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Abstract

A graph labeling is an assignment of integers to the vertices or edges, or both,

subject to certain conditions. Graph labelings were first introduced in the late

1960s. In the intervening years dozens of graph labelings techniques have been

studied in over 600 papers. Finding out what has been done for any particular

kind of labeling and keeping up with new discoveries is difficult because of the

sheer number of papers and because many of the papers have appeared in journals

that are not widely available. In this survey I have collected everything I could

find on graph labeling. For the convenience of the reader the survey includes a

detailed table of contents and index.
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1 Introduction
Most graph labeling methods trace their origin to one introduced by Rosa [493] in 1967,
or one given by Graham and Sloane [265] in 1980. Rosa [493] called a function f a
β-valuation of a graph G with q edges if f is an injection from the vertices of G to the
set {0, 1, . . . , q} such that, when each edge xy is assigned the label |f(x)− f(y)|, the re-
sulting edge labels are distinct. Golomb [259] subsequently called such labelings graceful
and this is now the popular term. Rosa introduced β-valuations as well as a number of
other labelings as tools for decomposing the complete graph into isomorphic subgraphs.
In particular, β-valuations originated as a means of attacking the conjecture of Ringel
[488] that K2n+1 can be decomposed into 2n+ 1 subgraphs that are all isomorphic to a
given tree with n edges. Although an unpublished result of Erdős says that most graphs
are not graceful (cf. [265]), most graphs that have some sort of regularity of structure are
graceful. Sheppard [548] has shown that there are exactly q! gracefully labeled graphs
with q edges. Balakrishnan and Sampathkumar [68] have shown that every graph is a
subgraph of a graceful graph. Rosa [493] has identified essentially three reasons why a
graph fails to be graceful: (1) G has “too many vertices” and “not enough edges”, (2)
G “has too many edges”, and (3) G “has the wrong parity”. An infinite class of graphs
that are not graceful for the second reason is given in [106]. As an example of the third
condition Rosa [493] has shown that if every vertex has even degree and the number of
edges is congruent to 1 or 2 (mod 4) then the graph is not graceful. In particular, the
cycles C4n+1 and C4n+2 are not graceful.

Harmonious graphs naturally arose in the study by Graham and Sloane [265] of
modular versions of additive bases problems stemming from error-correcting codes. They
defined a graph G with q edges to be harmonious if there is an injection f from the
vertices of G to the group of integers modulo q such that when each edge xy is assigned
the label f(x) + f(y) (mod q), the resulting edge labels are distinct. When G is a tree,
exactly one label may be used on two vertices. Analogous to the “parity” necessity
condition for graceful graphs, Graham and Sloane proved that if a harmonious graph
has an even number q of edges and the degree of every vertex is divisible by 2k then q is
divisible by 2k+1. Thus, for example, a book with seven pages (i.e., the cartesian product
of the complete bipartite graph K1,7 and a path of length 1) is not harmonious. Liu
and Zhang [421] have generalized this condition as follows: if a harmonious graph with q
edges has degree sequence d1, d2, . . . , dp then gcd(d1, d2, . . . dp, q) divides q(q−1)/2. They
have also proved that every graph is a subgraph of a harmonious graph. Determining
whether a graph has a harmonious labeling was shown to be NP-complete by Auparajita,
Dulawat, and Rathore in 2001 (see [354]).

Over the past three decades in excess of 600 papers have spawned a bewildering
array of graph labeling methods. Despite the unabated procession of papers, there are
few general results on graph labelings. Indeed, the papers focus on particular classes
of graphs and methods, and feature ad hoc arguments. In part because many of the
papers have appeared in journals not widely available, frequently the same classes of
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graphs have been done by several authors and in some cases the same terminology is
used for different concepts. In this article, we survey what is known about numerous
graph labeling methods. The author requests that he be sent preprints and reprints as
well as corrections for inclusion in the updated versions of the survey.

Earlier surveys, restricted to one or two labeling methods, include [94], [111], [340],
[243], and [245]. The extension of graceful labelings to directed graphs arose in the
characterization of finite neofields by Hsu and Keedwell [308], [309]. The relationship
between graceful digraphs and a variety of algebraic structures including cyclic difference
sets, sequenceable groups, generalized complete mappings, near-complete mappings, and
neofields is discussed in [115], [116]. The connection between graceful labelings and per-
fect systems of difference sets is given in [97]. Labeled graphs serve as useful models for a
broad range of applications such as: coding theory, x-ray crystallography, radar, astron-
omy, circuit design, communication network addressing and data base management–see
[112], [113] and [597] for details. Terms and notation not defined below follow that used
in [165] and [243].
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2 Graceful and Harmonious Labelings

2.1 Trees
The Ringel-Kotzig conjecture that all trees are graceful has been the focus of many
papers. Kotzig [311] has called the effort to prove it a “disease.” Among the trees
known to be graceful are: caterpillars [493] (a caterpillar is a tree with the property
that the removal of its endpoints leaves a path); trees with at most 4 end-vertices [311],
[668] and [319]; trees with diameter at most 5 [668] and [306]; trees with at most 27
vertices [21]; symmetrical trees (i.e., a rooted tree in which every level contains vertices
of the same degree) [98], [479]; rooted trees where the roots have odd degree and the
lengths of the paths from the root to the leaves differ by at most one and all the internal
vertices have the same parity [151]; the graph obtained by identifying the endpoints
any number of paths of a fixed length except for the case that the length has the form
4r + 1, r > 1 and the number of paths is of the form 4m with m > r [505]; regular
bamboo trees [505] (a rooted tree consisting of branches of equal length the endpoints of
which are identified with end points of stars of equal size; and olive trees [473] and [2] (a
rooted tree consisting of k branches, where the ith branch is a path of length i). Aldred,
Širáň and Širáň [22] have proved that the number of graceful labelings of Pn grows at
least as fast as (5/3)n. They mention that this fact has an application to topological
graph theory. Stanton and Zarnke [590] and Koh, Rogers, and Tan [341] gave methods
for combining graceful trees to yield larger graceful trees. Burzio and Ferrarese [139]
have shown that the graph obtained from any graceful tree by subdividing every edge is
also graceful. Morgan [451] has used Skolem sequences to construct classes of graceful
trees. In 1979 Bermond [94] conjectured that lobsters are graceful (a lobster is a tree
with the property that the removal of the endpoints leaves a caterpillar). Special cases
of this conjecture have been done by Ng [464], by Wang, Jin, Lu, and Zhang [629] and
by Abhyanker [1]. Morgan [450] has shown that all lobsters with perfect matchings are
graceful. Morgan and Rees [452] have used Skolem and Hooked-Skolem sequences to
generate classes of graceful lobsters. Whether or not lobsters are harmonious seems to
have attracted no attention thus far. Chen, Lü, and Yeh [167] define a firecracker as
a graph obtained from the concatenation of stars by linking one leaf from each. They
also define a banana tree as a graph obtained by connecting a vertex v to one leaf of
each of any number of stars (v is not in any of the stars). They proved that firecrackers
are graceful and conjecture that banana trees are graceful. Sethuraman and Jesintha
[530] have shown that all banana trees and extended banana trees (graphs obtained by
joining a vertex to one leaf of each of any number of stars by a path of length of at
least two) are graceful. Various kinds of bananas trees had been shown to be graceful
by Bhat-Nayak and Deshmukh [102], by Murugan and Arumugam [457], [459] and by
Vilfred [619]. Despite the efforts of many, the graceful tree conjecture remains open even
for trees with maximum degree 3. Aldred and McKay [21] used a computer to show that
all trees with at most 26 vertices are harmonious. That caterpillars are harmonious has
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been shown by Graham and Sloane [265]. Cahit extended the notion of gracefulness to
directed graphs in [152]. More specialized results about trees are contained in [94], [111],
[340], [423], [146], [318], and [494].

2.2 Cycle-Related Graphs
Cycle-related graphs have been the major focus of attention. Rosa [493] showed that
the n-cycle Cn is graceful if and only if n ≡ 0 or 3 (mod 4) and Graham and Sloane [265]
proved that Cn is harmonious if and only if n ≡ 1 or 3 (mod 4). Wheels Wn = Cn +K1

are both graceful and harmonious – [231], [304] and [265]. As a consequence we have
that a subgraph of a graceful (harmonious) graph need not be graceful (harmonious).
The n-cone (also called the n-point suspension of Cm) Cm +Kn has been shown to be
graceful when m ≡ 0 or 3 (mod 12) by Bhat-Nayak and Selvam [107]. When n is even
and m is 2, 6 or 10 (mod 12) Cm + Kn violates the parity condition for a graceful
graph. Bhat-Nayak and Selvam [107] also prove that the following cones are graceful:
C4 +Kn, C5 +K2, C7 +Kn, C9 +K2, C11 +Kn and C19 +Kn. The helm Hn is the graph
obtained from a wheel by attaching a pendant edge at each vertex of the n-cycle. Helms
have been shown to be graceful [34] and harmonious [256], [417], [418] (see also [421],
[521], [411], [182] and [483]). Koh, et al. [342] define a web graph as one obtained by
joining the pendant points of a helm to form a cycle and then adding a single pendant
edge to each vertex of this outer cycle. They asked whether such graphs are graceful.
This was proved by Kang, Liang, Gao, and Yang [324]. Yang has extended the notion
of a web by iterating the process of adding pendant points and joining them to form
a cycle and then adding pendant points to the new cycle. In his notation, W (2, n) is
the web graph whereas W (t, n) is the generalized web with t n-cycles. Yang has shown
that W (3, n) and W (4, n) are graceful (see [324]), Abhyanker and Bhat-Nayak [3] have
done W (5, n) and Abhyanker [1] has done W (t, 5) for 5 ≤ t ≤ 13. Gnanajothi [256]
has shown that webs with odd cycles are harmonious. Seoud and Youssef [521] define a
closed helm as the graph obtained from a helm by joining each pendant vertex to form a
cycle and a flower as the graph obtained from a helm by joining each pendant vertex to
the central vertex of the helm. They prove that closed helms and flowers are harmonious
when the cycles are odd. A gear graph is obtained from the wheel by adding a vertex
between every pair of adjacent vertices of the cycle. Ma and Feng [426] have proved all
gears are graceful. Liu [417] has shown that if two or more vertices are inserted between
every pair of vertices of the n-cycle of the wheel Wn, the resulting graph is graceful. Liu
[415] has also proved that the graph obtain from a gear graph by attaching one or more
pendant points to each vertex between the cycle vertices is graceful.

Abhyanker [1] has investigated various unicyclic (that is, graphs with exactly one
cycle) graphs. He proved that the unicyclic graphs obtained by identifying one vertex of
C4 with the root of the olive tree with 2n branches and identifying an adjacent vertex on
C4 with the end point of the path P2n−2 are graceful. He showed that if one attaches any
number of pendent edges to these unicyclic graphs at the vertex of C4 that is adjacent
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to the root of the olive tree but not adjacent to the end vertex of the attached path the
resulting graphs are graceful. Likewise, he proved that the graph obtained by deleting
the branch of length 1 from an olive tree with 2n branches and identifying the root of
the edge deleted tree with a vertex of a cycle of the form C2n+3 is graceful. He also has
a number of results similar to these.

Delorme, et al. [185] and Ma and Feng [425] showed that any cycle with a chord is
graceful. This was first conjectured by Bodendiek, Schumacher and Wegner [124], who
proved various special cases. Koh and Yap [343] generalized this by defining a cycle with
a Pk-chord to be a cycle with the path Pk joining two nonconsecutive vertices of the cycle.
They proved that these graphs are graceful when k = 3 and conjectured that all cycles
with a Pk-chord are graceful. This was proved for k ≥ 4 by Punnim and Pabhapote
in 1987 [480]. Chen [172] obtained the same result except for three cases which were
then handled by Gao [272]. Xu [646] proved that all cycles with a chord are harmonious
except for C6 in the case where the distance in C6 between the endpoints of the chord is
2. The gracefulness of cycles with consecutive chords have also been investigated. For
3 ≤ p ≤ n− r, let Cn(p, r) denote the n-cycle with consecutive vertices v1, v2, . . . , vn to
which the r chords v1vp, v1vp+1, . . . , v1vp+r−1 have been added. Koh and others, [342]
and [336], have handled the cases r = 2, 3 and n− 3 where n is the length of the cycle.
Goh and Lim [258] then proved that all remaining cases are graceful. Moreover, Ma [424]
has shown that Cn(p, n−p) is graceful when p ≡ 0, 3 (mod 4) and Ma, Liu and Liu [427]
have proved other special cases of these graphs are graceful. Ma also proved that if one
adds to the graph Cn(3, n− 3) any number ki of paths of length 2 from the vertex v1 to
the vertex vi for i = 2, . . . , n, the resulting graph is graceful. Chen [172] has shown that
apart from four exceptional cases, a graph consisting of three independent paths joining
two vertices of a cycle is graceful. This generalizes the result that a cycle plus a chord
is graceful. Liu [414] has shown that the n-cycle with consecutive vertices v1, v2, . . . , vn
to which the chords v1vk and v1vk+2 (2 ≤ k ≤ n− 3) are adjoined is graceful.

In [183] Deb and Limaye use the notation C(n, k) to denote the cycle Cn with k
cords sharing a common endpoint. For certain choices of n and k there is a unique
C(n, k) graph and for other choices there is more than one graph possible. They call
these shell-type graphs and they call the unique graph C(n, n − 3) a shell. Notice that
the shell C(n, n−3) is the same as the fan Fn−1. Deb and Limaye define a multiple shell
to be a collection of edge disjoint shells that have their apex in common. They show
that a variety of multiple shells are harmonious and they conjecture that all multiple
shells are harmonious.

Sethuraman and Dhavamani [524] use H(n, t) to denote the graph obtained from the
cycle Cn by adding t consecutive chords incident with a common vertex. If the common
vertex is u and v is adjacent to u, then for k ≥ 1, n ≥ 4 and 1 ≤ t ≤ n− 3, Sethuraman
and Dhavamani denote by G(n, t, k) the graph obtained by taking the union of k copies
of H(n, k) with the edge uv identified. They conjecture that every graph G(n, t, k) is
graceful. They prove the conjecture for the case that t = n− 3.

For i = 1, 2, . . . , n let vi,1, vi,2, . . . , vi,2m be the successive vertices of n copies of C2m.
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Sekar [505] defines a chain of cycles C2m,n as the graph obtained by identifying vi,m and
vi+1,m for i = 1, 2, . . . , n− 1. He proves that C6,2k and C8,n are graceful for all k and all
n.

Truszczyński [614] studied unicyclic graphs and proved several classes of such graphs
are graceful. Among these are what he calls dragons. A dragon is formed by joining
the end point of a path to a cycle (Koh, et al. [342] call these tadpoles). This work led
Truszczyński to conjecture that all unicyclic graphs except Cn, where n ≡ 1 or 2 (mod
4), are graceful. Guo [271] has shown that dragons are graceful when the length of the
cycle is congruent to 1 or 2 (mod 4). In his Master’s thesis, Doma [192] investigates the
gracefulness of various unicyclic graphs where the cycle has up to 9 vertices. Because
of the immense diversity of unicyclic graphs, a proof of Truszczyński’s conjecture seems
out of reach in the near future.

Cycles that share a common edge or a vertex have received some attention. Murugan
and Arumugan [456] have shown that books with n pentagonal pages (i.e., nC5 with an

edge in common) are graceful when n is even and not graceful when n is odd. Let C
(t)
n

denote the one-point union of t cycles of length n. Bermond and others ([95] and [97])

proved that C
(t)
3 (that is, the friendship graph or Dutch t-windmill) is graceful if and

only if t ≡ 0 or 1 (mod 4) while Graham and Sloane [265] proved C
(t)
3 is harmonious if

and only if t 6≡ 2 (mod 4). Koh et al. [337] conjecture that C
(t)
n is graceful if and only if

nt ≡ 0 or 3 (mod 4). Qian [482] verifies this conjecture for the case that t = 2 and n is
even. Figueroa-Centeno, Ichishima, and Muntaner-Batle [223] have shown that if m ≡ 0
(mod 4) then the one-point union of 2, 3 or 4 copies of Cm admits a special kind of
graceful labeling called an α-valuation (see Section 3.1) and if m ≡ 2 (mod 4) then the
one-point union of 2 or 4 copies of Cm admits an α-valuation. Bodendiek, Schumacher,
and Wegner [123] proved that the one-point union of any two cycles is graceful when the
number of edges is congruent to 0 or 3 modulo 4. (The other cases violate the necessary

parity condition.) Shee [544] has proved that C
(t)
4 is graceful for all t. Seoud and Youssef

[519] have shown that the one-point union of a triangle and Cn is harmonious if and
only if n ≡ 1 (mod 4) and that if the one-point union of two cycles is harmonious then
the number of edges is divisible by 4. The question of whether this latter condition is
sufficent is open. Figueroa-Centeno, Ichishima, and Muntaner-Batle [223] have shown
that if G is harmonious then the one-point union of an odd number of copies of G using
the vertex labeled 0 as the shared point is harmonious. Sethuraman and Selvaraju [537]
have shown that for a variety of choices of points, the one point union of any number of
non-isomorphic complete bipartite graphs is graceful. They raise the question of whether
this is true for all choices of the common point.

Another class of cycle-related graphs is that of triangular cacti. A triangular cactus
is a connected graph all of whose blocks are triangles. A triangular snake is a triangular
cactus whose block-cutpoint-graph is a path (a triangular snake is obtained from a path
v1, v2, . . . , vn by joining vi and vi+1 to a new vertex wi for i = 1, 2, . . . , n − 1). Rosa
[495] conjectured that all triangular cacti with t ≡ 0 or 1 (mod 4) blocks are graceful
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(the cases where t ≡ 2 or 3 (mod 4) fail to be graceful because of the parity condition.)
Moulton [453] proved the conjecture for all triangular snakes. A proof of the general
case (i.e., all triangular cacti) seems hopelessly difficult. Liu and Zhang [421] gave an
incorrect proof that triangular snakes with an odd number of triangles are harmonious
while triangular snakes with n ≡ 2 (mod 4) triangles are not harmonious. Xu [647]
subsequently proved that triangular snakes are harmonious if and only if the number of
triangles is not congruent to 2 (mod 4).

Defining an n-polygonal snake analogous to triangular snakes, Sekar [505] has shown
that such graphs are graceful when n ≡ 0 (mod 4), (n ≥ 8) and when n ≡ 2 (mod 4)
and the number of polygons is even. Gnanajothi [256, pp. 31–34] had earlier shown that
quadrilateral snakes are graceful. Grace [264] has proved thatK4-snakes are harmonious.
Rosa [495] has also considered analogously defined quadrilateral and pentagonal cacti
and examined small cases.

Several people have studied cycles with pendant edges attached. Frucht [231] proved
that any cycle with a pendant edge attached at each vertex (i.e., a “crown”) is graceful.
Bu, Zhang, and He [138] and Barrientos [76] have shown that any cycle with a fixed
number of pendant edges adjoined to each vertex is graceful. Barrientos [76] proved that
helms (graphs obtained from a wheel by attaching one pendant edge to each vertex) are
graceful. Grace [263] showed that an odd cycle with one or more pendant edges at each
vertex is harmonious and conjectured that an even cycle with one pendant edge attached
at each vertex is harmonious. This conjecture has been proved by Liu and Zhang [420],
Liu [417] and [418], Huang [310], and Bu [129]. Sekar [505] has shown that the graph
obtained by attaching a path of fixed length to each vertex of a cycle is graceful. For any
n ≥ 3 and any t with 1 ≤ t ≤ n, let C+t

n denote the class of graphs formed by adding a
single pendant edge to t vertices of a cycle of length n. Ropp [492] proved that for every
n and t the class C+t

n contains a graceful graph. Gallian and Ropp [243] conjectured
that for all n and t, all members of C+t

n are graceful. This was proved by Qian [482]
and by Kang, Liang, Gao and Yang [324]. Of course, this is just a special case of the
aforementioned conjecture of Truszczyński that all unicyclic graphs except Cn for n ≡ 1
or 2 (mod 4) are graceful. Sekar [505] proved that the graph obtained by identifying an
endpoint of a star with a vertex of a cycle is graceful.

2.3 Product Related Graphs
Graphs that are cartesian products and related graphs have been the subject of many
papers. That planar grids, Pm × Pn, are graceful was proved by Acharya and Gill [15]
in 1978 although the much simpler labeling scheme given by Maheo [431] in 1980 for
Pm × P2 readily extends to all grids. In 1980 Graham and Sloane [265] proved ladders,
Pm × P2, are harmonious when m > 2 and in 1992 Jungreis and Reid [322] showed that
the grids Pm × Pn are harmonious when (m,n) 6= (2, 2). A few people have looked at
graphs obtained from planar grids in various ways. Kathiresan [326] has shown that
graphs obtained from ladders by subdividing each step exactly once are graceful and
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that graphs obtained by appending an edge to each vertex of a ladder are graceful [328].
Acharya [13] has shown that certain subgraphs of grid graphs are graceful. Lee [361]
defines a Mongolian tent as a graph obtained from Pm × Pn, n odd, by adding one
extra vertex above the grid and joining every other vertex of the top row of Pm × Pn to
the new vertex. A Mongolian village is a graph formed by successively amalgamating
copies of Mongolian tents with the same number of rows so that adjacent tents share a
column. Lee proves that Mongolian tents and villages are graceful. A Young tableau is
a subgraph of Pm ×Pn obtained by retaining the first two rows of Pm ×Pn and deleting
vertices from the right hand end of other rows in such a way that the lengths of the
successive rows form a nonincreasing sequence. Lee and Ng [370] have proved that all
Young tableaus are graceful. Lee [361] has also defined a variation of Mongolian tents
by adding an extra vertex above the top row of a Young tableau and joining every other
vertex of that row to the extra vertex. He proves these graphs are graceful.

Prisms are graphs of the form Cm × Pn. These can be viewed as grids on cylinders.
In 1977 Bodendiek, Schumacher, and Wegner [124] proved that Cm×P2 is graceful when
m ≡ 0 (mod 4). According to the survey by Bermond [94], Gangopadhyay and Rao
Hebbare did the case that m is even about the same time. In a 1979 paper, Frucht
[231] stated without proof that he had done all m. A complete proof of all cases and
some related results were given by Frucht and Gallian [234] in 1988. In 1992 Jungreis
and Reid [322] proved that all Cm × Pn are graceful when m and n are even or when
m ≡ 0 (mod 4). Yang and Wang have shown that the prisms C4n+2 × P4m+3 [654],
Cn × P2 [652], and C6 × Pm(m ≥ 2) (see [654]) are graceful. Singh [561] proved that
C3 × Pn is graceful for all n. In their 1980 paper Graham and Sloane [265] proved that
Cm × Pn is harmonious when n is odd and they used a computer to show C4 × P2, the
cube, is not harmonious. In 1992 Gallian, Prout, and Winters [247] proved that Cm×P2

is harmonious when m 6= 4. In 1992, Jungreis and Reid [322] showed that C4 × Pn is
harmonious when n ≥ 3. Huang and Skiena [312] have shown that Cm × Pn is graceful
for all n when m is even and for all n with 3 ≤ n ≤ 12 when m is odd. Abhyanker
[1] proved that the graphs obtained from C2m+1 × P5 by adding a pendent edge to each
vextex of the outercycle is graceful.

Torus grids are graphs of the form Cm × Cn (m > 2, n > 2). Very little success has
been achieved with these graphs. The graceful parity condition is violated for Cm × Cn

whenm and n are odd and the harmonious parity condition [265, Theorem 11] is violated
for Cm × Cn when m ≡ 1, 2, 3 (mod 4) and n is odd. In 1992 Jungreis and Reid [322]
showed that Cm×Cn is graceful when m ≡ 0 (mod 4) and n is even. A complete solution
to both the graceful and harmonious torus grid problems will most likely involve a large
number of cases.

There has been some work done on prism-related graphs. Gallian, Prout, andWinters
[247] proved that all prisms Cm×P2 with a single vertex deleted or single edge deleted are
graceful and harmonious. The Möbius ladder Mn is the graph obtained from the ladder
Pn×P2 by joining the opposite end points of the two copies of Pn. In 1989 Gallian [242]
showed that all Möbius ladders are graceful and all but M3 are harmonious. Ropp [492]
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has examined two classes of prisms with pendant edges attached. He proved that all
Cm × P2 with a single pendant edge at each vertex are graceful and all Cm × P2 with a
single pendant edge at each vertex of one of the cycles are graceful.

