the graph obtained by
joining the centers of stars K1,m and K1,n are k-odd mean for m = n, n+ 1, n+ 2 and not
k-odd mean for m > n + 2. For n ≥ 2 the following graphs have a (k, d)-mean labeling
[862]: Cm ∪ Pn (m ≥ 4) for all k; arbitrary unions of cycles for all k; P2m; P2m+1 for
k ≥ d; (P2m+1 is not (k, d)-mean when k < d); combs Pn �K1 for all k; K1,n for k ≥ d;
K2,n for k ≥ d; bistars for all k; nC4 for all k; and quadrilateral snakes for k ≥ d.

In [2249] Seoud and Salim [2250] proved that a graph has a k-odd mean labeling if
and only if it has a mean labeling. In [2249] Seoud and Salim give upper bounds of the
number of edges of graphs with a (k, d)-odd mean labeling

Pricilla [2038] defines an even mean labeling of a graphG as an injective function f from
the verticies of G to {2, 4, . . . , 2|E(G)|} such that the edge labels given by (f(u)+f(v))/2
are distinct. Vaidya and Vyas [2694] proved that D2(Pn), M(Pn), T (Pn), S ′(Pn), P 2

n , P 3
n ,

switching of pendent vertex in Pn, S ′(Bn,n), double fans, and duplicating each vertex by
an edge in paths are even mean graphs.

Gayathri and Gopi [849] defined a graph G with q edges to be an k-even mean graph
if there is an injective function f from the vertices of G to {0, 1, 2, . . . , 2k + 2(q − 1)}
such that when each edge uv is labeled with (f(u) + f(v))/2 if f(u) + f(v) is even, and
(f(u) + f(v) + 1)/2 if f(u) + f(v) is odd, then the resulting edge labels are {2k, 2k +
2, 2k+4, . . . , 2k+2(q−1)}. Such a function is called a k-even mean labeling. In [849] they
proved that the graphs obtained by joining two copies of Cn with a path Pm are k-even
mean for all k and all m,n ≥ 3 when n ≡ 0, 1 (mod 4) and for all k ≥ 1, m ≥ 7, and
n ≥ 3. In [851] Gayathri and Gopi proved that various graphs obtained by joining two
copies of stars K1,m and K1,n with a path by identifying the one endpoint of the path with
the center of one star and the other endpoint of the path with the center of the other star
are k-even mean. In [850] they proved that various graphs obtained by appending a path
to a vertex of a cycle are k-even mean. In [852] they proved that Cn ∪Pm, n ≥ 4, m ≥ 2,
is k-even mean for all k. Gayathri and Gopi [855] proved the following are k-even mean
graphs: shadow graphs of stars with at least 3 vertices; edge duplication graphs of cycles
with at least 4 vertices; and vertex duplication graphs of paths and cycles with at least 4
vertices.

Gayathri and Gopi [853] say graph G with q edges has a (k, d)-even mean labeling if
there exists an injection f from the vertices of G to {0, 1, 2, . . . , 2k+ 2(q− 1)d} such that
the induced map f ∗ defined on the edges of G by f ∗(uv) = (f(u) + f(v))/2 if f(u) + f(v)
is even and f ∗(uv) = (f(u) + f(v) + 1)2 if f(u) + f(v) is odd is a bijection from edges
of G to {2k, 2k + 2d, 2k + 4d, . . . , 2k + 2(q − 1)d}. A graph that has a (k, d)-even mean
labeling is called a (k, d)-even mean graph. They proved that Pm ⊕ nK1(m ≥ 3, n ≥ 2)
has a (k, d)-even mean labeling in the following cases: all (k, d) when m is even; all (k, d)
when m is odd and n is odd; and m is odd, n is even and k ≥ d.
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Kalaimathy [1267] investigated conditions under which a mean labeling for a graph
G will yield a (k, d)-even mean labeling for G and vice versa. He also gave conditions
under which two graphs that have (1, 1)-mean labelings can be joined by an single edge
to obtain a new graph that has a (1, 1)-even mean labeling. Gopi’s Ph. D. thesis [911]
has a large number of results about mean, k-mean, k-odd mean, k-even mean, (k, d)-odd
mean , and (k, d)-mean labelings.

A (p, q)-graph is said to have an even vertex odd mean labeling if there exists an
injective function f from V (G) to {0, 2, 4, . . . , 2q − 2, 2q} such that the induced map
f ∗ : E(G) to {1, 3, 5, . . . , 2q − 1} defined by f ∗(uv) = (f(u) + f(v))/2 is a bijection.
A graph that admits an even vertex odd mean labeling is called an even vertex odd
mean graph. Kannan, Vikrama Prasad, Gopi [1333] proved the following graphs have an
even vertex odd mean labeling: slanting ladders SLn(n ≥ 3); double triangular snakes;
alternative double triangular snakes; graphs obtained by starting with a tree G with
at least 3 vertices and a mean labeling and a copy G′ of G by joining each vertex of
G to its corresponding vertex in G′ with an edge; graphs obtained by starting with a
path v1v2 · · · vn (n ≥ 4) and joining v1 and v3 to an isolated vertex; graphs obtained by
starting with a path v1v2 · · · vn (n ≥ 4) and appending two edges to each of v2, v3, . . . , vn−1;
and graphs obtained from a quadrilateral snake and appending an edge at each vertex.
The H-graph of a path Pn is the graph obtained from two copies of Pn with vertices
v1, v2, . . . , vn and u1, u2, . . . , un by joining the vertices vn/2+1 and un/2+1 by an edge if
n is odd and the vertices v(n+1)/2 and u(n/2 by an edge if n is even. Kannan, Vikrama
Prasad, and Gopi [1334] prove that the H-graph of Pn (n ≥ 3) and the graph H � K1

have even vertex odd mean labelings where H is the H graph of Pn (n ≥ 3). In [1335]
and [1336] Kannan, Vikrama Prasad, and Gopi proved the following are even vertex odd
mean graphs: graphs obtanied by joining the centers of two stars K1,m and K1,n by a path
Pt (m,n, t ≥ 2), graphs obtained by duplicating an edge of Cn (n ≥ 4), graphs obtained
by joining each endpoint of P3 to n isolated vertices, shadow graphs of stars, shadow
graphs of bistars B(n, n), mirror graphs of paths, and the graphs obtained taking two
copies of Pn × P2 and joining each vertex of one with the matching vertex in the other
with an edge. Prasad, Kannan, and Gopi [2036] proved that C4m �K1,4n, Pm � Pn, and
K2 +Kn have even vertex odd mean labelings. In [2030] Prajapati and Raval proved that
quadrilateral snakes, pentagonal snakes, and alternating quadrilateral snakes are vertex
even and odd mean graphs. They also proved that even vertex odd mean graphs are even
mean graphs. Jeyanthi, Ramya, and Selvi [1211] prove that TP -trees (transformed trees),
T@Pn, T@2Pn, and 〈T ôK1,n〉 (where T is a TP tree) are even vertex odd mean graphs.

For a graph G(V,E) a bijection f from V (G)∪E(G) onto {1, 2, . . . , |V (G)|+ |V (E)|}
is said to be a total mean labeling if the values of f ∗(uv) = d(f(u) + f(v) + f(uv))/3e
taken over all edges are distinct. A graph G is said to be a total mean labeling graph
if it admits a total mean labeling. Karuppasamy and Kaleeswari [1343] proved that
Pn, P

+
n , K1,n, K2,n, Cn, Bm,n, triangular snakes, and alternate triangular snakes are total

mean labeling graphs.
Murugan and Subramanian [1799] say a (p, q)-graph G has a Skolem difference mean

labeling if there exists an injection f from the vertices of G to {1, 2, . . . , p+ q} such that
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the induced map f ∗ defined on the edges of G by f ∗(uv) = (|f(u)−f(v)|)/2 if |f(u)−f(v)|
is even and f ∗(uv) = (|f(u)− f(v)|+ 1)/2 if |f(u) + f(v)| is odd is a bijection from edges
of G to {1, 2, . . . , q}. A graph that has a Skolem difference mean labeling is called a
Skolem difference mean graph. They show that the graphs obtained by starting with two
copies of Pn with vertices v1, v2, . . . , vn and u1, u2, . . . , un and joining the vertices v(n+1)/2

and u(n+1)/2 if n is odd and the vertices vn/2+1 and un/2 if n is even are Skolem difference
mean. Parmar and Vaghela [1898] proved the following graphs have Skolem difference
mean labelings: brooms Bn,d (n ≥ 4, d ≥ 2) (the graph with n vertices obtained from Pd
by appending n−d edges at an endpoint), combs Pn�K1 (n ≥ 2), K1,m∪K1,n (m,n ≥ 2),
and K1,3∗K1,n (n ≥ 2) obtained from K1,3 by attaching root of a star K1,n at each pendent
vertex of K1,3. Jeyanthi [1132] proved ∪Pni

(ni ≥ 2); ∪ K1,ni
(ni ≥ 2); Cn ∪ Pm (n ≥

3,m ≥ 2); Km,n ∪ (m− 1)(n− 1)K2; and K1,1,n ∪ (n− 1)K2 are Skolem difference mean
graphs. She also proved that if G is a Skolem difference mean graph, then G ∪ nK2 is a
Skolem difference mean graph.

Let L0, L1, . . . denote the sequence of Lucas numbers. In [1936] Ponmoni, Navaneetha
Krishnan, and Nagarajan introduce the following graph labeling method. A graph G with
p vertices and q edges is said to have a Skolem difference Lucas mean labeling if there is
an injective function f from the vertices to {1, 2, . . . , Lp+q} such that when the edge uv
is labeled with |f(u)− f(v)|/2 if |f(u)− f(v)| is even, and (|f(u)− f(v)|+ 1)/2 if |f(u)−
f(v)| is odd, then the resulting edge labels are distinct and belong to {L1, L2, . . . Lq}. A
graph that admits a Skolem difference Lucas mean labeling is called a Skolem difference
Lucas mean graph. They proved the graphs obtained from K1,m by identifying the center
of K1,n with the endpoint of each non-center vextex of K1,m, bistars, K1,m � 2Pn and

〈K(1)
1,n, K

(2)
1,n, . . . , K

(m)
1,n 〉 are Skolem difference Lucas mean graphs.

Selvi, Ramya, and Jeyanthi [2209] prove that Cn@Pn (n ≥ 3, m ≥ 1), Kn(n ≤ 3),
the shrub St(n1, n2, · · · , nm), and the banana tree Bt(n, n, . . . , n) are Skolem difference
mean graphs. They show that if G is a (p, q) graph with q > p then G is not a Skolem
difference mean graph and prove that Kn (n ≥ 4) is not a Skolem difference mean graph.
A skolem difference mean labeling for which all the labels are odd is called an extra Skolem
difference mean labeling. They also prove that the graph T 〈K1,n1 : K1,n2 : · · · : K1,nm〉,
obtained from the stars K1,n1 , K1,n2 , . . ., K1,nm by joining the central vertex of K1,nj

and
K1,nj+1

to a new vertex wj for 1 ≤ j ≤ m−1 and the graph T 〈K1,n1 ◦K1,n2 ◦ · · · ◦K1,nm〉,
obtained from K1,n1 , K1,n2 , . . ., K1,nm by joining a leaf of K1,nj+1

to a new vertex wj for
1 ≤ j ≤ m − 1 by an edge are extra Skolem difference mean graphs. Jeyanthi, Selvi,
and Ramya [1235] proved that the union of any number of paths, any number of stars,
G ∪ nK2 where G is an extra Skolem difference mean tree, Cn ∪ Pm (n ≥ 3,m ≥ 2),
Km,n ∪ (m− 1)(n− 1)K2, and K1,1,n ∪ (n− 1)K2 have Skolem difference mean labelings.

Let G(V,E) be a graph with p vertices and q edges. Ramya, Kalaiyarasi, and Jeyanthi
[2090] say G is a Skolem odd difference mean if there exists an injective function f :
V (G)→ {0, 1, 2, 3, . . . , p+3q−3} such that the induced map f ∗ : E(G)→ {1, 3, 5, . . . , 2q−
1} denoted by f ∗(uv) = d|f(u) − f(v)|/2e is a bijection. A graph that admits a Skolem
odd difference mean labeling is called a odd difference mean graph. They prove that Pn,
Cn (n ≥ 4), K1,n, Pn � K1,n, coconut trees T (n,m) obtained by identifying the central
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vertex of the star K1,m with a pendent vertex of Pn, Bm,n, caterpillars S(n1, n2, . . . , nm),
Pm@Pn and Pm@2Pn are Skolem odd difference mean graphs. (Pm@Pn is obtained from
Pm and m copies of Pn by identifying one pendent vertex of the i-th copy of Pn with the
i-th vertex of Pm; Pm@2Pn is defined analogously.) They establish that Kn, n > 3 and
K2,n (n ≥ 3) are not Skolem odd difference mean graphs. They also prove that K2,n is a
Skolem odd difference mean graph if n ≤ 2. In [1159] Jeyanthi, Kalaiyarasi, Ramya, and
Saratha Devi prove that bistars B(m,n), mPn, mPn ∪ tPs, mK1,n ∪ tK1,s and the graph
〈PmõSn〉 obtained from Pm and m copies of K1,n by joining the central vertex of ith copy
of K1,n with ith vertex of Pm by an edge admit Skolem odd difference mean labelings.
They also prove that if G(p, q) is a Skolem odd differences mean graph then p ≥ q and
that wheels, umbrellas, books, and ladders are not Skolem odd difference mean graphs.
They call a Skolem odd difference mean labeling a Skolem even vertex odd difference mean
labeling if all the vertex labels are even. They prove that Pn, K1,n, Pn �K1, the coconut
tree T (n,m) obtained by identifying the central vertex of K1,m with a pendent vertex of a
path Pn, B(m,n), caterpillars S(n1, n2, . . . , nm), Pm@Pn are Pm@2Pn are even vertex odd
difference mean and Cn is not a Skolem even vertex odd difference mean graph. In [1269]
Kalaiyarasi, Ramya, and Jeyanthi prove the following graphs have Skolem odd difference
mean labelings: graphs obtained from a Tp tree with m vertices and m copies of K1,n by
identifying the central vertex of ith copy of K1,n, with ith vertex of T ; graphs obtained by
connecting an isolated vertex to central vertex of each of a number of stars; the banana
trees obtained by connecting an isolated vertex to one leaf of each of any number of K1,n;
graphs obtained from K1,n1 , K1,n2 , . . . , K1,nm by joining the central vertices of K1,nj

and
K1,nj+1

to a new vertex wj for 1 ≤ j ≤ m−1; graphs obtained from K1,n1 , K1,n2 , . . . , K1,nm

by joining a leaf of K1,nj
and a leaf of K1,nj+1

to a new vertex wj for 1 ≤ j ≤ m− 1.
Lau, Jeyanthi, Ramya, and Kalaiyarasi [1467] say a (p, q)-graph G(V,E) is a Skolem

even difference mean if there exists an injective function f : V (G) → {0, 1, 2, 3, . . . , p +
3q − 1} such that the induced map f ∗ : E(G) → {2, 4, . . . , 2q} defined by f ∗(uv) =
d|f(u) − f(v)|/2e is a bijection. A graph that admits a Skolem even difference mean
labeling is called a even difference mean. They prove: the disjoint union of paths of length
at least 2 and K2,n∪(n−1)K2 (n ≥ 2) are Skolem even vertex odd difference mean graphs;
if G is a Skolem even vertex odd difference mean (q + 1, q)-graph, then G∪ nK2, G∪ Pn,
and G ∪K1,n are Skolem odd difference mean graphs; Cm ∪ Pn (n ≥ 2) is a Skolem odd
difference mean graph for m = 4 and 6; the caterpillar S(n1, n2, . . . , nm) is a Skolem even
vertex even difference mean graph; Pm@Pn, mPn, Km,n ∪ (m − 1)(n − 1)K2 (m,n ≥ 2),
K1,n∪nK2, and K1,1,n∪nK2 are Skolem even difference mean graphs; and if G is a Skolem
even vertex even difference mean (q+1, q)-graph, then G∪nK2 is a Skolem even difference
mean graph. They conclude with the following open problem: Establish that G ∪ nK2

where G is a (complete) multipartite graph is a Skolem even difference mean graph.
Kalaiyarasi, Ramya, and Jeyanthi [1268] say a graph G(V,E) with p vertices and q

edges has a centered triangular mean labeling if it is possible to label the vertices with
distinct elements f(x) from S, where S is a set of non-negative integers in such a way
that for each edge e = uv, f ∗(e) = d(f(u) + f(v))/2e and the resulting edge labels are
the first q centered triangular numbers. A graph that admits a centered triangular mean
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labeling is called a centered triangular mean graph. They prove that Pn, K1,n, bistars
Bm,n, coconut trees, caterpillars S(n1, n2, n3, . . . , nm), St(n1, n2, n3, . . . , nm), banana
trees Bt(n, n, . . . , n) and Pm@Pn are centered triangular mean graphs.

Selvi, Ramya, and Jeyanthi [2208] define a triangular difference mean labeling of a
graph G(p, q) as an injection f : V −→ Z+, such that when the edge labels are defined
as f ∗(uv) = d|f(u)− f(v)|/2e the values of the edges are the first q triangular numbers.
A graph that admits a triangular difference mean labeling is called a triangular differ-
ence mean graph. They prove that the following are triangular difference mean graphs:
Pn, K1,n, Pn �K1, bistars Bm,n, graphs obtained by joining the roots of different stars
to the new vertex, trees T (n,m) obtained by identifying a central vertex of a star with a
pendent vertex of a path, the caterpillar S(n1, n2, . . . , nm) and the graph Cn@Pm.

A graph G(V,E) with p vertices and q edges is said to have centered triangular dif-
ference mean labeling if there is an injective mapping f from V to Z+ such that the
edge labels induced by f ∗(uv) = d|f(u) − f(v)|/2e are the first q centered triangu-
lar numbers. A graph that admits a centered triangular difference mean labeling is
called a centered triangular difference mean graph. Ramya, Selvi, and Jeyanthi [1238]
prove that Pn, K1,n, Cn � K1, bistars Bm,n, Cn (n > 4), coconut trees, caterpillars
S(n1, n2, n3, . . . , nm), Cn@Pm (n > 4) and Sm,n are centered triangular difference mean
graphs.

Gayathri and Tamilselvi [862] say a (p, q)-graph G has a (k, d)-super mean labeling if
there exists an injection f from the vertices of G to {k, k+d, . . . , k+(p+q)d} such that the
induced map f ∗ defined on the edges of G by f ∗(uv) = d(f(u)+f(v))/2e has the property
that the vertex labels and the edge labels together are the integers from k to k+ (p+ q)d.
When d = 1 a (k, d)-super mean labeling is called k-super mean. For n ≥ 2 they prove the
following graphs are k-super mean for all k: odd cycles; Pn; Cm∪Pn; the one-point union
of a cycle and the endpoint of Pn; the union of any two cycles excluding C4; and triangular
snakes. For n ≥ 2 they prove the following graphs are (k, d)-super mean for all k and d:
Pn; odd cycles; combs Pn �K1; and bistars. In [1214] Jeyanthi, Ramya, and Thangavelu
proved the following graphs have k-super mean labelings: C2n, C2n+1×Pm, grids Pm×Pn
with one arbitrary crossing edge in every square, and antiprisms on 2n vertices (n > 4).
(Recall an antiprism on 2n vertices has vertex set {x1,1, . . . , x1,n, x2,1, . . . , x2,n} and edge
set {xj,i, xj,i+1}∪{x1,i, x2,i}∪{x1,i, x2,i−1} where subscripts are taken modulo n). Jeyanthi,
Ramya, Thangavelu [1213] give k-super mean labelings for a variety of graphs. Jeyanthi,
Ramya, Thangavelu, and Aditanar [1212] show how to construct k-super mean graphs
from existing ones. For n ≥ 3 Gayathri and Tamilselvi [862] proved the following graphs
are k-super edge mean for all k: paths; cycles; combs Pn �K1; triangular snakes; crowns
Cn �K1; the one-point union of C3 and an endpoint of Pn; and Pn �K2.

In [2179] Sandhya, Somasundaram, and Ponraj call a graph with q edges a harmonic
mean graph if there is an injective function f from the vertices of the graph to the integers
from 1 to q + 1 such that when each edge uv is labeled with d2f(u)f(v)/(f(u) + f(v))e
or b2f(u)f(v)/(f(u) + f(v))c the edge labels are distinct. They prove the following
graphs have such a labeling: paths, ladders, triangular snakes, quadrilateral snakes, Cm∪
Pn (n > 1); Cm ∪ Cn; nK3; mK3 ∪ Pn (n > 1); mC4; mC4 ∪ Pn; mK3 ∪ nC4; and
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Cn � K1 (crowns). They also prove that wheels, prisms, and Kn (n > 4) with an edge
deleted are not harmonic mean graphs. In [2177] Sandhya, Somasundaram, and Ponraj
investigated the harmonic mean labeling for a polygonal chain, square of the path and
dragon and enumerate all harmonic mean graph of order at most 5. In [1109] Jayasekaran
and David Raj prove that some disconnected graphs are harmonic mean graphs. In
[2060] Raj, Jayasekaran, and Sandhya investigate some new families of harmonic mean
graphs. Seoud and Salim [2254] provided upper bounds of the number of edges of graphs
of given orders with harmonic mean labelings and showed that all graphs of order at most
9 have have harmonic mean labelings using the floor function portion of the definition.
Meena and Sivasakth [1736] prove that subdivision graphs of Pn�K1, Pn�K2, H-graphs,
Cn �K1, Cn �K2, quadrilateral snakes, and triangular snakes are harmonic mean.

Sandhya, Somasundaram, and Ponraj [2178] proved that the following graphs have
harmonic mean labelings: graphs obtained by duplicating an arbitrary vertex or an arbi-
trary edge of a cycle; graphs obtained by joining two copies of a fixed cycle by an edge;
the one-point union of two copies of a fixed cycle; and the graphs obtained by starting
with a path and replacing every other edge by a triangle or replacing every other edge by
a quadrilateral.

Vaidya and Barasara [2612] proved that the following graphs have harmonic mean
labelings: graphs obtained by the duplication of an arbitrary vertex or arbitrary edge of
a path or a cycle; the graphs obtained by the duplication of an arbitrary vertex of a path
or cycle by a new edge; and the graphs obtained by the duplication of an arbitrary edge
of a path or cycle by a new vertex.

In [1833] Narasimhan and Sampathkumar called a graph with p vertices a contra
harmonic mean graph if there is an injective function f from the vertices of the graph to
the integers from 1 to p such that when each edge uv is labeled with f(uv) = d(f(u))2 +
(f(v))2/(f(u) + f(v))e or f(uv) = b(f(u))2 + (f(v))2/(f(u) + f(v))c the edge labels are
distinct. They prove the following graphs have such a labeling: paths, cycles, Cm ∪
Pn, Cm ∪ Cn, nK3, nK3 ∪ Pm, and nK3 ∪ Cm. Gopi [915] called a graph with q edges
a k-contra harmonic mean graph if there is an bijective function f from the edges of
the graph to the integers from k − 1 to k + q + 1 such that each edge uv is labeled with
f(uv) = d(f(u))2+(f(v))2/(f(u)+f(v))e or f(uv) = b(f(u))2+(f(v))2/(f(u)+f(v))c. He
proves that triangular snakes, double triangular snakes, quadrilateral snakes, and double
quadrilateral snakes have k-contra harmonic mean labelings.

Gopi and Suba [919] say a graph G with p verticies and q edges is a super Lehmer-3
mean graph if there is an injective function f from the vertices of G to {1, 2, . . . , q+1} such
that for each edge uv the induced function f ∗(uv) = b(f(u)3 + f(v)3)/(f(u)2 + f(v)2)c or
f ∗(uv) = d(f(u)3 + f(v)3)/(f(u)2 + f(v2))e yields the set of vertex labels and edge labels
being {1, 2, . . . , p}. They prove that Pm�K1,n and the graph obtained by identifying each
endpoint of a path with an endpoint of the star K1,n have a super Lehmer-3 labeling. In
[918] Gopi and Nirmala provide Lehmer-3 mean labelings for Pm � Cn (m,n ≥ 3) and
Pm �K1 � Cn (m,n ≥ 3).

An F -geometric mean labeling of a graph G with q edges, is an injective function
from the vertex set of G to {1, 2, . . . , q + 1} such that the edge labels obtained from the
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floor function of geometric mean of the vertex labels of the end vertices of each edge,
are all distinct and the set of edge labels is {1, 2, . . . , q}. Durai Baskar, Arockiaraj,
and Rajendran [700] proved that the following graphs are F -geometric mean: graphs
obtained by identifying a vertex of consecutive cycles (not necessarily of the same length)
in a particular way; graphs obtained by identifying an edge of consecutive cycles (not
necessarily of the same length) in a particular way; graphs obtained by joining consecutive
cycles (not necessarily of the same length) by paths (not necessarily of the same length)
in a particular way; Cn �K1; Pn �K1; Ln �K1; G�K1 where G is the graph obtained
by joining two copies of Pn by an edge in a particular way; graphs obtained by appending
two edges at each vertex of graphs obtained by joining two copies of Pn by an edge in
a particular way; graphs obtained from Cn by appending two edges at each vertex of
Cn; graphs obtained from ladders by appending two edges at each vertex of the ladders;
graphs obtained from Pn by appending an end point of the star S2 to each vertex of Pn;
and graphs obtained from Pn by appending an end point of the star S3 to each vertex of
Pn.

A C-geometric mean labeling of a graph G with q edges, is an injective function from
the vertex set of G to {1, 2, 3, . . . , q + 1} such that the edge labels obtained from the
ceiling function of the geometric mean of the vertex labels of the end vertices of each
edge are all distinct and the set of edge labels is {2, 3, 4, . . . , q + 1}. A graph is said to
be a C-geometric mean graph if it admits a C-geometric mean labeling. In [702] Durai
Baskar and Arockiaraj study the C-geometric meanness of some cycle related graphs such
as cycle, union of a path and a cycle, unions of two cycles, the graphs C3 × Pn, corona of
cycle, the graphs Pa,b, P

a
b and some chain graphs.

A geometric mean labeling f of G(V,E) is called a super geometric mean labeling if
f(V )∪f(E) = {1, 2, . . . , |V |+|E|}. Sandhya, Merly, and Shiny [2174] [2175] prove that the
subdivision graphs of the following graphs have super geometric mean labelings: alternate
quadrilateral snakes, double quadrilateral snakes, alternate double quadrilateral snakes,
triple quadrilateral snakes, and subdivisions of alternate triple quadrilateral snakes. In
[2176] they prove that the following graphs have super geometric mean labelings: tri-
angular ladders, triangular snakes, alternate triangular snakes, quadrilateral snakes, and
alternate quadrilateral snakes. Hemalatha and Selvi [1008] prove that following graphs
have super geometric mean labelings: flags, kayak paddles, dumbells, polygonal snakes,
and graphs obtained by connecting any number of copies of Cn where each joined to the
next with an edge.

Durai Basker and Arockiaraj [699] study the F -geometric meanness of cycles, stars,
complete graphs, combs, ladders, triangular ladders, middle graphs of paths, graphs ob-
tained from duplicating arbitrary vertex by a vertex as well as arbitrary edge by an edge
in cycles, and subdivisions of combs and stars.

Arockiaraj and Meena Kumari introduced the F-Face magic mean labeling of graphs in
[700]. This motivated Meena Kumari and Arockiaraj [1734] to introduce the (1,0,0)-F-face
magic mean labeling of graphs as follows. A bijection φ from V (G) to {1, 2, . . . , |V (G)|}
is called a (1,0,0)-F-face magic mean labeling of G if the induced face labeling φ∗(fi) =
b(sum of the labels of the vertices in the boundary of fi)/deg(fi)c is a constant for each
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face fi, including the exterior face of G, where deg fi is the number of edges that bound
the face. A graph that admits an (1,0,0)-F-Face magic mean labeling is called (1,0,0)-F-
face magic mean. In [1734] Arockiaraj and Meena Kumar showed that Pn +K1 (n ≥ 2),
cycles with certain cords, Cm × Pn where m and n are even, and graphs obtained by
duplicating every edge of a cycle by a vertex admit (1,0,0)-F-Face magic mean labelings.

In [2541] Sundaram, Ponraj, and Somasundaram introduced a new labeling parameter
called the mean number of a graph. Let f be a function from the vertices of a graph to
the set {0, 1, 2, . . . , n} such that the label of any edge uv is (f(u) + f(v))/2 if f(u) + f(v)
is even and (f(u) +f(v) + 1)/2 if f(u) +f(v) is odd. The smallest integer n for which the
edge labels are distinct is called the mean number of a graph G and is denoted by m(G).
They proved that for a graph G with p vertices m(tK1,n) ≤ t(n + 1) + n − 4; m(G) ≤
2p−1 − 1; m(K1,n) = 2n− 3 if n > 3; m(B(p, n)) = 2p− 1 if p > n+ 2 where B(p, n) is a

bistar; m(kT ) = kp− 1 for a mean tree T , m(Wn) ≤ 3n− 1, and m(C
(t)
3 ) ≤ 4t− 1.

Let f be a function from V (G) to {0, 1, 2}. For each edge uv of G, assign the label
d(f(u) + f(v))/2e. Ponraj, Sivakumar, and Sundaram [2005] say that f is a mean cordial
labeling of G if |vf(i) − vf(j)| ≤ 1 for i and j in {0, 1, 2} where vf(x) and ef(x) denote the
number of vertices and edges labeled with x, respectively. A graph with a mean cordial
labeling is called a mean cordial graph. Observe that if the range set of f is restricted to
{0, 1}, a mean cordial labeling coincides with that of a product cordial labeling. Ponraj,
Sivakumar, and Sundaram [2005] prove the following: every graph is a subgraph of a
connected mean cordial graph; K1,n is mean cordial if and only n ≤ 2; Cn is mean cordial
if and only n ≡ 1, 2 (mod 3); Kn is mean cordial if and only n ≤ 2; Wn is not mean
cordial for all n ≥ 3; the subdivision graph of K1,n is mean cordial; the comb Pn �K1 is
mean cordial; Pn � 2K1 is mean cordial; and K2,n is a mean cordial if and only n ≤ 2.
Seoud and Salim [2254] provided upper bounds of the number of edges of graphs of given
orders with mean cordial labelings and proved that P2t × P2 is mean cordial if and only
if t ≡ 2 mod 3 and Cn �K1 is mean cordial if and only if n ≡ 1 or 2 mod 3.

In [1997] Ponraj and Sivakumar proved the following graphs are mean cordial: mG
where m ≡ 0 (mod 3); Cm ∪ Pn; Pm ∪ Pn; K1,n ∪ Pm; S(Pn � K1); S(Pn � 2K1); P 2

n if
and only if n ≡ 1 (mod 3) and n ≥ 7; and the triangular snake Tn (n > 1) if and only if
n ≡ 0 (mod 3). They also proved that if G is mean cordial then mG, m ≡ 1 (mod 3) is
mean cordial. Deshmukh and Shaikh [666] prove the graph 〈K1,n : 2〉 and the path union
of n copies of K1,m are mean cordial graphs.

In [1968] Ponraj and Sathish Narayanan proved double triangular snakes D(Tn) are
mean cordial if and only if n > 3 and obtained partial results on mean cordial labelings
of alternate triangular snakes, double alternate triangular snakes.

In [1985] Ponraj, Sathish Narayanan, and Ramasamy introduced the notion of total
mean cordial labeling. A total mean cordial labeling of a graph G(V,E) is a function
f : V (G)→ {0, 1, 2} such that when each edge xy is assigned the label d(f(x) + f(y))/2e
we have |evf (i)− evf (j)| ≤ 1, i, j ∈ {0, 1, 2}, where evf (x) denotes the total number of
vertices and edges labeled with x. A graph with a total mean cordial labeling is called total
mean cordial. In [1985], [1986], and [1987], Ponraj, Sathish Narayanan, and Ramasamy
determined the total mean cordiality of the following graphs: Pn; Cn; K1,n; Wn; K2 +
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mK1; combs Pn � K1; double combs Pn � 2K1; crowns; flowers; lotuses inside a circle;
bistars; quadrilateral snakes; K2,n; olive trees; S(Pn � K1); S(K1,n) (S(G) denotes the
subdivision of G); triangular snakes; P 2

n ; fans Fn; umbrellas; butterflies; and dumbbells.
In [1967], [1969], and [1970], Ponraj and Sathish Narayanan determined the total mean
cordiality of Kc

n + 2K2; prisms; gears; helms; P1∪P2∪ · · · ∪Pn; Ln�K1; S(Wn); S(Pn�
2K1); and graphs obtained by subdividing each step of a ladder exactly once.