Another class of cartesian products that has been studied is that of books and
“stacked” books. The book Bm is the graph Sm × P2 where Sm is the star with m + 1
vertices. In 1980 Maheo [431] proved that the books of the form B2m are graceful and
conjectured that the books B4m+1 were also graceful. (The books B4m+3 do not satisfy
the graceful parity condition.) This conjecture was verified by Delorme [184] in 1980.
Maheo [431] also proved that Ln × P2 and B2m × P2 are graceful. Both Grace [262]
and Reid (see [246]) have given harmonious labelings for B2m. The books B4m+3 do not
satisfy the harmonious parity condition [265, Theorem 11]. Gallian and Jungreis [246]
conjectured that the books B4m+1 are harmonious. Gnanajothi [256] has verified this
conjecture by showing B4m+1 has an even stronger form of labeling – see Section 4.1.
Liang [402] also proved the conjecture. In their 1988 paper Gallian and Jungreis [246] de-
fined a stacked book as a graph of the form Sm×Pn. They proved that the stacked books
of the form S2m × Pn are graceful and posed the case S2m+1 × Pn as an open question.
The n-cube K2×K2×· · ·×K2 (n copies) was shown to be graceful by Kotzig [347]—see
also [431]. In 1986 Reid [487] found a harmonious labeling for K4×Pn. Petrie and Smith
[474] have investigated graceful labelings of graphs as an exercise in constraint satisfac-
tion. They have shown that Km × Pn is graceful for (m,n) = (4, 2), (4, 3), (4, 4), (4, 5),
and (5,2) but not is graceful for (3, 3) and (6, 2). The labeling for K5 × P2 is the unique
graceful labeling. They also considered the graph obtained by identifying the hubs of
two copies of Wn. The resulting graph is not graceful when n = 3 but is graceful when
n is 4 and 5.

The composition G1[G2] is the graph having vertex set V (G1)× V (G2) and edge set
{(x1, y1), (x2, y2)| x1x2 ∈ E(G1) or x1 = x2 and y1y2 ∈ E(G2)}. The symmetric product
G1 ⊕ G2 of graphs G1 and G2 is the graph with vertex set V (G1) × V (G2) and edge
set {(x1, y1), (x2, y2)| x1x2 ∈ E(G1) or y1y2 ∈ E(G2) but not both}. Seoud and Youssef
[520] have proved that Pn ⊕K2 is graceful when n > 1 and Pn[P2] is harmonious for all
n. They also observe that the graphs Cm ⊕Cn and Cm[Cn] violate the parity conditions
for graceful and harmonious graphs when m and n are odd.

2.4 Complete Graphs
The questions of the gracefulness and harmoniousness of the complete graphs Kn have
been answered. In each case the answer is positive if and only if n ≤ 4 ([259], [560], [265],
[99]). Both Rosa [493] and Golomb [259] proved that the complete bipartite graphs Km,n

are graceful while Graham and Sloane [265] showed they are harmonious if and only if
m or n = 1. Aravamudhan and Murugan [31] have shown that the complete tripartite
graph K1,m,n is both graceful and harmonious while Gnanajothi [256, pp. 25–31] has
shown that K1,1,m,n is both graceful and harmonious and K2,m,n is graceful. Some of
the same results have been obtained by Seoud and Youssef [515] who also observed that
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when m,n, and p are congruent to 2 (mod 4), Km,n,p violates the parity conditions for
harmonious graphs.

Beutner and Harborth [99] show that Kn − e (Kn with an edge deleted) is graceful
only if n ≤ 5, any Kn − 2e (Kn with two edges deleted) is graceful only if n ≤ 6 and
any Kn − 3e is graceful only if n ≤ 6. They also determine all graceful graphs Kn − G
where G is K1,a with a ≤ n− 2 and where G is a matching Ma with 2a ≤ n. They give
graceful labelings for K1,m,n, K2,m,n, K1,1,m,n and conjecture that these and Km,n are the
only complete multipartite graphs that are graceful. They have verified this conjecture
for graphs with up to 23 vertices via computer.

Define the windmill graphs K
(m)
n (n > 3) to be the family of graphs consisting of m

copies of Kn with a vertex in common. A necessary condition for K
(m)
n to be graceful

is that n ≤ 5 – see [342]. Bermond [94] has conjectured that K
(m)
4 is graceful for all

m ≥ 4. This is known to be true for m ≤ 22 [312]. Bermond, Kotzig and Turgeon

[97] proved that K
(m)
n is not graceful when n = 4 and m = 2 or 3 and when m = 2

and n = 5. In 1982 Hsu [307] proved that K
(m)
4 is harmonious for all m. Graham and

Sloane [265] conjectured that K
(2)
n is harmonious if and only if n = 4. They verified this

conjecture for the cases that n is odd or n = 6. Liu [411] has shown that K
(2)
n is not

harmonious if n = 2apa11 · · · pass where a, a1, . . . , as are positive integers and p1, . . . , ps are
distinct odd primes and there is a j for which pj ≡ 3 (mod 4) and aj is odd. He also

shows that K
(3)
n is not harmonious when n ≡ 0 (mod 4) and 3n = 4e(8k + 7) or n ≡ 5

(mod 8). Koh et al. [337] and Rajasingh and Pushpam [484] have shown that K
(t)
m,n, the

one-point union of t copies of Km,n, is graceful. Sethuraman and Selvaraju [533] have
proved that the one-point union of graphs of the form K2,mi

for i = 1, 2, . . . , n where the
union is taken at a vertex from the partite set with 2 vertices is graceful if at most two
of the mi are equal. They conjecture that the restriction that at most two of the mi are
equal is not necessary. Koh et al. [342] introduced the notation B(n, r,m) for the graph
consisting of m copies of Kn with a Kr in common (n ≥ r). (We note that Guo [272]
has used the notation B(n, r,m) to denote three independent paths of lengths n, r and
m joining two vertices.) Bermond [94] raised the question: “For which m,n, and r is

B(n, r,m) graceful?” Of course, the case r = 1 is the same as K
(m)
n . For r > 1, B(n, r,m)

is graceful in the following cases: n = 3, r = 2,m ≥ 1 [338]; n = 4, r = 2,m ≥ 1 [184];
n = 4, r = 3,m ≥ 1 (see [94]), [338]. Seoud and Youssef [515] have proved B(3, 2,m)
and B(4, 3,m) are harmonious. Liu [410] has shown that if there is a prime p such that
p ≡ 3 (mod 4) and p divides both n and n− 2 and the highest power of p that divides
n and n− 2 is odd, then B(n, 2, 2) is not graceful. More generally, Bermond and Farhi
[96] have considered the class of graphs consisting of m copies of Kn having exactly k
copies of Kr in common. They proved such graphs are not graceful for n sufficiently
large compared to r.

Sethuraman and Elumalai [526] have shown thatK1,m,n with a pendent edge attached
to each vertex is graceful and Km,n with a pendent edge attached at each vertex is
graceful when m is even and m ≤ n ≤ 2m+4 and when m is odd and m ≤ n ≤ 2m− 1.
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In [531] Sethuraman and Kishore determine the graceful graphs that are the union of
n copies of K4 with i edges deleted for 1 ≤ i ≤ 5 with one edge in common. The only
cases that are not graceful are those graphs where the members of the union are C4 for
n ≡ 3 mod 4 and where the members of the union are P2. They conjecture that these
two cases are the only instances of edge induced subgraphs of the union of n copies of
K4 with one edge in common that are not graceful. Sethuraman and Selvaraju [539]
have shown that union of any number of copies of K4 with an edge deleted and one edge
in common is harmonious.

Clemens et al. [178] investigated the gracefulness of the one-point and two-point
unions of graphs. They show the following graphs are graceful: the one-point union of
an end vertex of Pn and K4; the graph obtained by taking the one-point union of K4

with one end vertex of Pn and the one-point union of the other end vertex of Pn with
the central vertex of K1,r; the graph obtained by taking the one-point union of K4 with
one end vertex of Pn and the one-point union of the other end of Pn with a vertex from
the partite set of order 2 of K2,r; the graph obtained from the graph just described by
appending any number of edges to the other vertex of the partite set of order 2; the two-
point union of the two vertices of the partite set of order 2 in K2,r and two vertices from
K4; and the graph obtained from the graph just described by appending any number of
edges to one of the vertices from the partite set of order 2.

2.5 Disconnected Graphs
There have been many papers dealing with graphs that are not connected. In 1975 Kotzig
[346] considered graphs that are the disjoint union of r cycles of length s, denoted by
rCs. When rs ≡ 1 or 2 (mod 4), these graphs violate the parity condition and so are
not graceful. Kotzig proved that when r = 3 and s = 4k > 4, then rCs has a stronger
form of graceful labeling called α-labeling (see §3.1) whereas when r ≥ 2 and s = 3 or 5,
rCs is not graceful. In 1984 Kotzig [348] once again investigated the gracefulness of rCs

as well as graphs that are the disjoint union of odd cycles. For graphs of the latter kind
he gives several necessary conditions. His paper concludes with an elaborate table that
summarizes what was then known about the gracefulness of rCs. He [283] has shown
that graphs of the form 2C2m and graphs obtained by connecting two copies of C2m with
an edge are graceful. Cahit [149] has shown that rCs is harmonious when r and s are
odd and Seoud, Abdel Maqsoud, and Sheehan [507] noted that when r or s is even, rCs

is not harmonious. Seoud, Abdel Maqsoud, and Sheehan [507] proved that Cn ∪ Cn+1

is harmonious if and only if n ≥ 4. They conjecture that C3 ∪ C2n is harmonious when
n ≥ 3. This conjecture was proved when Yang, Lu, and Zeng [651] showed that all
graphs of the form C2j+1 ∪ C2n are harmonious except for (n, j) = (2, 1).

In 1978 Kotzig and Turgeon [351] proved that mKn (i.e., the union of m disjoint
copies of Kn) is graceful if and only if m = 1 and n ≤ 4. Liu and Zhang [421] have
shown that mKn is not harmonious for n odd and m ≡ 2 (mod 4) and is harmonious
for n = 3 and m odd. They conjecture that mK3 is not harmonious when m ≡ 0 (mod
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4). Bu and Cao [130] give some sufficient conditions for the gracefulness of graphs of
the form Km,n ∪ G and they prove that Km,n ∪ Pt and the disjoint union of complete
bipartite graphs are graceful under some conditions.

A Skolem sequence of order n is a sequence s1, s2, . . . , s2n of 2n terms such that,
for each k ∈ {1, 2, . . . , n}, there exist exactly two subscripts i(k) and j(k) with si(k) =
sj(k) = k and |i(k)− j(k)| = k. A Skolem sequence of order n exists if and only if n ≡ 0
or 1 (mod 4). Abrham [5] has proved that any graceful 2-regular graph of order n ≡ 0
(mod 4) in which all the component cycles are even or of order n ≡ 3 (mod 4), with
exactly one component an odd cycle, can be used to construct a Skolem sequence of
order n + 1. Also, he showed that certain special Skolem sequences of order n can be
used to generate graceful labelings on certain 2-regular graphs.

In 1985 Frucht and Salinas [235] conjectured that Cs ∪ Pn is graceful if and only if
s + n ≥ 7 and they proved the conjecture for the case that s = 4. Frucht [233] did
the case the s = 3 and the case that s = 2n + 1. Bhat-Nayak and Deshmukh [105]
also did the case s = 3 and they have done the cases of the form C2x+1 ∪ Px−2θ where
1 ≤ θ ≤ ⌊(x − 2)/2⌋ [101]. Choudum and Kishore [174] have done the cases where
s ≥ 5 and n ≥ (s + 5)/2 and Kishore [335] did the case s = 5. Gao and Liang [250]
have done the following cases: s > 4, n = 2 (see also [249]); s = 4k, n = k + 2, n =
k + 3, n = 2k + 2; s = 4k + 1, n = 2k, n = 3k − 1, n = 4k − 1; s = 4k + 2, n = 3k, n =
3k + 1, n = 4k + 1; s = 4k + 3, n = 2k + 1, n = 3k, n = 4k. Seoud, Abdel Maqsoud and
Sheehan [510] did the case that s = 2k (k ≥ 3) and n ≥ k + 1 as well as the cases
where s = 6, 8, 10, 12 and n ≥ 2. Shimazu [549] has handled the cases that s ≥ 5 and
n = 2, s ≥ 4 and n = 3 and s = 2n + 2 and n ≥ 2. Liang [403] has done the following
cases: s = 4k, n = k + 2, k + 3, 2k + 1, 2k + 2, 2k + 3, 2k + 4, 2k + 5; s = 4k − 1, n =
2k, 3k−1, 4k−1; s = 4k+2, n = 3k, 3k+1, 4k+1; s = 4k+3, n = 2k+1, 3k, 4k. Youssef
[659] proved that C5∪Sn is graceful if and only if n = 1 or 2 and that C6∪Sn is graceful
if and only if n is odd or n = 2 or 4.

Seoud and Youssef [522] have shown that K5 ∪ Km,n, Km,n ∪ Kp,q (m,n, p, q ≥
2), Km,n∪Kp,q∪Kr,s (m,n, p, q, r, s ≥ 2, (p, q) 6= (2, 2)), and pKm,n (m,n ≥ 2, (m,n) 6=
(2, 2)) are graceful. They also prove that C4 ∪ K1,n (n 6= 2) is not graceful whereas
Choudum and Kishore [176], [335] have proved that Cs∪K1,n is graceful for every s ≥ 7
and n ≥ 1. Lee, Quach and Wang [374] established the gracefulness of Ps ∪K1,n. Seoud
and Wilson [514] have shown that C3 ∪ K4, C3 ∪ C3 ∪ K4 and certain graphs of the
form C3 ∪ Pn and C3 ∪ C3 ∪ Pn are not graceful. Abrham and Kotzig [10] proved that
Cp ∪ Cq is graceful if and only if p + q ≡ 0 or 3 (mod 4). Zhou [670] proved that
Km ∪Kn (n > 1,m > 1) is graceful if and only if {m,n} = {4, 2} or {5, 2}. (C. Barrien-
tos has called to my attention that K1 ∪Kn is graceful if and only if n = 3 or 4.) Shee
[543] has shown that graphs of the form P2 ∪ C2k+1 (k > 1), P3 ∪ C2k+1, Pn ∪ C3 and
Sn∪C2k+1 all satisfy a condition that is a bit weaker than harmonious. Bhat-Nayak and
Deshmukh [103] have shown that C4t ∪K1,4t−1 and C4t+3 ∪K1,4t+2 are graceful.

In considering graceful labelings of the disjoint unions of two or three stars with e
edges Yang and Wang [653] permitted the vertex labels to range from 0 to e + 1 and 0
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to e + 2, respectively. With these definitions of graceful, they proved that Sm ∪ Sn is
graceful if and only if m or n is even and that Sm ∪ Sn ∪ Sk is graceful if and only if at
least one of m,n or k is even (m > 1, n > 1, k > 1).

Seoud and Youssef [518] investigated the gracefulness of specific families of the form
G∪Km,n. They obtained the following results: C3∪Km,n is graceful if and only if m ≥ 2
and n ≥ 2; C4 ∪ Km,n is graceful if and only if m ≥ 2 and n ≥ 2 or {m,n} = {1, 2};
C7 ∪Km,n and C8 ∪Km,n are graceful for all m and n; mK3 ∪ nK1,r is not graceful for
all m,n and r; Ki ∪Km,n is graceful for i ≤ 4 and m ≥ 2, n ≥ 2 except for i = 2 and
(m,n) = (2, 2); K5 ∪K1,n is graceful for all n; K6 ∪K1,n is graceful if and only if n is
different than 1 and 3.

For i+1, 2 . . . ,m let vi,1, vi,2, vi,3, vi,4 be a 4-cycle. Yang and Pan [650] define Fk,4 to
be the graph obtained by identifying vi,3 and vi+1,1 for i = 1, 2, . . . , k − 1. They prove
that Fm1,4 ∪ Fm2,4 ∪ · · · ∪ Fmn,4 is graceful for all n. Pan and Lu [472] have shown that
(P2 +Kn) ∪K1,m and (P2 +Kn) ∪ Tn are graceful.

Barrientos [78] has shown the following graphs are graceful: C6 ∪K1,2n+1;Cm ∪Ks,t

for m ≡ 0 or 3 (mod 4), m ≥ 11 and s ≥ 1, t ≥ 1;
⋃t

i=1Kmi,ni
for 2 ≤ mi < ni; and

Cm ∪⋃t
i=1Kmi,ni

for 2 ≤ mi < ni,m ≡ 0 or 3 (mod 4), m ≥ 11.
Youssef [660] has shown that if G is harmonious then mG and Gm are harmonious for

all odd m. He asks the question of whether G is harmonious implies Gm is harmonious
when m ≡ 0 (mod 4).

2.6 Joins of Graphs
A few classes of graphs that are the join of graphs have been shown to be graceful and
harmonious. Among these are: fans Pn+K1 [265], double fans Pn+K2 [265], the double
cone Cn + K2 is graceful for n = 3, 4, 5, 7, 8, 9, 11, and 12 but not graceful for n ≡ 2
(mod 4) [486]; and K4 × Pn is graceful for n = 1, 2, 3, 4, and 5 [486].

More generally, Reid [487] proved that Pn + Kt is harmonious and Grace showed
[263] that if T is any graceful tree, then T +Kt is also graceful. Fu and Wu [237] proved
that if T is a graceful tree, then T +Sk is graceful. Sethuraman and Selvaraju [538] have
shown that Pn+K2 is harmonious. They ask whether Sn+Pn or Pm+Pn is harmonious.
Of course, wheels are of the form Cn +K1 and are graceful and harmonious. Hebbare
[287] showed that Sm + K1 is graceful for all m. Shee [543] has proved Km,n + K1

is harmonious and observed that various cases of Km,n + Kt violate the harmonious
parity condition in [265]. Liu and Zhang [421] have proved that K2 +K2 + · · · +K2 is
harmonious. Yuan and Zhu [666] proved that Km,n + K2 is graceful and harmonious.
Gnanajothi [256, pp. 80–127] obtained the following: Cn +K2 is harmonious when n is
odd and not harmonious when n ≡ 2, 4, 6 (mod 8); Sn +Kt is harmonious; and Pn +Kt

is harmonious. Balakrishnan and Kumar [67] have proved that the join of Kn and two
disjoint copies of K2 is harmonious if and only if n is even. Bu [129] obtained partial
results for the gracefulness of Kn +Km. Ramı́rez-Alfonśın [485] has proved that if G is
graceful and |V (G)| = |E(G)| = e and either 1 or e is not a vertex label then G+Kt is
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graceful for all t.
Seoud and Youssef [520] have proved: the join of any two stars is graceful and

harmonious; the join of any path and any star is graceful; and Cn +Kt is harmonious
for every t when n is odd. They also prove that if any edge is added to Km,n the
resulting graph is harmonious if m or n is at least 2. Deng [186] has shown certain cases
of Cn + Kt are harmonious. Seoud and Youssef [517] proved: the graph obtained by
appending any number of edges from the two vertices of degree n ≥ 2 in K2,n is not
harmonious; dragons Dm,n (i.e., Pm is appended to Cn) are not harmonious when m+n
is odd; and the disjoint union of any dragon and any number of cycles is not harmonious
when the resulting graph has odd order. Youssef [659] has shown that if G is a graceful
graph with p vertices and q edges with p = q + 1, then G+ Sn is graceful.

Sethuraman and Elumalai [528] have proved that for every graph G with p vertices
and q edges the graph G+K1+Km is graceful whenm ≥ 2p−p−1−q. As a corollary they
deduce that every graph is a vertex induced subgraph of a graceful graph. Balakrishnan
and Sampathkumar [68] ask for which m ≥ 3 is the graph Kn +mK2 graceful for all n.
Bhat-Nayak and Gokhale [106] have proved that Kn+2K2 is not graceful. Youssef [659]
has shown that Kn +mK2 is graceful if m ≡ 0 or 1 (mod 4) and that Kn +mK2 is not
graceful if n is odd and m ≡ 2 or 3 (mod 4).

Wu [639] proves that if G is a graceful graph with n edges (n ≥ 1) and n+1 vertices
then the join of G and Km and the join of G and any star are graceful.

2.7 Miscellaneous Results
It is easy to see that P 2

n is harmonious [263] while a proof that P 2
n is graceful has been

given by Kang, Liang, Gao and Yang [324]. (P k
n , the kth power of Pn, is the graph

obtained from Pn by adding edges that join all vertices u and v with d(u, v) = k.) This
latter result proved a conjecture of Grace [263]. Seoud, Abdel Maqsoud, and Sheeham
[507] proved that P 3

n is harmonious and conjecture that P k
n is not harmonious when

k > 3. However, Youssef [663] has observed that P 4
8 is harmonious. Gnanajothi [256,

p. 50] has shown that the graph that consists of n copies of C6 that have exactly
P4 in common is graceful if and only if n is even. For a fixed n, let vi1, vi2, vi3 and
vi4 (1 ≤ i ≤ n) be consecutive vertices of n 4-cycles. Gnanajothi [256, p. 35] also
proves that the graph obtained by joining each vi1 to vi+1,3 is graceful for all n and the
generalized Petersen graph P (n, k) is harmonious in all cases (see also [379]). (P (n, k),
where n ≥ 5 and 1 ≤ k ≤ n, has vertex set {a0, a1, . . . , an−1, b0, b1, . . . , bn−1} and edge
set {aiai+1 | i = 0, 1, . . . , n−1}∪{aibi | i = 0, 1, . . . , n−1}∪{bibi+k | i = 0, 1, . . . , n−1}
where all subscripts are taken modulo n [631]. The standard Petersen graph is P (5, 2).)
Redl [486] has shown that P (n, k) is graceful for n = 5, 6, 7, 8, 9, and 10; The gracefulness
of the generalized Petersen graphs appears to be an open problem.

Barrientos [79] investigated graphs obtained from graceful graphs by adjoining pen-
dant edges. Among his results are: If G is a graceful graph of order m and size m− 1,
then G⊙ nK1 and G+ nK1 are graceful; if G is a graceful graph of order p and size q,
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with q > p, then (G ∪ (q + 1 − p)K1) ⊙ nK1 is graceful; and all unicyclic graphs other
than a cycle for which the deletion of any edge from the cycle results in a caterpillar are
graceful.

Yuan and Zhu [666] proved that P 2k
n is harmonious when 1 ≤ k ≤ (n−1)/2 and that

P 2k
n has a stronger form of harmonious labeling (see Section 4.1) when 2k − 1 ≤ n ≤

4k−1. Cahit [149] proves that the graphs obtained by joining p disjoint paths of a fixed
length k to single vertex are harmonious when p is odd and when k = 2 and p is even.

Sethuraman and Selvaraju [532] define a graph H to be a supersubdivision of a graph
G, if every edge uv of G is replaced by K2,m (m may vary for each edge) by identifying u
and v with the two vertices inK2,m that form one of the two partite sets. Sethuraman and
Selvaraju prove that every supersubdivision of a path is graceful and every cycle has some
supersubdivision that is graceful. They conjecture that every supersubdivision of a star
is graceful and that paths and stars are the only graphs for which every supersubdivison
is graceful. In [536] Sethuraman and Selvaraju prove that every connected graph has
some supersubdivision that is graceful. They pose the question as to whether this result
is valid for disconnected graphs. They also ask if there is any graph other than K2,m that
can be used to replace an edge of a connected graph to obtain a supersubdivision that
is graceful. In [534] Sethuraman and Selvaraju present an algorithm that permits one
to start with any non-trivial connected graph and successively form supersubdivisions
that have a strong form of graceful labeling called an α-labeling (see §3.1).

Kathiresan [327] uses the notation Pa,b to denote the graph obtained by identifying
the end points of b internally disjoint paths each of length a. He conjectures that Pa,b

is graceful except when a is odd and b ≡ 2 (mod 4). He proves the conjecture for
the case that a is even and b is odd. Sekar [505] has shown that Pa,b is graceful when
a 6= 4r + 1, r > 1; b = 4m,m > r. Kathiresan also shows that the graph obtained by
identifying a vertex of Kn with any noncenter vertex of the star with 2n−1 − n(n− 1)/2
edges is graceful.

The graph Tn with 3n vertices and 6n − 3 edges is defined as follows. Start with
a triangle T1 with vertices v1,1, v1,2 and v1,3. Then Ti+1 consists of Ti together with
three new vertices vi+1,1, vi+1,2, vi+1,3 and edges vi+1,1vi,2, vi+1,1vi,3, vi+1,2vi,1, vi+1,2vi,3,
vi+1,3vi,1, vi+1,3vi,2. Gnanajothi [256] proved that Tn is graceful if and only if n is odd.
Sekar [505] proved Tn is graceful when n is odd and Tn with a pendant edge attached to
the starting triangle is graceful when n is even.

For a graph G, the splitting graph of G,S1(G), is obtanied from G by adding for
each vertex v of G a new vertex v1 so that v1 is adjacent to every vertex that is adjacent
to v. Sekar [505] has shown that S1(Pn) is graceful for all n and S1(Cn) is graceful for
n ≡ 0, 1 mod 4.

The total graph T (Pn) has vertex set V (Pn) ∪ E(Pn) with two vertices adjacent
whenever they are neighbors in Pn. Balakrishnan, Selvam, and Yegnanarayanan [69]
have proved that T (Pn) is harmonious.

For any graph G with vertices v1, . . . , vn and a vector m = (m1, . . . ,mn) of positive
integers the corresponding replicated graph, Rm(G), of G is defined as follows. For each
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vi form a stable set Si consisting of mi new vertices i = 1, 2, . . . , n (recall a stable set S
consists of a set of vertices such that there is not an edge vivj for all pairs vi, vj in S);
two stable sets Si, Sj, i 6= j, form a complete bipartite graph if each vivj is an edge in G
and otherwise there are no edges between Si and Sj. Ramı́rez-Alfonśın [485] has proved
that Rm(Pn) is graceful for all m and all n > 1 (see §3.2 for a stronger result) and that
R(m,1,...,1)(C4n), R(2,1,...,1)(Cn) (n ≥ 8) and, R(2,2,1,...,1)(C4n) (n ≥ 12) are graceful.

For any permutation f on 1, . . . , n, the f -permutation graph on a graph G,P (G, f),
consists of two disjoint copies of G,G1 and G2, each of which has vertices labeled
v1, v2, . . . , vn with n edges obtained by joining each vi in G1 to vf(i) in G2. In 1983 Lee
(see [398]) conjectured that for all n > 1 and all permutations on 1, 2, . . . , n, the permu-
tation graph P (Pn, f) is graceful. Lee, Wang and Kiang [398] proved that P (P2k, f) is
graceful when f = (12)(34) · · · (k, k+1) · · · (2k− 1, 2k). They conjectured that if G is a
graceful nonbipartite graph with n vertices then for any permutation f on 1, 2, . . . , n, the
permutation graph P (G, f) is graceful. Some families of graceful permutation graphs
are given in [364].

Gnanajothi [256, p. 51] calls a graph G bigraceful if both G and its line graph
are graceful. She shows the following are bigraceful: Pm; Pm × Pn; Cn if and only if
n ≡ 0, 3 (mod 4); Sn; Kn if and only if n ≤ 3; and Bn if and only if n ≡ 3 (mod 4).
She also shows that Km,n is not bigraceful when n ≡ 3 (mod 4). (Gangopadhyay and
Hebbare [248] used the term “bigraceful” to mean a bipartite graceful graph.) Murugan
and Arumugan [458] have shown that graphs obtained from C4 by attaching two disjoint
paths of equal length to two adjacent vertices are bigraceful.

Several well-known isolated graphs have been examined. Graceful labelings of the
Petersen graph, the cube, the icosahedron and the dodecahedron can be found in [259]
and [251]. On the other hand, Graham and Sloane [265] showed that all of these except
the cube are harmonious. Winters [634] verified that the Grőtzsch graph (see [126, p.
118]), the Heawood graph (see [126, p. 236]) and the Herschel graph (see [126, p. 53])
are graceful. Graham and Sloane [265] determined all harmonious graphs with at most
five vertices. Seoud and Youssef [519] did the same for graphs with six vertices.

2.8 Summary
The results and conjectures discussed above are summarized in the tables following. The
letter G after a class of graphs indicates that the graphs in that class are known to be
graceful; a question mark indicates that the gracefulness of the graphs in the class is an
open problem; we put a “G” next to a question mark if the graphs have been conjectured
to be graceful. The analogous notation with the letter H is used to indicate the status
of the graphs with regard to being harmonious. The tables impart at a glimpse what
has been done and what needs to be done to close out a particular class of graphs. Of
course, there is an unlimited number of graphs one could consider. One wishes for some
general results that would handle several broad classes at once but the experience of
many people suggests that this is unlikely to occur soon. The Graceful Tree Conjecture



the electronic journal of combinatorics, 5 (2005), #DS6 20

alone has withstood the efforts of scores of people over the past three decades. Analogous
sweeping conjectures are probably true but appear hopelessly difficult to prove.
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Table 1: Summary of Graceful Results

Graph Graceful

Trees G if ≤ 27 vertices [21]
G if symmetrical [98]
G if at most 4 end-vertices [311]
?G Ringel-Kotzig

Cycles Cn G iff n ≡ 0, 3 (mod 4) [493]

Wheels Wn G [231], [304]

Helms (see §2.2) G [34]

Webs (see §2.2) G [324]

Gears (see §2.2) G [426]

Cycles with Pk-chord (see §2.2) G [185], [425], [343], [480]

Cn with k consecutive chords (see §2.2) G if k = 2, 3, n− 3 [336], [342]

Unicyclic graphs ?G iff G 6= Cn, n ≡ 1, 2 (mod 4) [614]

C
(t)
n (see §2.2) n = 3 G iff t ≡ 0, 1 (mod 4)

[95], [97]
?G if nt ≡ 0, 3 (mod 4) [337]
G if n = 6, t even [337]
G if n = 4, t > 1 [544]
G if t = 2, n 6≡ 1 (mod 4) [482], [123]
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Table 1: continued

Graph Graceful

Triangular snakes (see §2.2) G iff number of blocks ≡ 0, 1 (mod 4) [453]

K4-snakes (see §2.2) ?

Quadilateral snakes (see §2.2) G [256], [482]

Crowns Cn ⊙K1 G [231]

Grids Pm × Pn G [15]

Prisms Cm × Pn G if n = 2 [234], [652]
G if m even [312]
G if m odd and 3 ≤ n ≤ 12 [312]
G if m = 3 [561]
G if m = 6 see [654]
G if m ≡ 2 (mod 4) and n ≡ 3 (mod 4) [654]

Torus grids Cm × Cn G if m ≡ 0 (mod 4), n even [322]
not G if m,n odd (parity condition)

Vertex-deleted Cm × Pn G if n = 2 [247]

Edge-deleted Cm × Pn G if n = 2 [247]

Möbius ladders Mn (see §2.3) G [242]

Stacked books Sm × Pn (see §2.3) n = 2, G iff m 6≡ 3 (mod 4) [431], [184], [246]
G if m even [246]

n-cube K2 ×K2 × · · · ×K2 G [347]
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Table 1: continued

Graph Graceful

K4 × Pn G if n = 2, 3, 4, 5 [474]

Kn G iff n ≤ 4 [259], [560]

Km,n G [493], [259]

K1,m,n G [31]

K1,1,m,n G [256]

Windmills K
(m)
n (n > 3) (see §2.4) G if n = 4,m ≤ 22 [312]

?G if n = 4,m ≥ 4 [94]
G if n = 4, 4 ≤ m ≤ 22 [312]
not G if n = 4,m = 2, 3 [94]
not G if (m,n) = (2, 5) [97]
not G if n > 5 [342]

B(n, r,m) r > 1 (see §2.4) G if (n, r) = (3, 2), (4, 3) [338], (4,2) [184]

mKn (see §2.5) G iff m = 1, n ≤ 4 [351]

Cs ∪ Pn ? G iff s+ n ≥ 7 [235]
G if s = 3 [233], s = 4 [235], s = 5 [335]
G if s > 4, n = 2 [250]
G if s = 2n+ 1 [233]
G if s = 2k, n ≥ k + 1 [510]

Cp ∪ Cq ? G iff p+ q ≡ 0, 3 (mod 4) [235]
G if s = 2n+ 1 [233], s ≥ 5
and n ≥ (s+ 5)/2 [174]
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Table 1: continued

Graph Graceful

Fans Fn = Pn +K1 G [265]

Double fans Pn +K2 G [265]

Double cones Cn +K2 G for n = 3, 4, 5, 7, 8, 9, 11, 12
not G for n ≡ 2 (mod 4)

t-point suspension Pn +Kt of Pn G [263]

Sm +K1 G [287]

t-point suspension of Cn +Kt G if n ≡ 0 or 3 (mod 12) [107]
not G if t is even and n ≡ 2, 6, 10 (mod 12)
G if n = 4, 7, 11 or 19 [107]
G if n = 5 or 9 and t = 2 [107]

P 2
n (see §2.7) G [368]

Petersen P (n, k) (see §2.7) G for n = 5, 6, 7, 8, 9, 10 [486]

Caterpillars G [493]

Lobsters ?G [94]
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Table 2: Summary of Harmonious Results

Graph Harmonious

Trees H if ≤ 26 vertices [21]
?H [265]

Cycles Cn H iff n ≡ 1, 3 (mod 4) [265]

Wheels Wn H [265]

Helms (see §2.2) H [256], [418]

Webs (see §2.2) H if cycle is odd

Gears (see §2.2) ?

Cycles with Pk-chord (see §2.2) ?

Cn with k consecutive chords (see §2.2) ?

Unicyclic graphs ?

C
(t)
n (see §2.2) n = 3 H iff t 6≡ 2 (mod 4) [265]

H if n = 4, t > 1 [544]

Triangular snakes (see §2.2) H if number of blocks is odd [647]
not H if number of blocks ≡ 2
(mod 4) [647]

K4-snakes (see §2.2) H [264]

Quadrilateral snakes (see §2.2) ?

Crowns Cn ⊙K1 H [263], [420]

Grids Pm × Pn H iff (m,n) 6= (2, 2) [322]
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Table 2: continued

Graph Harmonious

Prisms Cm × Pn H if n = 2,m 6= 4 [247]
H if n odd [265]
H if m = 4 and n ≥ 3 [322]

Torus grids Cm × Cn, H if m = 4, n > 1 [322]
not H if m 6≡ 0 (mod 4) and n odd [322]

Vertex-deleted Cm × Pn H if n = 2 [247]

Edge-deleted Cm × Pn H if n = 2 [247]

Möbius ladders Mn (see §2.3) H iff n 6= 3 [242]

Stacked books Sm × Pn (see §2.3) n = 2, H if m even [262], [487]
not H m ≡ 3 (mod 4), n = 2,
(parity condition)
H if m ≡ 1 (mod 4), n = 2 [256]

n-cube K2 ×K2 × · · · ×K2 not H if n = 2, 3 [265]

K4 × Pn H [487]

Kn H iff n ≤ 4 [265]

Km,n H iff m or n = 1 [265]

K1,m,n H [31]

K1,1,m,n H [256]

Windmills K
(m)
n (n > 3) (see §2.4) H if n = 4 [307]

m = 2, ?H iff n = 4 [265]
not H if m = 2, n odd or 6 [265]
not H for some cases m = 3 [411]
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Table 2: continued

Graph Harmonious

B(n, r,m) r > 1 (see §2.4) (n, r) = (3, 2), (4, 3) [515]

mKn (see §2.5) H n = 3, m odd [421]
not H for n odd, m ≡ 2 (mod 4) [421]

Cs ∪ Pn ?

Fans Fn = Pn +K1 H [265]

Double fans Pn +K2 H [265]

t-point suspension Pn +Kt of Pn H [487]

Sm +K1 H [256], [159]

t-point suspension Cn +Kt of Cn H if n odd and t = 2 [487], [256]
not H if n ≡ 2, 4, 6 (mod 8) and t = 2 [256]

P 2
n (see §2.7) H [263], [420]

Petersen P (n, k) (see §2.7) H [256], [379]

Caterpillars H [265]

Lobsters ?
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3 Variations of Graceful Labelings

3.1 α-labelings
In [493] Rosa defined an α-labeling to be a graceful labeling with the additional property
that there exists an integer k so that for each edge xy either f(x) ≤ k < f(y) or
f(y) ≤ k < f(x). (Other names for such labelings are balanced and interlaced.) It
follows that such a k must be the smaller of the two vertex labels that yield the edge
labeled 1. Also, a graph with an α-labeling is necessarily bipartite and therefore can
not contain a cycle of odd length. Wu [641] has shown that a necessary condition for a
bipartite graph with n edges and degree sequence d1, d2, . . . , dp to have an α-labeling is
that the gcd(d1, d2, . . . , dp, n) divides n(n− 1)/2.

A common theme in graph labeling papers is to build up graphs that have desired
labelings from pieces with particular properties. In these situations, starting with a
graph that possesses an α-labeling is a typical approach. (See [159], [263], [167] and
[322].) Moreover, Jungreis and Reid [322] showed how sequential labelings of graphs
(see Section 4.1) can often be obtained by modifying α-labelings of the graphs.

Graphs with α-labelings have proved to be useful in the development of the theory
of graph decompositions. Rosa [493], for instance, has shown that if G is a graph with q
edges and has an α-labeling, then for every natural number p, the complete graph K2qp+1

can be decomposed into copies of G in such a way that the automorphism group of the
decomposition itself contains the cyclic group of order p. In the same vein El-Zanati
and Vanden Eynden [204] proved that if G has q edges and admits an α-labeling then
Kqm,qn can be partitioned into subgraphs isomorphic to G for all positive integers m and
n. Although a proof of Ringel’s conjecture that every tree has a graceful labeling has
withstood many attempts, examples of trees that do not have α-labelings are easy to
construct (see [493]).

As to which graphs have α-labelings, Rosa [493] observed that the n-cycle has an α-
labeling if and only if n ≡ 0 (mod 4) while Pn always has an α-labeling. Other familiar
graphs that have α-labelings include caterpillars [493], the n-cube [345], B4n+1 (i.e.,
books with 4n+1 pages) [246], C2m∪C2m, and C4m∪C4m∪C4m for allm > 1 [346], Pn×Qn

[431], K1,2k×Qn [431], C4m∪C4m∪C4m∪C4m [358], C4m∪C4n+2∪C4r+2, C4m∪C4n∪C4r

whenm+n ≤ r [10], C4m∪C4n∪C4r∪C4s whenm ≥ n+r+s [6], C4m∪C4n∪C4r+2∪C4s+2

when m ≥ n + r + s + 1 [6], ((m + 1)2 + 1)C4 for all m [669], k2C4 for all k [669], and
(k2+k)C4 for all k [669]. Abrham and Kotzig [8] have shown that kC4 has an α-labeling
for 1 ≤ k ≤ 10 and that if kC4 has an α-labeling then so does (4k + 1)C4, (5k + 1)C4

and (9k + 1)C4. Eshghi [213] proved that 5C4k has an α-labeling for all k.
Selvaraju [506] has shown that P 3

n and the graphs obtained by joining the centers of
any two stars with the end vertices of the path of length n in P 3

n are harmonious. Fu
and Wu [237] have conjectured that P k

n is not harmonious for k > 3.
Figueroa-Centeno, Ichishima, and Muntaner-Batle [223] have shown that if m ≡ 0

(mod 4) then the one-point union of 2, 3, or 4 copies of Cm admits an α-valuation and if
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m ≡ 2 (mod 4) then the one-point union of 2 or 4 copies of Cm admits an α-valuation.
They conjecture that the one-point union of n copies of Cm admits an α-valuation if and
only if mn ≡ 0 (mod 4).

In his 2001 Ph.D. thesis Selvaraju [506] investigated the one-point union of complete
bipartite graphs. He proves that the one-point unions of the following forms have an
α-labeling: Km,n1

and Km,n2
; Km1,n1

, Km2,n2
, and Km3,n3

where m1 ≤ m2 ≤ m3 and
n1 < n2 < n3; Km1,n, Km2,n, and Km3,n where m1 < m2 < m3 ≤ 2n.

Zhile [669] uses Cm(n) to denote the connected graph all of whose blocks are Cm and
whose block-cutpoint-graph is a path. He proves that for all positive integers m and n,
C4m(n) has an α-labeling but Cm(n) does not have an α-labeling when m is odd.

Abrham and Kotzig [10] have proved that Cm ∪ Cn has an α-labeling if and only
if both m and n are even and m + n ≡ 0 (mod 4). Kotzig [346] has also shown that
C4∪C4∪C4 does not have an α-labeling. He asked if n = 3 is the only integer such that
the disjoint union of n copies of C4 does not have an α-labeling. This was confirmed
by Abrham and Kotzig in [9]. Eshghi [212] proved that every 2-regular bipartite graph
with 3 components has an α-labeling if and only if the number of edges is a multiple of
four except for C4 ∪ C4 ∪ C4.

Jungreis and Reid [322] investigated the existence of α-labelings for graphs of the
form Pm × Pn, Cm × Pn, and Cm × Cn (see also [245]). Of course, the cases involving
Cm with m odd are not bipartite, so there is no α-labeling. The only unresolved cases
among these three families are C4m+2 × P2n+1 and C4m+2 × C4n+2. All other cases
result in α-labelings. Balakrishman [65] uses the notation Qn(G) to denote the graph
P2 × P2 × · · · × P2 × G where P2 occurs n − 1 times. Snevily [583] has shown that
the graphs Qn(C4m) and the cycles C4m with the path Pn adjoined at each vertex have
α-labelings. He also has shown [584] that compositions of the form G[Kn] have an α-
labeling whenever G does (see §2.3 for the definition of composition). Balakrishman
and Kumar [66] have shown that all graphs of the form Qn(G) where G is K3,3, K4,4,
or Pm have an α-labeling. Balakrishman [65] poses the following two problems. For
which graphs G does Qn(G) have an α-labeling? For which graphs G does Qn(G) have
a graceful labeling?

Rosa [493] has shown that Km,n has an α-labeling (see also [75]). Barrientos [75] has
shown that for n even the graph obtained from the wheel Wn by attaching a pendant
edge at each vertex has an α-labeling. In [80] Barrientos shows how to construct graceful
graphs that are formed from the one-point union of a tree that has an α-labeling, P2, and
the cycle Cn. In some cases, P2 is not needed. Qian [482] has proved that quadrilateral
snakes have α-labelings. Fu and Wu [237] showed that if T is a tree that has an α-
labeling with partite sets V1 and V2 then the graph obtained from T by joining new
vertices w1, w2, . . . , wk to every vertex of V1 has an α-labeling. Similarly, they prove
that the graph obtained from T by joining new vertices w1, w2, . . . , wk to the vertices
of V1 and new vertices u1, u2, . . . , ut to every vertex of V2 has an α-labeling. They also
prove that if one of the new vertices of either of these two graphs is replaced by a star
and every vertex of the star is joined to the vertices of V1 or the vertices of both V1 and



the electronic journal of combinatorics, 5 (2005), #DS6 30

V2, the resulting graphs have α-labelings. Fu and Wu [237] further show that if T is a
tree with an α-labeling and the sizes of the two partite sets of T differ at by at most 1,
then T × Pm has an α-labeling.

Barrientos [76] defines a chain graph as one with blocks B1, B2, . . . , Bm such that for
every i, Bi and Bi+1 have a common vertex in such a way that the block-cutpoint graph
is a path. He shows that if B1, B2, . . . , Bm are blocks that have α-labelings then there
exists a chain graph G with blocks B1, B2, . . . , Bm that has an α-labeling. He also shows
that if B1, B2, . . . , Bm are complete bipartite graphs, then any chain graph G obtained
by concatenation of these blocks has an α-labeling.

Wu ([642] and [643]) has given a number of methods for constructing larger grace-
ful graphs from graceful graphs. Let G1, G2, . . . , Gp be disjoint connected graphs. Let
wi be in Gi for 1 ≤ i ≤ p. Let w be a new vertex not in any Gi. Form a new
graph ⊕w(G1, G2, . . . , Gp) by adjoining to the graph G1 ∪ G2 ∪ · · · ∪ Gp the edges
ww1, ww2, . . . , wwp. In the case where each of G1, G2, . . . , Gp is isomorphic to a graph G
which has an α-labeling and each wi is the isomorphic image of the same vertex in Gi,
Wu shows that the resulting graph is graceful. If f is an α-labeling of a graph, the inte-
ger k with the property that for any edge uv either f(u) ≤ k < f(v) or f(v) ≤ k < f(u)
is called the boundary value or critical number of f . Wu [642] has also shown that if
G1, G2, . . . , Gp are graphs of the same order and have α-labelings where the labelings
for each pair of graphs Gi and Gp−i+1 have the same boundary value for 1 ≤ i ≤ n/2,
then ⊕w(G1, G2, . . . , Gp) is graceful. In [639] Wu proves that if G has n edges and n+1
vertices and G has an α-labeling with boundary value λ, where |n − 2λ − 1| ≤ 1, then
G× Pm is graceful for all m.

Snevily [584] says that a graph G eventually has an α-labeling provided that there is
a graph H, called a host of G, which has an α-labeling and that the edge set of H can
be partitioned into subgraphs isomorphic to G. He defines the α-labeling number of G
to be Gα = min{t : there is a host H of G with |E(H)| = t|G|}. Snevily proved that
even cycles have α-labeling number at most 2 and he conjectured that every bipartite
graph has an α-labeling number. This conjecture was proved by El-Zanati, Fu, and
Shiue [203]. There are no known examples of a graph G with Gα > 2.

Given two bipartite graphs G1 and G2 with partite sets H1 and L1 and H2 and L2,
respectively, Snevily [583] defines their weak tensor product G1

⊗
G2 as the bipartite

graph with vertex set (H1 ×H2, L1 × L2) and with edge (h1, h2)(l1, l2) if h1l1 ∈ E(G1)
and h2l2 ∈ E(G2). He proves that if G1 and G2 have α-labelings then so does G1

⊗
G2.

This result considerably enlarges the class of graphs known to have α-labelings.
The sequential join of graphs G1, G2, . . . , Gn is formed from G1 ∪ G2 ∪ · · · ∪ Gn by

adding edges joining each vertex of Gi with each vertex of Gi+1 for 1 ≤ i ≤ n− 1. Lee
and Wang [394] have shown that for all n ≥ 2 and any positive integers a1, a2, . . . , an
the sequential join of the graphs Ka1 , Ka2 , . . . , Kan has an α-labeling.

In [243] Gallian and Ropp conjectured that every graph obtained by adding a single
pendant edge to one or more vertices of a cycle is graceful. Qian [482] proved this
conjecture and in the case that the cycle is even he shows the graphs have an α-labeling.
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He further proves that for n even any graph obtained from an n-cycle by adding one or
more pendant edges at some vertices has an α-labeling as long as at least one vertex has
degree 3 and one vertex has degree 2.

For any tree T (V,E) whose vertices are properly 2-colored Rosa and Širáň [496]
define a bipartite labeling of T as a bijection f : V → {0, 1, 2, . . . , |E|} for which there
is a k such that whenever f(u) ≤ k ≤ f(v), then u and v have different colors. They
define the α-size of a tree T as the maximum number of distinct values of the induced
edge labels |f(u)− f(v)|, uv ∈ E, taken over all bipartite labelings f of T . They prove
that the α-size of any tree with n edges is at least 5(n+ 1)/7 and that there exist trees
whose α-size is at most (5n + 9)/6. They conjectured that minimum of the α-sizes
over all trees with n edges is asymptotically 5n/6. This conjecture has been proved
for trees of maximum degree 3 by Bonnington and Širáň [140]. Heinrich and Hell [288]
defined the gracesize of a graph G with n vertices as the maximum, over all bijections
f :V (G) → {1, 2, . . . , n}, of the number of distinct values |f(u)− f(v)| over all edges uv
of G. So, from Rosa and Širáň’s result, the gracesize of any tree with n edges is at least
5(n+ 1)/7.

In [247] Gallian weakened the condition for an α-labeling somewhat by defining a
weakly α-labeling as a graceful labeling for which there is an integer k so that for each edge
xy either f(x) ≤ k ≤ f(y) or f(y) ≤ k ≤ f(x). Unlike α-labelings, this condition allows
the graph to have an odd cycle, but still places a severe restriction on the structure of
the graph; namely, that the vertex with the label k must be on every odd cycle. Gallian,
Prout, and Winters [247] showed that the prisms Cn × P2 with a vertex deleted have
α-labelings. The same paper reveals that Cn×P2 with an edge deleted from a cycle has
an α-labeling when n is even and a weakly α-labeling when n > 3.

A special case of α-labeling called strongly graceful was introduced by Maheo [431]
in 1980. A graceful labeling f of a graph G is called strongly graceful if G is bipartite
with two partite sets A and B of the same order s, the number of edges is 2t + s,
there is an integer k with t − s ≤ k ≤ t + s − 1 such that if a ∈ A, f(a) ≤ k, and if
b ∈ B, f(b) > k, and there is an involution π which is an automorphism of G such that:
π exchanges A and B and the s edges aπ(a) where a ∈ A have as labels the integers
between t+ 1 and t+ s. Maheo’s main result is that if G is strongly graceful then so is
G×Qn. In particular, she proved that (Pn×Qn)×K2, B2n, and B2n×Qn have strongly
graceful labelings. El-Zanati and Vanden Eynden [205] call a strongly graceful labeling
a strong α-labeling. They show that if G has a strong α-labeling, then G× Pn has an
α-labeling. They show that Km,2 ×K2 has a strong α-labeling and that Km,2 × Pn has
an α-labeling. They also show that if G is a bipartite graph with one more vertex than
the number of edges, and if G has an α-labeling such that the cardinalities of the sets
of the corresponding bipartition of the vertices differ by at most 1, then G ×K2 has a
strong α-labeling and G × Pn has an α-labeling. El-Zanati and Vanden Eynden [205]
also note that K3,3×K2, K3,4×K2, K4,4×K2, and C4k×K2 all have strong α-labelings.
El-Zanati and Vanden Eynden proved that Km,2×Qn has a strong α-valuation and that
Km,2×Pn has an α-labeling for all n. They also prove that if G is a connected bipartite
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graph with partite sets of odd order such that in each partite set each vertex has the
same degree, then G×K2 does not have a strong α-valuation. As a corollary they have
that Km,n ×K2 does not have a strong α-valuation when m and n are odd.

An α-labeling f of a graph G is called free by El-Zanati and Vanden Eynden in [206]
if the critical number k (in the definition of α-labeling) is greater than 2 and if neither
1 nor k − 1 is used in the labeling. Their main result is that the union of graphs with
free α-labelings has an α-labeling. In particular, they show that Km,n, m > 1, n > 2,
has a free α-labeling. They also show that Qn, n ≥ 3, and Km,2 × Qn, m > 1, n ≥ 1,
have free α-labelings. El-Zanati [personal communication] has shown that the Heawood
graph has a free α-labeling.