Let G be a (p, q)-graph. Ponraj and Sathish Narayanan [1972] and [1973] proved the
following. If G satisfies any one of the following three conditions then G � 2K is total
mean cordial: (1) G is a tree, (2) G is a unicycle, (3) q = p+ 1. If G satisfies any one of
the following three conditions then the shadow graph of G is total mean cordial: (1) G is
a tree, (2) G is a unicycle, (3) q = p + 1. They also proved that the following are total

mean cordial graphs: Cn�K2, C
(2)
n , dragons, splitting graphs of stars, splitting graphs of

combs, books, ladders, Pn �K2 if and only if n 6= 1, and G ∪ Pn (n 6= 3).
Ponraj, Sathish Narayanan, and Kala introduced the concept of radio mean labeling

in [1982]. A radio mean labeling of a connected graph G is a one-to-one map f from
V (G) to the set of natural numbers such that for each pair of distinct vertices u and v of

G, d (u, v) +
⌈
f(u)+f(v)

2

⌉
≥ 1 + diam (G). The radio mean number of f , rmn (f), is the

maximum number assigned to any vertex of G. The radio mean number of G, rmn (G),
is the minimum value of rmn (f) taken over all radio mean labelings f of G. They proved
rmn (G) ≥ |V (G)|; if G is a (p, q)-graph with diameter d ≥ 2, then rmn (G) ≤ p+ d− 2;
and if G is a (p, q)-connected graph with diameter 2 or 3, then rmn (G) = p. They also
determine the radio mean number of Kn, Km,n, sunflowers, helms, gears, lotuses inside a
circle, and graphs obtained by identifying any two vertices of two wheels of the same size,

In [1983] and [1984] Ponraj, Sathish Narayanan, and Kala determine the radio mean

numbers of S(Km,n) (m > 1, n > 1); Km,n�Pt; C(t)
6 ; Wn�Pm; graphs obtained by joining

the rim vertices of the two wheels with an edge; and graphs obtained from a wheel by
subdividing each spoke by a vertex. In [1988] Ponraj, Sathish Narayanan, and Kala give
the radio mean number of graphs with diameter three, lotuses inside a circle, helms, and
sunflower graphs.

In [1989] and [1974] Ponraj and Sathish Narayanan give the radio mean number of the
following graphs: subdivisions of stars, subdivisions of wheels, subdivisions of K2 +mK1,
subdivisions of bistars, jelly fish, subdivisions of jelly fish, books with pentagonal pages,
graphs obtained by taking m disjoint copies of K1,n and joining a new vertex to the centers
of the m copies of K1,n.

A radio mean D-distance labeling of a connected graph G is an injective map f from
V (G) to the natural numbers such that for two distinct vertices u and v of G, dD(u, v) +
d(f(u) + f(v))/2e ≥ 1 + diamD(G), where dD(u, v) denotes the distance D between u
and v and diamD(G) denotes the D-diameter of G. The radio mean D-distance number
of f, rmnD(f), is the maximum label assigned to any vertex of G. The radio mean D-
distance number of G, rmnD(G), is the minimum value of rmnD(f) taken over all radio
mean D-distance labeling f of G. Nicholas and Bosco [1843] determined the radio mean
D-distance number of cycles, wheels, gears, helms, fans, and friendship graphs.
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In [1971] Ponraj and Sathish Narayanan proved that the following graphs are not
mean cordial: K2 + Km; Kn + 2K2; Pn ×K2; flower graphs; sunflower graphs; Cn �K2.
Also they proved the following: the Mongolian tent MTm,n is mean cordial if and only if
m ≡ 0 (mod 3) or n ≡ 0 (mod 3) (MTm,n is the graph obtained from Pm × Pn, n odd,
by adding one extra vertex above the grid and joining every other vertex of the top row
of Pm × Pn to the new vertex); the book Bm is mean cordial if and only if m = 1; books
with n pentagonal pages are mean cordial if and only if n ≡ 1 (mod 3); Pn �K2 is mean
cordial if and only if n ≡ 0 (mod 3); quadrilateral snakes are mean cordial; alternate
quadrilateral snakes A(Qn) are mean cordial if and only if the square starts from second
vertex of the path Pn, ends with (n − 1)th vertex and n ≡ 0, 2 (mod 3), or the square
starts from first vertex, ends with nth vertex and n ≡ 0, 2 (mod 3), or the square starts
from second vertex, ends with nth vertex and n ≡ 0, 1 (mod 3).

Kaneria, Khoda, and Karavadiya [1285] prove: the path union of n copies of a graph
G is a mean cordial when n ≡ 0 (mod 3); if G is balanced mean cordial, then Pn × G
and Cn ×G are balanced mean cordial; and if f : V (G) −→ {0, 1, 2} is a balanced mean
cordial labeling for G, then G∗ is also a balanced mean cordial graph.

In [1166] Jeyanthi and Maheswari define a one modulo three mean labeling of a graph
G with q edges as an injective function φ from the vertices of G to {a | 0 ≤ a ≤ 3q − 2
where a ≡ 0 (mod 3) or a ≡ 1 (mod 3)} and φ induces a bijection φ∗ from the edges of G
to {a | 1 ≤ a ≤ 3q − 2 where a ≡ 1 (mod 3)} given by φ∗(uv) = d(φ(u) + φ(v))/2e. They
proved that P2n, combs, bistars Bn,n, Tp-trees with an even number of vertices, C4n+1,
ladders, K1,2n × P2 are one modulo three mean graphs. They also proved that bistars
Bm,n (m 6= n), K1,n (n > 3), and Kn, (n > 3) are not one modulo three mean graphs.
In [1174] Jeyanthi, Maheswari, and Pandiaraj [1174] proved that DA(Qn), DA(Q2) �
nK1, DA(Qm)� nK1, DA(T2)� nK1, DA(Tm)� nK1, S(DA(Tn)), S(DA(Qn)), and mPn
are one modulo three mean graphs.

Jeyanthi, Maheswari, and Pandiaraj [1173] prove that following graphs have one mod-
ulo three mean labelings: books K1,2n × P2; splitting graphs S ′(P2n); vertex duplica-
tion graphs D(G, v′); edge duplication graphs D(G, e′); nth alternate quadrilateral snake
graphs NA(Qm); graphs obtained by joining the endpoints of paths P4m to n isolated
verticies; and extended jewel graphs EJn with vertex set {u, v, x, y, w, z, ui : 1 ≤ i ≤ n}
and edge set {uv, ux, xy, yz, vw,wz, vui, zui : 1 ≤ i ≤ n}.

For graphs G1 and G2, G1◦̂G2 is the graph obtained from G1 and |V (G1)| copies of
G2 by joining a vertex of ith copy of G2 with the ith vertex of G1 by an edge. Jeyanthi,
Maheswari, and Pandiaraj [1176] prove that the graphs T �Kn, T ◦̂ K1,n, T ◦̂ Pn, and
T ◦̂ 2Pn are one modulo three mean graphs.

A graph G is said to be one modulo three root square mean graph if there is an injective
function φ from the vertex set of G to the set {0, 1, 3, . . . , 3q−2, 3q} where q is the number
of edges of G and φ induces a bijection φ∗ from the edge set of G to {1, 4, . . . , 3q − 2}

given by φ∗(uv) =

⌈√
[φ(u)]2+[φ(v)]2

2

⌉
or

⌊√
[φ(u)]2+[φ(v)]2

2

⌋
and the function φ is called a one

modulo three root square mean labeling of G. In [1111] Jayasekaran and Jaslin Melbha
investigated some path related graphs that have one modulo three root square mean
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labelings.
Somasundaram, Vidhyarani, and Ponraj [2450] introduced the concept of a geometric

mean labeling of a graph G with p vertices and q edges as an injective function f : V (G)→
{1, 2, . . . , q + 1} such that the induced edge labeling f ∗ : E(G) → {1, 2, . . . , q} defined

as f ∗(uv) =
⌈√

f(u)f(v)
⌉

or
⌊√

f(u)f(v)
⌋

is bijective. Among their results are: paths,

cycles, combs, ladders are geometric mean graphs and Kn (n > 4) and K1,n (n > 5)
are not geometric mean graphs. Somasundaram, Vidhyarani, and Sandhya [2451] proved
Cm ∪ Pn, Cm ∪ Cn, nK3, nK3 ∪ Pn, nK3 ∪ Cm, P 2

n , and crowns are geometric mean
graphs. Vaidya and Barasara [2615] investigated geometric mean labelings in context of
duplication of graph elements in cycle Cn and path Pn. Durai Baskar, Arockiyaraj, and
Rajendran investigate the geometric meanness of some graphs obtained from paths.

In Jeyanthi, Maheswari, and Pandiaraj [1175] define a graph G to be a one modulo
three geometric mean graph if there is an injective function φ from the vertex set of
G to the set {a|1 ≤ a ≤ 3q − 2 and either a ≡ 0 (mod 3) or a ≡ 1 (mod 3)} where
q is the number of edges of G and φ induces a bijection φ∗ from the edge set of G to

{a|1 ≤ a ≤ 3q− 2 and a ≡ 1 (mod 3)} given by φ∗(uv) =
⌈√

φ(u)φ(v)
⌉

or
⌊√

φ(u)φ(v)
⌋

the function φ is called one modulo three geometric mean labeling of G. They proved
paths, cycles with length at least 5, ladders, Pn�K1, Pn�P2, Pn�P2, subdivision graphs
S(Pn �K1), and subdivision graphs S(Pn �K2) are one modulo three geometric graphs.
They also prove that K1,n (n ≥ 3) and graphs in which every edge lies on a triangle are
not one modulo three geometric mean graph.

Jeyanthi, Selvi, and Ramya [1236] define a restricted triangular difference mean label-
ing of a graph G with p vertices and q edges as an injection f : V → {1, 2, 3, . . . , pq} such
that for each edge uv, the edge labels defined by f ∗(uv) = d|f(u)−f(v)|/2e are the first q
triangular numbers. A graph that admits a restricted triangular difference mean labeling
is called a restricted triangular difference mean graph. Jeyanthi, Selvi, and Ramya [1236]
investigate the restricted triangular difference mean behaviors of the paths, combs, Kn,
bistars Bm,n, caterpillars S(n1, n2, . . . , nm), Km,n, wheels, and graphs obtained by joining
the centers of different stars to the new vertex. They also give a necessary condition for
a graph to be a restricted triangular difference mean graph.

A (p, q) graphG(V,E) is said to be an analytic mean graph if it is possible to injectively
label the vertices with {0, 1, 2, . . . , p− 1} in such a way that when each edge uv is labeled
with |(f(v)2− (f(u))2|/2 when |(f(v)2− (f(u))2| is even and |(f(v)2− (f(u))2 +1|/2 when
|(f(v)2 − (f(u))2| + 1 is odd and the edge labels are distinct. In this case, f is called an
analytic mean labeling of G. Raj and Vivek [2063] proved that Pm ∪ Cn ∪K1,s (m, s ≥
2, n ≥ 3), (Pm +K1)∪K1,n (m,n ≥ 2), graphs obtained by identifying the apex vertices
of K1,m and K1,n and one vertex of two copies of Cs where m,n ≥ 2, c ≥ 3 are analytic
mean graphs.

Let G = (V,E) be a graph with p vertices and q edges. A graph G is analytic odd
mean if there exist an injective function f : V → {0, 1, 3, 5 . . . , 2q − 1} with an induce
edge labeling f ∗ : E → Z such that for each edge uv with f(u) < f(v), f ∗(uv) =⌈
f(v)2−(f(u)+1)2

2

⌉
if f(u) 6= 0, and f ∗(uv) =

⌈
f(v)2

2

⌉
if f(u) = 0 is injective. In this
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case we say that f is an analytic odd mean labeling of G. Jeyanthi, Gomathi, and Lau
[1156] proved that fans, double fans, double wheels, closed helms, total graphs of cycles,
total graphs of paths, armed crowns CnΘPm, generalized Petersen graphs GP (n, 2) are
analytic odd mean graphs. In [1145] they prove that Pn, Cn, Pn � K1, bistars, fans,
Cn �K1, Ln �K1, Cm ∪ Sm, two copies of Cn sharing a common edge, and Cm ∪ Cn are
analytic odd mean graphs. In [1144] they prove that wheels, flower graphs, some splitting
graphs, and multiples of graphs are analytic odd mean graphs. In [1146] they prove
that quadrilateral snakes, double quadrilateral snakes, coconut trees, fire cracker graphs,
some star graphs, splitting graphs, complete bipartite graphs, unicyclic graphs, and the
graphs obtained from a path of vertices v1, v2, v3, . . . , vn by joining i pendent vertices at
each of ith vertex 1 ≤ i ≤ n (denoted Pn(1, 2, . . . , n)) are analytic odd mean graphs.
Jeyanthi, Gomathi, and Lau [1157] proved the square graphs of Pn, Cn, Bn,n H-graphs,
and H � mK1 admit analytic odd mean labelings. Jeyanthi, Gomathi, and Lau [1158]
proved that quadrilateral snakes, double quadrilateral snakes, coconut trees, fire cracker
graphs, and Pn(1, 2, . . . , n) are analytic odd mean graphs. In [1142] Jeyanthi and Gomathi
proved that the subdivision and super subdivision of the following graphs are analytic odd
mean: cycles, stars, combs, and graphs obtained from Pn � K1 by subdivding the each
edge of Pn. Jeyanthi, Gomathi, and Lau [1147] proved that Cn � K1, prisms, helms,
banana trees, perfect binary trees, unicyclic graphs, certain caterpillars, and spiders are
analytic odd mean graphs. Jeyanthi and Gomathi [1143] proved that the graphs TLn,
(the triangular ladder obtained from Ln), TLn � K1, Tn � K1, and Qn � K1 admit an
analytic odd mean labelings.

Let G be a (p, q) graph and f a injective function from V (G) to {k, k+1, . . . , p+q+k−
1} For each edge uv, let f ∗ = d(2f(u)f(v)/(f(u)+f(v)e or b(2f(u)f(v)/(f(u)+f(v)c. We
say f is a k-super harmonic mean if f(V )∪{f ∗(uv) | uv ∈ E(G)} = {k, k+1, . . . , p+q+k−
1}. A graph that admits a k-super harmonic mean labeling is called a k-super harmonic
mean graph. In the case that k = 1 the labeling is called a super harmonic mean labeling.
For all n > 1 Tamilselvi and Revathi [2570] prove that the following graphs have k-super
harmonic mean labelings: Pn, nPm (m > 1), Pn �K1, Pn �K2, Pn �K3, P

2
n (n ≥ 4), the

subdivision graph of Pn �K1, and the middle graph of Pn.
A graph G = (V,E) with p vertices and q edges is said to be a (k, d)-Heronian

mean graph if it is possible to label the vertices x ∈ V with distinct labels f(x) from
k, k+ d, k+ 2d, . . . , k+ qd in such a way that when each edge uv is labeled with f ∗(uv) =
b(f(u)+f(v)+

√
f(u)f(v))/3c or d(f(u)+f(v)+

√
f(u)f(v))/3e, then the resulting edge

labels are distinct. In this case f is called a (k, d)-Heronian mean labeling of G. In the
case k = 1 and d = 1, the labeling is called Heronian mean labeling . Akilandeswari and
Tamilselvi [109] proved that paths, ladders, and Pn � mK1 for n ≥ 2, 1 ≤ m ≤ 4, are
k-Heronian mean graphs. In [109] Akilandeswari and Tamilselvi proved that the following
graphs have (k, d)-Heronian mean labelings: paths, (Pn × P2) � K1, Tn � K1 (Tn is the
triangular snake obtained from Pn), Qn � K1, TLn � K1 (TLn is the triangular ladder
obtained from Ln), Peterson graphs, and the graphs obtained from two copies of Pn with
vertices v1, v2, . . . , vn and u1, u2, . . . , un by joining the vertices u(n+1)/2 and v(n+1)/2 if n is
odd and un/2+1 and vn/2+1 if n is even. Sampath, Narasimhan, and Nagaraja [2170] proved
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cycles, K1,n if and only if n ≤ 4, Cm ∪ Pn, Cm ∪ Cn, nK3, nK3 ∪ Pm, nK3 ∪ Cm, mC4,
crowns Cn�K1, dragons Cn@Pm, and P 2

n admit (1, 1)-Heronian mean labelings. Anitha,
Selvam, and Thirusangu [174] provide Heronian mean labelings for the extended duplicate
graph of the kite graph.

Arockiaraj and Meena [188] say a planar graph has an F -face magic mean labeling it
there exists an assignment of labels to the edges that induces an assignment of labels to
the faces of the graph such that the mean weight of each face is constant. They proved
that the following graphs have F -face magic mean labelings: P2n + K1, the one-point
union of m copies of Cn, mCn-snakes, and graphs obtained identifying the endpoints of
any number of copies Pn. Amara Jothi, Baskar Babujee, and David [144] investigated
face magic labeling of planar graphs of types (1, 0, 1), (1, 1, 0), (0, 1, 1) and (1, 1, 1) on
duplication graphs.

7.13 Pair Sum and Pair Mean Graphs

For a (p, q) graph G Ponraj and Parthipan [1955] define an injective map f from V (G) to
{±1,±2, . . . ,±p} to be a pair sum labeling if the induced edge function fem from E(G) to
the nonzero integers defined by fe(uv) = f(u) + f(v) is one-one and fe(E(G)) is either of
the form {±k1,±k2, . . . ,±k q

2
} or {±k1,±k2, . . . ,±k q−1

2
}∪{k q+1

2
}, according as q is even or

odd. A graph with a pair sum labeling is called pair sum graph. In [1955] and [1956] they
proved the following are pair sum graphs: Pn, Cn, Kn if and only if n ≤ 4, K1,n, K2,n,
bistars Bm,n, combs Pn �K1, Pn � 2K1, and all trees of order up to 9. Also they proved
that Km,n is not pair sum graph if m,n ≥ 8 and enumerated all pair sum graphs of order
at most 5.

In [1958], [1959], [1960], and [1961] Ponraj, Parthipan, and Kala proved the following
are pair sum graphs: K1,n ∪ K1,m, Cn ∪ Cn, mKn if n ≤ 4, (Pn × K1) � K1, Cn � K2,
dragons Dm,n for n even, Kn + 2K2 for n even, Pn × Pn for n even, Cn × P2 for n even,
(Pn×P2)�K1, Cn�K2 and the subdivision graphs of Pn×P2, Cn�K1, Pn�K1, triangular
snakes, and quadrilateral snakes.

A (p, q)-graph G is said to be a super pair sum if there exists a bijection f from
V (G) ∪ E(G) to {0,±1,±2, . . . ,±(p+q−1

2
)} when p + q is odd and from V (G) ∪ E(G) to

{±1,±2, . . . ,±(p+q
2

)} when p + q is even such that f(uv) = f(u) + f(v). A graph that
admits a super pair sum labeling is called a super pair sum graph. Vasuki, Velmurugan,
and Sugirtha [2713] prove that the graphs Hn�mK1, (Hn is obtained from two copies of
Pn (n ≥ 3) with vertices v1, v2, . . . , vn and u1, u2, . . . , un by joining v(n+1)/2 and u(n+1)/2

if n is odd and vn/2 and u(n+2)/2 if n is even); (P2n;Sm), S ′(P2n), < Bm,n : Pk > for
m ≥ 1, n ≥ 1, k ≡ 2 (mod 4), < B(m) : Pk > for m ≥ 1 k ≡ 0, 2 (mod 4) and
2Bm,n (m ≥ 1, n ≥ 1) are super pair sum graphs.

Jeyanthi and Sarada Devi [1215] define an injective map f from E(G) to
{±1,±2, . . . ,±q} as an edge pair sum labeling of a graph G(p, q) if the induced func-
tion of f ∗ from V (G) to Z − {0} defined by f ∗(v) =

∑
f(e) taken over all edges e

incident to v is one-one and f ∗(V (G)) is either of the form {±k1,±k2, . . . ,±kp/2} or
{±k1,±k2, . . . ,±k(p−1)/2} ∪ {kp/2} according as p is even or odd. A graph with an edge
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pair sum labeling is called an edge pair sum graph. They proved that Pn, Cn, triangular
snakes, Pm ∪K1,n, and Cn �Km are edge pair sum graphs.

Jeyanthi, Sarada Devi, and Lau [1225] proved that the following graphs have edge pair
sum labelings: triangular snakes Tn, Cn ∪ Cn, K1,n ∪K1,m, and bistars Bm,n. They also
proved that every graph is a subgraph of a connected edge pair sum graph. Jeyanthi and
Sarada Devi [1216] showed that P2n × P2 and the graphs Pn(+)Nm obtained from a path
Pn by joining its endpoints to m isolated vertices are edge pair sum graphs. Jeyanthi
and Sarada Devi [1218] proved that the following graphs have edge pair sum labeling:
shadow graphs S2(Pn), S2(K1,n), total graphs T (C2n) and T (Pn), the one-point union of
any number of copies of Cn, the one-point union of Cm and Cn, P 2

2n−1, and full binary
trees in which all leaves are at the same level and every parent has two children. Jeyanthi
and Sarada Devi [1217] proved the spiders SP (1m, 2t), SP (1m, 2t, 3), SP (1m, 2t, 4), and
for t even SP (1m, 3t, 3) are edge pair sum graphs. In [1216] Jeyanthi and Sarada Devi
prove some cycle related graphs are edge pair sum graphs.In [1218] they prove that the
one point union of cycles, perfect binary trees, shadow graphs, total graphs, and P 2

n admit
edge pair sum graph. In [1224] Jeyanthi and Sarada provide edge pair sum labelings for
jewel graphs, gears, triangular ladders, balanced lobsters, and double wheels 2Cn +K1.

The tree WT (n) is obtained from K1,n+2 with central vertex c1 and end vertices xi :
1 ≤ i ≤ n+2 and another K1,n+2 with central vertex c2 and end vertices yj : 1 ≤ j ≤ n+2
by identifying vertex xn+2 and yn+2 and denoting the identified vertices by w. A w-tree
WT (n : k) is obtained from k copies of WT (n) by joining a new vertex a to vertex w
of each copy of WT (n). Jeyanthi, Sarada Devi, and Lau [1226] proved that the graphs
WT (n : k) trees have edge pair sum labelings (see also [1227]).

In [1220], [1226], [1219], [1223] Jeyanthi and Sarada Devi prove the following graphs
are edge pair sum graphs: shell graphs; some butterfly graphs; jelly fish; Y -trees; theta
graphs; wheels with subdivided spokes, Pm + 2K1; C4 × Pm; Pn �Km; (P2 × Pm)�Kn;
Pm × C3; books; graphs obtained from the path Pn having an even fixed even number
quadrilaterals on each edge of the path; K2+mK1; graphs obtained by identifying one end
point from each of m copies of Pn; closed helms; graphs that are two copies of generalized
Petersen graphs joined by a path Pn, n ≥ 5; and graphs that two copies of fan Pn �K1

joined by a path Pn, n ≥ 5.
In [1221] Jeyanthi and Sarada Devi prove the following graphs admit edge pair sum

labelings: K2,n, double triangular snakes, wheels, flowers, 〈Cm, K1,n〉 (m ≥ 4, n odd)
obtained from Cm and K1,n by identifying any vertex of Cm with the central vertex of
K1,n, and 〈Cm ∗K1〉 (m ≥ 4) the graphs obtained from Cm and K1,n by identifying any
vertex of Cm with an endpoint vertex of K1,n. In [1222] they prove that the subdivision
of graph of bistars Bm,n, Pn � K1, triangular snakes when the path has an odd num-
ber of verticies, double triangular snakes, double quadrilateral snakes, double alternative
triangular snakes, and double alternative quadrilateral snakes are edge pair sum graph.

For a (p, q) graph G Ponraj and Parthipan [1957] define an injective map f from
V (G) to {±1,±2, . . . ,±p} to be a pair mean labeling if the induced edge function fem
from E(G) to the nonzero integers defined by fem(uv) = (f(u) + f(v))/2 if f(u) +
f(v) is even and fem(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is one-one and
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fem(E(G)) = {±k1,±k2, . . . ,±kq/2} or
fem(E(G)) = {±k1,±k2, . . . ,±k(q−1)/2} ∪ {k(q+1)/2}, according as q is even or odd. A
graph with a pair mean labeling is called a pair mean graph. They proved the following
graphs have pair mean labelings: Pn, Cn if and only if n ≤ 3, Kn if and only if n ≤ 2,
K2,n, bistars Bm,n, Pn�K1, Pn�2K1, and the subdivision graph of K1,n. Also they found
the relation between pair sum labelings and pair mean labelings.

The graph G@Pn is obtained by identifying an end vertex of a path Pn with any
vertex of G. A graph G(V,E) with q edges is called a (k + 1)-equitable mean graph if
there is a function f from V to {0, 1, 2, . . . , k} (1 ≤ k ≤ q) such that the induced edge
that labeling f ∗ from E to {0, 1, 2, . . . , k} given by f ∗(uv) − d(f(u) + f(v))/2e has the
properties |vf (i)− vf (j)| ≤ 1 and |ef∗(i)− ef∗(j)| ≤ 1 for i, j = 0, 1, 2, . . . , k where vf (x)
and ef∗(x) are the number of vertices and edges of G respectively with the label x. In
[1131] Jeyanthi proved the following: a connected graph with q edges is a (q+1)-equitable
mean graph if and only if it is a mean graph; a graph is 2-equitable mean graph if and only
if it is a product cordial graph; for every graph G, the graph 3mG is a 3-equitable mean
graph; for every 3-equitable mean graph G, the graph (3m + 1)G is a 3-equitable mean
graph; Cn is a 3-equitable mean graph if and only if n 6≡ 0 (mod 3); Pn is a 3-equitable
mean graph for all n ≥ 2; if G is a 3-equitable mean graph then G@Pn is a 3-equitable
mean graph for n ≡ 1 (mod 3); the bistar B(m,n) with m ≥ n is a 3-equitable mean
graph if and only if n ≥ bq/3c; K1,n is a 3-equitable mean graph if and only if n ≤ 2; and
for any graph H and 3m copies H1, H2, . . . , H3m of H, the graph obtained by identifying
a vertex of Hi with a vertex of Hi+1 for 1 ≤ i ≤ 3m− 1 is a 3-equitable mean graph.

In [1459] Lakshmi and Nagarajan introduced the notion of geometric mean cordial
labeling of graphs as follows. Let G = (V,E) be a graph and f be a mapping from V (G)
to {0, 1, 2}. The graph G is called geometric mean cordial if each edge uv can be assigned
the label d

√
f(u)f(v)e in such a way that and |vf (i)− vf (j)| ≤ 1 and |ef (i)− ef(j)| ≤ 1,

where vf (x) and ef (x) denote the number of vertices and edges labeled with x and x ∈
{0, 1, 2} They proved that Pn, Cn (n ≡ 1, 2 (mod 3)) and K1,n are geometric mean cordial
graphs and Kn(n > 2), K2,n (n > 2), Kn,n (n > 2) and wheels are not geometric mean
cordial graphs. In [1305] Kaneria, Meera, and Maulik call these graphs geometric mean
3-equitable. They proved: Kmn (m,n ≥ 4) is not a geometric mean 3-equitable graph,
caterpillars S(x1, x2, . . . , xt) and Cn�K1 (t ≥ 2) are geometric mean 3-equitable graphs,
and Cn �K1 is a geometric mean 3-equitable graph if and only if n ≡ 1, 2 (mod 3).

7.14 Irregular Total Labelings

In 1988 Chartrand, Jacobson, Lehel, Oellermann, Ruiz, and Saba [565] defined an irregular
labeling of a graph G with no isolated vertices as an assignment of positive integer weights
to the edges of G in such a way that the sums of the weights of the edges at each vertex are
distinct. The minimum of the largest weight of an edge over all irregular labelings is called
the irregularity strength s(G) of G. If no such weight exists, s(G) =∞. Chartrand et al.
gave a lower bound for s(mKn). Faudree, Jacobson, and Lehel [752] gave an upper bound
for s(mKn) when n ≥ 5 and proved that for graphs G with δ(G) ≥ n− 2 ≥ 1, s(G) ≤ 3.
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They also proved that if G has order n and δ(G) = n− t and 1 ≤ t ≤
√
n/18, s(G) ≤ 3.

Aigner and Triesch proved s(G) ≤ n+1 for any graph G with n ≥ 4 vertices for which s(G)
is finite. In [2045] Przybylo proved that s(G) < 112n/δ + 28, where δ is the minimum
degree of G and G has n vertices. The best bound of this form is currently due to
Kalkowski, Karońki, and Pfender, who showed in [1270] that s(G) ≤ 6dn/δe < 6n/δ+6. In
[750] Faudree and Lehel conjectured that for each d ≥ 2, there exists an absolute constant
c such that s(G) ≤ n/d+ c for each d-regular graph of order n. In Przybylo [2044] showed
that for d-regular graphs s(G) < 16n/d+ 6. In 1991 Cammack, Schelp, and Schrag [542]
proved that the irregularity strength of a full d-ary tree (d = 2, 3) is its number of pendent
vertices and conjectures that the irregularity strength of a tree with no vertices of degree
two is its number of pendent vertices. This conjecture was proved by Amar and Togni [143]
in 1998. Muthu Guru Packiam, Manimaran, and Thuraiswamy [1810] prove the following:
s(Cn �mK1) = mn, s(Pn �K2) = n + 1, s(Cn �K2) = n + 1, s(Pn �K3) = n + 1, and
sCn �K3) = n+ 1. In [1255] Jinnah and Kumar determined the irregularity strength of
triangular snakes and double triangular snakes.

Motivated by the notion of the irregularity strength of a graph and various kinds of
other total labelings, Bača, Jendrǒl, Miller, and Ryan [277] introduced the total edge
irregularity strength of a graph as follows. For a graph G(V,E) a labeling ∂ : V ∪
E → {1, 2, . . . , k} is called an edge irregular total k-labeling if for every pair of distinct
edges uv and xy, ∂(u) + ∂(uv) + ∂(v) 6= ∂(x) + ∂(xy) + ∂(y). Similarly, ∂ is called
an vertex irregular total k-labeling if for every pair of distinct vertices u and v, ∂(u) +∑
∂(e) over all edges e incident to u 6= ∂(v) +

∑
∂(e) over all edges e incident to v. The

minimum k for which G has an edge (vertex) irregular total k-labeling is called the total
edge (vertex) irregularity strength of G. The total edge (vertex) irregular strength of G
is denoted by tes(G) (tvs(G)). They prove: for G(V,E), E not empty, d(|E| + 2)/3e ≤
tes(G)≤ |E|; tes(G)≥ d(∆(G) + 1)/2e and tes(G)≤ |E| −∆(G), if ∆(G) ≤ (|E| − 1)/2;
tes(Pn) = tes(Cn)= d(n + 2)/3e; tes(Wn)= d(2n + 2)/3e; tes(Cn

3 ) (friendship graph)
= d(3n+2)/3e; tvs(Cn) = d(n+2)/3e; for n ≥ 2, tvs(Kn)= 2; tvs(K1,n) = d(n+1)/2e; and
tvs(Cn×P2)= d(2n+3)/4e. Ahmad, Nurdin, and Baskoro [97] determined the exact value
of the total edge (vertex) irregularity strength of generalized Halin graphs. Al-Mushayt,
Ahmad, and Siddiqui [135] determined the exact values of the total edge irregular strength
of hexagonal grid graphs. The (m,n)-lollipop graph denoted by Lm,n is a graph obtained
by joining a complete graph Km to a path graph Pn with a bridge. Ni’mah and Indriati
[1846] determined tvs(Lm,n) for m ≥ 3 and n ≥ 1. Aftiana and Indriati [55] proved that
for n ≥ 3 the total edge irregularity strength of the graph obtained by joining two copies
of Kn (barbell graph) with an edge is d(n2−n+3)/3e. In [1874] Nurdin and Hye consider
the splitting graph of stars as a land transportation system and give the exact value of
their total vertex irregularity strength. For m,n ≥ 3 Indriati, Widodo, and Sugeng [1074]
determined the exact value of the total vertex irregularity strength for generalized helm
graphs Hm

n (obtained from Wn by attaching Pm vertices at each vertex of the n-cycle)
and for prisms with outer pendent edges.