For connected bipartite graphs Grannell, Griggs, and Holroyd [266] introduced a
labeling that lies between α-labelings and graceful labelings. They call a vertex labeling
f of a bipartite graph G with q edges and partitite sets D and U gracious if f is
a bijection from the vertex set of G to {0, 1, . . . , q} such that the set of edge labels
induced by f(u) − f(v) for every edge uv with u ∈ U and v ∈ D is {1, 2, . . . , q}. Thus
a gracious labeling of G with partite sets D and U is a graceful labeling in which every
vertex in D has a label lower than every adjacent vertex. They verified by computer
that every tree of size up to 20 has a gracious labeling. This led them to conjecture
that every tree has a gracious labeling. For any k > 1 and any tree T Grannell et al.
say that T has a gracious k-labeling if the verticies of T can be partitioned into sets D
and U in such a way that there is a function f from the verticies of G to the integers
modulo k such that the edge labels induced by f(u) − f(v) where u ∈ U and v ∈ D
have the following properties: the number of edges labeled with 0 is one less than the
number of verticies labeled with 0 and for each nonzero integer x the number of edges
labeled with x is the same as the number of verticies labeled with x. They prove that
every nontrivial tree has a k-gracious labeling for k = 2, 3, 4, 5 and that caterpillars are
k-gracious for all k ≥ 2.

The same labeling that is called gracious by Grannell, Griggs, and Holroyd is called a
near α-labeling by El-Zanati, Kenig, and Vanden Eynden [207]. They prove that if G is a
graph with n edges that has a near α-labeling then there exists a cyclic G-decomposition
of K2nx+1 for all positive integers x and a cyclic G-decomposition of Kn,n. They further
prove that if G and H have near α-labelings, then so does their weak tensor product
with respect to the corresponding vertex partitions. They conjecture that every tree has
a near α-labeling.

Another kind of labelings for trees was introduced by Ringel, Llado, and Serra [490]
in an approach to proving their conjecture Kn,n is edge-decomposable into n copies of
any given tree with n edges. If T is a tree with n edges and partite sets A and B, they
define a labeling f from the set of vertices to {1, 2, . . . , n} to be a bigraceful labeling of
T if f restricted to A is injective, f restricted to B is injective, and the edge labels given
by f(y)− f(x) where yx is an edge with y in B and x in A is the set {0, 1, 2, . . . , n− 1}.
(Notice that this terminology conflicts with that given in Section 2.7 In particular, the
Ringel, Llado, and Serra bigraceful does not imply the usual graceful.) Among the
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graphs that they show are bigraceful are: lobsters, trees of diameter at most 5, stars
Sk,m with k spokes of paths of length m, and complete d-ary trees for d odd. They also
prove that if T is a tree then there is a vertex v and a nonnegative integer m such that
the addition of m leaves to v results in a bigraceful tree. They conjecture that all trees
are bigraceful.

3.2 k-graceful Labelings
A natural generalization of graceful graphs is the notion of k-graceful graphs introduced
independently by Slater [576] in 1982 and by Maheo and Thuillier [432] in 1982. A graph
G with q edges is k-graceful if there is labeling f from the vertices of G to {0, 1, 2, . . . , q+
k − 1} such that the set of edge labels induced by the absolute value of the difference
of the labels of adjacent vertices is {k, k + 1, . . . , q + k − 1}. Obviously, 1-graceful is
graceful and it is readily shown that any graph that has an α-labeling is k-graceful for
all k. Graphs that are k-graceful for all k are sometimes called arbitrarily graceful. Ng
[465] has shown that there are graphs that are k-graceful for all k but do not have an
α-labeling.

Results of Maheo and Thuillier [432] together with those of Slater [576] show that:
Cn is k-graceful if and only if either n ≡ 0 or 1 (mod 4) with k even and k ≤ (n− 1)/2,
or n ≡ 3 (mod 4) with k odd and k ≤ (n2− 1)/2. Maheo and Thuillier [432] also proved
that the wheel W2k+1 is k-graceful and conjectured that W2k is k-graceful when k 6= 3
or k 6= 4. This conjecture was proved by Liang, Sun, and Xu [404]. Kang [323] proved
that Pm × C4n is k-graceful for all k. Lee and Wang [392] showed that all pyramids,
lotuses, and diamonds are k-graceful and Liang and Liu [401] have shown that Km,n is
k-graceful. Bu, Gao, and Zhang [133] have proved that Pn×P2 and (Pn×P2)∪(Pn×P2)
are k-graceful for all k. Acharya (see [13]) has shown that a k-graceful Eulerian graph
with q edges must satisfy one of the following conditions: q ≡ 0 (mod 4), q ≡ 1 (mod 4)
if k is even, or q ≡ 3 (mod 4) if k is odd. Bu, Zhang, and He [138] have shown that an
even cycle with a fixed number of pendant edges adjoined to each vertex is k-graceful.

Several authors have investigated the k-gracefulness of various classes of subgraphs of
grid graphs. Acharya [11] proved that all 2-dimensional polyminoes that are convex and
Eulerian are k-graceful for all k; Lee [361] showed that Mongolian tents and Mongolian
villages are k-graceful for all k (see Section 2.3 for definitions); Lee and K. C. Ng [370]
proved that all Young tableaus (see §2.3 for the definitions) are k-graceful for all k. (A
special case of this is Pn × P2.) Lee and H. K. Ng [371] subsequently generalized these
results on Young tableaus to a wider class of planar graphs.

Let c,m, p1, p2, . . . , pm be positive integers. For i = 1, 2, . . . ,m, let Si be a set of
pi + 1 integers and let Di be the set of positive differences of the pairs of elements of
Si. If all these differences are distinct then the system D1, D2, . . . , Dm is called a perfect
system of difference sets starting at c if the union of all the sets Di is c, c + 1, . . . , c −
1 +

∑m
i=1

(
pi + 1
2

)

. There is a relationship between k-graceful graphs and perfect
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systems of difference sets. A perfect system of difference sets starting with c describes a
c-graceful labeling of a graph that is decomposable into complete subgraphs. A survey
of perfect systems of difference sets is given in [4].

Acharya and Hegde [18] generalized k-graceful to (k, d)-graceful labelings by permit-
ting the vertex labels to belong to {0, 1, 2, . . . , k + (q − 1)d} and requiring the set of
edge labels induced by the absolute value of the difference of labels of adjacent vertices
to be {k, k + d, k + 2d, . . . , k + (q − 1)d}. They also introduce an analog of α-labelings
in the obvious way. Notice that a (1,1)-graceful labeling is a graceful labeling and a
(k, 1)-graceful labeling is a k-graceful labeling. Bu and Zhang [137] have shown that
Km,n is (k, d)-graceful for all k and d; for n > 2, Kn is (k, d)-graceful if and only if k = d
and n ≤ 4; if mi, ni ≥ 2 and max{mi, ni} ≥ 3, then Km1,n1

∪ Km2,n2
∪ · · · ∪ Kmr,nr

is
(k, d)-graceful for all k, d, and r; if G has an α-labeling, then G is (k, d)-graceful for all k
and d; a k-graceful graph is a (kd, d)-graceful graph; a (kd, d)-graceful connected graph
is k-graceful; and a (k, d)-graceful graph with q edges that is not bipartite must have
k ≤ (q − 2)d.

Let T be a tree with adjacent vertices u0 and v0 and pendant vertices u and v such
that the length of the path u0 − u is the same as the length of the path v0 − v. Hegde
and Shetty [298] call the graph obtained from T by deleting u0v0 and joining u and v is
called an elementary parallel transformation of T . They say that a tree T is a Tp-tree if
it can be transformed into a path by a sequence of elementary parallel transformations.
They prove that every Tp-tree is (k, d)-graceful for all k and d and every graph obtained
from a Tp-tree by subdividing each edge of the tree is (k, d)-graceful for all k and d.

Hegde [294] has proved the following: if a graph is (k, d)-graceful for odd k and
even d, then the graph is bipartite; if a graph is (k, d)-graceful and contains C2j+1 as
a subgraph, then k ≤ jd(q − j − 1); Kn is (k, d)-graceful if and only if n ≤ 4; C4t is
(k, d)-graceful for all k and d; C4t+1 is (2t, 1)-graceful; C4t+2 is (2t− 1, 2)-graceful; and
C4t+3 is (2t+ 1, 1)-graceful.

Hegde [292] calls a (k, d)-graceful graph (k, d)-balanced if it has a (k, d)-graceful
labeling f with the property that there is some integer m so that for every edge uv
either f(u) ≤ m and f(v) > m or f(u) > m and f(v) ≤ m. He proves that if a graph
is (1, 1)-balanced then it is (k, d)-graceful for all k and d and that every (1, 1)-balanced
graph is (k, k)-balanced for all k. He conjectures that all trees are (k, d)-balanced for
some values of k and d.

Duan and Qi [199] use Gt(m1, n1;m2, n2; . . . ;ms, ns) to denote the graph composed
of the s complete bipartite graphs Km1,n1

, Km2,n2
, . . . , Kms,ns

that have only t (1 ≤ t ≤
min{m1,m2, . . . ,ms}) common vertices but no common edge and G(m1, n1;m2, n2) to
denote the graph composed of the complete bipartite graphs Km1,n1

, Km2,n2
with exactly

one common edge. They prove that these graphs are k-graceful graphs for all k.
Slater [579] has extended the definition of k-graceful graphs to countable infinite

graphs in a natural way. He proved that all countably infinite trees, the complete graph
with countably many vertices, and the countably infinite Dutch windmill is k-graceful
for all k.



the electronic journal of combinatorics, 5 (2005), #DS6 35

More specialized results on k-graceful labelings can be found in [361], [370], [371],
[576], [132], [134], [133], and [166].

In 2004 Chartrand, Erwin, VanderJagt, and Zhang [160] define a γ-labeling of a
graph G of size m as a one-to-one function f from the vertices of G to {0, 1, 2, . . . ,m}
that induces an edge labeling f ′ defined by f ′(uv) = |f(u) − f(v)| for each edge uv.
They define the following parameters of a γ-labeling: val(f) = Σf ′(e) over all edges e
of G; valmax(G) = max{val(f) : f is a γ − labeling of G}, valmin(G) = min{val(f) :
f is a γ−labeling of G}. Among their results are the following: valmin(Pn) = valmax(Pn) =
⌊(n2 − 2)/2⌋; valmin(Cn) = 2(n − 1); for n ≥ 4, n even, valmax(Cn) = n(n + 2)/2;

for n ≥ 3, n odd, valmax(Cn) = (n − 1)(n + 3)/2; valmin(Kn) =

(
n+ 1
3

)

; for odd

n, valmax(Kn) = (n2−1)(3n2−5n+6)/24; for even n, valmax(Kn) = n(3n3−5n2+6n−
4)/24; for every n ≥ 3, valmin(K1,n−1) =

(
⌊n+1

2
⌋

2

)

+

(
⌈n+1

2
⌉

2

)

; valmax(K1,n−1) =
(
n
2

)

; for a connected graph of order n and size m, valmin(G) = m if and only if G is

isomorphic to Pn; if G is maximal outerplanar of order n ≥ 2, valmin(G) ≥ 3n− 5 and
equality occurs if and only if G = P 2

n ; if G is a connected r-regular bipartite graph of
order n and size m where r ≥ 2, then valmax(G) = rn(2m− n+ 2)/4.

In another paper on γ-labelings of trees Chartrand et al. [161] prove for p, q ≥ 2,
valmin(Sp,q) (double star) = (⌊p/2⌋ + 1)2 + (⌊q/2⌋ + 1)2 − (np⌊p/2⌋ + 1)2 + (nq⌊(q +
2)/2⌋+ 1)2), where ni is 1 if i is even and ni is 0 if ni is odd; valmin(Sp,q) = (p2 + q2 +
4pq − 3p − 3q + 2)/2; for a connected graph G of order n at least 4, valmin(G) = n
if and only if G is a caterpillar with maximum degree 3 and has a unique vertex of
degree 3; for a tree T of order n at least 4, maximum degree ∆, and diameter d,
valmin(T ) ≥ (8n + ∆2 − 6∆ − 4d + δ∆)/4 where δ∆ is 0 if ∆ is even and δ∆ is 0 if
∆ is odd. They also give a characterization of all trees of order n at least 5 whose
minimum value is n+ 1.

3.3 Skolem-Graceful Labelings
A number of authors have invented analogues of graceful graphs by modifying the per-
missible vertex labels. For instance, Lee (see [388]) calls a graph G with p vertices and q
edges Skolem-graceful if there is an injection from the set of vertices of G to {1, 2, . . . , p}
such that the edge labels induced by |f(x)−f(y)| for each edge xy are 1, 2, . . . , q. A nec-
essary condition for a graph to be Skolem-graceful is that p ≥ q + 1. Lee and Wui [399]
have shown that a connected graph is Skolem-graceful if and only if it is a graceful tree.
Although the disjoint union of trees can not be graceful, they can be Skolem-graceful.
Lee and Wui [399] prove that the disjoint union of 2 or 3 stars is Skolem-graceful if and
only if at least one star has even size. In [175] Choudum and Kishore show that the
disjoint union of k copies of the star K1,2p is Skolem graceful if k ≤ 4p+1 and the disjoint
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union of any number of copies ofK1,2 is Skolem graceful. For k ≥ 2, let St(n1, n2, . . . , nk)
denote the disjoint union of k stars with n1, n2, . . . , nk edges. Lee, Wang, and Wui [396]
showed that the 4-star St(n1, n2, n3, n4) is Skolem-graceful for some special cases and
conjectured that all 4-stars are Skolem-graceful. Denham, Leu, and Liu [187] proved this
conjecture. Kishore [335] has shown that a necessary condition for St(n1, n2, . . . , nk) to
be Skolem graceful is that some ni is even or k ≡ 0 or 1 (mod 4). He conjectures that
each one of these conditions is sufficient. Choudum and Kishore [173] proved that all
5-stars are Skolem graceful.

Lee, Quach, and Wang [374] showed that the disjoint union of the path Pn and the
star of size m is Skolem-graceful if and only if n = 2 and m is even or n ≥ 3 and m ≥ 1.
It follows from the work of Skolem [572] that nP2, the disjoint union of n copies of P2, is
Skolem-graceful if and only if n ≡ 0 or 1 (mod 4). Harary and Hsu [278] studied Skolem-
graceful graphs under the name node-graceful. Frucht [233] has shown that Pm ∪ Pn is
Skolem-graceful when m + n ≥ 5. Bhat-Nayak and Deshmukh [104] have shown that
Pn1

∪Pn2
∪Pn3

is Skolem-graceful when n1 < n2 ≤ n3, n2 = t(n1+2)+1 and n1 is even
and when n1 < n2 ≤ n3, n2 = t(n1 + 3) + 1 and n1 is odd. They also prove that the
graphs of the form Pn1

∪ Pn2
∪ · · · ∪ Pni

where i ≥ 4 are Skolem-graceful under certain
conditions. Youssef [659] proved that if G is Skolem-graceful, then G+Kn is graceful.

Mendelsohn and Shalaby [438] defined a Skolem labeled graph G(V,E) as one for
which there is a positive integer d and a function L:V → {d, d+1, . . . , d+m}, satisfying
(a) there are exactly two vertices in V such that L(v) = d+i, 0 ≤ i ≤ m; (b) the distance
in G between any two vertices with the same label is the value of the label; and (c) if
G′ is a proper spanning subgraph of G, then L restricted to G′ is not a Skolem labeled
graph. Note that this definition is different from the Skolem-graceful labeling of Lee,
Quach, and Wang. Mendelsohn established the following: any tree can be embedded
in a Skolem labeled tree with O(v) vertices; any graph can be embedded as an induced
subgraph in a Skolem labeled graph on O(v3) vertices; for d = 1, there is a Skolem or
the minimum hooked Skolem (with as few unlabeled vertices as possible) labeling for
paths and cycles; for d = 1, there is a minimum Skolem labeled graph containing a path
or a cycle of length n as induced subgraph. In [437] Mendelsohn and Shalaby prove that
the necessary conditions in [438] are sufficient for a Skolem or minimum hooked Skolem
labeling of all trees consisting of edge-disjoint paths of the same length from some fixed
vertex.

3.4 Odd Graceful Labelings
Gnanajothi [256, p. 182] defined a graph G with q edges to be odd graceful if there is an
injection f from V (G) to {0, 1, 2, . . . , 2q − 1} such that, when each edge xy is assigned
the label |f(x) − f(y)|, the resulting edge labels are {1, 3, 5, . . . , 2q − 1}. She proved
that the class of odd graceful graphs lies between the class of graphs with α-labelings
and the class of bipartite graphs by showing that every graph with an α-labeling has
an odd graceful labeling and every graph with an odd cycle is not odd graceful. She



the electronic journal of combinatorics, 5 (2005), #DS6 37

also proved the following graphs are odd graceful: Pn; Cn if and only if n is even; Km,n;
combs Pn ⊙K1 (graphs obtained by joining a single pendant edge to each vertex of Pn);
books; crowns Cn⊙K1 (graphs obtained by joining a single pendant edge to each vertex
of Cn) if and only if n is even; the disjoint union of copies of C4; the one-point union
of copies of C4; Cn × K2 if and only if n is even; caterpillars; rooted trees of height
2; the graphs obtained from Pn (n ≥ 3) by adding exactly two leaves at each vertex
of degree 2 of Pn; the graphs consisting of vertices a0, a1, . . . an, b0, b1, . . . bn with edges
aiai+1, bibi+1 for i = 0, . . . , n−1 and aibi for i = 1, . . . , n−1; the graphs obtained from a
star by adjoining to each end vertex the path P3 or by adjoining to each end vertex the
path P4. She conjectures that all trees are odd graceful and proves the conjecture for
all trees with order up to 10. Barrientos [77] has extended this to trees of order up to
12. Eldergill [201] generalized Gnanajothi’s result on stars by showing that the graphs
obtained by joining one end point from each of any odd number of paths of equal length
is odd graceful. He also proved that the one-point union of any number of copies of C6 is
odd graceful. Kathiresan [329] has shown that ladders and graphs obtained from them
by subdividing each step exactly once are odd graceful.

Sekar [505] has shown the following graphs are odd graceful: Cm ⊙ Pn (the graph
obtained by identifying an end point of Pn with every vertex of Cm) where n ≥ 3 and
m is even; Pa,b when a ≥ 2 and b is odd (see §2.7); P2,b and b ≥ 2; P4,b and b ≥ 2; Pa,b

when a and b are even and a ≥ 4 and b ≥ 4;P4r+1,4r+2;P4r−1,4r; all n-polygonal snakes

with n even; C
(t)
n (see §2.2); graphs obtained by beginning with C6 and repeatedly

forming the one-point union with additional copies of C6 in succession; graphs obtained
by beginning with C8 and repeatedly forming the one-point union with additional copies
of C8 in succession; graphs obtained from even cycles by identifying a vertex of the cycle
with the endpoint of a star; C6,n and C8,n (see §2.7); the splitting graph of Pn (see §2.7)
the splitting graph of Cn, n even; lobsters, banana trees, and regular bamboo trees (see
§2.1).

Barrientos [77] has shown that all disjoint unions of caterpillars are odd graceful and
all trees of diameter 5 are odd graceful. He conjectures that every bipartite graph is odd
graceful.

Seoud, Diab, and Elsakhawi [511] have shown that a connected r-partite graph is
odd graceful if and only if r = 2 and that the join of any two connected graphs is not
odd graceful.

3.5 Graceful-like Labelings
As a means of attacking graph decomposition problems, Rosa [493] invented another
analogue of graceful labelings by permitting the vertices of a graph with q edges to
assume labels from the set {0, 1, . . . , q+1}, while the edge labels induced by the absolute
value of the difference of the vertex labels are {1, 2, . . . , q−1, q} or {1, 2, . . . , q−1, q+1}.
He calls these ρ̂-labelings. Frucht [233] used the term nearly graceful labeling instead of ρ̂-
labelings. Frucht [233] has shown that the following graphs have nearly graceful labelings
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with edge labels from {1, 2, . . . , q− 1, q + 1}: Pm ∪ Pn; Sm ∪ Sn; Sm ∪ Pn; G∪K2 where
G is graceful; and C3 ∪ K2 ∪ Sm where m is even or m ≡ 3 (mod 14). Seoud and
Elsakhawi [512] have shown that all cycles are nearly graceful. Barrientos [74] proved
that Cn is nearly graceful with edge labels 1, 2, . . . , n − 1, n + 1 if and only if n ≡ 1
or 2 (mod 4). Rosa [495] conjectured that triangular snakes with t ≡ 0 or 1 (mod 4)
blocks are graceful and those with t ≡ 2 or 3 (mod 4) blocks are nearly graceful (a
parity condition ensures that the graphs in the latter case cannot be graceful). Moulton
[453] proved Rosa’s conjecture while introducing the slightly stronger concept of almost
graceful by permitting the vertex labels to come from {0, 1, 2, . . . , q − 1, q + 1} while
the edge labels are {1, 2, . . . , q − 1, q}, or {1, 2, . . . , q − 1, q + 1}. Seoud and Elsakhawi
[512] have shown that the following graphs are almost graceful: Cn;Pn + Km;Pn +
K1,m;Km,n;K1,m,n;K2,2,m;K1,1,m,n; ladders; and Pn × P3 (n ≥ 3).

Barrientos [74] calls a graph a kCn-snake if it is a connected graph with k blocks
whose block-cutpoint graph is path and each of the k blocks is isomorphic to Cn. (When
n > 3 and k > 3 there is more than one kCn-snake.) If a kCn-snake where the path of
minimum length that contains all the cut-vertices of the graph has the property that the
distance between any two consecutive cut-vertices is ⌊n/2⌋ it is called linear. Barrientos
proves that kC4-snakes are graceful and that the linear kC6-snakes are graceful when k is
even. When k is odd he proves that the linear kC6-snake is nearly graceful. Barrientos
further proves that kC8-snakes and kC12-snakes are graceful in the cases where the
distances between consecutive vertices of the path of minimum length that contains all
the cut-vertices of the graph are all even and that certain cases of kC4n-snakes and
kC5n-snakes are graceful (depending on the distances between consecutive vertices of
the path of minimum length that contains all the cut-vertices of the graph). Barrientos
[78] also has shown that Cm ∪K1,n is nearly graceful when m = 3, 4, 5, 6.

Yet another kind of labeling introduced by Rosa in his 1967 paper [493] is a ρ-
valuation. A ρ-valuation of a graph is an injection from the vertices of the graph with q
edges to the set {0, 1, . . . , 2q}, where if the edge labels induced by the absolute value of
the difference of the vertex labels are a1, a2, . . . , aq, then ai = i or ai = 2q + 1− i. Rosa
[493] proved that a cyclic decomposition of the edge set of the complete graph K2q+1

into subgraphs isomorphic to a given graph G with q edges exists if and only if G has a
ρ-valuation. (A decomposition ofKn into copies of G is called cyclic if the automorphism
group of the decomposition itself contains the cyclic group of order n.) It is known that
every graph with at most 11 edges has a ρ-labeling and that all lobsters have a ρ-labeling
(see [157]). Donovan, El-Zanati, Vanden Eyden, and Sutinuntopas [193] prove that rCm

has a ρ-labeling (or a more restrictive labeling) when r ≤ 4. They conjecture that
every 2-regular graph has a ρ-labeling. Caro, Roditty, and Schőnheim [157] provide a
construction for the adjacency matrix for every graph that has a ρ-labeling. They ask
the following question: If H is a connected graph having a ρ-labeling and q edges and
G is a new graph with q edges constructed by breaking H up into disconnected parts
does G also have a ρ-labeling?

In their investigation of cyclic decompositions of complete graphs El-Zanati, Vanden
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Eynden, and Punnim [208] introduced two kinds of labelings. They say a bipartite
graph G with n edges and partite sets A and B has a θ-labeling h if h is a one-to-one
function from V (G) to {0, 1, . . . , 2n} such that {h(b)−h(a)| ab ∈ E(G), a ∈ A, b ∈ B} =
{1, 2, . . . , n}. They call h a ρ+-labeling of G if h is a one-to-one function from V (G) to
{0, 1, . . . , 2n} and the integers h(x) − h(y) are distinct modulo 2n + 1 over all ordered
pairs (x, y) where xy is an edge in G, and h(b) > h(a) whenever a ∈ A, b ∈ B and ab
is an edge in G. Note that θ-labelings are ρ+-labelings and ρ+-labelings are ρ-labelings.
They prove that if G is a bipartite graph with n edges and a ρ+-labeling, then for every
positive integer x there is a cyclic G-decomposition of K2nx+1. They prove the following
graphs have ρ+-labelings: trees of diameter at most 5, C2n, lobsters, and comets (that
is, graphs obtained from stars by replacing each edge by a path of some fixed length).
They also prove that the disjoint union of graphs with α-labelings have a θ-labeling and
conjecture that all forests have ρ-labelings.