In [90] Ahmad, Ibrahim, and Siddiqui determined the total irregularity strength of
generalized Petersen graphs. In [137] Al-Mushayt, Ahmad, and Siddiqui [137] determined
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the total edge (vertex) irregularity strength for convex polytope graphs having the same
diameter. In [2379] Siddiqui determined the irregularity strength of six classes of convex
polytope graphs with pendent edges. Ramdani, Salman, Assiyatum, and Semaničová-
Feňovč́ıková [2086] establish upper bounds for the total vertex (edge) irregularity strength
and total irregularity strength for disjoint union of arbitrary graphs. Naeem and Siddiqui
[1819] determined the total irregularity strength of disjoint union of isomorphic copies of
the generalized Petersen graph. In [162] Anholcer et al. presented some upper bound
on group irregularity strength for all graphs. Moreover they gave the exact values and
bounds on sg(G) for disconnected graphs without a star as a component. In [2847] Yang,
Siddiqui, Ibrahim, Ahmad, and Ahmad determined the exact value of the total irregularity
strength of three planar graphs.

Jendrǒl, Mǐskul, and Soták [1112] (see also [1113]) proved: tes(K5) = 5; for n ≥ 6,
tes(Kn)= d(n2 − n + 4)/6e; and that tes(Km,n)= d(mn + 2)/3e. They conjecture that
for any graph G other than K5, tes(G) = max{d(∆(G) + 1)/2e, d(|E| + 2)/3e}. Ivančo
and Jendrǒl [1083] proved that this conjecture is true for all trees. Jendrǒl, Mĭskuf, and
Soták [1112] prove the conjecture for complete graphs and complete bipartite graphs. The
conjecture has been proven for the categorical product of two paths [77], the categorical
product of a cycle and a path [2377], the categorical product of two cycles [84], the
Cartesian product of a cycle and a path [317], the subdivision of a star [2378], and the
toroidal polyhexes [282]. In [99] Ahmad, Siddiqui, and Afzal proved the conjecture is true
for graphs obtained by starting with m vertex disjoint copies of Pn (m,n ≥ 2) arranged in
m horizontal rows with the jth vertex of row i+ 1 directly below the jth vertex row i for
1 = 1, 2, . . . ,m−1 and joining the jth vertex of row i to the j+1th vertex of row i+1 for
1 = 1, 2, . . . ,m− 1 and j = 1, 2, . . . , n− 1 (the zigzag graph). Siddiqui, Ahmad, Nadeem,
and Bashir [2381] proved the conjecture for the disjoint union of p isomorphic sun graphs
(i. e., Cn�K1) and the disjoint union of p sun graphs in which the orders of the n-cycles
are consecutive integers. They pose as an open problem the determination of the total
edge irregularity strength of disjoint union of any number of sun graphs. Brandt, Misškuf,
and Rautenbach [498] proved the conjecture for large graphs whose maximum degree is
not too large relative to its order and size. In particular, using the probabilistic method
they prove that if G(V,E) is a multigraph without loops and with nonzero maximum
degree less than |E|/103

√
8|V |, then tes(G) = (d|E|+ 2)/3e. As corollaries they have: if

G(V,E) satisfies |E| ≥ 3 ·103|V |3/2, then tes(G) = d(|E|+ 2)/3e; if G(V,E) has minimum
degree δ > 0 and maximum degree ∆ such that ∆ < δ

√
|V |/103 · 4

√
2 then tes(G)

= d(|E| + 2)/3e; and for every positive integer ∆ there is some n(∆) such that every
graph G(V,E) without isolated vertices with |V | ≥ n(∆) and maximum degree at most
∆ satisfies tes(G) = d(|E| + 2)/3e. Notice that this last result includes d-regular graphs
of large order. They also prove that if G(V,E) has maximum degree ∆ ≥ 2|E|/3, then
G has an edge irregular total k-labeling with k = d(∆ + 1)/2e. Pfender [1921] proved the
conjecture for graphs with at least 7 × 1010 edges and proved for graphs G(V,E) with
∆(G) ≤ E(G)/4350 we have tes(G) = (d|E|+ 2)/3e. Murhu Guru Packiam, Manimaran,
and Thuraiswamy [1797] investigate how the addition of a new edge affects the total edge
irregularity strength of a graph. Laurence and Kathiresan [1472] determined the total
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edge irregular strength of path union of cycles.
In [1239] Jeyanthi and Sudha investigated the total edge irregularity strength of the

disjoint union of wheels. They proved the following: tes(2Wn) = d(4n+ 2)/3e , n ≥ 3;
for n ≥ 3 and p ≥ 3 the total edge irregularity strength of the disjoint union of p
isomorphic wheels is d(2(pn+ 1)/3e; for n1 ≥ 3 and n2 = n1 + 1, tes(Wn1 ∪ Wn2) =
d(2(n1 + n2 + 1)/3)e; for n1, n2, n3 where n1 ≥ 3 and ni+1 = n1 + i for i = 1, 2, tes(Wn1 ∪
Wn2∪Wn3) = d(2(n1 + n2 + n3 + 1)/3)e ; the total edge irregularity strength of the disjoint
union of p ≥ 4 wheels Wn1 ∪Wn2 ∪ · · · ∪Wnp with ni+1 = n1 + i and N =

∑p
j=1 nj + 1

is d2N/3)e ; and the total edge irregularity strength of p ≥ 3 disjoint union of wheels
Wn1∪Wn2∪· · ·∪Wnp and N =

∑p
j=1 nj+1 is d(2N/3e if max{ni | 1 ≤ i ≤ p} ≤ 1

2
d(2N/3e .

The complete star of a graph G is the graph obtained from p+ 1 copies of the graph G
by joining each vertex of G(0) with all corresponding vertices of all the copies G1), . . . , G(p).
Susanti, Khotimah, Hidayati, and Wahyujati [2547] deterimined the total edge irregularity
strength of snowflake graphs, water bears graphs, the complete star of Cn, and two other
families of ladder related graphs.

In [1240], [1242], [1243], and [1241] Jeyanthi and Sudha determine the total edge irreg-
ularity strength of fans, helms, closed helms, webs, flowers, gears, sun flowers, tadpoles,
armed crowns, split graphs of cycles, split graph of paths, disjoint unions of isomorphic
double wheels, and disjoint unions of consecutive non-isomorphic double wheels. Bokhary,
Ali, and Maqbool [488] determined the exact values for the total vertex and edge irreg-
ularity strength of three wheel related families of graphs. Ibrahim, Asif, Ahmad, and
Siddiqui [1039] investigated the total irregularity strength of fans, helms, closed helms,
webs, ower graphs, gears, and sunflowers.

A generalized helm Hm
n is a graph obtained by inserting m vertices in every pendent

edge of a helm Hn. Indriati, Widodo, and Sugeng [1072] proved that for n ≥ 3,
tes(H1

n) = d(4n+ 2)/3e, tes(H2
n) = d(5n+ 2)/3e, and tes(Hm

n ) = d((m+ 3)n+ 2))/3e for
m ≡ 0 mod 3. They conjecture that tes(Hm

n ) = d((m + 3)n + 2))/3e, for all n ≥ 3 and
m ≥ 10.

A cactus graph G is a connected graph where no edge lies in more than one cycle. A
cactus graph consisting of some blocks where each block is Cn with same n is called an n-
uniform cactus graph. If each cycle of the cactus graph has no more than two cut-vertices
and each cut-vertex is shared by exactly two cycles, then G is called n-uniform cactus
chain graph. Rosyida and Indriati [2145] determined the tes of n-uniform cactus chain
graphs of length r for some n ≡ 0 mod 3. They also investigated the tes of tadpole chain
graphs. Rosyida and Indriati [2144] determined the total edge irregularity strength of the
triangular cactus chain with length r and r+ 1 pendant vertices (TCr+1

r ) is d(4r+ 3)/3e.
A para-squares cactus is a graph each of whose blocks is a 4-cycle and two or more squares
share a cut vertex. The para-squares cactus chain graph is a cactus graph such that each
of the two squares has one common cut vertex. Rosyida and Indriati determined that
total edge irregularity strength of para square cactus chain graph with length r and r
pendant vertices (Qr

r) is d(5r + 2)/3e.
Nurdin, Baskoro, Salman, and Gaos [1875] determine the total vertex irregularity

strength of trees with no vertices of degree 2 or 3; improve some of the bounds given
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in [277]; and show that tvs(Pn) = d(n + 1)/3)e. In [1878] Nurdin, Salman, Gaos, and
Baskoro prove that for t ≥ 2, tvs(tP1)= t; tvs(tP2)= t + 1; tvs(tP3)= t + 1; and for
n ≥ 4, tvs(tPn)= d(nt + 1)/3)e. Ahmad, Bača, and Bashir [78] proved that for n ≥ 3
and t ≥ 1, tvs((n, t)-kite) = d(n + t)/3e, where the (n, t)-kite is a cycle of length n with
a t-edge path (the tail) attached to one vertex. In [939] Guo, Chen, Wang, and Yao give
the total vertex irregularity strength of certain complete m-partite graphs.

Anholcer, Kalkowski, and Przybylo [171] prove that for every graph with δ(G) > 0,
tvs(G)≤ d3n/δe+1. Majerski and Przybylo [1691] prove that the total vertex irregularity
strength of graphs with n vertices and minimum degree δ ≥ n0.5ln n is bounded from
above by (2 + o(1))n/δ + 4. Their proof employs a random ordering of the vertices
generated by order statistics. Anholcer, Karonński, and Pfender [170] prove that for
every forest F with no vertices of degree 2 and no isolated vertices tvs(F )= d(n1 + 1)/2e,
where n1 is the number of vertices in F of degree 1. They also prove that for every forest
with no isolated vertices and at most one vertex of degree 2, tvs(F ) = d(n1 + 1)/2e.
Anholcer and Palmer [172] determined the total vertex irregularity strength Ck

n, which
is a generalization of the circulant graphs Cn(1, 2, . . . , k). They prove that for k ≥ 2
and n ≥ 2k + 1, tvs(Ck

n = d(n + 2k)/(2k + 1)e. Przybylo [2045] obtained a variety of
upper bounds for the total irregularity strength of graphs as a function of the order and
minimum degree of the graph.

In [2593] Tong, Lin, Yang, and Wang give the exact values of the total edge irreg-
ularity strength and total vertex irregularity strength of the toroidal grid Cm × Cn. In
[2382] Siddiqui, Miller, and Ryan determine the exact values of the total edge irregu-
larity strength of octagonal grid graph. In [85] Ahmad, Bača, and Siddiqui gave the
exact value of the total edge and total vertex irregularity strength for disjoint union of
prisms and for disjoint union of cycles. In [83] Ahmad, Bača, and Numan showed that
tes(
⋃m
j=1 Fnj

) = 1 +
∑m

j=1 nj and tvs(
⋃m
j=1 Fnj

) = d(2 + 2
∑m

j=1 nj)/3e, where
⋃m
j=1 Fnj

denotes the disjoint union of friendship graphs. Chunling, Xiaohui, Yuansheng, and Lip-
ing, [608] showed tvs(Kp) = 2 (p ≥ 2) and for the generalized Petersen graph P (n, k)
they proved tvs(P (n, k)) = dn/2e + 1 if k ≤ n/2 and tvs(P (n, n/2))= n/2 + 1. They
also obtained the exact values for the total vertex strengths for ladders, Möbius ladders,
and Knödel graphs. For graphs with no isolated vertices, Przybylo [2044] gave bounds
for tvs(G) in terms of the order and minimum and maximum degrees of G. For d-regular
(d > 0) graphs, Przybylo [2045] gave bounds for tvs(G) in terms d and the order of G.

Ahmad, Ahtsham, Imran, and Gaig [68] determined the exact values of the total
vertex irregularity strength for five families of cubic plane graphs. In [75] Ahmad and
Bača determine that the total edge-irregular strength of the categorical product of Cn and
Pm where m ≥ 2, n ≥ 4 and n and m are even is d(2n(m − 1) + 2)/3e. They leave the
case where at least one of n and m is odd as an open problem. In [84] and [85] Ahmad,
Bača, and Siddiqui determine the exact values of the total edge irregularity strength of
the categorical product of two cycles, the total edge (vertex) irregularity strength for
the disjoint union of prisms, and the total edge (vertex) irregularity strength for the
disjoint union of cycles. In [74] Ahmad, Awan, Javaid, and Slamin study the total vertex
irregularity strength of flowers, helms, generalized friendship graphs, and web graphs.
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Indriati, Widodo, Wijayanti, Sugeng, and Bača [1071] determine the exact value of the
total edge irregularity strength of the generalized web graph W (n,m) and two families of
related graphs. Ahmad, Bača, and Numan [83] determined the exact values of the total
vertex irregularity strength and the total edge irregularity strength of a disjoint union of
friendship graphs. Bokhary, Ahmad, and Imran [487] determined the exact value of the
total vertex irregularity strength of cartesian and categorical product of two paths. Koam
and Ahmad [1384] determined the total vertex irregularity strength for all theta graphs
and certain values of the total vertex irregularity strength of the centralized uniform
theta graphs. They provide a conjecture for the lower bound of total vertex irregularity
strength of the centralized uniform theta graphs. In [489] Bokhary and Faheem proved
the conjecture of Bokhary, Ahmam, and Imran [487] that the tvs(Pm�Pn) = bmn+2

5
c for

m,n ≥ 2 for 5 ≤ m ≤ 10 and n ≥ 1. the state graph for Tower of Hanoi problems with
three towers. Farida and Indriati [749] determined the total edge irregularity strength of
the state graph for Tower of Hanoi problems with three towers.

In [1877] Nurdin, Salman, and Baskoro determine the total edge-irregular strength of
the following graphs: for any integers m ≥ 2, n ≥ 2, tes(Pm � Pn)= d(2mn + 1)/3e;
for any integers m ≥ 2, n ≥ 3, tes(Pm � Cn)= d((2n + 1)m + 1)/3e; for any integers
m ≥ 2, n ≥ 2, tes(Pm � K1,n)= d(2m(n + 1) + 1)/3e; for any integers m ≥ 2 and
n ≥ 3, tes(Pm � Gn)= d(m(5n + 2) + 1)/3e where Gn is the gear graph obtained from
the wheel Wn by subdividing every edge on the n-cycle of the wheel; for any integers
m ≥ 2, n ≥ 2, tes(Pm�Fn)= dm(5n+ 2) + 1e, where Fn is the friendship graph obtained
from W2m by subdividing every other rim edge; for any integers m ≥ 2 and n ≥ 3; and
tes(Pm �Wn)= d((3n+ 2)m+ 1)/3e.

In [2069], [2070], and [2068] Rajasingh, Rajan, Teresa Arockiamary, and Quadras
provide the total edge irregularity strengths of honeycomb mesh networks, hexagonal
networks, butterfly networks, benes networks, and series compositions of uniform theta
graphs.

In [1876] Nurdin, Baskoro, Salman, and Gaos proved: the total vertex-irregular
strength of the complete k-ary tree (k ≥ 2) with depth d ≥ 1 is d(kd + 1)/2e and the
total vertex-irregular strength of the subdivision of K1,n for n ≥ 3 is d(n + 1)/3e. They
also determined that if G is isomorphic to the caterpillar obtained by starting with Pm
and m copies of Pn denoted by Pn,1, Pn,2, . . . , Pn,m, where m ≥ 2, n ≥ 2, then joining
the i-th vertex of Pm to an end vertex of the path Pn,i, tvs(G)= d(mn + 3)/3e. They
conjectured that the total vertex irregularity strength of any tree T is determined only
by the number of vertices of degrees 1, 2 and 3 in T . This conjecture was confirmed
by Susilawati, Baskoro, and Simanjuntak [2550] by considering all trees with maximum
degree five. They also characterized all such trees having the total vertex irregularity
strength either t1, t2 or t3, where ti = d(1 +

∑i
j=1 nj)/(i + 1)e and ni is the number of

vertices of degree i.
Ahmad and Bača [76] proved tvs(Jn,2)= d(n+ 1)/2)e (n ≥ 4) and conjectured that for

n ≥ 3 and m ≥ 3, tvs(Jn,m)= max{d(n(m− 1) + 2)/3e, d(nm+ 2)/4e}. They also proved
that for the circulant graph (see §5.1 for the definition) Cn(1, 2), n ≥ 5, tvs(Cn(1, 2))=
d(n+4)/5e. They conjecture that for the circulant graph Cn(a1, a2, . . . , am) with degree r
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at least 5 and n ≥ 5, 1 ≤ ai ≤ bn/2c, tvs(Cn(a1, a2, . . . , am)= d(n+ r)/(1 + r)e. Ahmad,
Arshadb, and Iz̆aŕıková [73] determine tes(G) where G is the generalized helm and tvs(G)
where G is the generalized sun graph.

Slamin, Dafik, and Winnona [2420] consider the total vertex irregularity strengths of
the disjoint union of isomorphic sun graphs, the disjoint union of consecutive nonisomor-
phic sun graphs, tvs(∪ti=1Si+2), and disjoint union of any two nonisomorphic sun graphs.
(Recall Sn = Cn�K1.) Rajasingh and Annamma [2067] determine the total vertex irregu-
larity strength of 1-fault tolerant Hamiltonian graphs CH(n), H(n), and W (m). Indriati,
Widodo, Wijayanti, Sugeng, Bača, and Semaničová-Feňovč́ıková [1073] determine the ex-
act value of the total vertex irregularity strength for generalized helm graphs and for
prisms with outer pendent edges. In [207] Asim and Hasni provided an upper bound for
es(Kn) that is far better than the previously known upper bound.

In [64] Ahmad shows that the total vertex irregularity strength of the antiprism graph
An (n ≥ 3) is d(2n + 4)/5e (see §5.7 for the definition) and gives the vertex irregularity
strength of three other families convex polytope graphs. Al-Mushayt, Arshad, and Sid-
diqui [136] determined an exact value of the total vertex irregularity strength of some
convex polytope graphs. Ahmad, Baskoro, and Imran [88] determined the exact value of
the total vertex irregularity strength of disjoint union of helm graphs.

For n ≥ 3,m ≥ 2 Jeyanthi and Sudha [1244] determine the total vertex irregularity
strength of Pn �K1, Pn �K2, Cn �K2, Ln �K1, P2 � Cn, Pn �Km, (Cn × P2)�K1,
and Cn � Km. In [1245] they determine the total vertex irregularity strength for the
graph obtained from a cycle by identifying the endpoint of a path and the vertex of
a cycle, Cn � Pm, the split graph of a cycle, and split graph of a path. In [1245] they
determine the total vertex irregularity strength for quadrilateral snakes, sunflowers, double
wheels, triangular books, quadrilateral books, and graphs obtained from the wheel Wn

and attaching n pendent edges to the center. In [1247] Jeyanthi and Sudha determined the
total irregularity strength of the n-crossed prism, m copies of crossed prism, necklace and
m copies of necklace graph and that these graphs admit totally irregular total k-labeling.

In [63] Agustin, Dafik, Marsidi, and Albirri introduced a natural extension of the
notation of the total H-irregularity strength of graphs by considering the evaluation of
the weight that is not only for each edge but also the weight on each subgraph H of
G. They say a total α-labeling is a total H-irregular α-labeling of the graph G if for a
subgroup H of G, the total H-weights W (H) =

∑
v∈V (H) f(v)+

∑
e∈E(H) f(e) are distinct.

The minimum α for which the graph G has a total H-irregular α-labeling is called the
total H-irregularity strength of G, denoted by tHs(G). They study the tHs of shackles
and amalgamations of any graphs and their bounds.

The notion of an irregular labeling of an Abelian group Γ was introduced Anholcer,
Cichacz and Milanič in [164]. They defined a Γ-irregular labeling of a graph G with no
isolated vertices as an assignment of elements of an Abelian group Γ to the edges of G
in such a way that the sums of the weights of the edges at each vertex are distinct. The
group irregularity strength of G, denoted sg(G), is the smallest integer s such that for every
Abelian group Γ of order s there exists Γ-irregular labeling of G. They proved that if G
is connected, then sg(G) = n+ 2 when ∼= K1,32q+1−2 for some integer q ≥ 1; sg(G) = n+ 1
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when n ≡ 2 (mod 4) and G 6∼= K1,32q+1−2 for any integer q ≥ 1; and sg(G) = n otherwise.
Moreover, Anholcer and Cichacz [163] showed that if G is a graph of order n with no
component of order less than 3 and with all the bipartite components having both color
classes of even order. Then sg(G) = n if n ≡ 1 (mod 2); sg(G) = n+ 1 if n ≡ 2 (mod 4);
and sg(G) ≤ n+ 1 if n ≡ 0 (mod 4).

Marzuki, Salman, and Miller [1723] introduced a new irregular total k-labeling of a
graph G called total irregular total k-labeling, denoted by ts(G), which is required to
be at the same time both vertex and edge irregular. They gave an upper bound and
a lower bound of ts(G); determined the total irregularity strength of cycles and paths;
and proved ts(G) ≥ max{tes(G), tvs(G)}. For n ≥ 3, Ramdani and Salman [2083]
proved ts(Sn × P2) = n + 1; ts((Pn + P1) × P2) = d(5n + 1)/3e, ts(Pn × P2) = n; and
ts(Cn × P2) = n. In [2084] Ramdani, Salman, and Assiyatun prove that for a regular
graph G ts(mG) ≤ m(ts(G)) − b(m − 1)/2b, ts(mCn) = d(mn + 2)/3c for n ≡ 3 mod
3, and ts(m(Cn × P2) = mn + 1. In [2085] Ramdani, Salman, Assiyatun, Semaničová-
Feňovč́ıková, and Bača estimate the upper bound of the total irregularity strength of
graphs and determine the exact value of the total irregularity strength for three families
of graphs. In [1179] Jeyanthi and Sudha determined the total irregularity strength of
double fans DFn (n ≥ 3), double triangular snakes DTp (p ≥ 3), joint-wheel graphs
WHn (n ≥ 3), and Pm + Km (m ≥ 3). In addition, they show that these graphs admit
totally irregular total k-labeling and they determined the exact ts value for each.

In [1809] Muthgu Guru Packiam defines a face irregular total k-labeling f from V ∪E∪F
to {1, 2, . . . , k} of a 2-connected plane graph G(V,E, F ) as a labeling of vertices and edges
such that different faces have different weigths. The minimum k for which a plane graph
G has a face irregular total k-labeling is called total face irregularity strength of G and is
denoted by tfs(G). He provides a bound on this parameter and the exact values for shell
graphs and a family of planar graphs consisting of an even number of 5-sided faces and
one external infinite face. In [280] Bača, Lascsḱová, Naseem, and Semaničová-Feňovč́ıková
estimate the lower and upper bounds of the entire face irregularity strength for the disjoint
union of multiple copies of a plane graph and prove the sharpness of the lower bound in
two cases.

Recall that an edge-covering of G is a family of subgraphs H1, H2, . . . , Ht such that
each edge of E(G) belongs to at least one of the subgraphs Hi, i = 1, 2, . . . , t. In this
case we say that G admits an (H1, H2, . . . , Ht)-(edge) covering. If every subgraph Hi

is isomorphic to a given graph H, we say that G admits an H-covering. Motivated
by the irregularity strength and the edge irregularity strength of a graph G, Ashraf,
Bača, Kimáková, and Semaničová-Feňovč́ıková [203] introduced two new parameters, edge
(vertex) H-irregularity strengths, as the natural extensions of the parameters s(G) and
es(G) as follows. Let G be a graph admitting an H-covering. For the subgraph H of
G under the edge k-labeling β from E(G) to {1, 2, . . . , k}, the associated H-weight is
defined as wtβ(H) =

∑
β(e) over all edges e. An edge k-labeling β is called an H-

irregular edge k-labeling of the graph G if for every two different subgraphs H ′ and H ′′

isomorphic to H we have wtβ(H ′) 6= wtβ(H ′′). The edge H-irregularity strength of a graph
G, denoted by ehs(G,H), is the smallest integer k such that G has an H-irregular edge
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k-labeling. Ashraf et al. define the vertex H-irregularity strength of a graph G, vhs(G,H),
analogously. They estimate the bounds of the parameters ehs(G,H) and vhs(G,H) and
determine the exact values of the edge (vertex) H-irregularity strength for paths, ladders,
and fans in order to prove the sharpness of lower bounds of these parameters. Nisviasari,
Dafik, and Agustin [1848] provided the total H-irregularity strength of triangular ladders
when H is a windmill or triangular ladder.

In [204] Ashraf, Bača, Lascsáková, and Semaničová-Feňovč́ıková estimated the bounds
for the total H-irregularity strength of a graph and determind the exact values of the
total H-irregularity strength for paths ladders and fans. Ashrafa, Bača, Semaničová-
Feňovč́ıková, and Shabbirc [205] investigated the total (respectively, edge and vertex)
G-irregularity strengths of the graphs that contains exactly n subgraphs isomorphic to G.

In [71] Ahmad, Al-Mushayt, and Bača define a vertex k-labeling φ of a graph G from
V (G) to {1, 2, . . . , k} to be edge irregular k-labeling if for every two distinct edges e and
f , there is wφ(e) 6= wφ(f), where the weight of an edge e = xy is wφ(xy) = φ(x) + φ(y).
The minimum k for which the graph G has an edge irregular k-labeling is called the
edge irregularity strength of G, denoted by es(G). They estimated the bounds of the
edge irregularity and determined its exact values for paths, cycles, stars, double stars and
Pm × Pn. Tarawneh, Hasni, and Ahmad [2572] determined the exact value of the edge
irregularity strength of the corona product of graphs with paths. Tarawneh, Hasni, and
Ahmad [2573] determine the exact value of edge irregularity strength of corona graphs
Cn � mK1 (m ≥ 2). Ahmad [65] determined the exact value of es(Cn � K1). In [81]
Ahmad, Bača, and Nadeen determine the exact value of the edge irregularity strength for
several classes of Toeplitz graphs. Tarawneh, Hasni, Siddiqui, and Asim [2575] determined
the exact value of edge irregularity strength of disjoint union of zigzag graphs, grids, and
generalized sun graphs.

A chain graph C[B1, B2, . . . , Bn] is a graph with blocks B1, B2, . . . , Bn such that Bi

and Bi+1 have a common vertex in such a way that the block-cut vertex graph is a

path. Ahmad, Gupta, and Simanjuntak [89] prove the following: es(C[C
(n)
4 ]) = 2n + 1;

if Hm is an mK3-path, then es(Hm) has lower bound d3m+3
2
e and upper bound 2m + 1;

es(mK4-path) = 3m+ 2; and es(K1,n +K1) = n+ 2 for n ≥ 3. They obtained bounds for
es(Pm + Kn) and determined that the edge irregularity strength of a graph obtained by
joining the vertex of degree m in K1,m to each vertex in K1,n, and the vertex of degree n
in K1,n to each vertex in K1,m is m+n+2. They posed the open problems of determining
es(mK3-path), es(mKn-path) (m ≥ 2) and n ≥ 5, and es(Pm + Kn) for n ≥ 1 and
m ≥ 7. Tarawneh, Hasni, and Asim [2574] determined the exact value of edge irregularity
strength for disjoint union of a star graph and the subdivision of a star graph.

The strong product of graphsG1 andG2 has as vertices the pairs (x, y) where x ∈ V (G1)
and y ∈ V (G2). The vertices (x1, y1) and (x2, y2) are adjacent if either x1x2 is an edge
of G1 and y1 = y2 or if x1 = x2 and y1y2 is an edge of G2. For m,n ≥ 2 Ahmad, Bača,
Bashir, Siddiqui [79] proved that the total edge irregular strength of the strong product of
Pm and Pn is d4(mn+1)/3e− (m+n). Al-Mushayt [134] determined the edge irregularity
strength of cartesian product of a star and P2 and a cycle and P2, and the strong product
of path Pn with P2. Conjectures for the exact value of K1,n×Pm and Cn×Pm are stated.
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Bača and Siddiqui [318] determine the exact value of the total edge irregularity strength
of the strong product of any two cycles.

An edge e ∈ G is called a total positive edge or total negative edge or total stable edge
of G if tvs(G+ e) > tvs(G) or tvs(G+ e) < tvs(G) or tvs(G+ e) = tvs(G), respectively.
If all edges of G are total stable (total negative) edges of G, then G is called a total stable
(total negative) graph. Otherwise G is called a total mixed graph.

Muthu Guru Packiam and Kathiresan [1882] showed that K1,n n ≥ 4, and the disjoint
union of t ≥ 2 copies of K3 are total negative graphs and that the disjoint union of t ≥ 2
copies of P3 is a total mixed graph.

For a simple graph G with no isolated edges and at most one isolated vertex Anholcer
[160] calls a labeling w : E(G) → {1, 2, . . . ,m} product-irregular, if all product degrees
pdG(v) =

∏
e3v w(e) are distinct. Analogous to the notion of irregularity strength the goal

is to find a product-irregular labeling that minimizes the maximum label. This minimum
value is called the product irregularity strength of G and is denoted by ps(G). He provides
bounds for the product irregularity strength of paths, cycles, cartesian products of paths,
and cartesian products of cycles. In [161] Anholcer gives the exact values of ps(G) for
Km,n where 2 ≤ m ≤ n ≤ (m + 2)(m + 1)/2, some families of forests including complete
d-ary trees, and other graphs with d(G) = 1. Skowronek-Kaziów [2417] proves that for the
complete graphs ps(Kn) = 3. Darda and Hujdurović [646] proved that ps(X) ≤ |V (X)|−1
for any graph X with more than 3 vertices and gave a connection between the product
irregularity strength and the multidimensional multiplication table problem.

In [4] Abdo and Dimitrov introduced the total irregularity of a graph. For a graph G,
they define irrt(G) = (1/2)

∑
u,v∈V |dG(u)−dG(v)|, where dG(w) denotes the vertex degree

of the vertex w. For G with n vertices they proved irrt(G) ≤ (1/12)(2n3 − 3n2 − 2n+ 3).
For a tree G with n vertices they prove irrt(G) ≤ (n− 1)(n− 2) and equality holds if and
only if G ≈ Sn. You, Yang, and You [2870] determined the graph with the maximal total
irregularity among all unicyclic graphs.

Inspired by the concept of distant chromatic numbers Przybylo [2046] calls a labeling
f from the edges of a graph G to {1, 2, 3, . . . , k} r-distant irregular, if for every vertex v,
the weights of the set of all vertices that are at distance less than or equal to r from v
are pairwise distinct, where the weight of the vertex is the sum of the labels of the edges
that are incident with that vertex. The minimum k for which there exists an r-distant
irregular labeling of G is called r-distant irregularity strength of G and is denoted by
sr(G). Muthu Guru Packiam, Manimaran, and Thuraiswamy [1811] proved the following:
s1(Pn) = 2 for n = 3, 4, 5; s1(Pn) = 3 if n > 5; s1(Cn) = 3; s1(Km,n) = s(Km,n); s1(Fn) =
s(Fn) = d(n + 1)/3e for n > 2; s1(Km,n) = 3 when 1 < n/2 ≤ m < n; s1(Pn ×K2) = 3;
s1(Cn ×K2) = 3; s1(Km,n) = 3 when 1 < n/2 ≤ m < n; and provide the exact value for
s1(Pm�Kn) for all m and n. They also prove that if G is d-regular with n vertices, then
s1(G) = s(G) ≤ dn/2e+ 1 for d ≥ n/2.
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7.15 Geometric Labelings

If a and r are positive integers at least 2, we say a (p, q)-graph G is (a, r)-geometric if its
vertices can be assigned distinct positive integers such that the value of the edges obtained
as the product of the endpoints of each edge is {a, ar, ar2, . . . , arq−1}. Hegde [982] has
shown the following: no connected bipartite graph, except the star, is (a, a)-geometric
where a is a prime number or square of a prime number; any connected (a, a)-geometric
graph where a is a prime number or square of a prime number, is either a star or has a
triangle; Ka,b, 2 ≤ a ≤ b is (k, k)-geometric if and only if k is neither a prime number nor
the square of a prime number; a caterpillar is (k, k)-geometric if and only if k is neither a
prime number nor the square of a prime number; Ka,b,1 is (k, k)-geometric for all integers
k ≥ 2; C4t is (a, a)-geometric if and only if a is neither a prime number nor the square of
a prime number; for any positive integers t and r ≥ 2, C4t+1 is (r2t, r)-geometric; for any
positive integer t, C4t+2 is not geometric for any values of a and r; and for any positive
integers t and r ≥ 2, C4t+3 is (r2t+1, r)-geometric. Hegde [984] has also shown that every
Tp-tree and the subdivision graph of every Tp-tree are (a, r)-geometric for some values of
a and r (see Section 3.2 for the definition of a Tp-tree). He conjectures that all trees are
(a, r)-geometric for some values of a and r.

Hegde and Shankaran [993] prove: a graph with an α-labeling (see §3.1 for the def-
inition) where m is the fixed integer that is between the endpoints of each edge has an
(am+1, a)-geometric for any a > 1; for any integers m and n both greater than 1 and m
odd, mPn is (ar, a)-geometric where r = (mn + 3)/2 if n is odd and (ar, a)-geometric
where r = (m(n+ 1) + 3)/2 if n is even; for positive integers k > 1, d ≥ 1, and odd n, the
generalized closed helm (see §5.3 for the definition) CH(t, n) is (kr, kd)-geometric where
r = (n− 1)d/2; for positive integers k > 1, d ≥ 1, and odd n, the generalized web graph
(see §5.3 for the definition) W (t, n) is (kr, a)-geometric where a = kd and r = (n− 1)d/2;
for positive integers k > 1, d ≥ 1, the generalized n-crown (Pm × K3) � K1,n is (a, a)-
geometric where a = kd; and n = 2r + 1, Cn � P3 is (kr, k)-geometric.

If a and r are positive integers and r is at least 2 Arumugan, Germina, and Anadavally
[194] say a (p, q)-graph G is additively (a, r)-geometric if its vertices can be assigned
distinct integers such that the value of the edges obtained as the sum of the endpoints
of each edge is {a, ar, ar2, . . . , arq−1}. In the case that the vertex labels are nonnegative
integers the labeling is called additively (a, r)∗-geometric. They prove: for all a and r
every tree is additively (a, r)∗-geometric; a connected additively (a, r)-geometric graph is
either a tree or unicyclic graph with the cycle having odd size; if G is a connected unicyclic
graph and not a cycle, then G is additively (a, r)-geometric if and only if either a is even
or a is odd and r is even; connected unicyclic graphs are not additively (a, r)∗-geometric;
if a disconnected graph is additively (a, r)-geometric, then each component is a tree or a
unicyclic graph with an odd cycle; and for all even a at least 4, every disconnected graph
for which every component is a tree or unicyclic with an odd cycle has an additively
(a, r)-geometric labeling.

Vijayakumar [2731] calls a graph G (not necessarily finite) arithmetic if its vertices
can be assigned distinct natural numbers such that the value of the edges obtained as
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the sum of the endpoints of each edge is an arithmetic progression. He proves [2730] and
[2731] that a graph is arithmetic if and only if it is (a, r)-geometric for some a and r.

7.16 Strongly Multiplicative Graphs

Beineke and Hegde [432] call a graph with p vertices strongly multiplicative if the vertices
of G can be labeled with distinct integers 1, 2, . . . , p such that the labels induced on the
edges by the product of the end vertices are distinct. They prove the following graphs
are strongly multiplicative: trees; cycles; wheels; Kn if and only if n ≤ 5; Kr,r if and only
if r ≤ 4; and Pm × Pn. They then consider the maximum number of edges a strongly
multiplicative graph on n vertices can have. Denoting this number by λ(n), they show:
λ(4r) ≤ 6r2;λ(4r+ 1) ≤ 6r2 + 4r;λ(4r+ 2) ≤ 6r2 + 6r+ 1; and λ(4r+ 3) ≤ 6r2 + 10r+ 3.
Adiga, Ramaswamy, and Somashekara [52] give the bound λ(n) ≤ n(n + 1)/2 + n− 2−
b(n + 2)/4c −

∑n
i=2 i/p(i) where p(i) is the smallest prime dividing i. For large values

of n this is a better upper bound for λ(n) than the one given by Beineke and Hegde. It
remains an open problem to find a nontrivial lower bound for λ(n).

Seoud and Zid [2265] prove the following graphs are strongly multiplicative: wheels;
rKn for all r and n at most 5; rKn for r ≥ 2 and n = 6 or 7; rKn for r ≥ 3 and n = 8 or 9;
K4,r for all r; and the corona of Pn and Km for all n and 2 ≤ m ≤ 8. In [2243] Seoud and
Mahran [2243] give some necessary conditions for a graph to be strongly multiplicative.

In Kanani and Chhaya [1273] and [1274] prove the following graphs are strongly multi-
plicative: the total graph, splitting graph, and shadow graph of paths; triangular snakes;
splitting graphs of stars and bistars, the degree splitting graph of the bistars Bn,n, and
restricted square graph B2

m,n. In [1277] and [1278] Kanani and Chhaya prove the following
graphs are strongly multiplicative: helms, flowers, fans, friendship graphs, bistars, gears,
double triangular snakes, double fans, double wheels, snakes, double alternate quadrilat-
eral snakes, double quadrilateral snakes, braid graphs, and triangular ladders.

Germina and Ajitha [868] (see also [32]) prove that K2 + Kt, quadrilateral snakes,
Petersen graphs, ladders, and unicyclic graphs are strongly multiplicative. Acharya, Ger-
mina, and Ajitha [32] have shown that C

(n)
k (see §2.2 for the definition) is strongly mul-

tiplicative and that every graph can be embedded as an induced subgraph of a strongly
multiplicative graph. Germina and Ajitha [868] define a graph with q edges and a strongly
multiplicative labeling to be hyper strongly multiplicative if the induced edge labels are
{2, 3, . . . , q + 1}. They show that every hyper strongly multiplicative graph has exactly
one nontrivial component that is either a star or has a triangle and every graph can be
embedded as an induced subgraph of a hyper strongly multiplicative graph.

Vaidya, Dani, Vihol, and Kanani [2634] prove that the arbitrary supersubdivisions of
tree, Kmn, Pn × Pm, Cn � Pm, and Cm

n are strongly multiplicative. Vaidya and Kanani
[2640] prove that the following graphs are strongly multiplicative: a cycle with one chord;
a cycle with twin chords (that is, two chords that share an endpoint and with opposite
endpoints that join two consecutive vertices of the cycle; the cycle Cn with three chords
that form a triangle and whose edges are the edges of two 3-cycles and a n − 3-cycle.
duplication of an vertex in cycle (see §2.7 for the definition); and the graphs obtained
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from Cn by identifying of two vertices vi and vj where d(vi, vj) ≥ 3. In [2643] the same
authors prove that the graph obtained by an arbitrary supersubdivision of path, a star,
a cycle, and a tadpole (that is, a cycle with a path appended to a vertex of the cycle.

Krawec [1408] calls a graph G on n edges modular multiplicative if the vertices of G
can be labeled with distinct integers 0, 1, . . . , n − 1 (with one exception if G is a tree)
such that the labels induced on the edges by the product of the end vertices modulo n
are distinct. He proves that every graph can be embedded as an induced subgraph of a
modular multiplicative graph on prime number of edges. He also shows that if G is a
modular multiplicative graph on prime number of edges p then for every integer k ≥ 2
there exist modular multiplicative graphs on pk and kp edges that contain G as a subgraph.
In the same paper, Krawec also calls a graph G on n edges k-modular multiplicative if
the vertices of G can be labeled with distinct integers 0, 1, . . . , n + k − 1 such that the
labels induced on the edges by the product of the end vertices modulo n+ k are distinct.
He proves that every graph is k-modular multiplicative for some k and also shows that
if p = 2n + 1 is prime then the path on n edges is (n + 1)-modular multiplicative. He
also shows that if p = 2n + 1 is prime then the cycle on n edges is (n + 1)-modular
multiplicative if there does not exist α ∈ {2, 3, . . . , n} such that α2 + α − 1 ≡ 0 mod p.
He concludes with four open problems. In [1409] Krawec shows that every graph is a
subgraph of a modular multiplicative graph. He also defines k-modular multiplicative
graphs and proves that certain families of paths and cycles admit such a labeling.

7.17 k-sequential Labelings

In 1981 Bange, Barkauskas, and Slater [342] defined a k-sequential labeling f of a graph
G(V,E) as one for which f is a bijection from V ∪E to {k, k+1, . . . , |V ∪E|+k−1} such
that for each edge xy in E, f(xy) = |f(x)− f(y)|. This generalized the notion of simply
sequential where k = 1 introduced by Slater. Bange, Barkauskas, and Slater showed that
cycles are 1-sequential and if G is 1-sequential, then G+K1 is graceful. Hegde and Shetty
[992] have shown that every Tp-tree (see §4.4 for the definition) is 1-sequential. In [2423],
Slater proved: Kn is 1-sequential if and only if n ≤ 3; for n ≥ 2, Kn is not k-sequential
for any k ≥ 2; and K1,n is k-sequential if and only if k divides n. Acharya and Hegde [37]
proved: if G is k-sequential, then k is at most the independence number of G; P2n is n-
sequential for all n and P2n+1 is both n-sequential and (n+ 1)-sequential for all n; Km,n is
k-sequential for k = 1,m, and n; Km,n,1 is 1-sequential; and the join of any caterpillar and
Kt is 1-sequential. Acharya [23] showed that if G(E, V ) is an odd graph with |E|+|V | ≡ 1
or 2 (mod 4) when k is odd or |E|+ |V | ≡ 2 or 3 (mod 4) when k is even, then G is not
k-sequential. Acharya also observed that as a consequence of results of Bermond, Kotzig,
and Turgeon [448] we have: mK4 is not k-sequential for any k when m is odd and mK2

is not k-sequential for any odd k when m ≡ 2 or 3 (mod 4) or for any even k when m ≡ 1
or 2 (mod 4). He further noted that Km,n is not k-sequential when k is even and m and
n are odd, whereas Km,k is k-sequential for all k. Acharya points out that the following
result of Slater’s [2424] for k = 1 linking k-graceful graphs and k-sequential graphs holds
in general: A graph is k-sequential if and only if G + v has a k-graceful labeling f with
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f(v) = 0. Slater [2423] also proved that a k-sequential graph with p vertices and q > 0
edges must satisfy k ≤ p−1. Hegde [979] proved that every graph can be embedded as an
induced subgraph of a simply sequential graph. In [23] Acharya conjectured that if G is
a connected k-sequential graph of order p with k > bp/2c, then k = p− 1 and G = K1,p−1

and that, except for K1,p−1, every tree in which all vertices are odd is k-sequential for
all odd positive integers k ≤ p/2. In [979] Hegde gave counterexamples for both of these
conjectures.

In [990] Hegde and Miller prove the following: for n > 1, Kn is k-sequentially additive
if and only if (n, k) = (2, 1), (3, 1) or (3,2); K1,n is k-sequentially additive if and only if
k divides n; caterpillars with bipartition sets of sizes m and n are k-sequentially additive
for k = m and k = n; and if an odd-degree (p, q)-graph is k-sequentially additive, then
(p+q)(2k+p+q−1) ≡ 0 (mod 4). As corollaries of the last result they observe that when
m and n are odd and k is even Km,n is not k-sequentially additive and if an odd-degree
tree is k-sequentially additive then k is odd.

In [2240] Seoud and Jaber proved the following graphs are 1-sequentially additive:
graphs obtained by joining the centers of two identical stars with an edge; Sn ∪Sm if and
only if nm is even; Cn �Km; Pn �Km; kP3; graphs obtained by joining the centers of k
copies of P3 to each vertex in Km; and trees obtained from K by replacing each edge by a
path of length 2 when n ≡ 0, 1 (mod 4). They also determined all 1-sequentially additive
graphs of order 6.

7.18 IC-colorings

For a subgraph H of a graph G with vertex set V and a coloring f from V to the natural
numbers define fs(H) = Σf(v) over all v ∈ H. The coloring f is called an IC-coloring if
for any integer k between 1 and fs(G) there is a connected subgraph H of G such that
fs(H) = k. The IC-index of a graph G, M(G), is max{fs| fs is an IC-coloring of G}.
Salehi, Lee, and Khatirinejad [2163] obtained the following: M(Kn) = 2n − 1; for n ≥
2, M(K1,n) = 2n + 2; if ∆ is the maximum degree of a connected graph G, then M(G) ≥
2∆ + 2; if ST (n; 3n) is the graph obtained by identifying the end points of n paths of
length 3, then ST (n; 3n) is at least 3n + 3 (they conjecture that equality holds for n ≥ 4);
for n ≥ 2, M(K2,n) = 3 · 2n + 1; M(Pn) ≥ (2 + bn/2c)(n − bn/2c) + bn/2c − 1; for
m,n ≥ 2, the IC-index of the double star DS(m,n) is at least (2m−1 + 1)(2n−1 + 1) (they
conjecture that equality holds); for n ≥ 3, n(n + 1)/2 ≤ M(Cn) ≤ n(n− 1) + 1; and for
n ≥ 3, 2n + 2 ≤ M(Wn) ≤ 2n + n(n − 1) + 1. They pose the following open problems:
find the IC-index of the graph obtained by identifying the endpoints of n paths of length
b; find the IC-index of the graph obtained by identifying the endpoints of n paths; and
find the IC-index of Km,n. Shiue and Fu [2371] completed the partial results by Penrice
[1914] Salehi, Lee, and Khatirinejad [2163] by proving M(Km,n) = 3 · 2m+n−2 − 2m−2 + 2
for any 2 ≤ m ≤ n.
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7.19 Minimal k-rankings

A k-ranking of a graph is a labeling of the vertices with the integers 1 to k inclusively
such that any path between vertices of the same label contains a vertex of greater label.
The rank number of a graph G, χr(G), is the smallest possible number of labels in a
ranking. A k-ranking is minimal if no label can be replaced by a smaller label and
still be a k-ranking. The concept of the rank number arose in the study of the design
of very large scale integration (VLSI) layouts and parallel processing (see [649], [1573]
and [2216]). Ghoshal, Laskar, and Pillone [892] were the first to investigate minimal
k-rankings from a mathematical perspective. Laskar and Pillone [1462] proved that the
decision problem corresponding to minimal k-rankings is NP-complete. It is HP-hard
even for bipartite graphs [662]. Bodlaender, Deogun, Jansen, Kloks, Kratsch, Müller,
Tuza [479] proved that the rank number of Pn is χr(Pn) = blog2(n)c + 1 and satisfies
the recursion χr(Pn) = 1 + χr(Pd(n−1)/2e) for n > 1. The following results are given in
[662]: χr(Sn) = 2; χr(Cn) = b log2(n − 1)c + 2; χr(Wn) = b log2(n − 3)c + 3(n > 3);
χr(Kn) = n; the complete t-partite graph with n vertices has ranking number n+ 1 - the
cardinality of the largest partite set; and a split graph with n vertices has ranking number
n + 1 - the cardinality of the largest independent set (a split graph is a graph in which
the vertices can be partitioned into a clique and an independent set.) Wang proved that
for any graphs G and H χr(G+H) = min{|V (G)|+ χr(H), |V (H) + χr(G)}.

In 2009 Novotny, Ortiz, and Narayan [1871] determined the rank number of P 2
n from

the recursion χr(P
2
n) = 2+χr(P (d(n−2)/2e) for n > 2. They posed the problem of determin-

ing χr(Pm×Pn) and χ(P k
n ). In 2009 [142] and [141] Alpert determined the rank numbers

of P k
n , C

k
n, P2×Cn, Km×Pn, P3×Pn, Möbius ladders and found bounds for rank num-

bers of general grid graphs Pm × Pn. About the same time as Alpert and independently,
Chang, Kuo, and Lin [553] determined the rank numbers of P k

n , C
k
n, P2 × Pn, P2 × Cn.

Chang et al. also determined the rank numbers of caterpillars and proved that for any
graphs G and H χr(G[H]) = χr(H) + |V (H)|(χr(G)− 1).

In 2010 Jacob, Narayan, Sergel, Richter, and Tran [1090] investigated k-rankings of
paths and cycles with pendent paths of length 1 or 2. Among their results are: for any
caterpillar G χr(Pn) ≤ χr(G) ≤ χr(Pn) + 1 and both cases occur; if 2m ≤ n ≤ 2m+1 then
for any graph G obtained by appending edges to an n-cycle we have m+2 ≤ χr(G) ≤ m+3
and both cases occur; if G is a lobster with spine Pn then χr(Pn) ≤ χr(G) ≤ χr(Pn) + 2
and all three cases occur; if G a graph obtained from the cycle Cn by appending paths of
length 1 or 2 to any number of the vertices of the cycle then χr(Pn) ≤ χ(G) ≤ χ(Pn) + 2
and all three cases occur; and if G the graph obtained from the comb obtained from Pn by
appending one path of length m to each vertex of Pn then χr(G) = χr(Pn)+χr(Pm+1)−1.

Sergel, Richter, Tran, Curran, Jacob, and Narayan [2266] investigated the rank number
of a cycle Cn with pendent edges, which they denote by CCn, and call a caterpillar cycle.
They proved that χ(CCn) = χr(Cn)) or χ(CCn) = χr(Cn))+1 and showed that both cases
occur. A comb tree, denoted by C(n,m), is a tree that has a path Pn such that every vertex
of Pn is adjacent to an end vertex of a path Pm. In the comb tree C(n,m) (n ≥ 3) there are
2 pendent paths Pm+2 and n− 2 paths Pm+1. They proved χr(C(n,m)) = χr(Pm+1)− 1.
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They define a circular lobster as a graph where each vertex is either on a cycle Cn or
at most distance two from a vertex on Cn. They proved that if G is a lobster with
longest path Pn, then χr(Pn) ≤ χr(G) ≤ χr(Pn) + 2 and determined the conditions under
which each true case occurs. If G is circular lobster with cycle Cn, they showed that
χr(Cn) ≤ χr(G) ≤ χr(Cn) + 2 and determined the conditions under which each true case
occurs. An icicle graph In (n ≥ 3) has three pendent paths P2 and is comprised of a path
Pn with vertices v1, v2, . . . , vn where a path Pi−1 is appended to vertex vi. They determine
the rank number for icicle graphs.

Richter, Leven, Tran, Ek, Jacob, and Narayan [2116] define a reduction of a graph
G as a graph G∗S such that V (G∗S) = V (G) \ S and, for vertices u and v, uv is an edge
of G∗S if and only if there exists a u − v path in G with all internal vertices belonging
to S. A vertex separating set of a connected graph G is a set of vertices whose removal
disconnects G. They define a bent ladder BLn(a, b) as the union of ladders La and Lb
(where Ln = Pn×P2) that are joined at a right angle with a single L2 so that n = a+b+2.
A staircase ladder SLn is a graph with n − 1 subgraphs G1, G2, . . . , Gn−1 each of which
is isomorphic to C4. (They are ladders with a maximum number of bends.) Richter et
al. [2116] prove: χr(BLn(a, b)) = χr(Ln)− 1 if n = 2k − 1 and a ≡ 2 or 3 (mod 4) and is
equal to χr(Ln) otherwise; χr(SLn) = χr(Ln+1) if n = 2k + 2k−1− 2 for some k ≥ 3 and is
equal to χr(Ln) otherwise; and for any ladder Ln with multiple bends, the rank number
is either χr(Ln) or χr(Ln) + 1).

The arank number of a graph G is the maximum value of k such that G has a minimal
k-ranking. Eyabi, Jacob, Laskar, Narayan, and Pillone [745] determine the arank number
of Kn ×Kn, and investigated the arank number of Km ×Kn.

7.20 Set Graceful and Set Sequential Graphs

The notions of set graceful and set sequential graphs were introduced by Acharaya in
1983 [24]. A graph is called set graceful if there is an assignment of nonempty subsets of
a finite set to the vertices and edges of the graph such that the value given to each edge is
the symmetric difference of the sets assigned to the endpoints of the edge, the assignment
of sets to the vertices is injective, and the assignment to the edges is bijective. A graph
is called set sequential if there is an assignment of nonempty subsets of a finite set to the
vertices and edges of the graph such that the value given to each edge is the symmetric
difference of the sets assigned to the endpoints of the edge and the the assignment of sets
to the vertices and the edges is bijective. The following has been shown: Pn (n > 3) is not
set graceful [983]; Cn is not set sequential [38]; Cn is set graceful if and only if n = 2m− 1
[985] and [24]; Kn is set graceful if and only if n = 2, 3 or 6 [1781]; Kn (n ≥ 2) is set
sequential if and only if n = 2 or 5 [985]; Ka,b is set sequential if and only if (a+ 1)(b+ 1)
is a positive power of 2 [985]; a necessary condition for Ka,b,c to be set sequential is that
a, b, and c cannot have the same parity [983]; K1,b,c is not set sequential when b and c even
[985]; K2,b,c is not set sequential when b and c are odd [983]; no theta graph is set graceful
[983]; the complete nontrivial n-ary tree is set sequential if and only if n+ 1 is a power of
2 and the number of levels is 1 [983]; a tree is set sequential if and only if it is set graceful
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[983]; the nontrivial plane triangular grid graph Gn is set graceful if and only if n = 2
[985]; every graph can be embedded as an induced subgraph of a connected set sequential
graph [983]; every graph can be embedded as an induced subgraph of a connected set
graceful graph [983], every planar graph can be embedded as an induced subgraph of a
set sequential planar graph [985]; every tree can be embedded as an induced subgraph of
a set sequential tree [985]; and every tree can be embedded as an induced subgraph of
a set graceful tree [985]. Hegde conjectures [985] that no path is set sequential. Hegde’s
conjecture [986] that every complete bipartite graph that has a set graceful labeling is a
star was proved by Vijayakumar [2732]. Shahida and Sunitha [2304] prove that the concept
of set-gracefulness is equivalent to topologically set-gracefulness in trees and almost all
finite trees are not set-graceful. Using this they characterize topologically set-graceful
stars and topologically set-graceful paths. In [29] Acharya and Germina survey results on
set-valuations of graphs and give open problems and conjectures.

Germina, Kumar, and Princy [867] prove: if a (p, q)-graph is set-sequential with respect
to a set with n elements, then the maximum degree of any vertex is 2n−1 − 1; if G is set-
sequential with respect to a set with n elements other than K5, then for every edge uv
with d(u) = d(v) one has d(u) + d(v) < 2n−1 − 1; K1,p is set-sequential if and only if p
has the form 2n−1 − 1 for some n ≥ 2; binary trees are not set-sequential; hypercubes Qn

are not set-sequential for n > 1; wheels are not set-sequential; and uniform binary trees
with an extra edge appended at the root are set-graceful and set graceful.

Vijayakumar [2732] and Gyri, Balister, and Schelp [267] proved that if a complete
bipartite graph G has a set-graceful labeling, then it is a star. Abhishek [6] described a
method for constructing a set-graceful bipartite graph of arbitrarily large order and size
beginning with a set-graceful bipartite graph. Acharya, Germina, Princy, and Rao [34]
proved that K1,m,n is set-graceful if and only if m = 2s − 1 and n = 2t − 1 and almost all
graphs are not set-graceful. In [7] Abhishek surveys results on set-valued graphs. Many
open problems and conjectures are included.

Acharya [24] has shown: a connected set graceful graph with q edges and q+1 vertices
is a tree of order p = 2m and for every positive integer m such a tree exists; if G is a
connected set sequential graph, then G+K1 is set graceful; and if a graph with p vertices
and q edges is set sequential, then p + q = 2m − 1. Acharya, Germina, Princy, and Rao
[34] proved: if G is set graceful, then G ∪ Kt is set sequential for some t; if G is a set
graceful graph with n edges and n+ 1 vertices, then G+Kt is set graceful if and only if
m has the form 2t − 1; Pn + Km is set graceful if n = 1 or 2 and m has the form 2t − 1;
K1,m,n is set graceful if and only if m has the form 2t − 1 and n has the form 2s − 1;
P4 +Km is not set graceful when m has the form 2t − 1 (t ≥ 1); K3,5 is not set graceful;
if G is set graceful, then graph obtained from G by adding for each vertex v in G a new
vertex v′ that is adjacent to every vertex adjacent to v is not set graceful; and K3,5 is not
set graceful.

Acharya, Germina, Abhishek, and Slater [31] prove Cm is set-graceful if and only if
m = (4n− 1)/3; mK2 is set-sequential if and only if m = (4n− 1)/3; and, for r+ s = 2n−1

the bistar B(r, s) is set-sequential if and only if r and s are odd. They also prove that
connected planar graphs with an even number of faces, regular polyhedrons, and cacti
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containing an odd number of cycles are not set-sequential.
Abhishek [6] proved that if G is a set-sequential bipartite graph and H is 2k-set-

sequential, then 4kG∪H is set-sequential. As a corollary, he gets mP3 is set-sequential if
and only if m = (16n − 1)/5. Abhishek and Agustine [9] characterized the set-sequential
caterpillars of diameter four and give a necessary condition for a graph to be set-sequential.
Abhishek [8] characterized the set-sequential caterpillars of diameter five.

In [1738] Mehra and Puneet introduce a topological integer additive set-labeling of
signed graphs as follows. Let S = (V,E, s) be a signed graph with corresponding graph
G = (V,E) and the signature function s. Here, G is an integer additive set-labeled graph
having an injective function f : V (G) → P (X) − {∅} that produces another injective
function gf : E(G)→ P (X)−{∅, {0}} defined by gf (uv) = f(u) +f(v) for every edge uv,
where X is the subset of non-negative integers, P (X) is its power set, and the signature
function defined as s : E(G)→ {+,−} is such that s(uv) = −1|f(u)+f(v)| for all edges uv.
If f(V (G)) ∪ {∅} forms a topology on X then the signed graph S is called a topological
integer additive set-labeled signed graph (T-IASL). They proved the following graphs have
T-IASL labelings: paths, stars, double stars, tadpoles, and graphs obtained by identifying
an end of a path with the center of a star.

7.21 Vertex Equitable Graphs

Given a graph G with q edges and a labeling f from the vertices of G to the set
{0, 1, 2, . . . , dq/2e} define a labeling f ∗ on the edges by f ∗(uv) = f(u) + f(v). If for
all i and j and each vertex the number of vertices labeled with i and the number of ver-
tices labeled with j differ by at most one and the edge labels induced by f ∗ are 1, 2, . . . , q,
Lourdusamy and Seenivasan [1656] call a f a vertex equitable labeling of G. They proved
the following graphs are vertex equitable: paths, bistars, combs, n-cycles for n ≡ 0 or
3 (mod 4), K2,n, C

t
3 for t ≥ 2, quadrilateral snakes, K2 + mK1, K1,n ∪ K1,n+k if and

only if 1 ≤ k ≤ 3, ladders, arbitrary super divisions of paths, and n-cycles with n ≡ 0
or 3 (mod 4). They further proved that K1,n for n ≥ 4, Eulerian graphs with n edges
where n ≡ 1 or 2 (mod 4), wheels, Kn for n > 3, triangular cacti with q ≡ 0 or 6 or
9 (mod 12), and graphs with p vertices and q edges, where q is even and p < dq/2e + 2
are not vertex equitable. Lourdusamy and Patrick [1651] prove that triangular ladders
TLn, Ln �mK1, Qn �K1, TLn �K1, and alternate triangular snakes A(Tn) are vertex
equitable graphs. In [47] Acharya, Jain, and Kansal introduced vertex equitable labelings
of signed graphs and studied vertex equitable behavior of signed paths, signed stars, and
signed complete bipartite graphs K2,n.

Jeyanthi and Maheswari [1171] proved that the following graphs have vertex equitable
labelings: the square of the bistar Bn,n; the splitting graph of the bistar Bn,n; C4-snakes;
connected graphs for in which each block is a cycle of order divisible by 4 (they need
not be the same order) and whose block-cut point graph is a path; Cm � Pn; tadpoles;
the one-point union of two cycles; and the graph obtained by starting friendship graphs,
C

(2)
n1 , C

(2)
n2 , . . . , C

(2)
nk where each ni ≡ 0 (mod 4) and joining the center of C

(2)
ni to the center

of C
(2)
i+1 with an edge for i = 1, 2, . . . , k − 1. In [1161] Jeyanthi and Maheswari prove
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that Tp trees, bistars B(n, n+ 1), Cn�Km, P
2
n , tadpoles, certain classes of caterpillars,

and T � Kn where T is a Tp tree with an even number of vertices are vertex equitable.
Jeyanthi and Maheswari [1164] gave vertex equitable labelings for graphs constructed
from Tp trees by appending paths or cycles. Jeyanthi and Maheswari [1160] proved that
graphs obtained by duplicating an arbitrary vertex and an arbitrary edge of a cycle, total
graphs of a paths, splitting graphs of paths, and the graphs obtained identifying an edge
of one cycle with an edge of another cycle are vertex equitable (see §2.7 for the definitions
of duplicating vertices and edges, a total graph, and a splitting graph.)

For a graph H with vertices v1, v2, . . . , vn and n copies of a graph G, H ô G is a
graph obtained by identifying a vertex ui of the ith copy of G with a vertex vi of H for
1 ≤ i ≤ n. The graph H õ G is a graph obtained by joining a vertex ui of the ith copy of
G with a vertex vi of H by an edge for 1 ≤ i ≤ n. Jeyanthi, Maheswari, and Laksmi prove
[1187] that the graphs Lm ô nC4, Lm õ nC4, Cm õ nC4, and Pm õ nC4 are vertex equitable
graphs. The graph S∗(G) is obtained from a graph G by replacing every edge e of G with
K2,m (m ≥ 2) with the endpoints of e merged with the two vertices of the 2-vertices part
of K2,m after removing the edge e from G. Jeyanthi, Maheswari, and Vijaya Laksmi [1183]
prove the graphs S∗(Pn ·K1), S∗(B(n, n)), S∗(Pn × P2), and S∗(Qn) of the quadrilateral
snake are vertex equitable.

In [1168] Jeyanthi and Maheswari proved the double alternate triangular snakeDA(Tn)
obtained from a path u1, u2, . . . , un by joining ui and ui+1 (alternatively) to two new
vertices vi and wi is vertex equitable; the double alternate quadrilateral snake DA(Qn)
obtained from a path u1, u2, . . . , un by joining ui and ui+1 (alternatively) to two new
vertices vi, xi and wi, yi respectively and then joining vi, wi and xi, yi is vertex equitable;
and NQ(m) the nth quadrilateral snake obtained from the path u1, u2, . . . , um by joining
ui, ui+1 with 2n new vertices vij and wij, 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n is vertex equitable.
Jeyanthi and Maheswari [1181] prove DA(Tn)�K1, DA(Tn)�2K1, DA(Tn), DA(Qn)�
K1, DA(Qn)� 2K1, and DA(Qn) are vertex equitable.

In [1167] and [1169] Jeyanthi and Maheswari show a number of families of graphs have
vertex equitable labelings. Their results include: armed crowns Cm � Pn, shadow graphs
D2(K1,n); the graph Cm ∗ Cn obtained by identifying a single vertex of a cycle graph Cm
with a single vertex of a cycle graph Cn if and only if m + n ≡ 0, 3 (mod 4); for n ≡ 0
(mod 4) the graph obtained from m copies of Cn ∗ Cn and Pm by joining each vertex
of Pm with the cut vertex in one copy of Cn ∗ Cn; and graphs obtained by duplicating
an arbitrary vertex and an arbitrary edge of a cycle; the total graph of Pn; the splitting
graph of Pn; and the fusion of two edges of Cn.

Jeyanthi, Maheswari, and Vijayalaksmi [1182] proved the following graphs are ver-
tex equitable: jewel graphs Jn with vertex set {u, v, x, y, ui : 1 ≤ i ≤ n} and edge
set {ux, uy, xy, xv, yv, uui, vui : 1 ≤ i ≤ n}; jelly fish graphs (JF )n with vertex set
{u, v, ui, vj : 1 ≤ i ≤ n, 1 ≤ j ≤ n − 2} and edge set {uui : 1 ≤ i ≤ n} ∪ {vvj : 1 ≤
j ≤ n− 2} ∪ {un−1un, vun, vun−1}; lobsters constructed from the path a1, a2, . . . , an with
verticies ai1 and ai2 adjacent to ai for 1 ≤ i ≤ n and pendent vertices a1

ij, a
2
ij, . . . , a

k
ij

joining aij for 1 ≤ i ≤ n and j = 1, 2; Ln �Km; and the graph obtained from ladder a
Ln and 2n copies of K1,m by identifying a non-central vertex of ith copy of K1,m with ith
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vertex of Ln.
Jeyanthi, Mahewari, and Vijaya Laksmi [1178] prove the following graphs are vertex

equitable: graphs obtained by joining a vertex of a cycle to a degree 2 vertex of a comb
(Pn �K1) with an edge; path unions of quadrilateral snakes; cycle unions of n copies of
mC4-snakes where n ≡ 0, 3 mod 4; the graphs obtained from a path u1, u2, . . . , um by
joining the end points of each edge uiui+1 to 2n isolated vertices vij, w

i
j for 1 ≤ m−1, 1 ≤

j ≤ n, where n is even (the nth quadrilateral snake).
Jeyanthi, Maheswari, and Vijaya Laksmi [1178] prove that subdivisions of double tri-

angular snakes S(D(Tn)), subdivisions of double quadrilateral snakes S(D(Qn)), subdi-
visions of double alternate triangular snakes S(DA(Tn)), subdivisions of double alternate
quadrilateral snakes S(DA(Qn)), DA(Qm)� nK1, and DA(Tm)� nK1 admit vertex eq-
uitable labelings.