Blinco, El-Zanati, and Vanden Eynden [110] call a non-bipartite graph almost-
bipartite if the removal of some edge results in a bipartite graph. For these kinds of
graphs G they call a labeling h a γ-labeling of G if the following conditions are met: h is
a ρ-labeling; G is tripartite with vertex tripartition A,B,C with C = {c} and b ∈ B such
that {b, c} is the unique edge joining an element of B to c; if {a, v} is an edge of G with
a ∈ A, then h(a) < h(v); and h(c) − h(b) = n. They prove that if an almost-bipartite
graph G with n edges has a γ-labeling then there is a cyclic G-decomposition of K2nx+1

for all x. They prove that all odd cycles with more than 3 vertices have a γ-labeling and
that C3 ∪ C4m has a γ-labeling if and only if m > 1.

In [110] Blinco, El-Zanati, and Vanden Eynden consider a slightly restricted ρ+-
labeling for a bipartite graph with partite sets A and B by requiring that there exists a
number λ with the property that ρ+(a) ≤ λ for all a ∈ A and ρ+(b) > λ for all b ∈ B.
They denote such a labeling by ρ++. They use this kind of labeling to show that if G
is a 2-regular graph of order n in which each component has even order then there is
a cyclic G-decomposition of K2nx+1 for all x. They also conjecture that every bipartite
graph has a ρ-labeling and every 2-regular graph has a ρ-labeling.

Dufour [200] and Eldergill [201] have some results on the decomposition of complete
graphs using labeling methods. Balakrishnan and Sampathkumar [68] showed that for
each positive integer n the graph Kn+2K2 admits a ρ-valuation. Balakrishnan [65] asks
if it is true that Kn + mK2 admits a ρ-valuation for all n and m. Fronček [228] and
Fronček and Kubesa [230] have introduced several kinds of labelings for the purpose of
proving the existence of special kinds of decompositions of complete graphs into spanning
trees.

For (p, q) graphs with p = q + 1, Frucht [233] has introduced a stronger version
of almost graceful graphs by permitting as vertex labels {0, 1, . . . , q − 1, q + 1} and as
edge labels {1, 2, . . . , q}. He calls such a labeling pseudograceful. Frucht proved that
Pn (n ≥ 3), combs, sparklers (i.e., graphs obtained by joining an end vertex of a path
to the center of a star), C3 ∪ Pn (n 6= 3), and C4 ∪ Pn (n 6= 1) are pseudograceful while
K1,n (n ≥ 3) is not. Kishore [335] proved that Cs ∪ Pn is pseudograceful when s ≥ 5
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and n ≥ (s + 7)/2 and that Cs ∪ Sn is pseudograceful when s = 3, s = 4, and s ≥ 7.
Seoud and Youssef [522] and [518] extended the definition of pseudograceful to all graphs
with p ≤ q + 1. They proved that Km is pseudograceful if and only if m = 1, 3, or 4
[518]; Km,n is pseudograceful when n ≥ 2, and Pm+Kn (m ≥ 2) [522] is pseudograceful.
They also proved that if G is pseudograceful, then G ∪Km,n is graceful for m ≥ 2 and
n ≥ 2 and G ∪Km,n is pseudograceful for m ≥ 2, n ≥ 2 and (m,n) 6= (2, 2) [518]. They
ask if G ∪ K2,2 is pseudograceful whenever G is. Youssef [659] has shown that if H is
pseudograceful and G has an α-labeling with k being the smaller vertex label of the edge
labeled with 1 and if either k + 2 or k − 1 is not a vertex label of G, then G ∪ H is
graceful.

McTavish [435] has investigated labelings where the vertex and edge labels are from
{0, . . . , q, q+1}. She calls these ρ̃-labelings. Graphs that have ρ̃-labelings include cycles
and the disjoint union of Pn or Sn with any graceful graph.

Frucht [233] has made an observation about graceful labelings that yields nearly
graceful analogs of α-labelings and weakly α-labelings in a natural way. Suppose G(V,E)
is a graceful graph with the vertex labeling f . For each edge xy in E, let [f(x), f(y)]
(where f(x) ≤ f(y)) denote the interval of real numbers r with f(x) ≤ r ≤ f(y). Then
the intersection ∩[f(x), f(y)] over all edges xy ∈ E is a unit interval, a single point, or
empty. Indeed, if f is an α-labeling of G then the intersection is a unit interval; if f is
a weakly α-labeling, but not an α-labeling, then the intersection is a point; and, if f is
graceful but not a weakly α-labeling, then the intersection is empty. For nearly graceful
labelings, the intersection also gives three distinct classes.

Singh and Devaraj [567] call a graph G with p vertices and q edges triangular graceful
if there is an injection f from V (G) to {0, 1, 2, . . . , Tq} where Tq is the qth triangular
number and the labels induced on each edge uv by |f(u)−f(v)| are the first q triangular
numbers. They prove the following graphs are trianglar graceful: paths, level 2 rooted
trees, olive trees (see § 2.1 for the definition), complete n-ary trees, double stars, cater-
pillars, C4n, C4n with pendent edges, the one-point union of C3 and Pn, and unicyclic
graphs that have C3 as the unique cycle. They prove that wheels, helms, flowers (see
§2.2 for the definition) and Kn with n ≥ 3 are not triangular graceful. They conjecture
that all trees are triangular graceful.

Van Bussel [616] considered two kinds of relaxations of graceful labelings as applied
to trees. He called a labeling range-relaxed graceful it is meets the same conditions
as a graceful labeling except the range of possible vertex labels and edge labels are
not restricted to the number of edges of the graph (the edges are distinctly labeled
but not necessarily labeled 1 to the number of edges). Similarly, he calls a labeling
vertex-relaxed graceful if it satisfies the conditions of a graceful labeling while permitting
repeated vertex labels. He proves that every tree T with q edges has a range-relaxed
graceful labeling with the vertex labels in the range 0, 1, . . . , 2q− diameter(T ) and that
every tree on n vertices has a vertex-relaxed graceful labeling such that the number of
distinct vertex labels is strictly greater than n/2.

Sekar [505] calls an injective function φ from the vertices of a graph with q edges to



the electronic journal of combinatorics, 5 (2005), #DS6 41

{0, 1, 3, 4, 6, 7, . . . , 3(q − 1), 3q − 2} one modulo three graceful if the edge labels induced
by labeling each edge uv with |φ(u) − φ(v)| is {1, 4, 7, . . . , 3q − 2}. He proves that the
following graphs are one modulo three graceful: Pm; Cn if and only if n ≡ 0 mod 4;
Km,n;C

(2)
2n (the one-point union of two copies of C2n);C

(t)
n for n = 4 or 8 and t > 2;C

(t)
6

and t ≥ 4; caterpillars, stars, lobsters; banana trees, rooted trees of height 2; ladders; the
graphs obtained by identifying the endpoints of any number of copies of Pn; the graph
obtained by attaching pendent edges to each endpoint of two identical stars and then
identifying one endpoint from each of these graphs; the graph obtained by identifying
a vertex of C4k+2 with an endpoint of a star; n-polygonal snakes (see §2.2) for n ≡ 0
(mod 4); n-polygonal snakes for n ≡ 2 (mod 4) where the number of polygons is even;
crowns Cn ⊗K1 for n even; C2n ⊗Pm(C2n with Pm attached at each vertex of the cycle)
for m ≥ 3; chains of cycles (see §2.2) of the form C4,m, C6,2m and C8,m. He conjectueres
that every one modulo three graceful graph is graceful.

3.6 Cordial Labelings
Cahit [144] has introduced a variation of both graceful and harmonious labelings. Let
f be a function from the vertices of G to {0, 1} and for each edge xy assign the label
|f(x)− f(y)|. Call f a cordial labeling of G if the number of vertices labeled 0 and the
number of vertices labeled 1 differ by at most 1, and the number of edges labeled 0 and
the number of edges labeled 1 differ at most by 1. Cahit [145] proved the following:
every tree is cordial; Kn is cordial if and only if n ≤ 3; Km,n is cordial for all m and n;

the friendship graph C
(t)
3 (i.e., the one-point union of t 3-cycles) is cordial if and only if

t 6≡ 2 (mod 4); all fans are cordial; the wheel Wn is cordial if and only if n 6≡ 3 (mod 4)
(see also [198]); maximal outerplanar graphs are cordial; and an Eulerian graph is not
cordial if its size is congruent to 2 (mod 4). Kuo, Chang, and Kwong [357] determine
all m and n for which mKn is cordial.

A k-angular cactus is a connected graph all of whose blocks are cycles with k vertices.
In [145] Cahit proved that a k-angular cactus with t cycles is cordial if and only if kt 6≡ 2
(mod 4). This was improved by Kirchherr [333] who showed any cactus whose blocks
are cycles is cordial if and only if the size of the graph is not congruent to 2 (mod 4).
Kirchherr [334] also gave a characterization of cordial graphs in terms of their adjacency
matrices. Ho, Lee, and Shee [303] proved: Pn×C4m is cordial for all m and all odd n; the
composition G and H is cordial if G is cordial and H is cordial and has odd order and
even size (see §2.3 for definition of composition) [287]; for n ≥ 4 the composition Cn[K2]
is cordial if and only if n 6≡ 2 (mod 4); the Cartesian product of two cordial graphs
of even size is cordial. The same authors [302] showed that a unicyclic graph is cordial
unless it is C4k+2 and that the generalized Petersen graph (see §2.7 for definition) P (n, k)
is cordial if and only if n 6≡ 2 (mod 4). Du [198] determines the maximal number of
edges in a cordial graph of order n and gives a necessary condition for a k-regular graph
to be cordial. Bhut-Nayak and Telang have shown that crowns Cn⊙K1, are k-equitable
for k = n, . . . , 2n− 1 [108] and Cn ⊙K1 is k-equitable for all n when k = 2, 3, 4, 5, and
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6 [109].
Seoud and Abdel Maqusoud [508] proved that if G is a graph with n vertices and

m edges and every vertex has odd degree then G is not cordial when m + n ≡ 2 (mod
4). They also prove the following: for m ≥ 2, Cn × Pm is cordial except for the case
C4k+2×P2;P

2
n is cordial for all n;P 3

n is cordial if and only if n 6= 4; and P 4
n is cordial if and

only if n 6= 4, 5, or 6. Seoud, Diab, and Elsakhawi [511] have proved the following graphs
are cordial: Pn+Pm for allm and n except (m,n) = (2, 2); Cm+Cn ifm 6≡ 0 (mod 4) and
n 6= 2 (mod 4); Cn+K1,m for n 6≡ 3 (mod 4) and odd m except (n,m) = (3, 1);Cn+Km

when n is odd and when n is even and m is odd; K1,m,n;K2,2,m; the n-cube; books Bn if
and only if n 6≡ 3 (mod 4); B(3, 2,m) for all m;B(4, 3,m) if and only if m is even; and
B(5, 3,m) if and only if m 6≡ 1 (mod 4) (see §2.4 for the notation B(n, r,m)).

Diab [191] proved the following graphs are cordial: Cm + Pn if and only if (m,n) 6=
(3, 3), (3, 2), or (3,1); Pm + K1,n if and only if (m,n) 6= (1, 2);Pm ∪ K1,n if and only
if (m,n) 6= (1, 2);Cm ∪ K1,n; Cm + Kn for all m and n except m ≡ 3 (mod 4) and n
odd and m ≡ 2 (mod 4) and n even; Cm ∪Kn for all m and n except m ≡ 2 (mod 4);
Pm +Kn; and Pm ∪Kn.

Youssef [662] has proved the following: If G and H are cordial and one has even size,
then G ∪ H is cordial; if G and H are cordial and both have even size, then G + H is
cordial; if G and H are cordial and one has even size and one of either has even order,
then G + H is cordial; Cm ∪ Cn is cordial if and only if m + n 6≡ 2 (mod 4); mCn is
cordial if and only if mn 6≡ 2(mod 4); Cm + Cn is cordial if and only if (m,n) 6= (3, 3)
and {m (mod 4), n (mod 4)} 6= {0, 2}; if P k

n is cordial, then n ≥ k + 1 +
√
k − 2. He

conjectures that this latter condition is also sufficient. He confirms the conjecture for
k = 5, 6, 7, 8, and 9.

Lee and Liu [367] have shown that the complete n-partite graph is cordial if and
only if at most three of its partite sets have odd cardinality (see also [198]). Lee, Lee,
and Chang [359] prove the following graphs are cordial: the Cartesian product of an
arbitrary number of paths; the Cartesian product of two cycles if and only if at least
one of them is even; and the Cartesian product of an arbitrary number of cycles if at
least one of them has length a multiple of 4 or at least two of them are even.

Shee and Ho [545] have investigated the cordiality of the one-point union of n copies

of various graphs. For C
(n)
m , the one-point union of n copies of Cm, they proved:

(i) If m ≡ 0 (mod 4), then C
(n)
m is cordial for all n;

(ii) If m ≡ 1 or 3 (mod 4), then C
(n)
m is cordial if and only if n 6≡ 2 (mod 4);

(iii) If m ≡ 2 (mod 4), then C
(n)
m is cordial if and only if n is even.

For K
(n)
m , the one-point union of n copies of Km, Shee and Ho [545] prove:

(i) If m ≡ 0 (mod 8), then K
(n)
m is not cordial for n ≡ 3 (mod 4);

(ii) If m ≡ 4 (mod 8), then K
(n)
m is not cordial for n ≡ 1 (mod 4);

(iii) If m ≡ 5 (mod 8), then K
(n)
m is not cordial for all odd n;

(iv) K
(n)
4 is cordial if and only if n 6≡ 1 (mod 4);

(v) K
(n)
5 is cordial if and only if n is even;
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(vi) K
(n)
6 is cordial if and only if n > 2;

(vii) K
(n)
7 is cordial if and only if n 6≡ 2 (mod 4);

(viii) K
(2)
n is cordial if and only if n has the form p2 or p2 + 1.

In his Ph.D. thesis Selvaraju [506] proves that the one-point union of any number of
copies of a complete bipartite graph is cordial. Benson and Lee [89] have investigated

the regular windmill graphs K
(n)
m and determined precisely which ones are cordial for

m < 14.
For W

(n)
m , the one-point union of n copies of the wheel Wm with the common vertex

being the center, Shee and Ho [545] show:

(i) If m ≡ 0 or 2 (mod 4), then W
(n)
m is cordial for all n;

(ii) If m ≡ 3 (mod 4), then W
(n)
m is cordial if n 6≡ 1 (mod 4);

(iii) If m ≡ 1 (mod 4), then W
(n)
m is cordial if n 6≡ 3 (mod 4).

For all n and all m > 1 Shee and Ho [545] prove F
(n)
m , the one-point union of n copies of

the fan Fm = Pm +K1 with the common point of the fans being the center, is cordial.
The flag Flm is obtained by joining one vertex of Cm to an extra vertex called the
root. Shee and Ho [545] show all Fl

(n)
m , the one-point union of n copies of Flm with the

common point being the root, are cordial.
Andar, Boxwala, and Limaye [25] and [28] have proved the following graphs are

cordial: helms; closed helms; generalized helms obtained by taking a web and attaching
pendent vertices to all the vertices of the outermost cycle in the case that the number
cycles is even; flowers (see §2.2), which are obtained by joining the vertices of degree
one of a helm to the central vertex; sunflower graphs, which are obtained by taking a
wheel with the central vertex v0 and the n-cycle v1, v2, . . . , vn and additional vertices
w1, w2, . . . , wn where wi is joined by edges to vi, vi+1, where i+1 is taken modulo n; and
multiple shells (see §2.2).

For a graph G and a positive integer t, Andar, Boxwala, and Limaye [26] define the
t-uniform homeomorph Pt(G) of G as the graph obtained from G by replacing every
edge of G by vertex disjoint paths of length t. They prove that if G is cordial and t is
odd, then Pt(G) is cordial; if t ≡ 2 (mod 4) a cordial labeling of G can be extended to a
cordial labeling of Pt(G) if and only if the number of edges labeled 0 in G is even; and
when t ≡ 0 (mod 4) a cordial labeling of G can be extended to a cordial labeling of Pt(G)
if and only if the number of edges labeled 1 in G is even. In [27] Ander et al. prove that
Pt(K2n) is cordial for all t ≥ 2 and that Pt(K2n+1) is cordial if and only if t ≡ 0 (mod
4) or t is odd and n 6≡ 2 (mod 4) or t ≡ 2 (mod 4) and n is even. In [29] Andar et al.
define a t-ply graph Pt(u, v) as a graph consisting of t internally disjoint paths joining
vertices u and v. They prove that Pt(u, v) is cordial except when it Eulerian and the
number of edges is congruent to 2 (mod 4).

For a binary labeling g of a graph G let vg(j) denote the number of vertices labeled
with j and eg(j) denote the number edges labeled with j. Then i(G) = min{|eg(0) −
eg(1)|} taken over all binary labelings g of G with |vg(0) − vg(1)| ≤ 1. In [30] Andar
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et al. show that a cordial labeling of G can be extended to a cordial labeling of the
graph obtained from G by attaching 2m pendant edges at each vertex of G. They also
prove that a cordial labeling g of a graph G with p vertices can be extended to a cordial
labeling of the graph obtained from G by attaching 2m+1 pendant edges at each vertex
of G if and only if G does not satisfy either of the conditions: (1) G has an even number
of edges and p ≡ 2 (mod 4); (2) G has an odd number of edges and either p ≡ 1 (mod
4) with eg(1) = eg(0) + i(G) or n ≡ 3 (mod 4) and eg(0) = eg(1) + i(G).

For graphs G1, G2, . . . , Gn (n ≥ 2) that are all copies of a fixed graph G, Shee and
Ho [546] call a graph obtained by adding an edge from Gi to Gi+1 for i = 1, . . . , n− 1 a
path-union of G (the resulting graph may depend on how the edges are chosen). Among
their results they show the following graphs are cordial: path-unions of cycles; path-
unions of n copies of Km when m = 4, 6, or 7; path-unions of three or more copies of
K5; and path-unions of two copies of Km if and only if m − 2,m or m + 2 is a perfect
square. They also show that there exist cordial path-unions of wheels, fans, unicyclic
graphs, Petersen graphs, trees, and various compositions.

Lee and Liu [367] give the following general construction for the forming of cordial
graphs from smaller cordial graphs. Let H be a graph with an even number of edges and
a cordial labeling such that the vertices of H can be divided into t parts H1, H2, . . . , Ht

each consisting of an equal number of vertices labeled 0 and vertices labeled 1. Let
G be any graph and G1, G2, . . . , Gt be any t subsets of the vertices of G. Let (G,H)
be the graph that is the disjoint union of G and H augmented by edges joining every
vertex in Gi to every vertex in Hi for all i. Then G is cordial if and only if (G,H)
is. From this it follows that: all generalized fans Fm,n = Km + Pn are cordial; the
generalized bundle Bm,n is cordial if and only if m is even or n 6≡ 2 (mod 4) (Bm,n

consists of 2n vertices v1, v2, . . . , vn, u1, u2, . . . , un with an edge from vi to ui and 2m
vertices x1, x2, . . . xm, y1, y2, . . . , ym with xi joined to vi and yi joined to ui); if m is odd
a generalized wheel Wm,n = Km + Cn is cordial if and only if n 6≡ 3 (mod 4). If m is
even, Wm,n is cordial if and only if n 6≡ 2 (mod 4); a complete k-partite graph is cordial
if and only if the number of parts with an odd number of vertices is at most 3.

Sethuraman and Selvaraju [539] have shown that certain cases of the union of any
number of copies of K4 with one or more edges deleted and one edge in common are
cordial. Youssef [663] has shown that the kth power of Cn is cordial for all n when k ≡ 2
(mod 4) and for all even n when k ≡ 0 (mod 4).

Cahit [150] calls a graph H-cordial if it is possible to label the edges with the numbers
from the set {1,−1} in such a way that, for some k, at each vertex v the algebraic
sum of the labels on the edges incident with v is either k or −k and the inequalities
|v(k) − v(−k)| ≤ 1 and |e(1) − e(−1)| ≤ 1 are also satisfied, where v(i) and e(j) are,
respectively, the number of vertices labeled with i and the number of edges labeled with
j. He calls a graph Hn-cordial if it is possible to label the edges with the numbers from
the set {±1,±2, . . . ,±n} in such a way that, at each vertex v the algebraic sum of the
labels on the edges incident with v is in the set {±1,±2, . . . ,±n} and the inequalities
|v(i) − v(−i)| ≤ 1 and |e(i) − e(−i)| ≤ 1 are also satisfied for each i with 1 ≤ i ≤ n.
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Among Cahit’s results are: Kn,n is H-cordial if and only if n > 2 and n is even; and
Km,n,m 6= n, is H-cordial if and only if n ≡ 0 (mod 4), m is even and m > 2, n > 2.
Unfortunately, Ghebleh and Khoeilar [254] have shown that other statements in Cahit’s
paper are incorrect. In particular, Cahit states that Kn is H-cordial if and only if n ≡ 0
(mod 4); Wn is H-cordial if and only if n ≡ 1 (mod 4); and Kn is H2-cordial if and only
if n ≡ 0 (mod 4) whereas Ghebleh and Khoeilar instead prove that Kn is H-cordial if
and only if n ≡ 0 or 3 (mod 4) and n 6= 3;Wn is H-cordial if and only if n is odd; and
Kn is H2-cordial if n ≡ 0 or 3 (mod 4); and Kn is not H2-cordial if n ≡ 1 (mod 4).
Ghebleh and Khoeilar also prove every wheel has an H2-cordial labeling.

By allowing 0 as the possible induced vertex label of an H-cordial labeling Cahit
[150] studies semi-H-cordiality of trees. He also generalizes H-cordial labelings.

Cahit and Yilmaz [154] call a graph Ek-cordial if it is possible to label the edges
with the numbers from the set {0, 1, 2, . . . , k − 1} in such a way that, at each vertex v,
the sum modulo k of the labels on the edges incident with v satisfies the inequalities
|v(i)− v(j)| ≤ 1 and |e(i)− e(j)| ≤ 1, where v(s) and e(t) are, respectively, the number
of vertices labeled with s and the number of edges labeled with t. Obviously, E2-cordial
is the same as cordial. Cahit and Yilmaz prove the following graphs are E3-cordial:
Pn (n ≥ 3); stars Sn if and only if n 6≡ 1 (mod 3); Kn (n ≥ 3); Cn (n ≥ 3); friendship
graphs; and fans Fn (n ≥ 3). They also prove that Sn (n ≥ 2) is Ek-cordial if and only
if n 6≡ 1 (mod k) when k is odd or n 6≡ 1 mod 2k when k is even and k 6= 2.

Hovey [305] has introduced a simultaneous generalization of harmonious and cordial
labelings. For any Abelian group A (under addition) and graph G(V,E) he defines G to
be A-cordial if there is a labeling of V with elements of A so that for all a and b in A
when the edge ab is labeled with f(a) + f(b), the number of vertices labeled with a and
the number of vertices labeled b differ by at most one and the number of edges labeled
with a and the number labeled with b differ by at most one. In the case where A is the
cyclic group of order k, the labeling is called k-cordial. With this definition we have:
G(V,E) is harmonious if and only if G is |E|-cordial; G is cordial if and only if G is
2-cordial.

Hovey has obtained the following: caterpillars are k-cordial for all k; all trees are
k-cordial for k = 3, 4, and 5; odd cycles with pendant edges attached are k-cordial for all
k; cycles are k-cordial for all odd k; for k even, C2mk+j is k-cordial when 0 ≤ j ≤ k

2
+ 2

and when k < j < 2k; C(2m+1)k is not k-cordial; Km is 3-cordial; and, for k even, Kmk

is k-cordial if and only if m = 1.
Hovey advances the following conjectures: all trees are k-cordial for all k; all con-

nected graphs are 3-cordial; and C2mk+j is k-cordial if and only if j 6= k, where k and
j are even and 0 ≤ j < 2k. The last conjecture was verified by Tao [604]. This result
combined with those of Hovey show that for all positive integers k the n-cycle is k-cordial
with the exception that k is even and n = 2mk+k. Tao also proved that the crown with
2mk + j vertices is k-cordial unless j = k is even, and for 4 ≤ n ≤ k, the wheel Wn is
k-cordial unless k ≡ 5 (mod 8) and n = (k + 1)/2.

In [534] Sethuraman and Selvaraju present an algorithm that permits one to start
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with any non-trivial connected graph G and successively form supersubdivisions (see
§2.7 for the definition) that are cordial in that case that every edge in G is replaced by
K2,m where m is even. Sethuraman and Selvaraju [535] also prove that the one-edge
union of k copies of shell graphs C(n, n− 3) (see §2.2) is cordial for all n ≥ 4 and all k,
and that the one vertex union of any number of copies of Km,n is cordial.

Cairnie and Edwards [155] have determined the computational complexity of cordial
and k-cordial labelings. They prove a conjecture of Kirchherr [334] that deciding whether
a graph admits a cordial labeling is NP-complete. As a corollary, this result implies that
the same problem for k-cordial labelings is NP-complete. They remark that even the
restricted problem of deciding whether connected graphs of diameter 2 have a cordial
labeling is also NP-complete.