The super subdivision graph S∗(G) of a graph G is the graph obtained from G by
replacing every edge uv of G by K2,m (m may vary for each edge) and identifying u and
v with the two vertices in K2,m that form the partite set with exactly two members.
Jeyanthi, Maheswari, and Vijayalaksmi [1183] prove that super subdivision graphs of
Pn �K1, bistars B(n, n), Pn × P2, and quadrilateral snakes are vertex equitable.

For a graph H with vertices v1, v2, . . . , vn and n copies of a graph G, H ô G is a
graph obtained by identifying a vertex ui of the ith copy of G with a vertex vi of H for
1 ≤ i ≤ n. The graph H õ G is a graph obtained by joining a vertex ui of the ith copy
of G with a vertex vi of H by an edge for 1 ≤ i ≤ n. Jeyanthi, Maheswari, and Laksmi
[1187] prove that the graphs Lm ô nC4, Lm õ nC4, Cm õ nC4 and Pm õ nC4 are vertex
equitable graphs.

For a graph G with p vertices and q edges and A = {1, 3, . . . , q} if q is odd or A =
{1, 3, . . . , q + 1} if q is even Jeyanthi, Maheswari and Vijaya Laksmi [1177] say a vertex
labeling f from V (G) to A is an odd vertex equitable even labeling if the induced edge
labeling f ∗ defined by f ∗(uv) = f(u) + f(v) for all edges uv has the property that for all
u and v in A the number of vertices labeled with u and the number of vertices labeled
with v differ by at most 1 and the induced edge labels are 2, 4, . . . , 2q. A graph that
admits odd vertex equitable even labeling is called an odd vertex equitable even graph.
They show that the following graphs have odd vertex equitable even lableings: paths,
graphs obtained by identifying an endpoint of Pm with each vertex of Pn, K1,n if and
only if n = 1 or 2, K1,n ∪ K1,n−2 (n ≥ 3), K2,n, Tp-trees, Cn when n ≡ 0 or 1 mod 4,
quadrilateral snakes, ladders Ln, Ln�K1, and arbitrary super subdivision of paths. They
prove that if every edge of a graph G is an edge of a triangle, then G is not an odd vertex
equitable even graph. As a corollary of this they get that the following are not odd vertex
equitable even graphs: Kn (n ≥ 3), wheels, triangular snakes, double triangular snakes,
triangular ladders, flower graphs, fans Pn �K1 (n ≥ 2), double fans Pn �K2, (n ≥ 2),
friendship graphs C3

n, windmills Kn
m (m > 3), K2 + mK1, B2

n,n, total graphs T (Pn),
and composition graphs Pn[P2]. They also show that if G is a (p, q) graph with p ≤
dq/2e + 1, then G is not an odd vertex equitable even graph. Jeyanthi, Maheswari, and
Vijaya Laksmi [1188] gave odd vertex equitable even labelings for ladder related families
of graphs. Jeyanthi and Maheswari [1172] proved that the subdivision of double triangular
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snakes and the subdivision of double quadrilateral snakes are odd vertex equitable even
graphs. Lourdusamy and Patrick [1650] proved that Pn �mK1, the quadrilateral snake
attached to each vertex of path Pn, the super splitting graph S∗(Pn � K1), the super
splitting graphs of ladders and the bistars Bn,n, B

2
n,n, and the splitting S ′(Bn,n) admit

even vertex equitable even labelings. Lourdusamy, Wency, and Patrick [1662] prove that
S(D(Qn)), S(D(Tn)), DA(Qm)�nK1, DA(Tm)�nK1, S(DA(Qn)) and S(DA(Tn)) are an
even vertex equitable even graphs.

For graphs G1 and G2 that graph G1ÔG2 is obtained from G1 and |V G1)| copies of G2

by identifying one vertex of ith copy of G2 with ith vertex of G1. Jeyanthi, Maheswari,
and Vijayalakshmi [1190] proved the following graphs have odd vertex equitable even
labelings: subdivision graphs of ladders, LmÔPn, Ln � Km (m > 1), Cn if and only if
n ≡ 0 or 1 (mod 4), K1,n+k ∪K1,n i if and only if k = 1, 2, and 〈LnÔK1,m〉.

Motivated by the concept of vertex equitable labeling first defined by Lourdusamy and
Seenivasan in [1656], Lourdusamy, Mary, and Patrick [1648] introduced the concept of even
vertex equitable even labeling as follows. Let G be a graph with p vertices and q edges
and A = {0, 2, 4, . . . , q+1} if q is odd or A = {0, 2, 4, . . . , q} if q is even. A graph G is said
to be an even vertex equitable even labeling if there exists a vertex labeling f from V (G)
to A that induces an edge labeling f defined by f ∗(uv) = f(u)+f(v) for all edges uv such
that for all a and b in A, |vf (a)− vf (b)| ≤ 1 and the induced edge labels are 2, 4, . . . , 2q,
where vf (a) is the number of vertices v with f(v) = a for a ∈ A. A graph that admits
even vertex equitable even labeling is called an even vertex equitable even graph. They
proved that paths, combs, complete bipartite graphs, cycles, K2 +mK1, bistars, ladders,
(Pn × P2) � K1, and the subdivision graphs of ladders and bistars Bn,n admit an even
vertex equitable even labeling. In [1654] Lourdusamy and Patrick proved that Cm � Pn,
C4n and C4n+3 with a quadrilateral snake attached to each vertex of the cycle, the graphs
obtained by indentifying an edge of Cm and Cn, and the graphs obtained by duplicating
an arbitrary vertex and edge of a cycle admit an even vertex equitable even labeling.
Lourdusamy, Shobana Mary, and Patrick [1655] proved P 2

n , S(Pn �K1), S ′(Pn), T (Pn),
graphs obtained by duplication of an egde of a path, quadrilateral snakes, D(Qn), A(Tn),
and DA(Tn) have even vertex equitable even labelings. Lourdusamy and Patrick [1650]
proved that Pn �mK1, the quadrilateral snake attached to each vertex of path Pn, the
super splitting graph S∗(Pn �K1), the super splitting graphs of ladders and the bistars
Bn,n, B

2
n,n, and the splitting S ′(Bn,n) admit even vertex equitable even labelings.

7.22 Sequentially Additive Graphs

Bange, Barkauskas, and Slater [343] defined a k-sequentially additive labeling f of a graph
G(V,E) to be a bijection from V ∪ E to {k, . . . , k + |V ∪ E| − 1} such that for each
edge xy, f(xy) = f(x) + f(y). They proved: Kn is 1-sequentially additive if and only
if n ≤ 3; C3n+1 is not k-sequentially additive for k ≡ 0 or 2 (mod 3); C3n+2 is not k-
sequentially additive for k ≡ 1 or 2 (mod 3); Cn is 1-sequentially additive if and only
if n ≡ 0 or 1 (mod 3); and Pn is 1-sequentially additive. They conjecture that all trees
are 1-sequentially additive. Hegde [981] proved that K1,n is k-sequentially additive if and
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only if k divides n.
Hajnal and Nagy [947] investigated 1-sequentially additive labelings of 2-regular

graphs. They prove: kC3 is 1-sequentially additive for all k; kC4 is 1-sequentially ad-
ditive if and only if k ≡ 0 or 1 (mod 3); C6n ∪ C6n and C6n ∪ C6n ∪ C3 are 1-sequentially
additive for all n; C12n and C12n∪C3 are 1-sequentially additive for all n. They conjecture
that every 2-regular simple graph on n vertices is 1-sequentially additive where n ≡ 0 or
1 (mod 3).

Acharya and Hegde [39] have generalized k-sequentially additive labelings by allowing
the image of the bijection to be {k, k+d, . . . , (k+ |V ∪E|−1)d}. They call such a labeling
additively (k, d)-sequential.

7.23 Difference Graphs

Analogous to a sum graph, Harary [958] calls a graph a difference graph if there is an
bijection f from V to a set of positive integers S such that xy ∈ E if and only if |f(x)−
f(y)| ∈ S. Bloom, Hell, and Taylor [474] have shown that the following graphs are
difference graphs: trees, Cn, Kn, Kn,n, Kn,n−1, pyramids, and n-prisms. Gervacio [872]
proved that wheels Wn are difference graphs if and only if n = 3, 4, or 6. Sonntag [2457]
proved that cacti (that is, graphs in which every edge is contained in at most one cycle)
with girth at least 6 are difference graphs and he conjectures that all cacti are difference
graphs. Sugeng and Ryan [2499] provided difference labelings for cycles; fans; cycles with
chords; graphs obtained by the one-point union of Kn and Pm; and graphs made from
any number of copies of a given graph G that has a difference labeling by identifying one
vertex the first with a vertex of the second, a different vertex of the second with the third
and so on.

Hegde and Vasudeva [1005] call a simple digraph a mod difference digraph if there
is a positive integer m and a labeling L from the vertices to {1, 2, . . . ,m} such that
for any vertices u and v, (u, v) is an edge if and only if there is a vertex w such that
L(v) − L(u) ≡ L(w) (mod m). They prove that the complete symmetric digraph and
unidirectional cycles and paths are mod difference digraphs.

In [2239] Seoud and Helmi provided a survey of all graphs of order at most 5 and
showed the following graphs are difference graphs: Kn, (n ≥ 4) with two deleted edges
having no vertex in common; Kn, (n ≥ 6) with three deleted edges having no vertex in
common; gear graphs Gn for n ≥ 3; Pm × Pn (m,n ≥ 2); triangular snakes; C4-snakes;
dragons (that is, graphs formed by identifying the end vertex of a path and any vertex in
a cycle); graphs consisting of two cycles of the same order joined by an edge; and graphs
obtained by identifying the center of a star with a vertex of a cycle.

7.24 Square Sum Labelings and Square Difference Labelings

Ajitha, Arumugam, and Germina [133] call a labeling f from a graph G(p, q) to
{1, 2, . . . , q} a square sum labeling if the induced edge labeling f ∗(uv) = (f(u))2 + (f(v))2

is injective. They say a square sum labeling is a strongly square sum labeling if the q edge
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labels are the first q consecutive integers of the form a2 + b2 where a and b are less than
p and distinct. They prove the following graphs have square sum labelings: trees; cycles;
K2 + mK1; Kn if and only if n ≤ 5; C

(t)
n (the one-point union of t copies of Cn); grids

Pm × Pn; and Km,n if m ≤ 4. They also prove that every strongly square sum graph
except K1, K2, and K3 contains a triangle.

In [881] Ghodasara and Patel gave a counterexample to the conjecture by Germina
and Sebastian[871] that if G1 and G2 are square sum graphs then G1∪G2 is a square sum
graph. They proved that the duplication graphs of any vertex of the following graphs are
square sum graphs: Kn if and only if n ≤ 7, the Petersen graph P (5, 2), K1,n, and Cn
They also proved that cycle Cn with [n

2
] concurrent chords is a square sum graph.

In [878] Ghodasara and Patel proved that the following constructions based on the
bistar Bn,n are square sum graphs: the restricted square, the splitting graph, the shadow
graph, the degree splitting graph, the arbitrary super subdivision graph, and the du-
plication of any vertex of Bn,n. They defined restricted total graph of Bn,n as a graph
with vertex set = V (Bn,n) ∪ E(Bn,n) = {u, v, w, ui, vi, u′i, v′i/1 ≤ i ≤ n}, where u and v
are apex vertices, ui and vi are pendent vertices, w, u′i and v′i are vertices corresponding
to the edges of Bn,n and edge set = E(Bn,n) ∪ {uw, vw,wu′i, wv′i, uu′i, vv′i, uiu′i, viv′i, /1 ≤
i ≤ n}. They also defined restricted middle graph of Bn,n as a graph with vertex set
= V (Bn,n) ∪ E(Bn,n) = {u, v, w, ui, vi, u′i, v′i/1 ≤ i ≤ n}, where u and v are apex vertices,
ui and vi are pendent vertices, w, u′i and v′i are vertices corresponding to the edges of
Bn,n and edge set = {uw, vw,wu′i, wv′i, uu′i, vv′i, uiu′i, viv′i, /1 ≤ i ≤ n}. They proved that
restricted total graph and restricted middle graph of Bn,n are square sum graphs.

Germina and Sebastian [870] proved that the following graphs are square sum graphs:
trees; unicyclic graphs; mCn; cycles with a chord; the graphs obtained by joining two
copies of cycle Cn by a path Pk; and graphs that are a path union of k copies of Cn and
the path is P2. In [2227] Seoud and Al-Harere give several necessary conditions for a
graph to be a square sum graph and show that 2Cn, P2n, and C2n are square sum graphs.
Huilgol and Sriram [1034] prove that if G1 and G2 are square sum, then G1 ∪G2 ∪G3 is
also square sum, where G3 is a set of isolated vertices.

In [2444] Somashekara and Veena used the term “square sum labeling” to mean
“strongly square sum labeling.” They proved that the following graphs have strongly
square sum labelings: paths, K1,n1 ∪K1,n2 ∪· · ·∪K1,nk

, complete n-ary trees, and lobsters
obtained by joining centers of any number of copies of a star to a new vertex. They
observed that that if every edge of a graph is an edge of a triangle then the graph does
not have strongly square sum labeling. As a consequence, the following graphs do not
have a strongly square sum labelings: Kn, n ≥ 3; wheels; fans Pn + K1 (n ≥ 2); double

fans Pn +K2 (n ≥ 2); friendship graphs C
(n)
3 ; windmills K

(n)
m (m > 3); triangular ladders;

triangular snakes; double triangular snakes; and flowers. They also proved that helms are
not strongly square sum graphs and the graphs obtained by joining the centers of two
wheels to a new vertex are not strongly square sum graphs.

In [2453] Sonchhatra and Ghodasara call a (p, q)-graph G = (V,E) sum perfect square
if there exists a bijection f from V to {0, 1, 2, . . . , p−1} such that the function f ∗ from E
defined by f ∗(uv) = (f(u)) + (f(v))2 for all edges uv is an injection. Such an f is called a
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sum perfect square labeling of G. In a series of four papers the following graphs are proved
to be sum perfect square graphs: cycles, cycles with one chord, cycles with twin chords,
trees [2453]; several snake related graphs [2454]; K1,n +K1, K2 +mK1, Cn �K1, graphs
obtained from K1,n with endpoint verticies v1, v2, . . . , vn by joining vi and vi+1 with an
edge for i = 1, 2, . . . , vbn/2c (“half wheel”), the middle graphs of paths, the total graphs of
paths [2455]; P 2 (n > 1), mK1,n, mCn,, and the splitting graph and the shadow graph
of a star [2452]. In [2455] they prove that the union of two stars and that for any sum
perfect square graph G, G∪Pn is sum perfect square. They conjecture that the union of
any two sum perfect square graphs is sum perfect square.

Ajitha, Princy, Lokesha, and Ranjini [105] defined a graph G(p, q) to be a square differ-
ence graph if there exist a bijection f from V (G) to {0, 1, 2, . . . , p−1} such that the induced
function f ∗ from E(G) to the natural numbers given by f ∗(uv) = |(f(u))2 − (f(v))2| for
every edge uv of G is a bijection. Such a the function is called a square difference label-
ing of the graph G. They proved that following graphs have square difference labelings:
paths, stars, cycles, Kn if and only if n ≤ 5, Km,n if m ≤ 4, friendship graphs C

(n)
3 ,

triangular snakes, and K2 + mK1. They also prove that every graph can be embedded
as a subgraph of a connected square difference graph and conjecture that trees, complete
bipartite graphs and C

(n)
k are square difference graphs.

Tharmaraj and Sarasija [2585] proved that following graphs have square difference
labelings: fans Fn (n ≥ 2); Pn + K2; the middle graphs of paths and cycles; the total
graph of a path; the graphs obtained from m copies of an odd cycle and the path Pm with
consecutive vertices v1, v2, . . . , vm by joining the vertex vi to a vertex of the ith copy of
the odd cycle; and the graphs obtained from m copies of the star Sn and the path Pm by
joining the vertex vi of Pm to the center of the ith copy of Sn. Sebastian and Germina
[2196] proved that certain planar graphs and higher order level joined planar grid admit
square sum labeling. They also study square sum properties of several classes of graphs
with many odd cycles.

Vaghela and Parmar [2717] say a graph G admits a difference perfect square cordial
labeling if there is a bijection f : V (G) → {1, 2, . . . , |V (G|} such that for each edge
uv the induced map f ∗ : E(G) → {0, 1} defined by f ∗(uv) = 1 if u2 − 2uv + v2 = 1,
and 0 otherwise, has the property that the number of edges labeled with 0 and the
number of edges labeled with 1 difference by at most 1. A graph that admits a difference
perfect square cordial labeling is said to be a difference perfect square cordial graph. They
obtained difference perfect square cordial labelings for paths, cycles, wheels, fans, combs,
crowns, (Cm �K1) ∪ (Pn �K1), D2(Pn), P 2

n , K2 � Cn, graphs consisting of two copies
of Cn that share a common edge, the vertex switching of Cn, and the graph obtained by
starting with Pn (n ≥ 6) and two new vertices u and v of Pn and joining v to first two
vertices and last two vertices of Pn and joining u to the remaining vertices of Pn (called the
shipping graph). In [2718] Vaghela and Parmar provided difference perfect square cordial
labelings of the H-graphs of paths, some corona graphs, total graphs of paths, and graphs
obtained from Pn × P2 where Pn has conscutive vertices v1, v2, . . . , vn by joining vi in left
Pn to vi+1 in the right copy of Pn with an edge for i = 1, 2, . . . , n− 1.

Sharon Philomena and Thirusangu [1929] proved the cycle cactus graph C
(3)
n , the tree

the electronic journal of combinatorics (2019), #DS6 337



of diameter 4 obtained from the bistar Bn,n by subdividing the middle edge with a new
vertex, and the graph obtained by joining one vertex of a cycle and one vertex of degree
2 of a comb by an edge have square and cube difference labelings (that is, the absolute
cube difference of end-vertices of the edges are distinct). Sherman [2327] proved the path
union of nC3 and the disjoint union of m stars K1,n1 , K1,n2 , . . . , K1,nm are square difference
graphs

Subashini, Bhuvaneswari, and Manimekalai [2475] proved the following graphs have
square difference labelings: theta graphs, the duplication of any vertex of degree 3 in the
cycle of a theta graph, the one point union of any number of theta graphs, the path union
of any number of copies of a theta graph, the fusion of any two vertices in the cycle of a
theta graph, and the switching of a central vertex of a theta graph.

7.25 Permutation and Combination Graphs

Hegde and Shetty [999] define a graph G with p vertices to be a permutation graph if
there exists a injection f from the vertices of G to {1, 2, 3, . . . , p} such that the induced
edge function gf defined by gf (uv) = f(u)!/|f(u)− f(v)|! is injective. They say a graph
G with p vertices is a combination graph if there exists a injection f from the vertices of
G to {1, 2, 3, . . . , p} such that the induced edge function gf defined as gf (uv) =
f(u)!/|f(u)− f(v)|!f(v)! is injective. They prove: Kn is a permutation graph if and only
if n ≤ 5; Kn is a combination graph if and only if n ≤ 5; Cn is a combination graph
for n > 3; Kn,n is a combination graph if and only if n ≤ 2; Wn is a not a combination
graph for n ≤ 6; and a necessary condition for a (p, q)-graph to be a combination graph
is that 4q ≤ p2 if p is even and 4q ≤ p2 − 1 if p is odd. They strongly believe that
Wn is a combination graph for n ≥ 7 and all trees are combinations graphs. Baskar
Babujee and Vishnupriya [414] prove the following graphs are permutation graphs: Pn;
Cn; stars; graphs obtained adding a pendent edge to each edge of a star; graphs obtained
by joining the centers of two identical stars with an edge or a path of length 2); and
complete binary trees with at least three vertices. Seoud and Salim [2251] determine all
permutation graphs of order at most 9 and prove that every bipartite graph of order at
most 50 is a permutation graph. Seoud and Mahran [2242] give an upper bound on the
number of edges of a permutation graph and introduce some necessary conditions for a
graph to be a permutation graph. They show that these conditions are not sufficient for
a graph to be a permutation graph.

Ghodasara and Patel [880] proved that the following graphs are permutation graphs:
the Petersen graph P (5, 2), trees, K3,n (n ≥ 1) for n+3 prime, Wn (n ≥ 3) for n+1 prime,
shell graph Sn (n ≥ 3) for prime n, dumbbell graph Dn,k,2 (n, k ≥ 3), Cn �K1 (n ≥ 3),

and the one point union C
(k)
n (k ≥ 2, n ≥ 3) of k copies of cycle Cn. A t-ply Pt(u, v)

is a graph with t paths, each of length at least two and such that no two paths have a
vertex in common except for the end vertices u and v. Ghodasara and Patel defined t∗-ply
Pt∗(u, v) as a special case of t-ply Pt(u, v) graph with every t path have same length and
proved that t∗-ply Pt∗(u, v) is a permutation graph.

The graph obtained from two copies of an (m,n) kite graph by connecting the degree
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1 vertex of one copy to the vertex of degree 3 and the second coppy is called the 1-join
(m,n) kite. The graph ontained by repeating this construction with t copies of an (m,n)
kite is called a is called the t-join (m,n) kite. Sriramr and Govindarajan [2465] proved
t-join (m,n) kites are permutation graphs.

Ghodasara and Patel [879] proved that the following graphs are combination graphs:
Cn × P2 for n ≥ 6, umbrella graph U(m,n) for m,n > 2, armed crown Cn ⊕ Pm for
n ≥ 4 and m ≥ 1, the graphs obtained by joining C2m (m ≥ 2) to each pendent vertex of
K1,n(n ≥ 2), the duplication of any rim vertex of Wn for n ≥ 7, Cn with [n−4

2
] concurrent

chords for n ≥ 6, and the duplication of vertex in Cn for n ≥ 5.
Hegde and Shetty [999] say a graph G with p vertices and q edges is a strong k-

combination graph if there exists a bijection f from the vertices of G to {1, 2, 3, . . . , p}
such that the induced edge function gf from the edges to {k, k+ 1, . . . , k+ q− 1} defined
by gf (uv) = f(u)!/|f(u)− f(v)|!f(v)! is a bijection. They say a graph G with p vertices
and q edges is a strong k-permutation graph if there exists a bijection f from the vertices
of G to {1, 2, 3, . . . , p} such that the induced edge function gf from the edges to {k, k +
1, . . . , k+ q−1} defined by gf (uv) = f(u)!/|f(u)−f(v)|! is a bijection. Seoud and Anwar
[2229] provided necessary conditions for combination graphs, permutation graphs, strong
k-combination graphs, and strong k-permutation graphs.

Seoud and Al-Harere [2228] showed that the following families are combination graphs:
graphs that are two copies of Cn sharing a common edge; graphs consisting of two cycles
of the same order joined by a path; graphs that are the union of three cycles of the same
order; wheels Wn (n ≥ 7); coronas Tn � K1, where Tn is the triangular snake; and the
graphs obtained from the gear Gm by attaching n pendent vertices to each vertex which
is not joined to the center of the gear. They proved that a graph G(n, q) having at least 6
vertices such that 3 vertices are of degree 1, n− 1, n− 2 is not a combination graph, and
a graph G(n, q) having at least 6 vertices such that there exist 2 vertices of degree n− 3,
two vertices of degree 1 and one vertex of degree n− 1 is not a combination graph.

Seoud and Al-Harere [2226] proved that the following families are combination graphs:
unions of four cycles of the same order; double triangular snakes; fans Fn if and only if
n ≥ 6; caterpillars; complete binary trees; ternary trees with at least 4 vertices; and
graphs obtained by identifying the pendent vertices of stars Sm with the paths Pni

, for
1 ≤ ni ≤ m. They include a survey of trees of order at most 10 that are combination
graphs and proved the following graphs are not combination graphs: bipartite graphs
with two partite sets with n ≥ 6 elements such that n/2 elements of each set have degree
n; the splitting graph of Kn,n (n ≥ 3); and certain chains of two and three complete
graphs. Seoud and Anwar [2229] proved the following graphs are combination graphs:
dragon graphs (the graphs obtained from by joining the endpoint of a path to a vertex
of a cycle); triangular snakes Tn (n ≥ 3); wheels; and the graphs obtained by adding k
pendent edges to every vertex of Cn for certain values of k.

In [2225] and [2226] Seoud and Al-Harere proved the following graphs
are non-combination graphs: G1 + G2 if |V (G1)|, |V (G2)| ≥ 2 and at
least one of |V (G1)| and |V (G2)| is greater than 2; the double fan K2 +
Pn; Kl,m,n; Kk,l,m,n; P2[G]; P3[G]; C3[G]; C4[G]; Km[G]; Wm[G]; the splitting graph
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of Kn (n ≥ 3); Kn (n ≥ 4) with an edge deleted; Kn (n ≥ 5) with three edges deleted;
and Kn,n (n ≥ 3) with an edge deleted. They also proved that a graph G(n, q) (n ≥ 3) is
not a combination graph if it has more than one vertex of degree n− 1.

In [2587] and [2586] Tharmaraj and Sarasija defined a graph G(V,E) with p vertices
to be a beta combination graph if there exist a bijection f from V (G) to {1, 2, . . . , p}
such that the induced function Bf from E(G) to the natural numbers given by Bf (uv) =
(f(u) + f(v))!/f(u)!f(v)! for every edge uv of G is injective. Such a function is called a
beta combination labeling. They prove the following graphs have beta combination label-
ings: Kn if and only if n ≤ 8; ladders Ln (n ≥ 2); fans Fn (n ≥ 2); wheels; paths; cycles;
friendship graphs; Kn,n (n ≥ 2); trees; bistars; K1,n (n > 1); triangular snakes; quadrilat-
eral snakes; double triangular snakes; alternate triangular snakes (graphs obtained from
a path v1, v2, . . . , vn, where for each odd i ≤ n− 1, vi and vi+1 are joined to a new vertex
ui,i+1; alternate quadrilateral snakes (graphs obtained from a path v1, v2, . . . , vn, where
for each odd i ≤ n − 1, vi and vi+1 are joined to two new vertices ui,i+1,1 and ui,i+1,2);
helms; gears; combs Pn �K1; and coronas Cn �K1.

7.26 Strongly *-graphs

A variation of strong multiplicity of graphs is a strongly *-graph. A graph of order n
is said to be a strongly *-graph if its vertices can be assigned the values 1, 2, . . . , n in
such a way that, when an edge whose vertices are labeled i and j is labeled with the
value i + j + ij, all edges have different labels. Adiga and Somashekara [53] have shown
that all trees, cycles, and grids are strongly *-graphs. They further consider the problem
of determining the maximum number of edges in any strongly *-graph of given order
and relate it to the corresponding problem for strongly multiplicative graphs. In [2244]
and [2245] Seoud and Mahan give some technical necessary conditions for a graph to be
strongly *-graph,

Baskar Babujee and Vishnupriya [414] have proved the following are strongly *-graphs:

Cn × P2, (P2 ∪Km) + K2, windmills K
(n)
3 , and jelly fish graphs J(m,n) obtained from a

4-cycle v1, v2, v3, v4 by joining v1 and v3 with an edge and appending m pendent edges to
v2 and n pendent edges to v4.

Baskar Babujee and Beaula [398] prove that cycles and complete bipartite graphs
are vertex strongly *-graphs. Baskar Babujee, Kannan, and Vishnupriya [408] prove
that wheels, paths, fans, crowns, (P2 ∪mK1) + K2, and umbrellas (graphs obtained by
appending a path to the central vertex of a fan) are vertex strongly *-graphs.

In [2246] Seoud, Roshdy, and AboShady gave an upper bound for the number of edges
of any graph in terms of the number of vertices to be a strongly ∗-graph and some new
families to be strongly∗- graphs. They also provided an algorithm for checking if a graph
is a strongly ∗-graph or not.
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7.27 Triangular Sum Graphs

Hegde and Shankaran [994] call a labeling of graph with q edges a triangular sum labeling
if the vertices can be assigned distinct non-negative integers in such a way that, when an
edge whose vertices are labeled i and j is labeled with the value i + j, the edges labels
are {k(k + 1)/2| k = 1, 2, . . . , q}. They prove the following graphs have triangular sum
labelings: paths, stars, complete n-ary trees, and trees obtained from a star by replacing
each edge of the star by a path. They also prove that Kn has a triangular sum labeling if
and only if n is 1 or 2 and the friendship graphs C

(t)
3 do not have a triangular sum labeling.

They conjecture that Kn (n ≥ 5) are forbidden subgraphs of graph with triangular sum
labelings. They conjectured that every tree admits a triangular sum labeling. They
show that some families of graphs can be embedded as induced subgraphs of triangular
sum graphs. They conclude saying “as every graph cannot be embedded as an induced
subgraph of a triangular sum graph, it is interesting to embed families of graphs as an
induced subgraph of a triangular sum graph”. In response, Seoud and Salim [2248] showed
the following graphs can be embedded as an induced subgraph of a triangular sum graph:
trees, cycles, nC4, and the one-point union of any number of copies of C4 (friendship
graphs).

Vaidya, Prajapati, and Vihol [2661] showed that cycles, cycles with exactly one chord,
and cycles with exactly two chords that form a triangle with an edge of the cycle can
be embedded as an induced subgraph of a graph with a triangular sum labeling. They
proved that several classes of graphs do not have triangular sum labelings. Among them
are: helms, graphs obtained by joining the centers of two wheels to a new vertex, and
graphs in which every edge is an edge of a triangle. As a corollary of the latter result
they have that Pm +Kn, Wm +Kn, wheels, friendship graphs, flowers, triangular ladders,
triangular snakes, double triangular snakes, and flowers. do not have triangular sum
labelings.

Seoud and Salim [2248] proved the following are triangular sum graphs: Pm∪Pn, m ≥
4; the union of any number of copies of Pn, n ≥ 5; Pn�Km; symmetrical trees; the graph
obtained from a path by attaching an arbitrary number of edges to each vertex of the
path; the graph obtained by identifying the centers of any number of stars; and all trees
of order at most 9.

For a positive integer i the ith pentagonal number is i(3i − 1)/2. Somashekara and
Veena [2445] define a pentagonal sum labeling of a graph G(V,E) as one for which there is a
one-to-one function f from V (G) to the set of nonnegative integers that induces a bijection
f+ from E(G) to the set of the first |E| pentagonal numbers. A graph that admits such
a labeling is called a pentagonal sum graph. Somashekara and Veena [2445] proved that
the following graphs have pentagonal sum labelings: paths, K1,n1 ∪ K1,n2 ∪ · · · ∪ K1,nk

,
complete n-ary trees, and lobsters obtained by joining centers of any number of copies of
a star to a new vertex. They conjecture that every tree has a pentagonal sum labeling
and as an open problem they ask for a proof or disprove that cycles have pentagonal
labelings. They observed that if every edge of a graph is an edge of a triangle then the
graph does not have pentagonal sum labeling. As was the case for triangular sum labelings
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the following graphs do not have a pentagonal sum labeling: Pm + Kn, and Wm + Kn

wheels, friendship graphs, flowers, triangular ladders, triangular snakes, double triangular
snakes, and flowers. Somashekara and Veena [2445] also proved that helms and the graphs
obtained by joining the centers of two wheels to a new vertex are not pentagonal sum
graphs.

7.28 Divisor Graphs

Santhosh and Singh [2187] call a graph G(V,E) a divisor graph if V is a set of integers
and uv ∈ E if and only if u divides v or vice versa. They prove the following are divisor
graphs: trees; mKn; induced subgraphs of divisor graphs; cocktail party graphs Hm,n (see
Section 7.1) for the definition); the one-point union of complete graphs of different orders;
complete bipartite graphs; Wn for n even and n > 2; and Pn +Kt. They also prove that
Cn (n ≥ 4) is a divisor graph if and only if n is even and if G is a divisor graph then for
all n so is G+Kn.

Chartrand, Muntean, Saenpholphat, and Zhang [568] proved complete graphs, bipar-
tite graphs, complete multipartite graphs, and joins of divisor graphs are divisor graphs.
They also proved if G is a divisor graph, then G×K2 is a divisor graph if and only if G
is a bipartite graph; a triangle-free graph is a divisor graph if and only if it is bipartite;
no divisor graph contains an induced odd cycle of length 5 or more; and that a graph G
is divisor graph if and only if there is an orientation D of G such that if (x, y) and (y, z)
are edges of D then so is (x, z).

In [116] and [118] Al-Addasi, AbuGhneim, and Al-Ezeh determined precisely the values
of n for which P k

n (k ≥ 2) are divisor graphs and proved that for any integer k ≥ 2, Ck
n

is a divisor graph if and only if n ≤ 2k + 2. In [119] they gave a characterization of the
graphs G and H for which G×H is a divisor graph and a characterization of which block
graphs are divisor graphs. (Recall a graph is a block graph if every one of its blocks is
complete.) They showed that divisor graphs form a proper subclass of perfect graphs and
showed that cycle permutation graphs of order at least 8 are divisor graphs if and only
if they are perfect. (Recall a graph is perfect if every subgraph has chromatic number
equal to the order of its maximal clique.) In [117] Al-Addasi, AbuGhneim, and Al-Ezeh
proved that the contraction of a divisor graph along a bridge is a divisor graph; if e is an
edge of a divisor graph that lies on an induced even cycle of length at least 6, then the
contraction along e is not a divisor graph; and they introduced a special type of vertex
splitting that yields a divisor graph when applied to a cut vertex of a given divisor graph.

AbuHijleh, AbuGhneim, and Al-Ezeh [20] prove that for any tree T, T 2 is a divisor
graph if and only if T is a caterpillar and the diameter of T is less than six. For any
caterpillar T and a positive integer k with diam(T ) < 2k, they show that T k is a divisor
graph. Moreover, for a caterpillar T and k ≥ 3 with diam(T ) = 2k or diam(T ) = 2k + 1,
they show that T k is a divisor graph if and only if the centers of T have degree two. In
[21] AbuHijleh, AbuGhneim, and Al-Ezeh prove that the k-th power Qk

n of Qn is a divisor
graph if and only if n = 2, 3 or n ≥ 4 and k ≥ n−1 hold. In the case of the n-dimensional
folded-hypercube FQn (that is, the graph obtained from Qn by adding to it a perfect
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matching that connects opposite pairs of the vertices of Qn) they show that FQn is a
divisor graph for odd n, but not for even n ≥ 4. They also prove (FQn)k is not a divisor
graph if and only if 2 ≤ k ≤ dn/2e, where n ≥ 5.

Ganesan and Uthayakumar [821] proved that G�H is a divisor graph if and only if G
is a bipartite graph and H is a divisor graph. Frayer [771] proved Kn×G is a divisor graph
for each n if and only if G contains no edges and Kn ×K2 (n ≥ 3) is a divisor graph. Vinh
[2748] proved that for any n > 1 and 0 ≤ m ≤ n(n− 1)/2 there exists a divisor graph of
order n and size m. She also gave a simple proof of the characterization of divisor graphs
due to Chartrand, Muntean, Saenpholphat, and Zhang [568]. Gera, Saenpholphat, and
Zhang [865] established forbidden subgraph characterizations for all divisor graphs that
contain at most three triangles. Tsao [2602] investigated the vertex-chromatic number,
the clique number, the clique cover number, and the independence number of divisor
graphs and their complements. In [2235] Seoud, El Sonbaty, and Mahran discuss here
some necessary and sufficient conditions for a graph to be divisor graph.
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[171] M. Anholcer, M. Karoński, and J. Przbylo, A new bound for the total vertex
irregularity strength of graphs, Discrete Math., 309 (2009) 6316-6317.

[172] M. Anholcer and C. Palmer, Irregular labelings of circulant graphs, Discrete Math.,
312(23) (2012) 3461-3466.

[173] D. J. Anick, Counting graceful labelings of trees: a theoretical and empirical study,
Discrete Appl. Math., 198 (2016) 65-81.

[174] K. Anitha, B. Selvam, and K. Thirusangu, k-Graceful, odd-even graceful, Heronian
mean and analytic mean labeling for the extended duplicate graph of kite graph,
Internat. J. Engin. Tech. 7(4.10) (2018) 355-359. https://www.sciencepubco.
com/index.php/ijet/article/view/20934/9835

the electronic journal of combinatorics (2019), #DS6 355

http://dx.doi.org/10.1515/math-2018-0017
http://dx.doi.org/10.1007/s10878-013-9628-6
http://dx.doi.org/10.1007/s00373-014-1455-8
http://dx.doi.org/10.1007/s00373-014-1453-x
http://arxiv.org/abs/1103.2087v1
https://www.sciencepubco.com/index.php/ijet/article/view/20934/9835
https://www.sciencepubco.com/index.php/ijet/article/view/20934/9835


[175] K. Annathurai, R. Ponraj, and R. Kala, Some 3-remainder cordial graphs,Global
J. Engin. Sci. Res., 5(6) (2018) 169-175.

[176] K. Annathurai, R. Ponraj, and R. Kala, Further results on 3-remainder cordial
labeling of graphs, Internat. J. Management, IT Engin., 8(8) (2018) 120-129.

[177] S. Anusa, S. S. Sandhya, and S. Somasundaram, New classes of mean graphs, J.
Discrete Math. Sci. Cryptogr., 22(3) (2019) 351-360.

[178] R. Aravamudhan and M. Murugan, Numbering of the vertices of Ka,1,b, unpub-
lished.

[179] I. C. Arkut, R. C. Arkut, and A. Basak, Topology constrained label switching
for multicast routing, Proceed. Eighth IEEE Internat. Sympos. Comput. Comm.
(ISCC03), 1530-1346/03 1-8. http://www.academia.edu/4370947/

[180] I. Arkut, R. Arkut, N. Ghani, Graceful label numbering in optical MPLS net-
works, In: Proc. SPIE, 4233 (2000) 1-8 OptiComm 2000: Optical Networking and
Communications. Imrich Chlamtac: Ed (2000).

[181] A. Armstrong and D. McQuillan, Vertex-magic total labelings of even complete
graphs, Discrete Math., 311 (2011) 676-683.

[182] S. Arockiaraj, A. Durai Baskar, and A. Rajesh Kannan, F -root square mean la-
beling of line graph of some graphs, Utilitas Math., 112 (2019) 11-32.

[183] S. Arockiaraj and P. Mahalakshmi, On odd sum graphs, Internat. J. Math. Com-
bin., 4 (2013) 59-78.

[184] S. Arockiaraj, P. Mahalakshmi, and P. Namasivayam, Odd sum labeling of some
subdivision graphs, Kragujevac J. Math., 38(1) (2014) 203-222. http://elib.mi.
sanu.ac.rs/files/journals/kjm/42/kjom3801-16.pdf

[185] S. Arockiaraj, P. Mahalakshmi, and P. Namasivayam, Odd sum labelings of some
splitting graphs, Util. Math., 105 (2017) 53-73.

[186] S. Arockiaraj, P. Mahalakshmi, and P. Namasivayam, Odd sum labeling of graphs
obtained by duplicating any edge of some graphs. Electron. J. Graph Theory Appl.
(EJGTA), 3(2) (2015) 197-215.

[187] S. Arockiaraj, P. Mahalakshmi, and P. Namasivayam, Odd sum labeling of graphs
obtained from some graph operations, J. Graph Labeling, 2(2) (2015) 217-233.

[188] S. Arockiaraj and A. Meena, On F -face magic mean labeling of some planar graphs,
Internat. J. Pure Appl. Math., 117(6) (2017) 1-8. https://acadpubl.eu/jsi/

2017-117-5-6/articles/6/1.pdf

the electronic journal of combinatorics (2019), #DS6 356

http://www.academia.edu/4370947/
http://elib.mi.sanu.ac.rs/files/journals/kjm/42/kjom3801-16.pdf
http://elib.mi.sanu.ac.rs/files/journals/kjm/42/kjom3801-16.pdf
https://acadpubl.eu/jsi/2017-117-5-6/articles/6/1.pdf
https://acadpubl.eu/jsi/2017-117-5-6/articles/6/1.pdf


[189] S. Arockiaraj, A. Rajesh Kannan, and A. Durai Baskar, Super F -centroidal mean
graphs, Internat. J. Math. Combin., 3 (2019) 113-127.

[190] S. Arockiaraj, A. Rajesh Kannan, and A. Durai Baskar, F -centroidal mean labeling
of graphs obtained from paths, Internat. J. Math. Combin., 4 (2019) 122-135.

[191] S. Arumugam and J. Bagga, Graceful labeling algorithms and complexity–a survey,
Indones. Math. Soc., Special Edition (2011) 1-9.
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[252] M. Bača, F. Bashir, and A. Semaničová, Face antimagic labeling of antiprisms,
Util. Math., 84 (2011) 209-224.
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[290] M. Bača, Y. Lin, F. Muntaner-Batle, and M. Rius-Font, Strong labeling of linear
forests, Acta Math. Sinica, English Series, 25 (2009) 1951-1964.
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[318] M. Bača and M. K. Siddiqui, On total edge irregularity strength of strong product
of two cycles, Util. Math., 104 (2017) 255-275.
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Eulerscher Graphen, Mitt. Math. Gesellsch. Hamburg, 10 (1975) 241-248.

[487] S. A. H. Bokhary, A. Ahmad, and M. Imran, On vertex irregular total labelings of
cartesian products of two paths, Util. Math., 90 (2013) 239-249.

[488] S. A. H. Bokhary, U. Ali, and S. Maqbool, Irregular total labeling of wheel related
graphs, Util. Math., 107 (2018) 231-242.

[489] S. A. Bokhary and H. Faheem, Vertex irregular total labeling of grid graph, Palest.
J. Math., 8(1) (2019) 52-62.

[490] J. Boland, R. Laskar, C. Turner, and G. Domke, On mod sum graphs, Congr.
Numer., 70 (1990) 131-135.

[491] J. Bondy and U. Murty, Graph Theory with Applications, North-Holland, New
York (1976).

[492] R. Boonklurb, A. Narissayaporn, and S. Singhun, Super edge-magic labeling of m-
node k-uniform hyperpaths and m-node k-uniform hypercycles, AKCE Internat.
J. Graphs and Combin., 13 (2016) 218-229.

[493] I. Borosh, D. Hensley, and A. Hobbs, Vertex prime graphs and the Jacobsthal
function, Congr. Numer., 127 (1997) 193-222.

[494] D. Bouchard, P. Clark, S. M. Lee, S.-P. Lo, and H.-H. Su, On balance index sets
of generalized book and ear expansion graphs, 24th MCCCC. J. Combin. Math.
Combin. Comput., 82 (2012) 3-15.

[495] D. Bouchard, P. Clark, and H.-H. Su, On edge-balance index sets of L-product of
cycles, J. Indones. Math. Soc., Special Edition (2011) 27-38.

[496] D. Bouchard, P. Clark, and H.-H. Su, On edge-balance index sets of L-product of
cycles with stars, Part II, 24th MCCCC. J. Combin. Math. Combin. Comput., 82
(2012) 199-209.

the electronic journal of combinatorics (2019), #DS6 376



[497] S. A. Boxwala and P. Vashishta, Some new families of graceful graphs, The Eighth
International Workshop on Graph Labelings (IWOGL 2014) 127-133, Electron.
Notes Discrete Math., 48, Elsevier Sci. B. V., Amsterdam, 2015.
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[792] D. Fronček and L. Tollefson, Decompositions of complete graphs into kayak pad-
dles, J. Indones. Math. Soc., Special Edition (2011) 30-44.
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Problèmes Combinatories et Théorie des Graphes, Orsay, 1976 (1978) 207-209.

[946] E. Gyri, P. N. Balister, and R. H. Schelp, Coloring vertices and edges of a graph
by nonempty subsets of a set, Eur. J. Comb., 4 (2011) 533-537.

[947] P. Hajnal and G. Nagy, Simply sequentially additive labelings of 2-regular graphs,
Discrete Math., 310 (2010) 922-928.

[948] S. Hall, K. Hillesheim, E. Kocina, and M. Schmit, personal communication.

[949] N. Han and Z. Liang, On the graceful permutation graphs conjecture, J. Discrete
Math. Sci. Cryptogr., 11 (2008) 501-526.

[950] A. K. Handa, A. Godinho, and T. Singh, Distance antimagic labeling of the ladder
graph, Elect. Notes Discr. Math., 63 (2017) 317-322.

[951] A. K. Handa, A. Godinho, and T. Singh, Some distance antimagic labeled graphs.
In: S. Govindarajan and A. Maheshwari A. (eds), Algorithms and Discrete Applied
Mathematics. Lecture Notes in Computer Science, 9602 190-200. Springer, Cham
2016.

[952] T. Hao, On sum graphs, J. Combin. Math. Combin. Computing, 6 (1989) 207-212.

[953] K. M. M. Haque, X. Lin, Y. Yang, and J. Zhang, Prime cordial labeling of flower
snark and related graphs, Ars Combin., 105 (2012) 45-52.

[954] K. M. M. Haque, X. Lin, Y. Yang, and P. Zhao, On the prime labeling of generalized
Petersen graph P (n, 1), Util. Math., 83 (2010) 95-106.

[955] K. M. M. Haque, X. Lin, Y. Yang, and P. Zhao, On the prime cordial labeling of
generalized Petersen graph, Util. Math., 82 (2010) 71-79.

[956] K. M. M. Haque, X. Lin, Y. Yang, and P. Zhao, On the prime labeling of generalized
Petersen graph P (n, 3), Int. J. Contemp. Math. Sci., 6 (2011) 1783-1800.

[957] K. M. M. Haque, X. Lin, Y. Yang, and P. Zhao, Prime labeling on Knödel graphs
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[1270] M. Kalkowski, M. Karoński, and F. Pfender, A new upper bound for the irregularity
strength of graphs, SIAM J. Discrete Math., 25 (2011) 1319-1321.

the electronic journal of combinatorics (2019), #DS6 425

https://www.researchgate.net/publication/340923339_HK-_Cordial_labeling_of_m_-11990-1-12234-129054Polygonal_Snake_Graphs/references#fullTextFileContent
https://www.researchgate.net/publication/340923339_HK-_Cordial_labeling_of_m_-11990-1-12234-129054Polygonal_Snake_Graphs/references#fullTextFileContent
https://www.researchgate.net/publication/340923339_HK-_Cordial_labeling_of_m_-11990-1-12234-129054Polygonal_Snake_Graphs/references#fullTextFileContent
https://www.researchgate.net/publication/340923339_HK-_Cordial_labeling_of_m_-11990-1-12234-129054Polygonal_Snake_Graphs/references#fullTextFileContent
https://www.researchgate.net/publication/332230070_Centered_Triangular_Mean_Graphs
https://www.researchgate.net/publication/332230070_Centered_Triangular_Mean_Graphs


[1271] N. Kamatchi, G. R. Vijayakumar, A. Ramalakshmi, S. Nilavarasi, and S. Aru-
mugam, Distance antimagic labelings of graphs, Theoretical Comput. Sci. Discr.
Math., 113-118, Lecture Notes in Comput. Sci., 10398, Springer, Cham, 2017.

[1272] K. K. Kanani and M. I. Bosmia, On cube divisor cordial graphs, Internat. J. Math.
Comput. Appl. Res. (IJMCAR), 5(4) (2015) 117-128.

[1273] K. K. Kanani and T. M. Chhaya, Strongly multiplicative labeling of some path
related graphs, Internat. J. Math. Comput. Appl. Res. (IJMCAR), 5 (5) (2015)
1-6.

[1274] K. K. Kanani and T. M. Chhaya, Some new families of strongly multiplicative
graphs, 9th National Level Science Symposium. February 14, 2016, Organized by
Christ College, Rajkot, Sponsored by GUJCOST, Gandhinagar, Mathematics &
Statistics, 3 (2016) 197-200

[1275] K. K. Kanani and M. V. Modha, 7-cordial labeling of standard graphs, Internat.
J. Appl. Math. Res., 3(4) (2014) 547-560.

[1276] K. K. Kanani and N. B. Rathod, Some new 4-cordial graphs, J. Math. Comput.
Sci., 4(5) (2014) 834-848.

[1277] K. K. Kanani and T. M. Chhaya, Strongly multiplicative labeling of some standard
graphs, Internat. J. Math. Soft Comput, 7(1) (2017) 13-21.

[1278] K. K. Kanani and T. M. Chhaya, K. K. Kanani and T. M. Chhaya, Strongly
multiplicative labeling of some snake related graphs, Internat. J. Math. Trends
and Tech. (IJMTT), 45(1) (2017) 53-56.

[1279] V. J. Kaneria, A. M. Gohil, and H. M. Makadia, Graceful related labeling and its
applications, Int. J. Math. Res., 7(1) (2015) 47-54.

[1280] V. J. Kaneria, M. M. Jariya, and H. Karavadiya, Cordially of the complete graphs,
J. Graph Labeling, 2(2) (2016) 89-101.

[1281] V. J. Kaneria and M. M. Jariya, Semi smooth graceful graph and construction of
new graceful trees, Elixir Appl. Math., 76 (2014) 28,536-28,538.

[1282] V. J. Kaneria and M. M. Jariya, Smooth graceful graphs and its applications to
construct graceful graphs, Int. J. Sci. and Res., (IJSR) 3(8) (2014) 909-912.

[1283] V. J. Kaneria, M. M. Jariya, and H. M. Makadia, Graceful labeling of arrow
graphs and double arrow graphs, Malaya J. Matematik, 3(4)(2015) 382-386. https:
//www.malayajournal.org/articles/paper2_2015.pdf

[1284] V. J. Kaneria, M. M. Jariya, and M. Meghpara, Graceful labeling for some star
related graphs, Int. Math. Forum, 9(26) (2014) 1289-1293. http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.685.6438&rep=rep1&type=pdf

the electronic journal of combinatorics (2019), #DS6 426

https://www.malayajournal.org/articles/paper2_2015.pdf
https://www.malayajournal.org/articles/paper2_2015.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.685.6438&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.685.6438&rep=rep1&type=pdf


[1285] V. J. Kaneria, M J Khoda, and H M Karavadiya, Balanced mean cordial labeling
and graph operations, Int. J. Math. Appl., 4(3A) (2016) 181-184. http://www.
ijmaa.in/v4n3-a/181-184.pdf

[1286] V. J. Kaneria, M. Meghpara and M. Khoda, Semi smooth graceful labeling and its
application to produce α-labeling, J. Graph Labeling, 2(2) (2016) 153-160.

[1287] V. J. Kaneria and H. M. Makadia, Some graceful graphs, J. of Math. Res., 4 (1)
(2012) 54-57.

[1288] V. J. Kaneria and H. M. Makadia, Graceful labeling for tensor product of two path
of odd lengths and some grid related graphs, Int. J. Innovation Sci. Math., 2(5)
(2014) 470-472.

[1289] V. J, Kaneria and H. M. Makadia, Graceful labeling for step grid graph, J. Ad-
vances Math., 9(5) (2014) 2647-2654.

[1290] V. J. Kaneria and H. M. Makadia, Some results on graceful labeling for step grid
related graphs, AKCE Int. J. Math. Trends Tech. (IJMTT) 65 (11) (2-19) 29-38.
http://www.ijmttjournal.org/Volume-65/Issue-11/IJMTT-V65I11P503.pdf

[1291] V. J. Kaneria and H. M. Makadia, Graceful labeling for double step grid graph,
Int. J. Math. Appl., 3(1) (2015) 33-38.

[1292] V. J. Kaneria and H. M. Makadia, Graceful labeling for plus graph, Int. J. Current
Rec. Sci. Tech., 1(3) (2015) 15-20.

[1293] V. J. Kaneria and H. M. Makadia, Some results on graceful labeling for families of
plus graph, Int. J. Current Rec. Sci. Tech., 1(4) (2015) 17-23.

[1294] V. J. Kaneria and H. M. Makadia, Graceful labeling for swastik graph, Int. J.
Math. Appl., 3(3-D) (2015) 25-29 http://ijmaa.in/v3n3-d/25-29.pdf

[1295] V. J. Kaneria and H. M. Makadia, Some results on graceful labeling for families of
swastik graphs, Advances and Appl. Discrete Math., 16(2) (2015) 161-172.

[1296] V. J. Kaneria, H. M. Makadia, and M. M. Jariya, Graceful labeling for cycle of
graphs, Int. J. Math. Res., 6 (2) (2014) 173-178.

[1297] V. J. Kaneria, H. M. Makadia, M. M. Jariya, and M. Meghpara, Graceful labeling
for complete bipartite graphs, Appl. Math. Sci., 8 (103) (2014) 5099-5104.

[1298] V. J. Kaneria, H. M. Makadia, and M. Meghpara, Some graceful graphs, Int. J.
Math. Soft Comp., 4(2) (2014) 165-172.

[1299] V. J. Kaneria, H. M. Makadia, and M. Meghpara, Gracefulness of cycle of cycles
and cycle of complete bipartite graphs, Int. J. Math. Trend Tech., 12(1) (2014)
19-26.

the electronic journal of combinatorics (2019), #DS6 427

http://www.ijmaa.in/v4n3-a/181-184.pdf
http://www.ijmaa.in/v4n3-a/181-184.pdf
http://www.ijmttjournal.org/Volume-65/Issue-11/IJMTT-V65I11P503.pdf
http://ijmaa.in/v3n3-d/25-29.pdf


[1300] V. J. Kaneria, H. M. Makadia, and M. Meghpara, Cordiality of a star of the
complete graph and a cycle graph C(n ·Kn), J. Math. Res., 6(4) (2014) 18-28.

[1301] V. J. Kaneria, H. M. Makadia, and M. Meghpara, Graceful labeling for grid related
graphs, Int. J. Math. Soft Comput., 5(1) (2015), 111-117. https://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.884.8585&rep=rep1&type=pdf

[1302] V. J. Kaneria, H. M. Makadia and R. V. Viradia, Graceful labeling for disconnected
grid related graphs, Bull. Math. Sci. Appl., 4(1) (2015) 6-11.

[1303] V. J. Kaneria, H. M. Makadia and R. V. Viradia, Some results on graceful labeling
for double step grid related graphs, Int. J. Math. Sci. Appl., 9(1) (2015) 117-127.

[1304] V. J. Kaneria, H. M. Makadia and R. V. Viradia, Various graph operation on
semi smooth graceful graphs, Int. J. Math. and Soft Computing, 6(1) (2016 57-
79. https://www.researchgate.net/publication/321164406_Various_Graph_
Operations_on_Semi_Smooth_Graceful_Graphs

[1305] V. J. Kaneria, M. Meera, and K. Maulik, Geometric mean 3-equitable labeling of
some graphs, Internat. J. Sci. Res. Reviews, IJSRR (2018) 7(1) Suppl. 245-250.

[1306] V. J. Kaneria and M. Meghpara, Mean labeling for some cycle of graphs, Int. J.
Math. Sci. Eng. Appl., 9(2) (2015) 267-274.

[1307] V. J. Kaneria and M. Meghpara, Semi smooth graceful labeling on some graphs,
Int. J. Math. Appl., 3 (3C) (2015) 1-5.

[1308] V. J. Kaneria and M. Meghpara, Graceful labeling for one point union for path of
graphs, Int. J. Math. Appl., 3(1) (2015) 49-55.

[1309] V. J. Kaneria, M. Meghpara, and H. M. Makadia, Mean labeling
for step grid graph, Advan. Appl. Math. Sci., 14 (1) (2015) 111-114.
https://www.researchgate.net/publication/318636734_MEAN_LABELING_

FOR_STEP_GRID_GRAPH

[1310] V. J. Kaneria, M. Meghpara, and H. M. Makadia, Graceful labeling for one point
union of path and barycentric subdivision of a grid graph, Int. J. Math. Comp.
Res., 2(9) (2014) 624-629.

[1311] V. J. Kaneria, M. Meghpara, and H. M. Makadia, Graceful labeling for open star
of graphs, Int. J. Math. Stat. Invention, (IJMSI), 2(9) (2014) 19-23.

[1312] V. J. Kaneria, M. Meghpara, and H. M. Makadia, Cordial labeling for cycle of
complete bipartite graphs and cycle of wheels, Int. J. Pure Appl. Math., (IJPAM),
101(1) (2015) 1-8. https://www.researchgate.net/publication/275240630_

Cordial_labeling_for_cycle_of_complete_bipartite_graphs_and_cycle_

of_wheels

the electronic journal of combinatorics (2019), #DS6 428

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.884.8585&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.884.8585&rep=rep1&type=pdf
https://www.researchgate.net/publication/321164406_Various_Graph_Operations_on_Semi_Smooth_Graceful_Graphs
https://www.researchgate.net/publication/321164406_Various_Graph_Operations_on_Semi_Smooth_Graceful_Graphs
https://www.researchgate.net/publication/318636734_MEAN_LABELING_FOR_STEP_GRID_GRAPH
https://www.researchgate.net/publication/318636734_MEAN_LABELING_FOR_STEP_GRID_GRAPH
https://www.researchgate.net/publication/275240630_Cordial_labeling_for_cycle_of_complete_bipartite_graphs_and_cycle_of_wheels
https://www.researchgate.net/publication/275240630_Cordial_labeling_for_cycle_of_complete_bipartite_graphs_and_cycle_of_wheels
https://www.researchgate.net/publication/275240630_Cordial_labeling_for_cycle_of_complete_bipartite_graphs_and_cycle_of_wheels


[1313] V. J. Kaneria, K. M. Patadiya, and J. R. Teraiya, Balanced cordial labeling and
its application to produce new cordial families, Int. J. Math. Appl., 4 (1-C) (2016)
65-68.

[1314] V. J. Kaneria, O. Teraiya and M. Meghpara, Double path union of α-graceful
graph and its α-labeling, J. of Graph Labeling, 2(2) (2016) 107-114.

[1315] V. J. Kaneria and J. R. Teraiya, Complete star of a graph and its balanced cordial
labeling, Internat. J. Math. Soft Comput., 7(1) (2017) 89-94.

[1316] V. J. Kaneria, J. R. Teraiya, and K. M. Patadiya, Some result on balanced cordial
graphs, Int. J. Math. Appl., 4 (2-A), (2016) 85-87.

[1317] V. J. Kaneria and S. K. Vaidya, Index of cordiality for complete graphs and cycle,
Inter. J. Applied Math. and Computation, 2(4) (2010) 38-46.

[1318] V. J. Kaneria, S. K. Vaidya, G. V. Ghodasara, and S. Srivastav, Some classes of
disconnected graceful graphs, Proc. First Internat. Conf. Emerging Technologies
and Appl. Engin. Tech. Sci., (2008) 1050-1056.

[1319] V. J. Kaneria, R. V. Viradia, M. M. Jariya, and H. M. Makadia, Various labeling
for the graph C(t · Pn), Int. J. Math. Comp. Res., 2 (11) (2014) 745-751.

[1320] V. J. Kaneria, R. V. Viradia and H. M. Makadia, Mean labeling for path union
and cycle of graphs, AKCE Int. J. Graphs Comb., to appear.

[1321] A. Kanetkar, Prime labeling of grids, AKCE J. Graphs Combin., 6 (2009) 135-142.

[1322] A. Kanetkar, S. S. Sane, Graceful labeling of a family of quasistars with paths in
arithmetic progression, Ars Combin., 83 (2007) 307-320.

[1323] S. M. Kang, S. Nazeer, W. Nazeer, and B.-Y. Lee, Radio number of caterpillar
graphs, Wulfenia, 22(5) (2015) 48-58.

[1324] Q. D. Kang, The k-gracefulness of the product graphs Pm × C4n, J. Math. Res.
Exposition, 9 (1989) 623-627.

[1325] Q. Kang, S. M. Lee, and L. Wang, On the edge-graceful spectra of the wheel
graphs, unpublished.

[1326] Q. D. Kang, Z.-H. Liang, Y.-Z. Gao, and G.-H. Yang, On the labeling of some
graphs, J. Combin. Math. Combin. Comput., 22 (1996) 193-210.

[1327] Q. D. Kang and X. Zhao, Strongly harmonious labelings of windmill graphs, J.
Hebei Normal College, 2 (1992) 1-7.

[1328] S. Kanwal, A. Azam, and Z. Iftikhar, SEMT labelings and deficiencies of forests
with two components (II), Punjab U. of Math., 51(4)(2019) 1-12.

the electronic journal of combinatorics (2019), #DS6 429



[1329] S. Kanwal, Z. Iftikhar, and A. Azam, SEMT labelings and deficiencies of forests
with two components, Punjab Univ. J. Math. (Lahore) 51(5) (2019) 137-149.

[1330] S. Kanwal, M. Imtiaz, Z. Iftikhar, R. Ashraf, M. Arshad, R. Irfan, and I. Sumbal,
Embedding of supplementary results in strong EMT valuations and strength, Open
Math., 17 (1) (2019) 527-543.

[1331] S. Kanwal, S. Javed, and A. Riasat, On the super edge-magicness and the deficiency
of some families of acyclic graphs, Util. Math., 100 (2016) 323-356.

[1332] M. Kannan, R. Vikrama Prasad, and R. Gopi, Super root square mean
labeling of disconnected graphs, Internat. J. Math. Appl., 4(1C) (2016)
93-98. https://www.researchgate.net/publication/303814124_Super_Root_

Square_Mean_Labeling_Of_Disconnected_Graphs

[1333] M. Kannan, R. Vikrama Prasad, and R. Gopi, Even vertex odd mean labeling of
some graphs, Global J. Pure and Applied Math., 13(3) (2017) 1019-1034.

[1334] M Kannan, R. Vikrama Prasad, and R. Gopi, Even vertex odd mean labelings of
H-graph, Internat. J. Math. Archive, 8(8) (2017) 162-167.

[1335] M. Kannan, R. Vikrama Prasad, and R. Gopi, A notion of even vertex odd mean
labeling graphs, Internat. J. Math. Trends Tech., (IJMTT) 50(3) (2017) 153

[1336] M. Kannan, R. Vikrama Prasad, and R. Gopi, Some graph operations of even
vertex odd mean labeling graphs, Internat. J. Appl. Eng. Res., 12(18) (2017)
7749-7753.

[1337] S. Kanwal and I. Kanwal, SEMT valuations of disjoint union of combs, stars and
banana trees, Punjab Univ. J. Math. (Lahore), 50(3) (2018) 131-144.

[1338] S. Kanwal, A. Riasat, M. Imtiaz, Z. Iftikhar, S. Javed, and S. Ashraf, Bounds of
strong EMT strength for certain subdivision of star and bistar, Open Math., 16
(2018) 1313-1325.

[1339] G. Kaplan, A. Lev, and Y. Roditty, Bertrand’s postulate, the prime number the-
orem and product anti-magic graphs, Discrete Math., 308 (2008) 787-794.

[1340] G. Kaplan, A. Lev, and Y. Roditty, On zero-sum partitions and anti-magic trees,
Discrete Math., 309 (2009) 2010-2014.

[1341] N. Karst, J. Langowitz, J. Oehrlein, and D. S. Troxell, Radio k-chromatic number
of cycles for large k, Discrete Math. Algorithms Appl., 9(3) (2017), 1750031, 20pp.

[1342] C. Karthikeyan1, S. Arthi, M. Abinaya, R. Swathi, A. Madhumathi, Super Fi-
bonacci graceful labelling of some cycle related graphs, JSRD -Internat. J. Sci.
Res. Develop., 5(12) (2018) 2321-0613.

the electronic journal of combinatorics (2019), #DS6 430

https://www.researchgate.net/publication/303814124_Super_Root_Square_Mean_Labeling_Of_Disconnected_Graphs
https://www.researchgate.net/publication/303814124_Super_Root_Square_Mean_Labeling_Of_Disconnected_Graphs


[1343] K. Karuppasamy and S. Kaleeswari, Total mean labeling graphs, Internat. J.
Recent Tech. Engin. (IJRTE), 8(4S4) (2019) 90-92. https://www.ijrte.org/

wp-content/uploads/papers/v8i4s4/D10361284S419.pdf

[1344] K. Kathiresan, Subdivisions of ladders are graceful, Indian J. Pure Appl. Math.,
23 (1992) 21-23.

[1345] K. Kathiresan, Two classes of graceful graphs, Ars Combin., 55 (2000) 129-132.

[1346] K. Kathiresan, Graceful labeling of ladders with pendant edges, unpublished.

[1347] K. Kathiresan, Odd graceful graphs, unpublished.

[1348] K. Kathiresan and S. Amutha, Arbitrary supersubdivisions of stars are graceful,
Indian J. Pure Appl. Math., 35 (2004) 81-84.

[1349] K. M. Kathiresan and S. Amutha, Fibonacci graceful graphs, Ars Combin., 97
(2010) 41-50.

[1350] K. Kathiresan and R. Ganesan, A labeling problem on the plane graphs Pa,b, Ars
Combin., 73 (2004) 143-151.

[1351] K. Kathiresan and R. Ganesan, d-antimagic labelings of plane graphs P b
a , J.

Combin. Math. Combin. Comput., 52 (2005) 89-96.

[1352] K. Kathiresan and S. Gokulakrishnan, On magic labelings of type (1, 1, 1) for the
special classes of plane graphs, Util. Math., 63 (2003) 25-32.

[1353] K. M. Kathiresan and S. D. Laurence, On super (a, d)-H-antimagic total covering
of star related graphs, Discuss. Math. Graph Theory, 35(4) (2015) 755-764.