In [164] Chartrand, Lee, and Zhang introduced the notion of ramdomly cordial as
follows. Let f be a labeling from V (G) to {0, 1} and for each edge xy define f ∗(xy) =
|f(x) − f(y)|. For i = 0 and 1 let ni(f) denote the number of vertices v with f(v) = i
and mi(f) denote the number of edges e with f ∗(e) = i. They call a such a labeling f
friendly if |n0(f)− n1(f)| ≤ 1. A graph G for which every friendly labeling is cordial is
called randomly cordial. They prove that a connected graph of order n ≥ 2 is randomly
cordial if and only if n = 3 and G = K3, or n is even and G = K1,n−1.

3.7 k-equitable Labelings
In 1990 Cahit [146] proposed the idea of distributing the vertex and edge labels among
{0, 1, . . . , k − 1} as evenly as possible to obtain a generalization of graceful labelings as
follows. For any graph G(V,E) and any positive integer k, assign vertex labels from
{0, 1, . . . , k − 1} so that when the edge labels induced by the absolute value of the
difference of the vertex labels, the number of vertices labeled with i and the number of
vertices labeled with j differ by at most one and the number of edges labeled with i and
the number of edges labeled with j differ by at most one. Cahit has called a graph with
such an assignment of labels k-equitable. Note that G(V,E) is graceful if and only if it
is |E| + 1-equitable and G(V,E) is cordial if and only if it is 2-equitable. Cahit [145]
has shown the following: Cn is 3-equitable if and only if n 6≡ 3 (mod 6); a triangular

snake with n blocks is 3-equitable if and only if n is even; the friendship graph C
(n)
3 is

3-equitable if and only if n is even; an Eulerian graph with q ≡ 3 (mod 6) edges is not
3-equitable; and all caterpillars are 3-equitable [145]. Cahit [145] further gives a proof
that Wn is 3-equitable if and only if n 6≡ 3 (mod 6) but Youssef [661] proved that Wn is
3-equitable for all n ≥ 4. Youssef [659] also proved that if G is a k-equitable Eulerian
graph with q edges and k ≡ 2 or 3 (mod 4) then q 6≡ k (mod 2k). Cahit conjectures [145]
that a triangular cactus with n blocks is 3-equitable if and only if n is even. In [146]
Cahit proves that every tree with fewer than five end vertices has a 3-equitable labeling.
He conjectures that all trees are k-equitable [147]. In 1999 Speyer and Szaniszló [589]
proved Cahit’s conjecture for k = 3.

In [509] Seoud and Abdel Maqsoud prove: a graph with n vertices and q edges in
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which every vertex has odd degree is not 3-equitable if n ≡ 0 (mod 3) and q ≡ 3 (mod
6); all fans except P2+K1 are 3-equitable; all double fans except P4+K2 are 3-equitable;
P 2
n is 3-equitable for all n except 3; K1,1,n is 3-equitable if and only if n ≡ 0 or 2 (mod

3); K1,2,n, n ≥ 2, is 3-equitable if and only if n ≡ 2 (mod 3); Km,n, 3 ≤ m ≤ n, is
3-equitable if and only if (m,n) = (4, 4);K1,m,n, 3 ≤ m ≤ n, is 3-equitable if and only if
(m,n) = (3, 4).

Szaniszló [603] has proved the following: Pn is k-equitable for all k; Kn is 2-equitable
if and only if n = 1, 2, or 3; Kn is not k-equitable for 3 ≤ k < n; Sn is k-equitable for
all k; K2,n is k-equitable if and only if n ≡ k − 1 (mod k), or n ≡ 0, 1, 2, . . . , ⌊k/2⌋ − 1
(mod k), or n = ⌊k/2⌋ and k is odd. She also proves that Cn is k-equitable if and only
if k meets all of the following conditions: n 6= k; if k ≡ 2, 3 (mod 4), then n 6= k − 1; if
k ≡ 2, 3 (mod 4) then n 6≡ k (mod 2k).

Vickrey [618] has determined the k-equitablity of complete multipartite graphs. He
shows that for m ≥ 3 and k ≥ 3, Km,n is k-equitable if and only if Km,n is one of the
following graphs: K4,4 for k = 3; K3,k−1 for all k; or Km,n for k > mn. He also shows
that when k is less than or equal to the number of edges in the graph and at least 3, the
only complete multipartite graphs that are k-equitable are Kkn+k−1,2,1 and Kkn+k−1,1,1.
Partial results on the k-equitability of Km,n were obtained by Krussel [355].

As a corollary of the result of Cairnie and Edwards [155] on the computational
complexity of cordially labeling graphs, it follows that the problem of finding k-equitable
labelings of graphs is NP-complete as well.

Seoud and Abdel Maqsoud [508] call a graph k-balanced if the vertex labels can be
selected from {0, 1, . . . , k − 1} so that the number of edges labeled i and the number
of edges labeled j induced by the absolute value of the differences of the vertex labels
differ by at most 1. They prove that P 2

n is 3-balanced if and only if n = 2, 3, 4, or 6;
for k ≥ 4, P 2

n is not k-balanced if k ≤ n − 2 or n + 1 ≤ k ≤ 2n − 3; for k ≥ 4, P 2
n is

k-balanced if k ≥ 2n− 2; for k,m, n ≥ 3, Km,n is k-balanced if and only if k ≥ mn; for
m ≤ n, K1,m,n is k-balanced if and only if (i) m = 1, n = 1 or 2, and k = 3; (ii) m = 1
and k = n+ 1 or n+ 2; or (iii) k ≥ (m+ 1)(n+ 1).

Bloom has used the term k-equitable to describe another kind of labeling (see [635]
and [636]). He calls a graph k-equitable if the edge labels induced by the absolute value of
the difference of the vertex labels have the property that every edge label induced occurs
exactly k times. A graph of order n is called minimally k-equitable if the vertex labels
are 1, 2,. . ., n and it is k-equitable. Both Bloom and Wojciechowski [635], [636] proved
that Cn is minimally k-equitable if and only if k is a proper divisor of n. Barrientos and
Hevia [82] proved that if G is k-equitable of size q = kw (in the sense of Bloom) then
δ(G) ≤ w and ∆(G) ≤ 2w. Barrientos, Dejter, and Hevia [81] have shown that forests
of even size are 2-equitable. They also prove that for k = 3 or k = 4 a forest of size kw is
k-equitable if and only if its maximum degree is at most 2w and that if 3 divides mn+1,
then the double star Sm,n is 3-equitable if and only if q/3 ≤ m ≤ ⌊(q−1)/2⌋. (Sm,n is K2

with m pendant edges attached at one end and n pendant edges attached at the other
end.) They discuss the k-equitability of forests for k ≥ 5 and characterize all caterpillars
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of diameter 2 that are k-equitable for all possible values of k. Acharya and Bhat-Nayak
[14] have shown that coronas of the form C2n ⊙ K1 are minimally 4-equitable. In [73]
Barrientos proves that the one-point union of a cycle and a path (dragons) and the
disjoint union of a cycle and a path are k-equitable for all k that divide the size of
the graph. Barrientos and Havia [82] have shown the following: Cn ×K2 is 2-equitable
when n is even; books Bn (n ≥ 3) are 2-equitable when n is odd; the vertex union
of k-equitable graphs is k-equitable; and wheels Wn are 2-equitable when n 6≡ 3 (mod
4). They conjecture that Wn is 2-equitable when n ≡ 3 (mod 4) except when n = 3.
Their 2-equitable labelings of Cn×K2 and the n-cube utilized graceful labelings of those
graphs.

Bhat-Nayak and M. Acharya [100] have proved the following: the crowns C2n⊙K1 are
minimally 2-equitable, minimally 2n-equitable, minimally 4-equitable, and minimally
n-equitable; the crowns C3n ⊙ K1 are minimally 3-equitable, minimally 3n-equitable,
minimally n-equitable, and minimally 6-equitable; the crowns C5n ⊙K1 are minimally
5-equitable, minimally 5n-equitable, minimally n-equitable, and minimally 10-equitable;
the crowns C2n+1 ⊙K1 are minimally (2n+ 1)-equitable; and that the graphs Pkn+1 are
k-equitable.

In [75] Barrientos calls a k-equitable labeling optimal if the vertex labels are con-
secutive integers and complete if the induced edge labels are 1, 2, . . . , w where w is the
number of distinct edge labels. Note that a graceful labeling is a complete 1-equitable
labeling. Barrientos proves that Cm ⊙ nK1 (that is, an m-cycle with n pendant edges
attached at each vertex) is optimal 2-equitable when m is even, C3 ⊙ nK1 is complete
2-equitable when n is odd and that C3 ⊙ nK1 is complete 3-equitable for all n. He also
shows that Cn ⊙K1 is k-equitable for every proper divisor k of the size 2n. Barrientos
and Havia [82] have shown that the n-cube (n ≥ 2) has a complete 2-equitable labeling
and that Km,n has a complete 2-equitable labeling when m or n is even. They conjecture
that every tree of even size has an optimal 2-equitable labeling.

3.8 Hamming-graceful Labelings
Mollard, Payan, and Shixin [449] introduced a generalization of graceful graphs called
Hamming-graceful. A graph G = (V,E) is called Hamming-graceful if there exists an
injective labeling g from V to the set of binary |E|-tuples such that {d(g(v), g(u))|uv ∈
E} = {1, 2, . . . , |E|} where d is the Hamming distance. Shixin and Yu [558] have shown
that all graceful graphs are Hamming-graceful; all trees are Hamming-graceful; Cn is
Hamming-graceful if and only if n ≡ 0 or 3 (mod 4); if Kn is Hamming-graceful, then n
has the form k2 or k2 + 2; and Kn is Hamming-graceful for n = 2, 3, 4, 6, 9, 11, 16, and
18. They conjecture that Kn is Hamming-graceful for n of the forms k2 and k2 + 2 for
k ≥ 5.
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4 Variations of Harmonious Labelings

4.1 Sequential and Strongly c-harmonious Labelings
Chang, Hsu, and Rogers [159] and Grace [262], [263] have investigated subclasses of
harmonious graphs. Chang et al. define an injective labeling f of a graph G with q
vertices to be strongly c-harmonious if the vertex labels are from {0, 1, . . . , q−1} and the
edge labels induced by f(x)+f(y) for each edge xy are c, . . . , c+q−1. Grace called such
a labeling sequential. In the case of a tree, Chang et al. modify the definition to permit
exactly one vertex label to be assigned to two vertices whereas Grace allows the vertex
labels to range from 0 to q with no vertex label used twice. By taking the edge labels of
a sequentially labeled graph with q edges modulo q, we obviously obtain a harmoniously
labeled graph. It is not known if there is a graph that can be harmoniously labeled but
not sequentially labeled. Grace [263] proved that caterpillars, caterpillars with a pendant
edge, odd cycles with zero or more pendant edges, trees with α-labelings, wheels W2n+1,
and P 2

n are sequential. Liu and Zhang [420] finished off the crowns C2n ⊙ K1. (The
case C2n+1 ⊙ K1 was a special case of Grace’s results. Liu [417] proved crowns are
harmonious.) Bu [129] also proved that crowns are sequential as are all even cycles with
m pendant edges attached at each vertex. Figueroa-Centeno, Ichishima, and Muntaner-
Batle [222] proved that all cycles with m pendant edges attached at each vertex are
sequential. Wu [640] has shown that caterpillars with m pendant edges attached at each
vertex are sequential.

Singh has proved the following: Cn⊙K2 is sequential for all odd n > 1 [563]; Cn⊙P3

is sequential for all odd n [564]; K2⊙Cn (each vertex of the cycle is joined by edges to the
end points of a copy ofK2) is sequential for all odd n [564]; helms Hn are sequential when
n is even [564]; and K1,n +K2, K1,n +K2, and ladders are sequential [565]. Both Grace
[262] and Reid (see [246]) have found sequential labelings for the books B2n. Jungreis
and Reid [322] have shown the following graphs are sequential: Pm×Pn (m,n) 6= (2, 2);

C4m ×Pn (m,n) 6= (1, 2); C4m+2 ×P2n; C2m+1 ×Pn; and C4 ×C2n (n > 1). The graphs

C4m+2 × C2n+1 and C2m+1 × C2n+1 fail to satisfy a necessary parity condition given by
Graham and Sloane [265]. The remaining cases of Cm × Pn and Cm × Cn are open.
Gallian, Prout, and Winters [247] proved that all graphs Cn × P2 with a vertex or edge
deleted are sequential.

Gnanajothi [256, pp. 68–78] has shown the following graphs are sequential: K1,m,n;
mCn, the disjoint union of m copies of Cn, if and only if m and n are odd; books with
triangular pages or pentagonal pages; and books of the form B4n+1, thereby answering
a question and proving a conjecture of Gallian and Jungreis [246]. Sun [593] has also
proved that Bn is sequential if and only if n 6≡ 3 (mod 4).

Yuan and Zhu [666] have shown that mCn is sequential when m and n are odd.
Although Graham and Sloane [265] proved that the Möbius ladderM3 is not harmonious,
Gallian [242] established that all other Möbius ladders are sequential (see §2.3 for the
definition). Chung, Hsu and Rogers [159] have shown that Km,n + K1, which includes
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Sm +K1, is sequential. Seoud and Youssef [517] proved that if G is sequential and has
the same number of edges as vertices, then G+Kn is sequential for all n.

Zhou [671] has observed that for graphs other than trees, the graphs with k-sequential
labelings coincide with the graphs with strongly k-harmonius labelings. Zhou and Yuan
[672] have shown that for every k-sequential graph G with p vertices and q edges and any
positive integer m the graph (G+Km) ∨Kn is also k-sequential when q − p+ 1 ≤ m ≤
q−p+k. Zhou [671] has shown that the analogous results hold for strongly k-harmonious
and strongly k-elegant. Zhou[671] has shown that for every k-indexable graph G with
p vertices and q edges the graph (G +Kq−p+k) ∨K1 is also strongly k-indexable. Zhou
and Yuan [672] have shown that for every k-sequential graph G with p vertices and q
edges and any positive integer m the graph (G + Km) ∨ Kn is also k-sequential when
q − p+ 1 ≤ m ≤ q − p+ k.

Singh and Varkey [569] call a graph with q edges odd sequential if the vertices can be
labeled with distinct integers from the set {0, 1, 2, . . . , q} or, in the case of a tree from
the set {0, 1, 2, . . . , 2q − 1}, so that the edge labels induced by addition of the labels
of the endpoints take on the values {1, 3, 5, . . . , 2q − 1}. They prove that combs, grids,
stars, and rooted trees of level 2 are odd sequential while odd cycles are not. Singh
and Varkey call a graph G bisequential if both G and its line graph have a sequential
labeling. They prove paths and cycles are bisequential.

Among the strongly 1-harmonious (also called strongly harmonious) are: fans Fn with
n ≥ 2 [159]; wheels Wn with n 6≡ 2 (mod 3) [159]; Km,n + K1 [159]; French windmills

K
(t)
4 [307], [325]; the friendship graphs C

(n)
3 if and only if n ≡ 0 or 1 (mod 4) [307], [325];

C
(t)
4k [594]; and helms [483].
Seoud, Diab, and Elsakhawi [511] have shown that the following graphs are strongly

harmonious: Km,n with an edge joining two vertices in the same partite set; K1,m,n; the
composition Pn[P2] (see §2.3 for definition); B(3, 2,m) and B(4, 3,m) for all m (see §2.4
for notation); P 2

n (n ≥ 3); and P 3
n (n ≥ 3). Seoud et al. [511] have also proved: B2n

is strongly 2n-harmonious; Pn is strongly ⌊n/2⌋-harmonious; ladders L2k+1 are strongly
(k+1)-harmonious; and that if G is strongly c-harmonious and has an equal number of
vertices and edges, then G+Kn is also strongly c-harmonious.

Sethuraman and Selvaraju [538] have proved that the graph obtained by joining two
complete bipartite graphs at one edge is graceful and strongly harmonious. They ask
whether these results extend to any number of complete bipartite graphs.

Acharya and Hegde [18] have generalized sequential labelings as follows. Let G be
a graph with q edges and let k and d be positive integers. A labeling f of G is said to
be (k, d)-arithmetic if the vertex labels are distinct nonnegative integers and the edge
labels induced by f(x) + f(y) for each edge xy are k, k + d, k + 2d, . . . , k + (q − 1)d.
They obtained a number of necessary conditions for various kinds of graphs to have a
(k, d)-arithmetic labeling. The case where k = 1 and d = 1 was called additively graceful
by Hegde [289]. Hegde [289] showed: Kn is additively graceful if and only if n = 2, 3, or
4; every additively graceful graph except K2 or K1,2 contains a triangle; and a unicyclic
graph is additively graceful if and only if it is a 3-cycle or a 3-cycle with a single pendant
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edge attached. Jinnah and Singh [320] noted that P 2
n is additively graceful. Hegde [290]

proved that if G is strongly k-indexable, then G and G+Kn are (kd, d)-arithmetic. Bu
and Shi [135] proved the conjecture of Acharya and Hegde [18] that Kn is not (k, d)-
arithmetic for n ≥ 5. They also proved thatKm,n is (k, d)-arithmetic when k is not of the
form id for 1 ≤ i ≤ n−1. For all d ≥ 1 and all r ≥ 0, Acharya and Hegde [18] showed the
following: Km,n,1 is (d + 2r, d)-arithmetic; C4t+1 is (2dt + 2r, d)-arithmetic; C4t+2 is not
(k, d)-arithmetic for any values of k and d; C4t+3 is ((2t+ 1)d+ 2r, d)-arithmetic; W4t+2

is (2dt + 2r, d)-arithmetic; and W4t is ((2t + 1)d + 2r, d)-arithmetic. They conjecture
that C4t+1 is (2dt + 2r, d)-arithmetic for some r and that C4t+3 is ((2dt + d + 2r, d)-
arithmetic for some r. Hegde and Shetty [297] proved the following: the generalized web
W (t, n) (see §2.2) is ((n−1)d/2, d)-arithmetic and (3n−1)d/2-arithmetic for odd n; the
join of the generalized web W (t, n) with the center removed and Kp where n is odd is
((n− 1)d/2, d)-arithmetic.

Yu [664] proved that a necessary condition for C4t+1 to be (k, d)-arithmetic is that
k = 2dt+ r for some r ≥ 0 and a necessary condition for C4t+3 to be (k, d)-arithmetic is
that k = (2t + 1)d + 2r for some r ≥ 0. These conditions were conjectured by Acharya
and Hegde [18]. Singh proved that the graph obtained by subdividing every edge of the
ladder Ln is (5, 2)-arithmetic [562] and that the ladder Ln is (n, 1)-arithmetic [566]. He
also proves that Pm × Cn is ((n− 1)/2, 1)-arithmetic when n is odd [566].

A graph is called arithmetic if it is (k, d)-arithmetic for some k and d. Singh and
Vilfred [570] showed that various classes of trees are arithmetic. Singh [566] has proved
that the union of an arithmetic graph and an arithmetic bipartite graph is arithmetic.
He conjectures that the union of arithmetic graphs is arithmetic. He provides an example
to show that the converse is not true.

Acharya and Hegde [18] introduced a stronger form of sequential labeling by calling a
graph with p vertices and q edges strongly k-indexable if there is an injective function from
V to {0, 1, 2, . . . , p−1} such that the set of edge labels induced by adding the vertex labels
is {k, k+1, k+2, . . . , k+ q− 1}. Strongly 1-indexable graphs are simply called strongly
indexable. Notice that for trees and unicyclic graphs the notions of sequential labelings
and strongly k-indexable labelings coincide. Acharaya and Hegde prove that the only
nontrivial regular graphs that are strongly indexable are K2, K3, and K2 ×K3 and that
every strongly indexable graph has exactly one nontrivial component that is either a star
or has a triangle. Acharya and Hegde [18] call a graph with p vertices indexable if there
is an injective labeling of the vertices with labels from {0, 1, 2, . . . , p− 1} such that the
edge labels induced by addition of the vertex labels are distinct. They conjecture that all
unicyclic graphs are indexable. This conjecture was proved by Arumugam and Germina
[32] who also proved that all trees are indexable. Bu and Shi [136] also proved that all
trees are indexable and that all uncyclic graphs with the cycle C3 are indexable. Hegde
[290] has shown the following: every graph can be embedded as an induced subgraph
of an indexable graph; if a connected graph with p vertices and q edges (q ≥ 2) is
(k, d)-indexable then d ≤ 2; Pm × Pn is indexable for all m and n; if G is a connected
(1, 2)-indexable graph, then G is a tree; the minimum degree of any (k, 1)-indexable
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graph with at least two vertices is at most 3; a caterpillar with partite sets of orders
a and b is strongly (1, 2)-indexable if and only if |a − b| ≤ 1; in a connected strongly
k-indexable graph with p vertices and q edges, k ≤ p− 1, and if a graph with p vertices
and q edges is (k, d)-indexable, then q ≤ (2p− 3− k+ d)/d. As a corollary of the latter,
it follows that Kn (n ≥ 4) and wheels are not (k, d)-indexable. Hegde and Shetty [297]
proved that for n odd the generalized web graph W (t, n) with the center removed is
strongly (n− 1)/2-indexable.

Let T be a tree with adjacent edges u0 and v0 and suppose that there are two pendant
edges u and v of T so that the lengths of the paths u0−u and v0− v are eqaul. The tree
obtained from T by deleting the edge u0v0 and joining u and v is called an elementary
parallel transformation of T . Any tree that can be reduced to a path by a sequence
of elementary parallel transformations is called a Tp-tree. Hedge and Shetty [297] have
shown that every Tp-tree with q edges and every tree obtained by subdividing every edge
of a Tp-tree exactly once is (k+(q−1)d, d)-arithmetic for all k and d. Hegde and Shetty
[299] define a level joined planar grid as follows. Let u be a vertex of Pm×Pn of degree 2.
For every every pair of distinct vertices v and w which do not have degree 4, introduce
an edge between v and w provided that the distance from u to v equals the distance
from u to w. They prove that every level joined planar grid is strongly indexable.

Section 5.2 of this survey includes a discussion of a labeling method called super edge-
magic. In 2002 Hegde and Shetty [299] showed that a graph has a strongly k-indexable
labeling if and only if it has a super edge-magic labeling.

4.2 Elegant Labelings
An elegant labeling f of a graph G with q edges is an injective function from the vertices
of G to the set {0, 1, . . . , q} such that when each edge xy is assigned the label f(x)+f(y)
(mod q+1) the resulting edge labels are distinct and nonzero. This notion was introduced
by Chang, Hsu, and Rogers in 1981 [159]. Note that in contrast to the definition of a
harmonious labeling, it is not necessary to make an exception for trees. While the cycle
Cn is harmonious if and only if n is odd, Chang et al. [159] proved that Cn is elegant
when n ≡ 0 or 3 (mod 4) and not elegant when n ≡ 1 (mod 4). Chang et al. further
showed that all fans are elegant and the paths Pn are elegant for n 6≡ 0 (mod 4). Cahit
[143] then showed that P4 is the only path that is not elegant. Balakrishnan, Selvam,
and Yegnanarayanan [70] have proved numerous graphs are elegant. Among them are
Km,n and the mth-subdivision graph of K1,2n. They prove that the bistar Bn,n (K2 with
n pendant edges at each endpoint) is elegant if and only if n is even. They also prove
that every simple graph is a subgraph of an elegant graph and that several families of
graphs are not elegant. Deb and Limaye [181] have shown that triangular snakes are
elegant if and only if the number of triangles is not equal to 3 (mod 4). In the case where
the number of triangles is 3 (mod 4) they show the triangular snakes satisfy a weaker
condition they call semi-elegant whereby the edge label 0 is permitted. In [182] Deb and
Limaye define a graph G with q edges to be near-elegant if there is an injective function
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f from the vertices of G to the set {0, 1, . . . , q} such that when each edge xy is assigned
the label f(x) + f(y) (mod (q + 1)) the resulting edge labels are distinct and not equal
to q. Thus, in a near-elegent labeling, instead of 0 being the missing value in the edge
labels, q is the missing value. Deb and Limaye show that triangular snakes where the
number of triangles is 3 (mod 4) are near-elegant. For any positive integers α ≤ β ≤ γ
where β is at least 2, the theta graph θα,β,γ consists of three edge disjoint paths of lengths
α, β and γ having the same end points. Deb and Limaye [182] provide elegant and near-
elegant labelings for some theta graphs where α = 1, 2, or 3. Seoud and Elsakhawi [512]
have proved that the following graphs are elegant: K1,m,n;K1,1,m,n;K2 +Km;K3 +Km;
and Km,n with an edge joining two vertices of the same partite set.

Sethuraman and Elumalai [528] have proved that for every graph G with p vertices
and q edges the graph G + K1 + Km is graceful when m ≥ 2p − p − q. As a corollary
they deduce that every graph is a vertex induced subgraph of a elegant graph. In [534]
Sethuraman and Selvaraju present an algorithm that permits one to start with any non-
trivial connected graph and successively form supersubdivisions that have a strong form
of elegant labeling.

Sethuraman and Elumalai [527] define a graph H to be a K1,m-star extension of a
graph G with p vertices and q edges at a vertex v of G where m > p− 1− deg(v) if H is
obtained from G by merging the center of the starK1,m with v and merging p−1−deg(v)
pendent vertices of K1,m with the p − 1 − deg(v) nonadjacent vertices of v in G. They
prove that for every graph G with p vertices and q edges and every vertex v of G and
every m ≥ 2p−1 − 1 − q there is a K1,m-star extension of G that is both graceful and
harmonious. In the case where m ≥ 2p−1−q they show that G has a K1,m-star extension
that is elegant.