[1354] K. Kathiresan, S. Muthuvel, and V. Nagasubbu, Consecutive labelings for two
classes of plane graphs, Util. Math., 55 (1999) 237-241.

[1355] Km. Kathiresan and S. Sabarimalai Madha, Star super edge-magic deficiency of
graphs, Contrib. Discrete Math., 12(1) (2017) 143-156.

[1356] K. Kathiresan and R. Sumathi, Solution to an open problem in gracefulness of
arbitrary supersubdivisions of graphs, Util. Math., 84 (2011) 333-338.

[1357] K. Kayathri and R. Amutha, Edge-graceful labelings of connected graphs, Elec-
tronic Notes Discrete Math., 53 (2016) 287-296.

[1358] M. Kchikech, R. Khennoufa, and O. Togni, Linear and cyclic radio k-labelings of
trees, Discuss. Math. Graph Theory, 27 (2007) 105-123.

[1359] M. Kchikech, R. Khennoufa, and O. Togni, Radio k-labelings for cartesian products
of graphs, Discuss. Math. Graph Theory, 28 (2008) 165-178.

the electronic journal of combinatorics (2019), #DS6 431

https://www.ijrte.org/wp-content/uploads/papers/v8i4s4/D10361284S419.pdf
https://www.ijrte.org/wp-content/uploads/papers/v8i4s4/D10361284S419.pdf


[1360] M. Khalid, S. T. R. Rizvi, and K. Ali, Note on cycle-(super)magic labelings of
disconnected graphs, Util. Math., 104 (2017) 315-320. arXiv:1506.06087

[1361] E. Khairunnisa and K. A. Sugeng, Graceful labelling of corona product of aster
flower graph, Adv. Intel. Systems Res., (AISR), 157 (2018) 68-71. Mathemat-
ics, Informatics, Science, and Education International Conference (MISEIC 2018).
https://download.atlantis-press.com/article/25905010.pdf

[1362] N. Khan, Cordial labelling of cycles, Annals Pure Appl. Math., 1(2) (2012) 117-130.

[1363] S. Khatun and Sk. Md. Abu Nayeem, Graceful labeling of some zero divisor graphs,
Elect. Notes Discr. Math., 63 (2017) 189-196.

[1364] R. Khennoufa and O. Togni, The radio antipodal and radio number of the hyper-
cube, Ars Combin., 102 (2011) 447-461.

[1365] J. Keene and A. Simoson, Balanced strands for asymmetric, edge-graceful spiders,
Ars Combin., 42 (1996) 49-64.
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[1423] P. Kovář, Unified approach to magic labeling of copies of regular graphs, Proceed.
Thirty-Fifth Southeastern International Conference on Combinatorics, Graph The-
ory and Computing. Congr. Numer., 168 (2004) 197-205.
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ladders and their bridge join with K4, J. Graph Label., 2(1) (2016) 25-43.

[1457] H. Kwong, S-M. Lee, and D. G. Sarvate, On balance index sets of one-point unions
of graphs, J. Combin. Math. Combin. Comput., 66 (2008) 113-127.

[1458] Y.-L. Lai, Review of “Some results on total product cordial labeling of graphs”,
J. Indian Acad. Math., 28 (2006) 309-320 by M. Sundaram, R. Ponraj, and S.
Somasundaram, MR2313075 (2008a:05241).

[1459] K. Chitra Lakshmi and K. Nagarajan, Geometric mean cordial labeling of graphs,
Intnat. J. Math.Soft Comput,, 7(1) (2017)75-87.

[1460] D. R. Lakshmi and S. Vangipuram, A note on the graceful numbering of a class of
trees, Def. Sci. J., 35 (1985) 65-70.

[1461] D.R. Lashmi and S. Vangipuram, An α-valuation of quadratic graph Q(4, 4k),
Proc. Nat. Acad. Sci. India Sec. A, 57 (1987) 576-580.

[1462] R. Laskar and D. Pillone, Theoretical and complexity results for minimal rank-
ings, Recent advances in interdisciplinary mathematics (Portland, ME, 1997). J.
Combin. Inform. System Sci., 25 (2000) 17-33.

[1463] G.-C. Lau, Every graph is local antimagic total, arXiv:1906.10332.

[1464] G.-C .Lau, S. Alikhani, S. M. Lee, and W. Kocay, On k-edge-magic labelings of
maximal outerplanar graphs, AKCE Int. J. Graphs Comb., 12(1) (2015) 40-46.

[1465] G.-C. Lau, H. H. Chu, N. Suhadak, F. Y. Foo, and H. K. Ng, On SD-prime
cordial graphs, Internat. J. Pure Appl. Math., (2016) 1017-1028. https://ijpam.
eu/contents/2016-106-4/4/4.pdf

[1466] G.-C. Lau, Z.-B. Gao, S. M. Lee, and G.-Y. Sun, On friendly index sets of the
edge-gluing of complete graph and cycles, AKCE Internat. J. Graphs Combin., 13
(2016) 107-111.

the electronic journal of combinatorics (2019), #DS6 438

http://arxiv.org/abs/1906.10332
https://ijpam.eu/contents/2016-106-4/4/4.pdf
https://ijpam.eu/contents/2016-106-4/4/4.pdf


[1467] G. C. Lau, P. Jeyanthi D. Ramya and R. Kalaiyarasi, On Skolem odd and even
difference mean graphs, J. King Saud Univer. Science, 30 (2018) 286-291.

[1468] G.-C. Lau, S. M. Lee, and W. C. Shiu, On edge-prime cubic graphs
with small components, Open J. Discret. Appl. Math., 2(2) (2019) 48-58.
https://www.researchgate.net/publication/335502722_On_edge-prime_

cubic_graphs_with_small_components

[1469] G.-C. Lau, W. C. Shiu, and H.-K. Ng, Further results on cube divisor cordial
labeling, AKCE Internat. J. Graphs and Combin. 13 (2016) 200-209.

[1470] G.-C. Lau, W. C. Shiu, H.-K. Ng, and P. Jeyanthi, Further results on SD-prime
labeling, JCMMCC 98 (2016) 151-170.

[1471] S. D. Laurence and K. M. Kathiresan, On super (a, d)-Pn-antimagic total labeling
of stars, AKCE Int. J. Graphs Comb., 12(1) (2015) 54-58.

[1472] S. D. Laurence and K. M. Kathiresan, The total edge irregular strength of path
union of cycles, Util. Math., 105 (2017) 125-131.

[1473] Q. Laurejas and A. Pedrano, On 0-edge magic labeling of some graphs, Internat.
J. Math. Appl., 5 Issue 2C (2017) 329-337.

[1474] H.-F. Law, Full friendly index sets of spiders, Ars Combin., 119 (2015) 23-31.

[1475] A. N-T. Lee and S. M. Lee, On (k, 1)-strongly indexable graphs associated with
sequences of positive integers, Congr. Numer., 199 (2009) 205-215.

[1476] A. N-T. Lee and S. M. Lee, On a construction of (k, d)-strongly indexable graphs,
unpublished.

[1477] A. N-T. Lee, S. M. Lee, and H. K. Ng, On balance index sets of graphs, J. Combin.
Math. Combin. Comput., 66 (2008) 135-150.

[1478] A. C. Lee, S. M. Lee, and H.-H. Su, On the balance index sets of generalized
friendship graphs, envelope graphs of cycles and cubic trees, Proceedings of the
Fortieth Southeastern International Conference on Combinatorics, Graph Theory
and Computing, Congr. Numer., 196 (2009) 3-22.

[1479] C. Lee, Minimum coprime graph labelings, arXiv:1907.12670, 17 pages

[1480] H. Y. Lee, H. M. Lee, and G. J. Chang, Cordial labelings of graphs, Chinese J.
Math., 20 (1992) 263-273.

[1481] L. M. Lee, S. M. Lee, and G. Murthy, On edge-graceful labelings of complete
graphs–solution of Lo’s conjecture, Congr. Numer., 62 (1988) 225-233.

[1482] M.-J. Lee, On super (a, 1)-edge-antimagic total labeling of grids and crowns, Ars
Combin., 104 (2012) 97-105.

the electronic journal of combinatorics (2019), #DS6 439

https://www.researchgate.net/publication/335502722_On_edge-prime_cubic_graphs_with_small_components
https://www.researchgate.net/publication/335502722_On_edge-prime_cubic_graphs_with_small_components
http://arxiv.org/abs/1907.12670


[1483] M.-J. Lee, W,-H. Tsai, and C. Lin, Super (a, 1)-cyclic-antimagic labelings of the
grid, Ars Combin., 112 (2013) 3-12.

[1484] M.-J. Lee, C. Lin, and W.-H. Tsai, On antimagic labeling for power of cycles, Ars
Combin., 98 (2011) 161-165.

[1485] M.-J. Lee, W.-H. Tsai, and C. Lin, On super (a, 1)-edge-antimagic total labelings
of subdivision of stars, Util. Math., 88 (2012) 355-365.

[1486] P-S Lee, On α-labelings of prism graphs and gear graphs, unpublished.

[1487] S. M. Lee, k-graceful labelling of Mongolian tents and related graphs, Congr.
Numer., 50 (1985) 85-96.

[1488] S. M. Lee, A conjecture on edge-graceful trees, Scientia, 3 (1989) 45-47.

[1489] S. M. Lee, New directions in the theory of edge-graceful graphs, Proc. 6th Caribbean
Conf. Combin. & Computing (1991) 216-231.

[1490] S. M. Lee, On constructions which yield fully magic graphs, Ars Combin. 107
(2012) 385-409.

[1491] S. M. Lee, E. Chen, E. Yera, and L. Wang, On super edge-graceful (p, p+1)-graphs,
Congr. Numer., 171 (2004) 51-65.

[1492] S. M. Lee, K-J. Chen, and Y-C. Wang, On the edge-graceful spectra of cycles with
one chord and dumbbell graphs, Congr. Numer., 170 (2004) 171-183.

[1493] S. M. Lee, K. Ho, and H.-H. Su, On balance index sets of k-level wheel graphs,
Congr. Numer., 229 (2017) 313-324.

[1494] S. M. Lee, Y. S. Ho, S. K. Tan, and H. H. Su, Edge-magic indices of stars, Proceed-
ings of the Forty-Third Southeastern International Conference on Combinatorics,
Graph Theory and Computing. Congr. Numer., 213 (2012) 15-26.

[1495] S. M. Lee, M. Kitagaki, J. Young, and W. Kocay, On edge-graceful and edge-magic
maximal outerplanar graphs, J. Combin. Math. Combin. Comput., 59 (2006) 119-
129.

[1496] S. M. Lee and M. C. Kong, On super edge-magic n-stars, J. Combin. Math. Com-
bin. Comput. 42 (2002) 87-96.

[1497] S. M. Lee, K. Y. Lai, Y. S. Wang, and M. K. Kiang, On the graceful permutation
graphs conjecture, Congr. Numer., 103 (1994) 193-201.

[1498] S. M. Lee and A. N-T Lee, On super edge-magic unicyclic graphs, unpublished.

the electronic journal of combinatorics (2019), #DS6 440



[1499] S. M. Lee and A. N-T Lee, On super edge-magic graphs with many odd cy-
cles,Proceedings of the Thirty-Fourth Southeastern International Conference on
Combinatorics, Graph Theory and Computing. Congr. Numer., 163 (2003) 65-80.

[1500] S. M. Lee, A. Lee, H. Sun, and I. Wen, On the integer-magic spectra of graphs, J.
Combin. Math. Combin. Comput., 42 (2002) 77-86.

[1501] S. M. Lee and E. Leung, and H. K. Ng, On super vertex-graceful trees, Proceed-
ings of the Thirty-Fifth Southeastern International Conference on Combinatorics,
Graph Theory and Computing, Congr. Numer., 167 (2004) 3-26.

[1502] S. M. Lee, E. Leung, and H. K. Ng, On super vertex-graceful unicylic graphs,
Czechoslovak Math. J., 59(134) (2009) 1-22.

[1503] S. M. Lee, C. Levesque, S-P. B. Lo, and K. Schaffer, On the edge-graceful spectra
of the cylinder graphs (I), J. Combin. Math. Combin. Comput., 66 (2008) 195-214.

[1504] S. M. Lee and A. Liu, A construction of k-graceful graphs from complete bipartite
graphs, SEA Bull. Math., 12 (1988) 23-30.

[1505] S. M. Lee and A. Liu, A construction of cordial graphs from smaller cordial graphs,
Ars Combin., 32 (1991) 209-214.

[1506] S. M. Lee, A. Liu, and S. K. Tan, On balanced graphs, Proceedings of the Twenty-
first Manitoba Conference on Numerical Mathematics and Computing (Winnipeg,
MB, 1991), Congr. Numer., 87 (1992) 59-64.

[1507] S. M. Lee and S-P. Lo, On (1,2)-strongly indexable spiders, J. Combin. Math.
Combin. Comput., 72 (2010) 101-113.

[1508] Sin-Min Lee, R. M. Low, H. K. Ng, and Y-C. Wang, On friendly index sets of k-
galaxies, Elect. J. Graph Theory and Appl., 7(1) (2019) 110. DOI:10.5614/ejgta.
2019.7.1.1

[1509] S. M. Lee, P. N. Ma, L. Valdés, and S.-M Tong, On the edge-graceful grids, Congr.
Numer., 154 (2002) 61-77.

[1510] S. M. Lee, T. Min-Fang, and S. P. B. Lo, On the edge-balance index set of some
trees, unpublished.

[1511] S. M. Lee and K. C. Ng, Every Young tableau graph is d-graceful, Combinatorial
Math. Annal., New York Acad. Sci., 555 (1989) 296-302.

[1512] S. M. Lee, M. Kong, and Y. C. Wang, On edge-balance index sets of some complete
k-partite graphs, Congr. Numer., 196 (2009) 71-94.

[1513] S. M. Lee and H. K. Ng, On friendly index sets of total graphs of trees, Util. Math.,
73 (2007) 81-95.

the electronic journal of combinatorics (2019), #DS6 441

DOI: 10.5614/ejgta.2019.7.1.1
DOI: 10.5614/ejgta.2019.7.1.1


[1514] S. M. Lee and H. K. Ng, On friendly index sets of bipartite graphs, Ars Combin.,
86 (2008) 257-271.

[1515] S. M. Lee and H. K. Ng, A class of k-graceful bipartite planar graphs, unpublished.

[1516] S. M. Lee and H. K. Ng, On friendly index sets of cycles with parallel chords, Ars
Combin., 97A (2010) 253-267.

[1517] S. M. Lee and H. K. Ng, On friendly index sets of graphs, unpublished.

[1518] S.M. Lee and H. K. Ng, On friendly index sets of prisms and Möbius ladders, J.
Combin. Math. Combin. Comput., 90 (2014) 59-74.

[1519] S. M. Lee, H. K. Ng, Y.-S. Ho, and F. Saba, On edge-graceful edge-splitting ex-
tensions of paths and spiders, unpublished.

[1520] S. M. Lee, H. K. Ng, and G.-C. Lau, On friendly index sets of spiders, Malays. J.
Math. Sci., 8(1) (2014) 47-68.

[1521] S. M. Lee, H. K. Ng, and H. Sun, On super vertex-graceful caterpillars, Proceed.
Forty-First Southeastern Inter. Conf. Combin., Graph Th. and Compu., Congr.
Numer., 204 (2010) 33-44.

[1522] S. M. Lee, H. K. Ng, and S. M. Tong, On the balance index of the chain-sum
graphs of cycles, Util. Math., 77 (2008) 113-123.

[1523] S. M. Lee, H. K. Ng, S. M. Tong, On friendly index sets of broken wheels with
three spokes, J. Combin. Math. Combin. Comput., 74 (2010) 13-31.

[1524] S. M. Lee, H. K. Ng, and Y. Wen, On the edge-magic indices of (v, v + 1)-graphs,
Util. Math., 72 (2007) 97-110.

[1525] S. M. Lee, Y. C. Pan, and M. C. Tsai, On vertex-graceful (p, p+ 1)-graphs, Congr.
Numer., 172 (2005) 65-78.

[1526] S. M. Lee, W. M. Pigg, and T. J. Cox, On edge-magic cubic graphs conjecture,
Congr. Numer., 105 (1994) 214-222.

[1527] S. M. Lee, L. Quach, and S. Wang, On Skolem-gracefulness of graphs which are
disjoint union of paths and stars, Congr. Numer., 61 (1988) 59-64.

[1528] S. M. Lee, F. Saba, E. Salehi, and H. Sun, On the V4-magic graphs, Congr. Numer.,
156 (2002) 59-67.

[1529] S. M. Lee, F. Saba, and G. C. Sun, Magic strength of the kth power of paths,
Congr. Numer., 92 (1993) 177-184.

[1530] S. M. Lee and E. Salehi, Integer-magic spectra of amalgamations of stars and
cycles, Ars Combin., 67 (2003) 199-212.

the electronic journal of combinatorics (2019), #DS6 442



[1531] S. M. Lee, E. Salehi and H. Sun, Integer-magic spectra of trees with diameter at
most four, J. Combin. Math. Combin. Comput., 50 (2004) 3-15.

[1532] S. M. Lee, E. Schmeichel, and S.C. Shee, On felicitous graphs, Discrete Math., 93
(1991) 201-209.

[1533] S. M. Lee and E. Seah, On edge-gracefulness of kth power cycles, Congr. Numer.,
71 (1990) 237-242.

[1534] S. M. Lee and E. Seah, Edge-gracefulness labelings of regular complete K-partite
graphs, Congr. Numer., 75 (1990) 41-50.

[1535] S. M. Lee and E. Seah, On edge-gracefulness of composition of step graphs and null
graphs, Graph Theory, Combinatorics, Algorthms, and Applications (San Fran-
cisco, 1989), SIAM (1991) 325-330.

[1536] S. M. Lee and E. Seah, On edge-graceful triangular snakes and sunflower graphs,
unpublished.

[1537] S. M. Lee, E. Seah, and S.-P. Lo, On edge-graceful 2-regular graphs, J. Combin.
Math. Combin. Comput., 12 (1992) 109-117.

[1538] S. M. Lee, E. Seah, and S. K. Tan, On edge-magic graphs, Congr. Numer., 132
(1992) 179-191.

[1539] S. M. Lee, E. Seah, and P.-C. Wang, On edge-gracefulness of kth power graphs,
Bull. Inst. Math. Acad. Sinica, 18 (1990) 1-11.

[1540] S. M. Lee, and Q. X. Shan, All trees with at most 17 vertices are super edge-magic,
16th MCCCC Conference, Carbondale, University Southern Illinois, Nov. 2002.

[1541] S. M. Lee and S.C. Shee, On Skolem-graceful graphs, Discrete Math., 93 (1991)
195-200.

[1542] S. M. Lee, S. L. Song, and L. Valdeés, On Q(a)P (b)-super edge-graceful wheels,
unpublished.

[1543] S. M. Lee and H.-H. Su, On the balance index sets of permutation graphs, unpub-
lished.

[1544] S. M. Lee, H.-H. Su, and H. Todt, On the edge-balance index sets of broken wheels,
Congr. Numer., 221 (2014) 31-42.

[1545] S. M. Lee, H.-H. Su, and Y.-C. Wang, On the integer-magic spectra of honeycomb
graphs, Cong. Numer., 193 (2008) 49-65.

[1546] S. M. Lee, H.-H. Su, and Y.-C. Wang, On balance index sets of disjoint graphs,
unpublished.

the electronic journal of combinatorics (2019), #DS6 443



[1547] S. M. Lee, H.-H. Su, and Y.-C. Wang, On k-edge-magic Halin graphs, Proceed.
Forty-First Southeastern Inter. Conf. Combin., Graph Th. and Comput., Congr.
Numer., 204 (2010) 129-145.

[1548] S. M. Lee, H.-H. Su, and Y.-C. Wang, On the edge-balance index sets of (p, p+ 1)-
graphs, Int. J. Contemp. Math. Sci., 7 (2012)(29-32) 1429-1447.

[1549] S. M. Lee, H.-H. Su, and Y.-C. Wang, On k-edge-magic cubic graphs, 24th MC-
CCC. J. Combin. Math. Combin. Comput., 82 (2012) 87-103.

[1550] S. M. Lee, H.-H. Su, and W. Wei, On a family of the super edge-graceful trees, J.
Combin. Math. Combin. Comput., 106 (2018) 23-36.

[1551] S. M. Lee, H. Sun, W. Wei, Y. Wen and P. Yiu, The super edge-gracefulness of
two infinite families of trees, Congr. Numer., 190 (2008) 109-128.

[1552] S. M. Lee, H. Sun, and I Wen, On group-magic graphs, J. Combin. Math. Combin.
Computing, 38 (2001) 197-207.

[1553] S. M. Lee and S. K. Tan, A class of arbitrarily graceful planar bipartite graphs, J.
Combin. Math. Combin. Comput., 9 (1991) 119-127.

[1554] S. M. Lee, M.-F. Tao, and B. Lo, On the edge-balance index sets of some trees,
unpublished.

[1555] S. M. Lee, S. M. Tong, and E. Seah, On the edge-magic and edge-graceful total
graphs conjecture, Congr. Numer., 141 (1999) 37-48.

[1556] S. M. Lee, L. Valdés, and Y. S. Ho, On group-magic trees, double trees and ab-
breviated double trees, J. Combin. Math. Combin. Computing, 46 (2003) 85-95.

[1557] S. M. Lee and G. Wang, All pyramids, lotuses and diamonds are k-graceful, Bull.
Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 32 (1988) 145-150.

[1558] S. M. Lee and L. Wang, On k-edge-graceful trees, unpublished.

[1559] S. M. Lee and P. Wang, On the k-gracefulness of the sequential join of null graphs,
Congr. Numer., 71 (1990) 243-254.

[1560] S. M. Lee, J. Y-C Wang, On super edge-magicness of chain graphs whose blocks
are complete, unpublished.

[1561] S. M. Lee, L. Wang, H. Ng, Y-C Wang, On the edge-graceful spectra of the corona
of (p, p+ 1)-graphs with K1, unpublished.

[1562] S. M. Lee, L. Wang, K. Nowak, and W. Wei, On the edge-graceful trees conjecture,
J. Combin. Math. Combin. Comput., 54 (2005) 83-98.

the electronic journal of combinatorics (2019), #DS6 444



[1563] S. M. Lee, L. Wang, and Y. Wen, On the edge-magic cubic graphs and multigraphs,
Congr. Numer., 165 (2003) 145-160.

[1564] S. M. Lee, S. Wang, and I. Wui, On Skolem-gracefulness of 4-stars, Congr. Numer.,
62 (1988) 235-239.

[1565] S. M. Lee and W. Wei, On the super vertex-gracefulness of cartesian products of
graphs, Congr. Numer., 180 (2006) 175-192.

[1566] S. M. Lee, L. Wang, and E. R. Yera, On super edge-graceful Eulerian graphs,
Congr. Numer., 174 (2005) 83-96.

[1567] S. M. Lee, I. Wen, and H. Hugo, On group-magic graphs, J. Combin. Math.
Combin. Comput. 38 (2001) 197-207.

[1568] S. M. Lee and H. Wong, On the integer spectra of the power of paths, J. Combin.
Math. Combin. Comput., 42 (2002) 187-194.

[1569] S. M. Lee and R. Wong, On P (a)Q(1)-super vertex-graceful unicyclic graphs,
Congr. Numer., 173 (2005) 79-96.

[1570] S. M. Lee, Y. S. Wong, and M. K. Kiang, On graceful permutations graphs con-
jecture, Congr. Numer., 103 (1994) 193-201.

[1571] S. M. Lee and I. Wui, On Skolem-gracefulness of 2-stars and 3-stars, Bull.
Malaysian Math. Soc., 10 (1987) 15-20.

[1572] S. M. Lee, I. Wui and J. Yeh, On the amalgamation of prime graphs, Bull.
Malaysian Math. Soc. (Second Series), 11 (1988) 59-67.

[1573] C. E. Leiserson, Area efficient graph layouts for VLSI, in: Proc. 21st Ann. IEEE
Symposium, FOCS, (1980) 270-281.

[1574] P. C. Li, Antimagic labelings of cycle powers, Ars Combin., 124 (2016) 341-351.

[1575] T. Li, Z-X. Song, G. Wang, D. Yang, and C-Q. Zhang, Antimagic orientations of
even regular graphs, J. Graph Theory, 90 (2019) 46-53.

[1576] W. Z. Li, G. H. Li, and Q. T. Yan, Study on some labelings on complete bipartite
graphs, Adv. Comput. Sci., Envir., Ecoinforma., and Ed., Comm. Comput. Inf.
Sci., 214 (2011) 297-301.

[1577] X. Li, V. Mak, and S. Zhou, Optimal radio labellings of complete m-ary trees.
D iscrete Appl. Math., 158(5) (2010) 507-515.

[1578] H. X. Liang, and C. F. Liu, On k-gracefulness of graphs, Dongbei Shida Xuebao,
33 (1991) 41-44.

the electronic journal of combinatorics (2019), #DS6 445



[1579] Y.-C. Liang, T.-L. Wong, and X. Zhu, Anti-magic labeling of trees, Discrete Math.,
331 (2014) 9-14.

[1580] Y.-C. Liang and X. Zhu, Anti-magic labelling of Cartesian product of graphs,
Theoret. Comput. Sci. 477 (2013) 1-5.

[1581] Y.-C. Liang and X. Zhu, Antimagic labeling of cubic graphs, J. Graph Th., 75
(2014) 31-36.

[1582] Z. Liang, The harmoniousness of book graph St(4k + 1) × P2, Southeast Asian
Bull. Math., 21 (1997) 181-184.

[1583] Z. Liang, On the gracefulness of the graph Cm ∪ Pn, Ars Combin., 62 (2002)
273-280.

[1584] Z. Liang, On the graceful conjecture of permutation graphs of paths, Ars Combin.,
91 (2009) 65-82.

[1585] Z. Liang, Cycle-supermagic decompositions of complete multipartite graphs, Dis-
crete Math., 312(22) (2012) 3342-3348.

[1586] Z. Liang, On the strongly c-harmoniousness of cycle with some chords, Ars Com-
bin., 109 (2013) 143-160.

[1587] Z. -H. Liang, G-supermagic coverings of graphs, Acta Math. Appl. Sin., 37(5)
(2014) 857-864.

[1588] Z. Liang and Z.-L. Bai, On the odd harmonious graphs with applications, J. Appl.
Math. Comput., (2009) 29 105-116.

[1589] Z. Liang and Y. Miao, On Lee’s conjecture, Util. Math., 87 (2012) 305-329.

[1590] Z. Liang, D. Q. Sun, and R. J. Xu, k-graceful labelings of the wheel graph W2k, J.
Hebei Normal College, 1 (1993) 33-44.

[1591] Z. Liang, H. Zhang, N. Xu, S. Ye, Y. Fan, and H. Ge, Gracefulness of five permu-
tation graphs of paths. Util. Math., 72 (2007) 241-249.

[1592] Z. Liang and H. Zuo, On the gracefulness of the graph P2m,2n,Appl. Anal. Discrete
Math., 4 (2010) 175-180.

[1593] S.-C. Liaw, D. Kuo, and G. Chang, Integral sum numbers of graphs, Ars Combin.,
54 (2000) 259-268.

[1594] K.-W Lih, On magic and consecutive labelings of plane graphs, Util. Math., 24
(1983) 165-197.

[1595] N. B. Limaye, k-equitable graphs, k = 2, 3, in Labeling of Discrete Structures and
Applications, Narosa Publishing House, New Delhi, 2008, 117-133.

the electronic journal of combinatorics (2019), #DS6 446



[1596] C.-M. Lin and T-M. Wang, On zero magic sums of integer magic graphs, Ars
Combin., 118 (2015) 119-134.

[1597] Y. Lin, A. Ahmad, M. Miller, K. Sugeng, and M. Bača, Further results on d-
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[1794] J. Mülbacher, Magische Quadrate und ihre Verallgemeinerung: ein graphen-
theoretisches Problem in: Graphs, Data Structures, Algorithms, Hensen Verlag,
München, 1979.

[1795] A. Munia, J. Maowa, S. Tania, M. Kaykobad, A new class of graceful tree, Internat.
J. Eng. Sci. and Res., 5 (2014) 1112-1115.

[1796] F. A. Muntaner-Batle, Special super edge-magic labelings of bipartite graphs, J.
Combin. Math. Combin. Comput., 39 (2001) 107-120.

[1797] K. Murhu Guru Packiam, T. Manimaran, and A. Thuraiswamy, On total edge
irregularity strength of graph, Ars Combin., 129 (2016) 173-183.

[1798] M. Murugan, Almost-magic, relaxed-magic and magic strength of a graph, Util.
Math., 65 (2004) 53-64.

[1799] K. Murugan and A. Subramanian, Skolem difference mean labeling of H-
graphs, Internat. J. Math. Soft Comput., 1(1) (2011) 115-129. http://oaji.net/
articles/2015/296-1433770540.pdf

[1800] M. Murugan and G. Arumugan, Bi-graceful graphs, Number theory and discrete
mathematics (Chandigarh, 2000) Trends Math., Birkhäuser 243-249.
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timagicness of the union of 4-regular circulant graphs, Austral. J. Combin., 50,
(2011) 141-153.

[2493] K. A. Sugeng and M. Miller, Relationship between adjacency matrices and super
(a, d)-edge-antimagic-total labelings of graphs, J. Combin. Math. Combin. Com-
put., 55 (2005) 71-82.