Sethuraman and Selvaraju [539] have shown that certain cases of the union of any
number of copies of K4 with one or more edges deleted and one edge in common are
elegant.

Gallian extended the notion of harmoniousness to arbitrary finite Abelian groups as
follows. Let G be a graph with q edges and H a finite Abelian group (under addition)
of order q. Define G to be H-harmonious if there is an injection f from the vertices of G
to H such that when each edge xy is assigned the label f(x) + f(y) the resulting edge
labels are distinct. When G is a tree, one label may be used on exactly two vertices.
Beals, Gallian, Headley and Jungreis [84] have shown that if H is a finite Abelian group
of order n > 1 then Cn is H-harmonious if and only if H has a non-cyclic or trivial
Sylow 2-subgroup and H is not of the form Z2 × Z2 × · · · × Z2. Thus, for example, C12

is not Z12-harmonious but is (Z2 ×Z2 ×Z3)-harmonious. Analogously, the notion of an
elegant graph can be extended to arbitrary finite Abelian groups. Let G be a graph with
q edges and H a finite Abelian group (under addition) with q+1 elements. We say G is
H-elegant if there is an injection f from the vertices of G to H such that when each edge
xy is assigned the label f(x) + f(y) the resulting set of edge labels is the non-identity
elements of H. Beals et al. [84] proved that if H is a finite Abelian group of order n
with n 6= 1 and n 6= 3, then Cn−1 is H-elegant using only the non-identity elements of



the electronic journal of combinatorics, 5 (2005), #DS6 54

H as vertex labels if and only if H has either a non-cyclic or trivial Sylow 2-subgroup.
This result completed a partial characterization of elegant cycles given by Chang, Hsu
and Rogers [159] by showing that Cn is elegant when n ≡ 2 (mod 4). Mollard and Payan
[448] also proved that Cn is elegant when n ≡ 2 (mod 4) and gave another proof that
Pn is elegant when n 6= 4.

For a graph G(V,E) and an Abelian group H Valentin [615] defines a polychrome
labeling of G by H to be a bijection f from V to H such that the edge labels induced
by f(uv) = f(v) + f(u) are distinct. Valentin investigates the existence of polychrome
labelings for paths and cycles for various Abelian groups.

4.3 Felicitous Labelings
Another generalization of harmonious labelings are felicitous labelings. An injective
function f from the vertices of a graph G with q edges to the set {0, 1, . . . , q} is called
felicitous if the edge labels induced by f(x)+f(y) (mod q) for each edge xy are distinct.
This definition first appeared in a paper by Lee, Schmeichel, and Shee in [379] and
is attributed to E. Choo. Balakrishnan and Kumar [67] proved the conjecture of Lee,
Schmeichel, and Shee [379] that every graph is a subgraph of a felicitous graph by showing
the stronger result that every graph is a subgraph of a sequential graph. Among the
graphs known to be felicitous are: Cn except when n ≡ 2 (mod 4) [379]; Km,n when
m,n > 1 [379]; P2 ∪ C2n+1 [379]; P2 ∪ C2n [608]; P3 ∪ C2n+1 [379]; Sm ∪ C2n+1 [379]; Kn

if and only if n ≤ 4 [529]; Pn + Km [529]; the friendship graph C
(n)
3 for n odd [379];

Pn∪C3 [547]; Pn∪Cn+3 [608]; and the one-point union of an odd cycle and a caterpillar
[547]. Shee [543] conjectured that Pm ∪ Cn is felicitous when n > 2 and m > 3. Lee,
Schmeichel, and Shee [379] ask for which m and n is the one-point union of n copies
of Cm felicitous. They showed that the case where mn is twice an odd integer is not
felicitous. In contrast to the situation for felicitous labelings, we remark that C4k and
Km,n where m,n > 1 are not harmonious and the one-point union of an odd cycle and
a caterpillar is not always harmonious. Lee, Schmeichel, and Shee [379] conjecture that
the n-cube is felicitous. This conjecture was proved by Figueroa-Centeno and Ichishima
in 2001 [218].

Balakrishnan, Selvam, and Yegnanarayanan [69] obtained numerous results on fe-
licitous labelings. The wreath product, G ∗ H, of graphs G and H has vertex set
V (G) × V (H) and (g1, h1) is adjacent to (g2, h2) whenever g1g2 ∈ E(G) or g1 = g2
and h1h2 ∈ E(H). They define Hn,n as the graph with vertex set {u1, . . . , un; v1, . . . , vn}
and edge set {uivj| 1 ≤ i ≤ j ≤ n}. They let 〈K1,n : m〉 denote the graph obtained by
taking m disjoint copies of K1,n, and joining a new vertex to the centers of the m copies
of K1,n. They prove the following are felicitous: Hn,n;Pn ∗ K2; 〈K1,m : m〉; 〈K1,2 : m〉
when m 6≡ 0 (mod 3) or m ≡ 3 (mod 6) or m ≡ 6 (mod 12); 〈K1,2n : m〉 for all m and
n ≥ 2; 〈K1,2t+1 : 2n+1〉 when n ≥ t;P k

n when k = n−1 and n 6≡ 2 (mod 4) or k = 2t and
n ≥ 3 and k < n− 1; the join of a star and Kn; and graphs obtained by joining two end
vertices or two central vertices of stars with an edge. Yegnanarayanan [655] conjectures
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that the graphs obtained from an even cycle by attaching n new vertices to each vertex
of the cycle is felicitous. This conjecture was verified by Figueroa-Centeno, Ichishima,
and Muntaner-Batle in [222]. In [534] Sethuraman and Selvaraju [539] have shown that
certain cases of the union of any number of copies of K4 with 3 edges deleted and one
edge in common are felicitous. Sethuraman and Selvaraju [534] present an algorithm
that permits one to start with any non-trivial connected graph and successively form
supersubdivisions (see §2.7) that have a felcitious labeling.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [223] define a felicitous graph to
be strongly felicitous if there exists an integer k so that for every edge uv min{f(u), f(v)}
≤ k < max{f(u), f(v)}. For a graph with p vertices and q edges with q ≥ p − 1 they
show that G is strongly felicitous if and only if G has an α-valuation (see §3.1). They
also show that for graphs G1 and G2 with strongly felicitous labelings f1 and f2 the graph
obtained from G1 and G2 by identifying the vertices u and v such that f1(u) = 0 = f2(v)
is strongly felicitous and that the one-point union of two copies of Cm where m ≥ 4 and
m is even is strongly felicitous. As a corollary they have that the one-point union n copies
of Cm where m is even and at least 4 and n ≡ 2 (mod 4) is felicitous. They conjecture
that the one-point union of n copies of Cm is felicitous if and only if mn ≡ 0, 1, or 3
(mod 4). In [226] Figueroa-Centeno, Ichishima, and Muntaner-Batle prove that 2Cn is
strongly felicitous if and only if n is even and at least 4. They conjecture [226] that mCn

is felicitous if and only if mn 6≡ 2 (mod 4) and that Cm ∪ Cn is felicitous if and only if
m+ n 6≡ 2 (mod 4).

Chang, Hsu, and Rogers [159] have given a sequential counterpart to felecitous la-
belings. They call a graph strongly c-elegant if the vertex labels are from {0, 1, . . . , q}
and the edge labels induced by addition are {c, c + 1, . . . , c + q − 1}. (A strongly 1-
elegant labeling has also been called a consecutive labeling.) Notice that every strongly
c-elegant graph is felicitous and that strongly c-elegant is the same as (c, 1)-arithmetic
in the case where the vertex labels are from {0, 1, . . . , q}. Results on strongly c-elegant
graphs are meager. Chang et al. [159] have shown: Kn is strongly 1-elegant if and only if
n = 2, 3, 4; Cn is strongly 1-elegant if and only if n = 3; and a bipartite graph is strongly
1-elegant if and only if it is a star. Shee [544] has proved that Km,n is strongly c-elegant
for a particular value of c and obtained several more specialized results pertaining to
graphs formed from complete bipartite graphs.

Seoud and Elsakhawi [513] have shown: Km,n (m ≤ n) with an edge joining two
vertices of the same partite set is strongly c-elegant for c = 1, 3, 5, . . . , 2n+ 2; K1,m,n is
strongly c-elegant for c = 1, 3, 5, . . . , 2m when m = n, and for c = 1, 3, 5, . . . ,m+ n+ 1
when m 6= n; K1,1,m,m is strongly c-elegant for c = 1, 3, 5, . . . , 2m + 1;Pn + Km is
strongly ⌊n/2⌋-elegant; Cm + Kn is strongly c-elegant for odd m and all n for c =
(m− 1)/2, (m− 1)/2 + 2, . . . , 2m when (m− 1)/2 is even and for c = (m− 1)/2, (m−
1)/2+ 2, . . . , 2m− (m− 1)/2 when (m− 1)/2 is odd; ladders L2k+1 (k > 1) are strongly
(k + 1)-elegant; and B(3, 2,m) and B(4, 3,m) (see §2.4 for notation) are strongly 1-
elegant and strongly 3-elegant for all m; the composition Pn[P2] (see §2.3) is strongly
c-elegant for 1, 3, 5, . . . , 5n − 6 when n is odd and for c = 1, 3, 5, . . . , 5n − 5 when n is
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even; Pn is strongly ⌊n/2⌋-elegant; P 2
n is strongly c-elegant for c = 1, 3, 5, . . . , q where q is

the number of edges of P 2
n ; and P

3
n (n > 3) is strongly c-elegant for c = 1, 3, 5, . . . , 6k−1

when n = 4k, c = 1, 3, 5, . . . , 6k + 1 when n = 4k + 1, c = 1, 3, 5, . . . , 6k + 3 when
n = 4k + 2, c = 1, 3, 5, . . . , 6k + 5 when n = 4k + 3.

5 Magic-type Labelings

5.1 Magic Labelings
Motivated by the notion of magic squares in number theory, magic labelings were intro-
duced by Sedláček [503] in 1963. Responding to a problem raised by Sedláček, Stewart
[591] and [592] studied various ways to label the edges of a graph in the mid 60s. Stewart
calls a connected graph semi-magic if there is a labeling of the edges with integers such
that for each vertex v the sum of the labels of all edges incident with v is the same for
all v. (Berge [90] used the term “regularisable” for this notion.) A semi-magic labeling
where the edges are labeled with distinct positive integers is called a magic labeling.
Stewart calls a magic labeling supermagic if the set of edge labels consists of consecu-
tive positive integers. The classic concept of an n × n magic square in number theory
corresponds to a supermagic labeling of Kn,n. Stewart [591] proved the following: Kn

is magic for n = 2 and all n ≥ 5; Kn,n is magic for all n ≥ 3; fans Fn are magic if
and only if n is odd and n ≥ 3; wheels Wn are magic for n ≥ 4; and Wn with one
spoke deleted is magic for n = 4 and for n ≥ 6. Stewart [591] also proved that Km,n

is semi-magic if and only if m = n. In [592] Stewart proved that Kn is supermagic for
n ≥ 5 if and only if n > 5 and n 6≡ 0 (mod 4). Sedláček [504] showed that Möbius
ladders Mn (see §2.3 for the definition) are supermagic when n ≥ 3 and n is odd and
that Cn × P2 is magic, but not supermagic, when n ≥ 4 and n is even. Shiu, Lam, and
Lee [553] have proved: the composition of Cm and Kn is supermagic when m ≥ 3 and
n ≥ 2; the complete m-partite graph Kn,n,...,n is supermagic when n ≥ 3, m > 5 and
m 6≡ 0 (mod 4); and if G is an r-regular supermagic graph, then so is the composition
of G and Kn for n ≥ 3. Ho and Lee [300] showed that the composition of Km and the
null graph with n vertices is supermagic for m = 3 or 5 and n = 2 or n odd. Bača,
Holländer, and Lih [56] have found two families of 4-regular supermagic graphs. Shiu,
Lam, and Cheng [550] proved that for n ≥ 2, mKn,n is supermagic if and only if n is
even or both m and n are odd. Ivanc̆o [313] gave a characterization of all supermagic
regular complete multipartite graphs. He proved that Qn is supermagic if and only if
n = 1 or n is even and greater than 2 and that Cn ×Cn and C2m ×C2n are supermagic.
He conjectures that Cm × Cn is supermagic for all m and n. Trenklér [610] has proved
that a connected magic graph with p vertices and q edges other than P2 exits if and only
if 5p/4 < q ≤ p(p − 1)/2. In [595] Sun, Guan, and Lee give an efficient algorithm for
finding a magic labeling of a graph.

Sedláček [504] also proves that graphs obtained from an odd cycle u1, u2, . . . , um, um+1,
vm, . . . , v1 (m ≥ 2) by joining each ui to vi and vi+1 and u1 to vm+1, um to v1 and v1 to
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vm+1 are magic. Trenklér and Vetchý [613] have shown that if G has order at least 5
then Gi is magic for all i ≥ 3 and G2 is magic if and only if G is not P5 and G does not
have a 1-factor whose every edge is incident with an end-vertex of G. Seoud and Abdel
Maqsoud [509] proved that K1,m,n is magic for all m and n and that P 2

n is magic for all
n. However, Serverino has reported that P 2

n is not magic for n = 2, 3, and 5 [253].
Characterizations of regular magic graphs were given by Dood [196] and necessary

and sufficient conditions for a graph to be magic were given in [316], [317], and [189].
Some sufficient conditions for a graph to be magic are given in [194], [609], and [454].
The notion of magic graphs was generalized in [195] and [499].

Trenklér [611] extended the definition of supermagic graphs to include hypergraphs
and proved that the complete k-uniform n-partite hypergraph is supermagic if n 6= 2 or
6 and k ≥ 2 (see also [612]).

For connectecd graphs of size at least 5, Ivančo, Lastivkova, and Semanicova [315]
provide a forbidden subgraph characterization of the line graphs which can be magic.
As a corollary they obtain that the line graph of every connected graph with minimum
degree at least 3 is magic. They also prove that the line graph of every bipartite regular
graph of degree at least 3 is supermagic.

In [313] Ivančo completely determines the supermagic graphs that are the disjoint
unions of complete k-partite graphs where every partite set has the same order.

In 1976 Sedláček [504] defined a connected graph with at least two edges to be
pseudo-magic if there exists a real-valued function on the edges with the property that
distinct edges have distinct values and the sum of the values assigned to all the edges
incident to any vertex is the same for all vertices. Sedláček proved that when n ≥ 4 and
n is even, the Möbius ladder Mn is not pseudo-magic and when m ≥ 3 and m is odd,
Cm × P2 is not pseudo-magic.

Kong, Lee, and Sun [344] used the term “magic labeling” for a labeling of the edges
with nonnegative integers such that for each vertex v the sum of the labels of all edges
incident with v is the same for all v. In particular, the edge labels need not be distinct.
They let M(G) denote the set of all such labelings of G. For any L in M(G), they let
s(L) = max{L(e): e in E} and define the magic strength of G as m(G) = min{s(L):L
in M(G)}. To distinguish these notions from others with the same names and notation
which we will introduced in the next section for labelings from the set of vertices and
edges we call the Kong, Lee, and Sun version the edge magic strength and use em(G)
for min{s(L):L in M(G)} instead of m(G). Kong, Lee, and Sun [344] use DS(k) to
denote the graph obtained by taking two copies of K1,k and connecting the k pairs of
corresponding leafs. They show: for k > 1, em(DS(k)) = k − 1; em(Pk + K1) is
1 for k = 1 or 2, k if k is even and greater than 2, and 0 if k is odd and greater
than 1; for k ≥ 3, em(W (k)) = k/2 if k is even and em(W (k)) = (k − 1)/2 if k
is odd; em(P2 × P2) = 1, em(P2 × Pn) = 2 if n > 3, em(Pm × Pn) = 3 if m or n

is even and greater than 2; em(C
(n)
3 ) = 1 if n = 1 (Dutch windmill – see §2.4) and

em(C
(n)
3 ) = 2n − 1 if n > 1. They also prove that if G and H are magic graphs then

G×H is magic and em(G×H) = max{em(G), em(H)} and that every connected graph
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is an induced subgraph of a magic graph (see also [209] and [220]). They conjecture that
almost all connected graphs are not magic. In [376] Lee, Saba, and Sun show that the
edge magic strength of P k

n is 0 when k and n are both odd. Sun and Lee [596] show
that the Cartesian, conjunctive, normal, lexicographic, and disjunctive products of two
magic graphs are magic and the sum of two magic graphs is magic. They also determine
the magic strengths of the products and sums in terms of the magic strengths of the
components graphs.

S. M. Lee and colleagues [397] and [365] call a graph G k-magic if there is a labeling
from the edges of G to the set {1, 2, . . . , k− 1} such that for each vertex v of G the sum
of all edges incident with v is a constant independent of v. The set of all k for which
G is k-magic is denoted by IM(G) and called the integer-magic spectrum of G. In [397]
Lee and Wong investigate the integer-magic spectrum of powers of paths. They prove:
IM(P 2

4 ) is {4, 6, 8, 10, . . .}; for n > 5, IM(P 2
n) is the set of all positive integers except 2;

for all odd d > 1, IM(P d
2d) is the set of all positive integers except 1; IM(P 3

4 ) is the set of
all positive integers; for all odd n ≥ 5, IM(P 3

n) is the set of all positive integers except 1
and 2; and for all even n ≥ 6, IM(P 3

n) is the set of all positive integers except 2. They
conjecture that for k > 3, IM(P k

n ) is the set of all positive integers when n = k + 1; the
set of all positive integers except 1 and 2 when n and k are odd and n ≥ k; the set of
all positive integers except 1 and 2 when n and k are even and k ≥ n/2; the set of all
positive integers except 2 when n is even and k is odd and n ≥ k; and the set of all
positive integers except 2 when n and k are even and k ≤ n/2.

In [365] Lee et al. investigated the integer-magic spectrum of trees obtained by
joining the centers of two disjoint stars K1,m and K1,n with an edge. They denote these
graphs by ST(m,n). Among their results are: IM(ST(m,n)) is the empty set when
|m−n| = 1; IM(ST(2m, 2m)) is the set of all positive integers; IM(ST(2m+1, 2m+1))
(m ≥ 1) is the set of all positive integers except 2; IM(W2n+1) is the set of all positive
integers; IM(W2n) (n > 1) is the set of all positive integers except 2; IM(C2n⊙K1) is the
set of all positive integers except 2; IM(C2n+1⊙K1) is the set of all even positive integers;
IM(Pm × Pn) (m,n) 6= (2, 2) is the set of all positive integers except 2; IM(P2 × P2) is
the set of all positive integers and IM(Pn +K1) (n > 2) is the set of all positive integers
except 2; and IM(K1,k+1) (k > 2) is the set of all multiples of k.

Lee et al. [365] use the notation Cm@Cn to denote the graph obtained by starting
with Cm and attaching paths Pn to Cm by identifying the endpoints of the paths with
each successive pairs of verticies of Cm. They prove that IM(Cm@Cn) is the set of all
positive integers if m or n is even and IM(Cm@Cn) is the set of all even positive integers
if m and n are odd.

Lee, Valdés, and Ho [391] investigate the integer magic spectrum for special kinds of
trees. For a given tree T they define the double tree DT of T as the graph obtained by
creating a second copy T ∗ of T and joining each end vertex of T to its corresponding
vertex in T ∗. They prove that for any tree T, IM(DT ) contains every positive integer
with the possible exception of 2 and IM(DT ) contains all positive integers if and only
if the degree of every vertex that is not an end vertex is even. For a given tree T they
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define ADT , the abbreviated double tree of T , as the the graph obtained from DT by
identifying the end verticies of T and T ∗. They prove that for every tree T , IM(ADT )
contains every positive integer with the possible exceptions of 1 and 2 and IM(ADT )
contains all positive integers if and only if T is a path.

Lee and Salehi [378] has investigated the integer-magic spectra of trees with diameter
at most four. Among their findings are: if n ≥ 3 and the prime power factorization
of n − 1 = pr11 p

r2
2 · · · prkk , then IM(K1,n) = 〈p1〉 ∪ 〈p2〉 ∪ · · · ∪ 〈pk〉; the double star

DS(m,n),m, n ≥ 3, is Z-magic if and only if m = n; for m,n ≥ 3, IM(DS(m,m) is
the set of all natural numbers excluding all divisors of m − 2 greater than 1; if the
prime power factorization of m − n = pr11 p

r2
2 · · · prkk and the prime power factorization

of n − 2 = ps11 p
s2
2 · · · pskk , then IM(DS(m,n)) = A1 ∪ A2 · · · ∪ Ak where Ai = p1+si

i if
ri > si ≥ 0 and Ai = ∅ if si ≥ ri ≥ 0; for m,n ≥ 3, IM(DS(m,n) = ∅ if and only if
m − n divides n − 2; if m,n ≥ 3 and |m − n| = 1, then DS(m,n) is non-magic. The
formula for the integer-magic spectra of trees of diameter four are too complicated to
include here.

More specialized results about the integer-magic spectra of amalgamations of stars
and cycles are given by Lee and Salehi in [377].

The table following summarizes the state of knowledge about magic-type labelings.
In the table SM means semi-magic; M means magic; SPM means supermagic. A
question mark following an abbreviation indicates that the graph is conjectured to have
the corresponding property. The table was prepared by Petr Kovář and Tereza Kovářová.



the electronic journal of combinatorics, 5 (2005), #DS6 60

Table 3: Summary of Magic Labelings

Graph Types Notes

Kn M if n = 2, n ≥ 5 [591]
SPM for n ≥ 5 iff n > 5, n 6≡ 0 (mod 4) [592]

Km,n SM if n ≥ 3 [591]

Kn,n M if n ≥ 3 [591]

Fans Fn M iff n is odd, n ≥ 3 [591]
not SM if n ≥ 2 [253]

Wheels Wn M if n ≥ 4 [591]
SM if n = 5 or 6 [253]

Wheels with one M if n = 4, n ≥ 6 [591]
spoke deleted

Möbius ladders Mn SPM if n ≥ 3, n is odd [504]

Cn × P2 M not SPM for n ≥ 4, n even [504]

Composition of Cm and Kn SPM if m ≥ 3, n ≥ 2 [553]

Kn, n, . . . , n
︸ ︷︷ ︸

p

SPM n ≥ 3, p > 5 and p 6≡ 0 (mod 4) [553]

Composition of r-regular SPM if n ≥ 3 [553]
SPM graph and Kn

Composition of Kk and Kn SPM if k = 3 or 5, n = 2 or n odd [300]

mKn,n SPM for n ≥ 2 iff n is even or
both n and m are odd [550]
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Table 3: continued

Graph Types Notes

Qn SPM iff n = 1 or n > 2 even [313]

Cm × Cn SPM m = n or m, n even [313]

Cm × Cn SPM? for all m and n [313]

connected (p, q)-graph M iff 5p/4 < q ≤ p(p− 1)/2
other than P2 [610]

Gi M |G| ≥ 5, i ≥ 3 [613]

G2 M G 6= P5 and G does not have a 1-factor whose
every edge is incident with an end-vertex of G

K1,m,n M for all m, n [509]

P 2
n M for all n except 2,3,5 [509], [253]

G×H M iff G and H are magic [344]
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5.2 Edge-magic Total and Super Edge-magic Labelings
In 1970 Kotzig and Rosa [349] defined a magic labeling of a graph G(V,E) as a bijection
f from V ∪ E to {1, 2, . . . , |V ∪ E|} such that for all edges xy, f(x) + f(y) + f(xy)
is constant. To distinguish between this usage from that of Stewart we will call this
labeling an edge-magic total labeling. Kotzig and Rosa proved: Km,n has an edge-magic
total labeling for all m and n; Cn has an edge-magic total labeling for all n ≥ 3 (see also
[257], [491], [93], and [209]); and the disjoint union of n copies of P2 has an edge-magic
total labeling if and only if n is odd. They further state that Kn has an edge-magic total
labeling if and only if n = 1, 2, 3, 5 or 6 (see [350], [180], and [209]) and ask whether all
trees have edge-magic total labelings. Wallis et al. [628] enumerate every edge-magic
total labeling of complete graphs. They also prove that the following graphs are edge-
magic total: paths, crowns, complete bipartite graphs, and cycles with a single edge
attached to one vertex. Enomoto, Llado, Nakamigana, and Ringel [209] prove that all
complete bipartite graphs are edge-magic total. They also show that wheels Wn are not
edge-magic total when n ≡ 3 (mod 4) and conjectured that all other wheels are edge-
magic total. This conjecture was proved when n ≡ 0, 1 (mod 4) by Phillips, Rees, and
Wallis [475] and when n ≡ 6 (mod 8) by Slamin, Bača, Lin, Miller, and Simanjuntak
[573]. Fukuchi [241] verified all cases of the conjecture independently of the work of
others. Slamin et al. further show that all fans are edge-magic total. Ringel and Llado
[489] prove that a graph with p vertices and q edges is not edge-magic total if q is even
and p + q ≡ 2 (mod 4) and each vertex has odd degree. Ringel and Llado conjecture
that trees are edge-magic total. In [35] Babujee, Baskar, and Rao present algorithms
for producing edge-magic total labelings of trees with a minimum number of pendent
vertices and trees with a maximum number of pendent vertices.