[2494] K. A. Sugeng and M. Miller, On consecutive edge magic total labelings of graphs,
J. Discrete Algorithms, 6 (2008) 59-65.
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α-labeling

eventually, 53
free, 57
near, 58
strong, 56
weakly, 56, 66
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α-valuation, 46
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δ-optimal summable, 241
γ-labeling, 64
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ρ-valuation, 61
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k-cordial labeling, 91
k-difference cordial, 286
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k-fold, 156
k-graceful, 70
k-graceful digraph, 75
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k-mean graph, 295
k-multilevel corona, 128
k-prime, 248
k-prime cordial, 290
k-product cordial, 277
k-ranking, 328

minimal, 328
k-remainder cordial, 94
k-super mean, 295
k-total product cordial, 277
k-totally magic cordial, 190
k-ubiquitously graceful, 9
k-vertex amalgamation, 51
kCn-snake, 18, 61
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m-gracefulness, 66
m-mirror graph, 122
m-shadow graph, 122
m-splitting graph, 122
mG, 24
n-cone, 13
n-cube, 21, 46
n-point suspension, 13
nth quadrilateral snake, 333
n · ~Cm, 37
r-distant irregular, 323
r-distant irregularity strength, 323
rn ? (f), 267
s(G), 314
sg(G), 320
t-fold, 51
t-join (m,n) kite, 339
t-ply graph, 88
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w-graph, 140
w-tree, 140
y-tree, 10
0-magic, 190
1-vertex bimagic, 184
2-link fence, 51
3-equitable prime cordial, 291
3-product cordial, 275
3-total super sum cordial graph, 278
3-total super sum cordial labeling, 278

hexagonal snake, 17

abbreviated double tree of T , 134
absolutely harmonious graph, 111
additively (a, r)-geometric, 324
adjacency matrix, 62
almost graceful labeling, 61
almost-bipartite graph, 64
alpha-number, 153
alternate hexagonal snake, 17
alternate quadrilateral snake, 248, 273
alternate quadrilateral snake, 284
alternate shell, 87
alternate triangular snake, 248, 273, 284
amalgamation, 175
analytic mean graph, 310
antimagic orientation, 200
antiprism, 176, 207, 228, 320
apex, 15, 103
arank number, 329
arbitrarily distance antimagic, 203
arbitrarily graceful, 70
arbitrary supersubdivision, 30, 87
arithmetic, 113
armed crown, 283

balance index set, 100
balanced cordial, 95
balanced distance graphs, 183
bamboo tree, 8, 78
banana tree, 11, 68, 78
barycentric subdivision, 33

bent ladder, 329
beta combination graph, 340
beta-number, 65
bi-odd sequential, 109
bicomposition, 63
bigraceful graph, 36
bipartite labeling, 55
bistar, 144, 149
block, 17, 152
block graph, 342
block-cut-vertex graph, 152
block-cutpoint, 49
block-cutpoint graph, 17
book, 6, 16, 21, 139

generalized, 246
stacked, 21

boundary value, 52
bow graph, 15
broom, 129

Cn, 186
cactus

k-angular, 81
triangular, 17

Cartesian product, 19, 256
caterpillar, 8, 46, 58, 68, 107, 145
caterpillar cycle, 328
cells, 49
chain graph, 49, 153
chain of cycles, 15
chain tree, 50
chord, 14
chordal ring, 166, 208
circulant graph, 130
circular lobster, 329
closed helm, 13
coalescence, 49
cocktail party graph, 122, 166, 239
coconut tree, 252
comb tree, 328
combination graph, 338
combs, 32
complete

the electronic journal of combinatorics (2019), #DS6 538



n-partite graph, 83, 234
bipartite graph, 17, 22
graph, 22
tripartite graph, 22

complete mixed generalized sausage graph,
196

complete star, 317
component, 249
composition, 22, 81, 256
conjunction, 272
consecutive radio labeling, 268
consecutively super edge-magic, 148
consecutively super edge-magic deficiency,

148
contraharmonic mean, 305
convex polytope, 177, 227
cordial graph, 83
cordial labeling, 81
corona, 18, 139
covering, 213
critical number, 52
crown, 18, 105, 107, 236, 266
cube, 20, 36
cube divisor cordial, 281
cubic graph, 155
cycle, 5, 239
cycle of a graph, 189
cycle of graphs, 32, 294
cycle with a Pk-chord, 14
cycle with parallel Ck− chord, 15
cycle with parallel Pk chords, 14
cyclic G-decomposition, 58
cyclic decomposition, 62
cylinders, 177

decomposition, 5, 46, 58, 60, 64
deficiency

edge-magic, 151
super edge-magic, 151

degree splitting graph, 286
degree-magic, 128
difference cordial labeling, 284
difference graph, 335

direct product, 181
directed edge-graceful, 264
directed graceful graph, 38
disjoint union, 24
distance k-antimagic, 202
distance antimagic, 202
distance magic labeling, 180
divisor cordial, 279
divisor graph, 342
dodecahedron, 36
double alternate hexagonal snake, 17
double alternate quadrilateral snake, 248,

273
double alternate quadrilateral snake, 284
double alternate triangular snake, 248, 273,

284
double coconut trees, 252
double cone, 13
double fans, 32
double graph of G, 129
double hexagonal snake, 17
double path union, 74
double quadrilateral snake, 248, 273, 284
double star, 134
double step grid graph, 33
double tree, 134
double triangular snake, 248, 273, 284, 295
dragon, 15
duplication of a vertex, 32, 273
duplication of an edge, 32, 87, 273
Dutch t-windmill, 16
Dutch windmill, 132

EBI(G), 101
edge H-irregularity strength, 321
edge amalgamation, 246
edge bimagic total , 184
edge even graceful labeling, 67
edge irregular total labeling, 315
edge irregularity strength, 322
edge linked cyclic snake, 292
edge magic graceful, 142
edge magic strength, 132
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edge pair sum, 312
edge parity, 56
edge product cordial labeling, 282
edge reduced

integral sum number, 238
sum number, 238

edge trimagic total labeling, 155
edge-antimagic graceful, 209
edge-antimagic total, 199
edge-balance index, 101
edge-covering, 321
edge-decomposition, 58
edge-friendly index, 99
edge-graceful deficiency, 257
edge-graceful spectrum, 258
edge-magic index, 156
edge-magic injection, 144
edge-odd graceful, 78, 80
edge-prime graph, 251
ehs(G,H), 321
elegant, 116
elegant labeling, 116
elem. parallel transformation, 73
elementary transformation, 48, 141
envelope graph, 101
EP-cordial graph, 277
EP-cordial labeling, 276
Eulerian graph, 102
even 2a-sequential, 126
even 1-vertex bimagic, 184
even graceful, 51
even mean labeling, 300
even vertex equitable even, 334
even vertex magic total, 169
even vertex odd mean, 301
even-even, 80
exclusive sum labeling, 239
exclusive sum number, 239
extended w-tree, 140
extended edge vertex cordial labeling, 97
extended jewel graph, 309

face, 177, 227

face irregular total k-labeling, 321
fan, 45, 116, 127, 137, 139, 150, 166, 177,

243
fence, 51
FI(G), 97
Fibonacci graceful, 69
firecracker, 11
flag, 84, 112, 264
flower, 13, 164, 243
forest, 151
free α-labeling, 57
friendly index set, 97
friendship graph, 16, 81, 150, 164, 166, 177,

240
full r-ary tree, 10
full edge-friendly index, 99
full friendly index set, 101
full hexagonal caterpillars, 51
full product-cordial index, 275
fully magic, 187
fully product-cordial, 275
functional extension, 134

gamma-number, 37
gear graph, 13
generalized

book, 246
bundle, 89
fan, 89
wheel, 89

generalized kCn-snake, 292
generalized antiprism, 220
generalized caterpillar, 31
generalized edge linked cyclic snake, 292
generalized helm, 164, 317
generalized Jahangir graph, 164
generalized prisms, 267
generalized sausage graph, 196
generalized shackle, 212
generalized spider, 31
generalized web, 13, 164
geometric mean 3-equitable, 314
geometric mean cordial, 314
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Golomb ruler, 24
graceful

almost super Fibonacci, 69
graceful center, 57
graceful graph, 5
gracesize, 55
gracious k-labeling, 58
gracious labeling, 57
graph, 132, 285, 299

(α1, α2, . . . , αk)-cordial, 279
(ω, k)-antimagic, 201
(a, d)-F -antimagic, 207
(a, d)-antimagic, 205
(a, d)-distance antimagic, 203
(a, r)-geometric, 324
(k + 1)-equitable mean, 314
(k, λ)-magically total labeling, 185
(k, d)-Heronian mean, 311
(k, d)-Skolem graceful, 76
(k, d)-arithmetic, 113
(k, d)-balanced, 74
A-cordial, 91
C-geometric, 306
D-distance, 203
D-distance antimagic, 203
E-cordial, 263
E-super vertex magic, 166
Ek-cordial, 91
G-distance magic, 182
G-snake, 17
H-cordial, 90
H-elegant, 117
H-groupmagic, 131
H-harmonious, 117
Hk-cordial, 90
Hn-cordial, 90
Vk-super vertex magic, 167
∆-optimum summable, 240
Γ irregular, 320
θ-Petersen, 259
a-vertex multiple magic, 131
b-edge multiple magic, 132
d-graceful, 55

f -permutation, 35
g-graph, 238
k-antimagic, 201
k-balanced, 96, 104
k-difference cordial, 286
k-edge-magic, 133
k-even edge-graceful, 258
k-magic, 133
k-modular multiplicative, 326
k-multilevel corona, 128
k-prime cordial, 290
k-product cordial, 277
k-ubiquitously, 9
m-level wheel, 260
m-mirror, 122
m-shadow, 122
m-splitting, 122
n-uniform, 317
n-uniform cactus chain, 317
t-uniform homeomorph, 88
w-graph, 140
w-tree, 140
(1,0,0)-F-face magic mean, 307
3-equitable prime cordial, 291
3-product cordial, 275
3-total super sum cordial labeling, 278
F -root square mean, 297
absolutely harmonious, 111
additively (a, r)-geometric, 324
additively (a, r)∗-geometric, 324
almost-bipartite, 64
alternate hexagonal snake, 17
alternate quadrilateral snake, 248, 273,

284, 340
alternate shell, 87
alternate triangular snake, 248, 273,

284, 340
analytic mean, 310
analytic odd mean, 310
antimagic, 195
arbitrarily graceful, 70
arithmetic, 113, 324
armed crown, 283
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armed helms, 81
balanced distance, 183
balloon, 110
barbell, 315
bent ladder, 329
beta combination, 340
bi-odd sequential, 109
bicomposition, 63
bicyclic, 259
bigraceful, 36
block, 342
bow, 15, 280
braided star, 249, 285
broken wheel, 99
broom, 129
butterfly, 112, 259, 264
cactus, 317
calendula, 173
caterpillar cycle, 328
centered triangular difference mean, 304
centered triangular mean, 304
centroidal mean, 296
chain, 176, 322
chordal ring, 166, 208
circulant, 130
circular lobster, 329
closed helm, 13
cocktail party, 122, 166, 239
coconut tree, 252
comb tree, 328
combs, 32
complete, 22
complete mixed generalized sausage

graph, 196
composition, 22
conservative, 128
contraharmonic mean, 305
cordial, 150
countable infinite, 138
cycle butterfly, 289
cycle with parallel chords, 25
decomposable, 147
degree-magic, 128

diamond, 71
difference, 335
difference cordial, 284
difference perfect square cordial, 337
directed, 6
directed Γ-distance magic, 183
directed edge-graceful, 264
disconnected, 24
distance k-antimagic, 202
distance antimagic, 202
divisor, 342
double alternate hexagonal snake, 17
double alternate quadrilateral snake,

248, 273, 284
double alternate trirangular snake, 248,

273, 284
double arrow, 189
double coconut tree, 252
double fans, 32
double graph of G, 129
double hexagonal snake, 17
double quadrilateral snake, 248, 273,

284
double step grid, 33
double triangular, 17
double triangular snake, 248, 273, 284
double wheels, 21
dumbbell, 112, 259
edge corona path, 174, 207
edge linked cyclic snake, 292
edge magic graceful, 142
edge pair sum, 313
edge product cordial, 283
edge vertex prime, 252
edge-friendly, 96
edge-magic, 155
edge-prime, 251
EP-cordial, 277
even 2a-sequential, 126
even edge-graceful, 261
even vertex odd mean, 301
even-multiple subdivision, 85
extended w-tree, 140
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extended jewel, 309
extended vertex edge additive cordial,

97
extra Skolem difference mean, 302
fan, 45
festoon, 112, 264
Fibonacci graceful, 69
firecracker, 123
flower, 256, 281
flower snark, 289
friendship, 16
fully product-cordial, 275
generalize shacke, 212
generalized caterpillar, 31
generalized edge linked cyclic snake, 292
generalized helm, 164, 315, 317
generalized Jahangir, 152, 164
generalized sausage, 196
generalized spider, 31
generalized web, 13, 164
generalized wheel, 274
globe, 98
graceful, 5
gracefulness, 66
graph-block chain, 31
grid-like, 48
group S3 cordial prime, 264
Halin, 133
Hamming-graceful, 106
handicap distance d-antimagic, 197
Harary, 218
harmonic mean, 304
harmonious, 6
hexagonal snake, 17
highly vertex prime, 249
holiday star, 285
hybrid quadrilateral snake, 120
hyper strongly multiplicative, 325
ideal magic, 145
indexable, 114
integral sum, 235
irregular quadrilateral snake, 284
irregular triangular snake, 284

Jahangir, 83
jelly fish, 142, 340
jewel, 294, 332
join, 27
join sum, 32
kayak paddle, 16
kite, 15, 149
Knödel, 166, 245
komodo dragon with many tails, 34
komodo dragons, 34
Kusadama, 285
ladder, 19
line-graceful, 266
linear cactus, 119
lollipop, 315
lotus, 71
Lucas divisor cordial, 281
middle, 87
minimally k-equitable, 105
mirror, 35
mixed generalized sausage, 196
modular multiplicative, 326
multiple shell, 104
node-graceful, 75
odd (a, d)-antimagic, 208
odd antimagic, 208
odd sum, 110
odd vertex equitable even, 333
odd vertex magic, 129
one modulo N graceful, 68
one modulo three square mean, 309
ordered, 199
orientable Gamma-distance magic, 183
pair mean, 314
pair sum, 312
para-squares cactus, 317
para-squares cactus chain, 317
parity combination cordial, 291
path-block chain, 31
pentagonal sum, 341
perfect, 342
perfect super edge-magic, 143
Perrin graceful, 70
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plus, 34, 123
polar grid, 51
prime, 244, 249
prime graceful, 37
pseudo-magic, 131
pyramid, 71, 123
radio mean, 308
reduction, 329
relaxed mean, 296
remainder cordial, 94, 282
replicated, 35
restricted k-mean, 295
restricted triangular difference mean,

310
rigid ladders, 293
SD-prime cordial, 248
semi Jahangir, 189
semi-edge-prime, 251
semi-magic, 127
semismooth graceful, 73
set graceful, 329
set sequential, 329
shacke, 212
shackle, 175
shadow, 78, 103
sharp, 199
shell-butterfly, 15
shell-type, 15
shipping, 337
simply sequential, 327
Skolem difference Lucas mean, 302
Skolem difference mean, 302
Skolem even difference mean, 303
Skolem labeled, 76
Skolem-graceful, 75
slanting ladder, 110, 189
smooth graceful, 34
sparkler, 258
sparklers, 112
splitting, 31
square difference, 337
square sum, 299
SSG(n), 78, 122

star, 21
star extension, 117
star of, 87, 95
step grid, 33, 294
step ladder, 122
strong edge-graceful, 257
strong magic, 145
strong sum, 235
strong super edge-magic, 143
strongly c-elegant, 119
strongly k-indexable, 150
strongly 1-harmonious, 150
strongly felicitous, 119
strongly harmonious, 107
strongly indexable, 114
strongly multiplicative, 325
subdivided shell, 68, 78, 122
sum divisor cordial, 280
sun, 211
sunflower, 84
super (a, d)-F -antimagic, 207
super edge magic graceful, 142
super edge-graceful, 53
super graceful, 66
super Lehmer-3 mean, 305
super pair sum, 312
super root square mean, 298
super subdivision, 333
super vertex mean, 295
supermagic, 127
supersubdivision, 29
swastik, 34
tadpoles, 15
theta, 116
theta graph, 31
Toeplitz, 221
torch, 31
total, 35, 272
total mean cordial, 307
total mean labeling, 301
total mixed, 323
total prime, 249
totally antimagic total, 199
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totally magic, 169
triangular difference mean, 304
triangular ladders, 276
triangular snake, 17
triangular tree, 46
twisted cylinder, 101, 275
TIASL signed graph, 331
umbrella, 98, 142
unicyclic, 13
uniform bow, 15
uniformly balanced, 96
uniformly cordial, 95
universal alpha-graceful, 57
universal graceful, 57
vertex even mean, 299
vertex odd divisor cordial, 282
vertex odd graceful, 81
vertex product, 278
vertex switching, 32, 69, 87, 195
vertex-edge neighborhood prime, 251
weak antimagic, 198
weak magic, 145
weak sum, 240
weighted-k-antimagic, 202
zero-sum A-magic, 186
zig-zag triangle, 138

graph labeling, 5
graph-block chain, 31
graphs

dragon, 296
grid, 19, 72
grid-like graph, 48
group irregularity strength, 320

Halin graph, 133
Hamming-graceful graph, 106
handicap distance antimagic graphs, 197
handicap incomplete tournament, 197
harmonic mean, 304
harmonious graph, 6
harmonious number, 112
harmonious order, 36
Heawood graph, 36, 57

helm, 13, 243
closed, 84
generalized, 84

Herschel graph, 36, 205
hexagonal lattice, 177
holey α-labeling, 61
homeomorph, 100
honeycomb graph, 229
hooked Skolem sequence, 76
host graph, 53
hybrid quadrilateral snake, 120
hypercycle, 238

strong, 238
hypergraph, 130, 156, 201, 237
hyperwheel, 238

IC-coloring, 327
IC-index, 327
icicle graph, 329
icosahedron, 36
index of cordiality, 88
index of product cordiality, 278
integer-antimagic spectrum, 199
integer-magic spectrum, 133, 187
integral radius, 237
integral sum

number, 236
tree, 235

irregular crown, 143
irregular labeling, 314
irregular quadrilateral snake, 284
irregular triangle snake, 284
irregularity strength, 314
irregulat fense, 51

jewel graph, 294
join product, 152
join sum, 32

kayak paddle, 16, 63
kite, 15, 53, 149, 168
Kotzig’s Conjecture, 62

L-cordial, 95
labeling
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(α1, α2, . . . , αk)-cordial, 279
(ω, k)-antimagic, 201
(a, b)-consecutive, 258
(a, b;n)-graceful, 36
(a, d)- vertex-antimagic edge, 205
(a, d)-H-antimagic total labeling, 213
(a, d)-1-vertex-antimagic vertex, 209
(a, d)-distance antimagic, 203
(a, d)-edge-antimagic total, 214
(a, d)-edge-antimagic vertex, 214
(a, d)-face antimagic, 227
(a, d)-indexable, 214
(a, d)-vertex-antimagic total, 211
(a, r)-geometric, 324
(k, λ)-magically total labeling, 185
(k, d)-Heronian mean, 311
(k, d)-Skolem, 76
(k, d)-arithmetic, 113
(k, d)-even mean, 300
(k, d)-graceful, 73
(k, d)-hooked Skolem graceful, 36
(k, d)-odd mean, 299
(k, d)-super mean, 304
A-magic, 186
C-geometric mean, 306
E-cordial, 263
F -centroidal mean, 296
F -face mean, 312
F -geometric, 305
G-distance magic, 182
H-E-super magic, 177
H-groupmagic, 131
H-irregular k, 321
H-magic, 172
P (a)Q(1)-super vertex-graceful, 262
Q(a)P (b)-super edge-graceful, 262
R-ring-magic, 189
VK-super vertex magic, 167
∆-exclusive sum labeling, 240
Γ irregular, 320
Θ-graceful, 70
α-, 46
α-mean, 293

ρ?, 62
σ-, 63
a-vertex consec. edge bimagic, 193
a-vertex-consecutive magic, 169
d-antimagic, 201
d-antimagic of type (1, 1, 1), 227
d-graceful, 55
k-antimagic, 201
k-balanced, 96
k-cordial, 91
k-edge graceful, 258
k-edge-magic, 133
k-equitable, 102, 105
k-even edge-graceful, 258
k-even mean, 300
k-even sequential harmonious, 112
k-graceful, 75
k-indexable, 114
k-mean, 295
k-odd mean, 299
k-prime, 248
k-prime cordial, 290
k-product cordial, 277
k-remainder cordial, 94
k-sequential, 326
k-sequentially additive, 334
k-super harmonic, 311
k-super mean, 295, 304
k-total product cordial, 277
k-totally magic cordial, 190
t-harmonious, 36
w-sum, 240
(1,0,0)-F-face magic, 306
1-vertex bimagic, 184
1-vertex magic, 180
1-vertex magic vertex, 191
3-product cordial, 275
3-total super sum cordial labeling, 278
(k, d)-indexable, 114
absolutely harmonious, 111
additively (a, r)-geometric, 324
additively (a, r)∗-geometric, 324
additively (k, d)-sequential, 335
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additively graceful, 113
almost graceful, 61
almost magic, 184
analytic mean, 310
analytic odd mean, 311
antimagic, 195, 200
arbitrarily graceful, 70
balanced, 46, 95
balanced cordial, 95
beta combination, 340
bi-odd sequential, 109
bigraceful, 58
binary magic total, 190
bipartite, 55
centered triangular difference mean, 304
centered triangular mean, 303
complete k-equitable, 105
consecutive, 119
consecutive radio, 268
coprime, 252
cordial, 81
cordial edge deficiency, 95
cordial vertex deficiency, 95
cube divisor cordial, 281
difference cordial, 284
difference perfect aquare cordial, 337
directed Γ-distance magic, 183
directed edge-graceful, 264
distance k-antimagic, 202
distance magic, 180, 191
divisor cordial, 279
edge bimagic, 184
edge bimagic total, 193
edge even graceful, 67
edge irregular k-labeling, 322
edge irregular total, 315
edge pair sum, 312
edge product cordial, 282
edge trimagic total, 155
edge vertex prime, 252
edge-antimagic graceful, 209
edge-friendly, 97
edge-graceful, 255

edge-magic, 136, 155
edge-magic total, 136
edge-odd graceful, 78, 80
edge-prime, 251
elegant, 116
EP-cordial, 276
equitable, 184
even 2a-sequential, 126
even 1-vertex bimagic, 184
even falicitous, 119
even mean labeling, 300
even sequential harmonious, 111
even vertex equitable even, 334
even vertex magic total, 169
even vertex odd mean, 301
even-even, 80
extended edge vertex cordial labeling,

97
face irregular total k-labeling, 321
felicitous, 118
Fibonacci graceful, 69
friendly, 95
geometric mean, 310
geometric mean 3-equitable, 314
geometric mean cordial, 314
graceful data structure, 61
graceful difference, 38
gracefully consistent, 52
gracious, 57
group S3, 264
handicap distance d-antimagic, 197
harmonious numbering, 112
highly vertex prime, 250
in-magic total, 147
indexable, 114
interlaced, 46
irregular, 314
l, 81
L-cordial, 95
line-graceful, 266
local antimagic, 209
Lucas divisor cordial, 281
magic, 127, 132
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consecutive, 177
of type (0,1,1), 177
of type (1,0,0), 178
of type (1,1,0), 177
of type (1,1,1), 177

magic valuation, 136
mean, 291
mean cordial, 307
minium coprime, 252
near-elegant, 116
nearly distance magic, 183
nearly graceful, 60
neighborhood-prime, 250
nice (1, 1) edge-magic, 144
numbering, 154
odd 1-vertex bimagic, 184
odd harmonious, 120, 124
odd mean, 298
odd sum, 110
odd vertex equitable, 333
odd-elegant, 117
odd-even, 74
odd-graceful, 61, 77
one modulo N graceful, 68
one modulo three graceful, 68
one modulo three mean, 309
one modulo three root square mean, 309
optimal k-equitable, 105
optimal sum graph, 234
ordered, 199
orientable Gamma-distance magic, 183
pair mean, 313
pair sum, 312
parity combination cordial, 291
partial vertex, 96
partitional, 108
Pell graceful, 70
pentagonal sum, 341
perfect super edge-magic, 143
Perrin graceful, 70
polychrome, 118
prime, 243
prime cordial, 287

prime-magic, 130
product antimagic, 232
product cordial labeling, 271
product edge-antimagic, 233
product edge-magic, 233
product magic, 232
product-irregular, 323
properly even harmonious, 125
pseudo α, 65
pseudograceful, 64
radio ?, 267
radio antipodal, 270
radio graceful, 270
radio mean, 308
radio mean D-distance, 308
range-relaxed graceful, 67
real-graceful, 37
relaxed mean, 296
remainder cordial, 94, 282
restricted k-mean, 295
restricted triangular difference mean,

310
reverse edge-trimagic, 156
reverse super edge-trimagic, 156
rosy, 61
SD-prime cordial, 248
semi-elegant, 116
sequential, 107
set-ordered odd-graceful, 79
sharp ordered, 199
shifted antimagic, 222
sigma, 180
simply sequential, 326
Skolem difference Lucas mean, 302
Skolem difference mean, 301
Skolem even difference mean, 303
Skolem even vertex odd difference

mean, 303
Skolem odd difference mean, 302
Skolem-graceful, 75
square difference, 337
square divisor cordial, 281
square sum, 299, 335
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strength sum, 149
strong edge-graceful, 257
strong super edge-magic, 143
strongly (k, d)-indexable, 114
strongly c-harmonious, 107
strongly k-elegant, 116
strongly balanced, 96
strongly edge-magic, 145
strongly even harmonious, 125
strongly graceful, 46, 56
strongly harmonious, 29, 107, 110
strongly indexable, 114
strongly odd harmonious, 120
strongly square sum, 335
strongly super edge-graceful, 262
strongly vertex-magic total, 167
sum divisor cordial, 280
sum graph, 234
sum perfect square, 337
super (a, d)-F -antimagic, 207
super (a, d)-edge-antimagic graceful,

209
super (a, d)-vertex-antimagic total, 211
super edge bimagic cordial, 185
super edge-antimagic total, 215
super edge-graceful, 259
super edge-magic, 145
super edge-magic total, 137
super Fibonacci graceful, 69
super geometric mean, 306
super graceful, 66
super Lehmer-3 mean, 305
super mean, 294
super pair sum, 312
super root mean, 298
super vertex mean, 295
super vertex-graceful, 262
super vertex-magic total, 165
supermagic, 127, 151
total, 199
total H-irregular α, 320
total edge product cordial, 283
total irregular total k, 321

total magic cordial, 189
total mean, 301
total mean cordial, 307
total prime, 249
total product cordial labeling, 276
totally antimagic total, 199
totally magic, 169
totally magic cordial, 192
totally vertex-magic cordial, 191
triangular difference mean, 304
triangular graceful, 67
triangular sum, 341
universal antimagic, 203
vertex balanced cordial, 95
vertex equitable, 331
vertex even mean, 299
vertex irregular total, 315
vertex magic total, 131
vertex odd divisor cordial, 282
vertex odd mean, 299
vertex prime, 249
vertex product cordial, 278
vertex-bimagic, 184
vertex-edge neighborhood prime, 251
vertex-friendly, 101
vertex-graceful, 261
vertex-magic total, 162
vertex-relaxed graceful, 67
weak antimagic, 198
zero-sum A-magic, 186

labeling number, 53
labelings

odd-even, 80
total neighborhood prime, 250

lableing
3-equitable prime cordial, 291

ladder, 19, 107, 177, 178
Langford sequence, 142
level joined planar grid, 115
lexicographic product, 132
linear cyclic snake, 18
lobster, 10, 62
lotus inside a circle, 178

the electronic journal of combinatorics (2019), #DS6 549



Lucas divisor cordial, 281

Möbius grid, 221
Möbius ladder, 21, 108, 127, 131, 177, 244,

257
magic b-edge consecutive, 169
magic constant, 136, 183
magic square, 127
magic strength, 132, 144
magic sum index, 131
mean cordial, 307
mean graph, 291
mean number, 307
middle graph, 87
minimum coprime number, 252
mirror graph, 35
mixed generalized sausage graph, 196
mod difference digraph, 335
mod integral sum graph, 239
mod integral sum number, 239
mod sum graph, 238
mod sum number, 239
mod sum* graph, 241
mod sum* number, 241
Mongolian tent, 20, 72
Mongolian village, 20, 72
MSG, 238
multigraph, 151, 156
multiple shell, 15
mutation, 168
mutual duplication, 293

near α-labeling, 58
nearly distance magic, 183
nearly graceful labeling, 60
neighborhood-prime, 250
nullset, 131
numbering, 154

Oberwolfash Problem, 36
odd 1-vertex bimagic, 184
odd harmonious, 120, 124
odd mean graph, 298
odd mean labeling, 298

odd-elegant, 117
odd-even, 74, 80
odd-graceful labeling, 61, 77
olive tree, 8
one modulo N graceful, 68
one modulo three graceful labeling, 68
one-point union, 16, 22, 47, 77, 81, 118
open star of G, 188
optimal sum graph, 234

pair mean, 313
pair mean graph, 314
pair sum, 312
pair sum graph, 312
parachutes, 205
parallel chord, 99
path, 14, 116
path union, 32, 89
path-block chain, 31
pendent edge, 54
pentagonal number, 341
pentagonal sum labeling, 341
perfect Golomb ruler, 24
perfect system of difference sets, 73
permutation graph, 338
Perrin seqence, 70
Petersen graph, 36

generalized, 29, 82, 139, 150, 163, 205,
211, 214

planar bipyramid, 177
planar graph, 177, 227
Platonic family, 177
plus graph, 34, 123
polargrid, 51
polyminoes, 72
polyominoes, 51
prime cordial

strongly, 290
prime cordial labeling, 287
prime graceful, 37
prime graph, 244, 249
prime labeling, 243
prism, 20, 21, 177, 211, 227
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product cordial, 271
product cordial labeling, 271
product graph, 234
product irregularity strength, 323
product-cordial index, 275
product-cordial set, 275
properly even harmonious, 125
pseudo α-labeling, 65
pseudo-magic graph, 131
pseudograceful labeling, 64

quadrilateral snakes, 17

radio k-chromatic number, 269
radio k-coloring, 269
radio star-number, 267
radio antipodal labeling, 270
radio antipodal number, 270
radio graceful, 268, 270
radio labeling, 266
radio mean D-distance number, 308
radio mean labeling, 308
radio mean number, 308
radio number, 266
range-relaxed graceful labeling, 67
rank number, 328
real sum graph, 234
regular graph, 127, 130, 139, 164, 191
regular tree, 50
relaxed mean graph, 296
remainder cordial, 94
replicated graph, 35
representation, 270
representation number, 270
restricted triangular difference mean, 310
rigid ladders, 293
Ringel-Kotzig, 8
root, 84
root-union, 99

saturated vertex, 235
SD-prime cordial, 248
semi-edge-prime graph, 251
semismooth graceful, 73

separating set, 329
sequential join, 54
sequential number, 153
set-ordered odd-graceful, 79
shackle, 212
shadow graph, 78, 103
shell, 15, 84, 86, 103

multiple, 15
shell graph, 93
Skolem labeled graph, 76
Skolem sequence, 10, 25
Skolem-graceful labelings, 75
smooth graceful, 34
snake, 17, 49

n-polygonal, 68
double triangular, 17
edge linked cyclic, 292
generalized edge linked cyclic, 292
quadrilateral, 48
triangular, 17, 61

snake polyomono, 50
sparse semi-magic square, 170
special super edge-magic, 146
spider, 8
split graph, 196
splitting graph, 31, 78, 285
spum, 234
square difference graph, 337
square divisor cordial, 281
square sum labeling, 335
SSG(n), 78
SSG(n), 122
stable set, 30, 35, 49
star, 26, 28, 164, 266
star of G, 276
star of a G, 87, 95
star of graphs, 33
star super edge-magic deficiency, 138
step grid graph, 33, 294
step ladder, 122
straight simple polyominal caterpillars, 51
strength

edge magic, 132
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magic, 132, 144
maximum magic, 145

strength sum, 149
strong product of graphs, 181
strong A-magic, 131
strong k-combination graph, 339
strong k-permutation graph, 339
strong beta-number, 65
strong edge-graceful, 257
strong gamma-number, 37
strong harmonious number, 112
strong product, 322
strong sequential number, 153
strong sum graph, 235
strong supersubdivision, 30

arbitrary, 30
strong vertex-graceful, 261
strongly c-harmonious, 107
strongly *-graph, 340
strongly antimagic, 201
strongly even harmonious, 125
strongly graceful labeling, 56
strongly harmonious, 29, 107
strongly odd harmonious, 120
strongly prime cordial, 290
strongly square sum labeling, 335
strsG, 149
stunted tree, 62
subdivided shell graph, 68, 78, 122
subdivision, 9, 19, 77, 178
sum graph, 234

mod, 238
mod integral, 239
real, 234

sum number, 234
sum perfect square, 336
sum* graph, 241
sum* number, 241
sunflower, 84, 256
super (a, d)-F -antimagic, 207
super (a, d)-H-antimagic total labeling, 213
super (a, d)-edge-antimagic graceful, 209
super d-antimagic, 202

super edge magic graceful, 142
super edge-magic deficiency, 138
super Fibonacci graceful, 69
super geometric mean, 306
super graceful, 66
super labeling, 199
super magic frame, 129
super magic strength, 132, 149
super mean, 294
super mean number, 298
super subdivision, 333
super vertex mean, 295
super vertex-magic total, 165
super weak sumgraph, 240
superdivision

arbitrary, 30
supersubdivision, 29, 89

arbitrary, 30
swastik graph, 34
switching invariant, 247
symmetric product, 22, 49

tadpoles, 15
tensor product, 74, 79, 96, 278
tes(G), 315
theta graph, 116
theta graphs, 31
toroidal polyhex, 220
torus grid, 20
total H-irregularity strength, 320
total edge (vertex) irregular strength, 315
total edge irregularity strength, 315
total edge product cordial labeling, 283
total graph, 35, 99, 272
total labeling, 199
total mean cordial, 307
total mixed, 323
total negative, 323
total negative edge, 323
total positive edge, 323
total product cordial, 276
total product cordial labeling, 276
total stable, 323
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total stable edge, 323
totally magic cordial, 192
totally magic cordial deficiency, 191
totally vertex-magic cordial labeling, 191
tree, 5, 197, 239

binary, 139
path-like, 141
symmetrical, 8

triangular graceful labeling, 67
triangular snake, 17
tvs(G), 315

umbrella, 142
unicyclic graph, 15
uniform-distant tree, 10
union, 23, 136, 149, 151, 164, 235, 244, 249
universal antimagic, 203
unlabeled vertices, 97

vertex H-irregularity strenght, 322
vertex balance index set, 101
vertex balanced cordial, 95
vertex equitable, 331
vertex irregular total labeling, 315
vertex parity, 56
vertex prime labeling, 249
vertex switching, 32, 69, 87, 195, 247
vertex-antimagic total, 199
vertex-graceful, 261
vertex-relaxed graceful labeling, 67
vhs(G,H), 322

weak sum graph, 240
weak tensor product, 54, 58
weakly α-labeling, 56
web, 13

generalized, 145
weight, 227
weighted-k-antimagic, 202
wheel, 13, 107, 127, 136, 166, 177, 195, 214
windmill, 22, 84
working vertex, 239
wreath product, 118

Young tableau, 20, 72

zero-sum A-magic, 186
zero-sum h-magic, 131
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