Beardon [86] extended the notion of edge-magic total to countable infinite graphs
G(V,E) (that is, V ∪ E is countable). His main result is that a countably infinite tree
that processes an infinite simple path has a bijective edge-magic total labeling using the
integers as labels. He asks whether all countably infinite trees have an edge-magic total
labeling with the integers as labels and whether the graph with the integers as vertices
and an edge joining every two distinct vertices has a bijective edge-magic total labeling
using the integers.

Balakrishnan and Kumar [67] proved that the join ofKn and two disjoint copies ofK2

is edge-magic total if and only if n = 3. Yegnanarayanan [656] has proved the following
graphs have edge-magic total labelings: nP3 where n is odd; Pn +K1;Pn × C3 (n ≥ 2);
the crown Cn ⊙ K1; and Pm × C3 with n pendant vertices attached to each vertex of
the outermost C3. He conjectures that for all n, Cn ⊙Kn, the n-cycle with n pendant
vertices attached at each vertex of the cycle, and nP3 have edge-magic total labelings.
In fact, Figueroa-Centeno, R. Ichishima, and F. A. Muntaner-Batle [226] have proved
the stronger statement that for all n ≥ 3, the corona of Cn ⊙ Km admits an edge-
magic labeling where the set of vertex labels is {1, 2, . . . , |V |} Yegnanarayanan [656] also
introduces several variations of edge-magic labelings and provides some results about
them. Kotzig [626] provides some necessary conditions for graphs with an even number
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of edges in which every vertex has odd degree to have an edge-magic total labeling. Craft
and Tesar [180] proved that an r-regular graph with r odd and p ≡ 4 (mod 8) vertices can
not be edge-magic total. Wallis [624] proved that if G is an edge-magic total r-regular
graph with p vertices and q edges where r = 2ts+1 (t > 0) and q even, then 2t+2 divides p.
Figueroa-Centeno, Ichishima and Muntaner-Batle [221] and Ichishima, [221] have proved
the following graphs are edge-magic total: P4∪nK2 for n odd; P3∪nK2; P5∪nK2; nPi

for n odd and i = 3, 4, 5; 2Pn; P1 ∪ P2 ∪ · · · ∪ Pn; mK1,n; Cm ⊙ nK1; K1 ⊙ nK2 for n
even; W2n; K2×Kn, nK3 for n odd; binary trees, generalized Petersen graphs (see also
[467]), ladders (see also [632]), books, fans, and odd cycles with pendant edges attached
to one vertex. Enomoto et al. [209] conjecture that if G is a graph of order n + m
that contains Kn, then G is not edge-magic total for n≫ m. Wijaya and Baskoro [632]
proved that Pm×Cn is edge-magic total for odd n at least 3. Ngurah and Baskoro [467]
state that P2 × Cn is not edge-magic total. Hegde and Shetty [295] have shown that
every Tp-tree (see §4.2 for the definition) is edge-magic total. Wallis [624] proves that a
cycle with one pendent edge is edge-magic total. In [624] Wallis poses a large number
of research problems about edge-magic total graphs.

Avadayappan, Jeyanthi, and Vasuki [33] define the magic strength of a graph G
as the minimum of all constants over all edge-magic total labelings of G. We denote
this by emt(G). They use the notation < K1,n : 2 > for the tree obtained from the
bistar Bn,n (the graph obtained by joining the center vertices of two copies of K1,n

with an edge) by subdividing the edge joining the two stars. They prove: emt(P2n) =
5n+1; emt(P2n+1) = 5n+3; emt(< K1,n : 2 >) = 4n+9; emt(Bn,n) = 5n+6; emt((2n+
1)P2) = 9n+6; emt(C2n+1) = 5n+4; emt(C2n) = 5n+2; emt(K1,n) = 2n+4; emt(P 2) =
3n; and emt(Kn,m) ≤ (m+ 2)(n+ 1) where n ≤ m.

Hegde and Shetty [298] define the maximum magic strength of a graph G as the
maximum constant over all edge-magic total labelings of G. We use eMt(G) to denote
the maximum magic strength of G. Hegde and Shetty call a graph G with p vertices
strong magic if eMt(G) = emt(G); ideal magic if 1 ≤ eMt(G)− emt(G) ≤ p; and weak
magic if eMt(G)− emt(G) > p. They prove that for an edge-magic total graph G with
p vertices and q edges, eMt(G) = 3(p+ q+1)− emt(G). Using this result they obtain:
Pn is ideal magic for n > 2; K1,1 is strong magic, K1,2 and K1,3 are ideal magic, and
K1,n is weak magic for n > 3; Bn,n is ideal magic; (2n+ 1)P2 is strong magic; cycles are
ideal magic; and the generalized web W (t, 3) (see §2.2) with the central vertex deleted
is weak magic.

In [455] Murugan introduces the notions of almost-magic labeling, relaxed-magic la-
beling, almost-magic strength and relaxed-magic strength of a graph. He determines the
magic strength of Huffman trees and twigs of odd order and the almost-magic strength of
nP2(n is even) and twigs of even order. Also, he obtains a bound on the magic strength
of the path-union Pn(m) and on the relaxed-magic strength of kSn and kPn.

Enomoto et al. [209] call an edge-magic total labeling super edge-magic if the set
of vertex labels is {1, 2, . . . , |V |} (Wallis [624] calls these labelings strongly edge-magic).
They prove the following: Cn is super edge-magic if and only if n is odd; caterpillars
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are super edge-magic; Km,n is super edge-magic if and only if m = 1 or n = 1; and
Kn is super edge-magic if and only if n = 1, 2, or 3. They also prove that if a graph
with p vertices and q edges is super edge-magic then, q ≤ 2p− 3. Enomoto et al. [209]
conjecture that every tree is super edge-magic. Lee and Shan [387] have verified this
conjecture for trees with up to 17 vertices with a computer. Kotzig and Rosa’s ([349]
and [350]) proof that nK2 is edge-magic total when n is odd actually shows that it is
super edge-magic. Kotzig and Rosa also prove that every caterpillar is super-edge magic.
Figueroa-Centeno, Ichishima, and Muntaner-Batle prove the following: if G is a bipartite
or tripartite (super) edge-magic graph, then nG is (super) edge-magic when n is odd
[225]; if m is a multiple of n+1, then K1,m ∪K1,n is super edge-magic [225]; K1,2 ∪K1,n

is super edge-magic if and only if n is a multiple of 3; K1,m ∪K1,n is edge-magic if and
only if mn is even [225]; K1,3 ∪ K1,n is super edge-magic if and only if n is a multiple
of 4 [225]; Pm ∪K1,n is super edge-magic when m ≥ 4 [225]; 2Pn is super edge-magic if
and only if n is not 2 or 3; 2P4n is super edge-magic for all n [225]; K1,m∪ 2nK2 is super
edge-magic for all m and n [225]; C3 ∪Cn is super edge-magic if and only if n ≥ 6 and n
is even [226]; C4∪Cn is super edge-magic if and only if n ≥ 5 and n is odd [226]; C5∪Cn

is super edge-magic if and only if n ≥ 5 and n is even [226]; if m is even and at least 6
and n is odd and satisfies n ≥ m/2+2, then Cm ∪Cn is super edge-magic [226]; C4 ∪Pn

is super edge-magic if and only if n 6= 3 [226]; C5∪Pn is super edge-magic if n ≥ 4 [226];
if m is even and at least 6 and n ≥ m/2+2, then Cm∪Pn is super edge-magic [226]; and
Pm∪Pn is super edge-magic if and only if (m,n) 6= (2, 2) or (3,3) [226]. They conjecture
[225] that K1,m ∪K1,n is super egde-magic only when m is a multiple of n+ 1 and they
prove that if G is a super edge-magic graph with p vertices and q edges with p ≥ 4 and
q ≥ 2p− 4, then G contains triangles. In [226] Figueroa-Centeno et al. conjecture that
Cm ∪ Cn is super edge-magic if and only if m+ n ≥ 9 and m+ n is odd.

Lee and Kong [368] use St(a1, a2, . . . , an) to denote the disjoint union of the n
stars St(a1), St(a2), . . . , St(an). They prove the following graphs are super edge-
magic: St(m,n) where n ≡ 0 mod(m + 1); St(1, 1, n); St(1, 2, n); St(1, n, n); St(2, 2, n);
St(2, 3, n); St(1, 1, 2, n) (n ≥ 2); St(1, 1, 3, n); St(1, 2, 2, n); and St(2, 2, 2, n). They
conjecture that St(a1, a2, . . . , an) is super edge-magic when n > 1 is odd.

In [430] MacDougall and Wallis investigate the existence of super edge-magic label-
ings of cycles with a chord. They use Ct

v to denote the graph obtained from Cv by joining
two vertices that are distance t apart in Cv. They prove: Ct

4m+1 (m ≥ 3) has a super
edge-magic labeling for every t except 4m − 4 and 4m − 8; Ct

4m (m ≥ 3) has a super
edge-magic labeling when t ≡ 2 mod 4; and that Ct

4m+2 (m > 1) has a super edge-magic
labeling for all odd t other than 5, and for t = 2 and 6. They pose the problem of what
values of t does Ct

2n have a super edge-magic labeling?
Enomoto, Masuda, and Nakamigawa [210] have proved that every graph can be

embedded in a connected super edge-magic graph as an induced subgraph. Slamin et
al. [573] proved that the friendship graph consisting of n triangles is super edge-magic if
and only if n is 3, 4, 5 or 7. Fukuchi proved [240] the generalizied Petersen graph P (n, 2)
(see §2.7 for the definition) is super edge-magic if n is odd and at least 3. Baskoro and



the electronic journal of combinatorics, 5 (2005), #DS6 65

Ngurah [83] showed that nP3 is super edge-magic for n ≥ 4 and n even.
Hegde and Shetty [299] showed that a graph is super edge-magic if and only if it

is strongly k-indexable (see §4.1). Figueroa-Centeno, Ichishima, and Muntaner [220]
proved that a graph is super edge-magic if and only if it is strongly 1-harmonious and
that a super edge-magic graph is cordial. They also proved that P 2

n and K2 × C2n+1

are super edge-magic. In [221] Figueroa-Centeno et al. show that the following graphs
are super edge-magic: P3 ∪ kP2 for all k; kPn when k is odd; and k(P2 ∪ Pn) when k
is odd and n = 3 or n = 4; fans Fn if and only if n ≤ 6. They conjecture that kP2 is
not super edge-magic when k is even. This conjecture has been proved by Z. Chen [170]
who showed that kP2 is super edge-magic if and only if k is odd. Figueroa-Centeno et
al. provide a strong necessary condition for a book to have a super edge-magic labeling
and conjecture that for n ≥ 5 the book Bn is super edge-magic if and only if n is even
or n ≡ 5 (mod 8). They prove that every tree with an α-labeling is super edge-magic.
Yokomura (see [209]) has shown that P2m+1 ×P2 and C2m+1 ×Pm are super edge-magic
(see also [220]). In [222], Figueroa-Centeno et al. proved that if G is a (super) edge-
magic 2-regular graph, then G ⊙Kn is (super) edge-magic and that Cm ⊙Kn is super
edge-magic. Fukuchi [239] shows how to recursively create super edge-magic trees from
certains kinds of existing super edge-magic trees.

Lee and Lee [366] investigate the existence of total edge-magic labelings and super
edge-magic labelings of unicylic graphs. They obtain a variety of positive and negative
results and conjecture that all unicyclic are edge-magic total.

Shiu and Lee [556] investigated edge labelings of multigraphs. Given a multigraph G
with p vertices and q edges they call a bijection from the set of edges of G to {1, 2, . . . , q}
with the property that for each vertex v the sum of all edge labels incident to v is a
constant independent of v a supermagic labeling of G. They use K2[n] to denote the
multigraph consisting of n edges joining 2 vertices and mK2[n] to denote the disjoint
union ofm copies ofK2[n]. They prove that form and n at least 2, mK2[n] is supermagic
if and only if n is even or if both m and n are odd.

In 1970 Kotzig and Rosa [349] defined the edge-magic deficiency, µ(G), of a graph G
as the minimum n such that G∪nK1 is edge-magic total. If no such n exists they define
µ(G) = ∞. In 1999 Figueroa-Centeno, Ichishima and Muntaner-Batle [224] extended
this notion to super edge-magic deficiency, µs(G), is the analogous way. They prove the
following: µs(nK2) = µ(nK2) = n − 1 (mod 2); µs(Cn) = 0 if n is odd; µs(Cn) = 1
if n ≡ 0 (mod 4); µs(Cn) = ∞ if n ≡ 2 (mod 4); µs(Kn) = ∞ if and only if n ≥
5;µs(Km,n) ≤ (m − 1)(n − 1);µs(K2,n) = n − 1; and µs(F ) is finite for all forests F .
They also prove that if a graph G has q edges with q/2 odd, and every vertex is even,
then µs(G) = ∞.

In [227] Figueroa-Centeno et al. proved that µs(Pm∪K1,n) = 1 if m = 2 and n is odd
or m = 3 and is not congruent to 0 mod 3, whereas in all other cases µs(Pm∪K1,n) = 0.
They also proved that µs(2K1,n) = 1 when n is odd and µs(2K1,n) ≤ 1 when n is
even. They conjecture that µs(2K1,n) = 1 in all cases. Other results in [227] are:
µs(Pm∪Pn) = 1 when (m,n) = (2, 2) or (3, 3) and µs(Pm∪Pn) = 0 when (m,n) 6= (2, 2)
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or (3, 3); µs(K1,m ∪ K1,n) = 0 when mn is even and µs(K1,m ∪ K1,n) = 1 when mn is
odd; µ(Pm∪K1,n) = 1 when m = 2 and n is odd and µ(Pm∪K1,n) = 0 in all other cases;
µ(Pm∪Pn) = 1 when (m,n) = (2, 2) and µ(Pm∪P,n) = 0 in all other cases; µs(2Cn) = 1
when n is even and ∞ when n is odd; µs(3Cn) = 0 when n is odd; µs(3Cn) = 1 when
n ≡ 0 (mod 4); µs(3Cn) = ∞ when n ≡ 2 (mod 4); and µs(4Cn) = 1 when n ≡ 0 (mod
4). They conjecture the following: µs(mCn) = 0 when mn is odd; µs(mCn) = 1 when
mn ≡ 0 (mod 4); µs(mCn) = ∞ when mn ≡ 2 (mod 4); µs(2K1,n) = 1; if F is a forest
with two components, then µ(F ) ≤ 1 and µs(F ) ≤ 1.

Z. Chen [170] has proven: the join of K1 with any subgraph of a star is super edge-
magic; the join of two nontrivial graphs is super edge-magic if and only if at least one of
them has exactly two vertices and their union has exactly one edge; and if a k-regular
graph is super edge-magic, then k ≤ 3. Chen also obtained the following conditions:
there is a connected super edge-magic graph with p vertices and q edges if and only
if p − 1 ≤ q ≤ 2p − 3; there is a connected 3-regular super edge-magic graph with p
vertices if and only if p ≡ 2 (mod 4); and if G is a k-regular edge-magic total graph with
p vertices and q edges then (p+ q)(1 + p+ q) ≡ 0 (mod 2d) where d = gcd(k− 1, q). As
a corollary of the last result, Chen observes that nK2 + nK2 is not edge-magic total.

Another labeling that has been called “edge-magic” was introduced by Lee, Seah,
and Tan in 1992 [385]. They defined a graph G = (V,E) to be edge-magic if there exists
a bijection f :E → {1, 2, . . . , |E|} such that the induced mapping f+:V → N defined by
f+(u) =

∑

(u,v)∈E f(u, v) (mod |V |) is a constant map. Lee conjectured that a cubic

graph with p vertices is edge-magic if and only if p ≡ 2 (mod 4). Lee, Pigg, and Cox [373]
verified this conjecture for several classes of cubic graphs. Shiu and Lee [556] showed
that the conjecture is not true for multigraphs and disconnected graphs. Lee, Seah, and
Tan [385] establish that a necessary condition for a multigraph with p vertices and q
edges to be edge-magic is that p divides q(q + 1) and they exhibit several new classes
of cubic edge-magic graphs. They also proved: Kn,n (n ≥ 3) is edge-magic and Kn is
edge-magic for n ≡ 1, 2 (mod 4) and for n ≡ 3 (mod 4) (n ≥ 7). Lee, Seah, and Tan
further proved that following graphs are not edge-magic: all trees except P2, all unicyclic
graphs, and Kn where n ≡ 0 (mod 4). Schaffer and Lee [502] have proved that Cm ×Cn

is always edge-magic. Lee, Tong, and Seah [390] have conjectured that the total graph
of a (p, p)-graph is edge-magic if and only if p is odd. They prove this conjecture for
cycles.

For any graph G and any positive integer k the graph G[k], called the k-fold G, is
the hypergraph obtained from G by replacing each edge of G with k parallel edges. Lee,
Seah, and Tan [385] proved that for any graph G with p vertices and q edges, G[2p]
is edge-magic and, if p is odd, G[p] is edge-magic. Shiu, Lam, and Lee [554] show that
if G is an (n + 1, n)-multigraph, then G is edge-magic if and only if n is odd and G is
isomorphic to the disjoint union of K2 and (n − 1)/2 copies of K2[2]. They also prove
that if G is a (2m+1, 2m)-multigraph and k is at least 2, then G[k] is edge-magic if and
only if 2m+1 divides k(k− 1). For a (2m, 2m− 1)-multigraph G and k at least 2, they
show that G[k] is edge-magic if 4m divides (2m − 1)k((2m − 1)k + 1) or if 4m divides
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(2m+ k − 1)k. In [552] Shiu, Lam, and Lee characterize the (p, p)-multigraphs that are
edge-magic as mK2[2] or the disjoint union of mK2[2] and two particular multigraphs
or the disjoint union of K2, mK2[2], and four particular multigraphs. They also show
for every (2m + 1, 2m + 1)-multigraph G, G[k] is edge-magic for all k at least 2. Lee,
Seah, and Tan [385] prove that the multigraph Cn[k] is edge-magic for k ≥ 2.

The table following summarizes what is known about edge-magic total labelings. We
use EMT for edge-magic total and SEM for super edge-magic labelings. A question
mark following an abbreviation indicates that the graph is conjectured to have the
corresponding property. The table was prepared by Petr Kovář and Tereza Kovářová.
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Table 4: Summary of Edge-magic total Labelings

Graph Types Notes

Km,n EMT for all m and n [349]

Cn EMT for n ≥ 3 [349], [257], [491], [93]

⋃

n

P2 EMT iff n odd [349]

Kn EMT iff n = 1, 2, 3, 4, 5, or 6 [350], [180], [209]
enumeration of all EMT of Kn [628]

Trees EMT? [350], [489]

Pn EMT [628]

Crowns Cn ⊙K1 EMT [628]

Km,n EMT [628]

Cn with a single edge EMT [628]
attached to one vertex

Wheels Wn not EMT if n ≡ 3 (mod 4) [209]
EMT if n ≡ 0, 1 (mod 4) [475]
EMT if n ≡ 6 (mod 8) [573]
EMT if n ≡ 0, 1, 2 (mod 4) [240]

Fans EMT [573]

(p, q)-graph not EMT if q even and p+ q ≡ 2 (mod 4) [489]

nP3 EMT if b is odd [656]

Pn +K1 EMT [656]
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Table 4: continued

Graph Types Notes

Pn +K1 EMT [656]

Pn × C3 EMT n ≥ 2 [656]

Crown Cn ⊙K1 EMT [656]

nP3 EMT? [656]

r-regular graph not EMT r odd and p ≡ 4 (mod 8) [180]

G r-regular (p, q)-graph if r = 2ts+ 1(t > 0) and q even
then 2t + 2 divides p [624]

P4 ∪ nK2 EMT n odd [220], [221]

P3 ∪ nK2 and P5 ∪ nK2 EMT [220], [221]

nPi EMT n odd, i = 3, 4, 5 [220],[221]

2Pn EMT [220], [221]

P1 ∪ P2 ∪ · · · ∪ Pn EMT [220], [221]

mK1,n EMT [220], [221]

Cm ⊙Kn EMT [220], [221]

unicylic graphs EMT? [366]
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Table 4: continued

Graph Types Notes

K1 ⊙ nK2 EMT n even [220], [221]

W2n EMT [220], [221]

K2 ×Kn EMT [220], [221]

nK3 EMT n odd [220], [221]

binary trees EMT [220], [221]

generalized Petersen graph EMT [220], [221], [467]
P (m,n)

ladders EMT [220], [221]

books EMT [220], [221]

fans EMT [220], [221]

odd cycle with pendant edges EMT [220], [221]
attached to one vertex

Pm × Cn EMT n odd n ≥ 3 [632]

Pm × P2 EMT m odd m ≥ 3 [632]

P2 × Cn not EMT [467]

K1,m ∪K1,n EMT iff mn is even [225]
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Table 5: Summary of Super Edge-magic Labelings

Graph Types Notes

Cn SEM iff n is odd [209]

Caterpillars SEM [209], [349], [350]

Km,n SEM iff m = 1 or n = 1 [209]

Kn SEM iff n = 1, 2 or 3 [209]

Trees SEM? [209]

nK2 SEM if n odd [349], [350]

nG SEM if G is a bipartite or tripartite
SEM graph and n odd [225]

K1,m ∪K1,n SEM if m is a multiple of n+ 1 [225]

K1,m ∪K1,n SEM? iff m is a multiple of n+ 1 [225]

K1,2 ∪K1,n SEM iff n is a multiple of 3 [225]

K1,3 ∪K1,n SEM iff n is a multiple of 4 [225]

Pm ∪K1,n SEM if m ≥ 4 is even [225]

2Pn SEM iff n is not 2 or 3 [225]

2P4n SEM for all n [225]

K1,m ∪ 2nK1,2 SEM for all m and n [225]
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Table 5: continued

Graph Types Notes

C3 ∪ Cn SEM iff n ≥ 6 even [226]

C4 ∪ Cn SEM iff n ≥ 5 odd [226]

C5 ∪ Cn SEM iff n ≥ 5 even [226]

Cm ∪ Cn SEM if m ≥ 6 even and n odd n ≥ m/2 + 2 [226]

Cm ∪ Cn SEM? iff m+ n ≥ 9 and m+ n odd [226]

C4 ∪ Pn SEM iff n 6= 3 [226]

C5 ∪ Pn SEM if n 6= 4 [226]

Cm ∪ Pn SEM if m ≥ 6 even and n ≥ m/2 + 2 [226]

Pm ∪ Pn SEM iff (m,n) 6= (2, 2) or (3, 3) [226]

Corona Cn ⊙Km SEM n ≥ 3 [226]

St(m,n) SEM n ≡ 0 (modm+ 1) [368]

St(1, k, n) SEM k = 1, 2 or n [368]

St(2, k, n) SEM k = 2, 3 [368]

St(1, 1, k, n) SEM k = 2, 3 [368]

St(k, 2, 2, n) SEM k = 1, 2 [368]

St(a1, . . . , an) SEM? for n > 1 odd [368]

Ct
4m SEM [430]

Ct
4m+1 SEM [430]
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Table 5: continued

Graph Types Notes

Friendship graph SEM iff n = 3, 4, 5, or 7 [573]
of n triangles

Generalized Petersen SEM if n ≥ 3 odd [239]
graph P (n, 2) (see §2.7)

nP3 SEM if n ≥ 4 even [83]

P 2
n SEM [220]

K2 × C2n+1 SEM [220]

P3 ∪ kP2 SEM for all k [221]

kPn SEM if k is odd [221]

k(P2 ∪ Pn) SEM if k is odd and n = 3, 4 [221]

Fans Fn SEM iff n ≤ 6 [221]

kP2 SEM iff k is odd [170]

Book Bn SEM? iff n even or n ≡ 5 (mod 8)[221]

Tree with α labeling SEM [221]

P2m+1 × P2 SEM [209], [220]
P2m+1 × Pm SEM [209], [220]

G⊙Kn EMT/SEM if G is EMT/SEM 2-regular graph [222]

Cm ⊙Kn SEM [222]
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Table 5: continued

Graph Types Notes

join of K1 with any subgraph SEM [170]
of a star

join of two nontrivial graphs SEM [170]
one has two vertices and their
union has exactly one edge

if G is k-regular SEM graph then k ≤ 3 [170]

G is connected (p, q)-graph SEM G exists iff p− 1 ≤ q ≤ 2p− 3 [170]

G is connected 3-regular SEM iff p ≡ 2 (mod 4) [170]
graph on p vertices

nK2 + nK2 not SEM [170]
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5.3 Vertex-magic Total Labelings and Totally Magic Labelings
MacDougall, Miller, Slamin, and Wallis [428] introduced the notion of a vertex-magic
total labeling in 1999. For a graph G(V,E) an injective mapping f from V ∪E to the set
{1, 2, . . . , |V |+ |E|} is a vertex-magic total labeling if there is a constant, called the magic
constant, k so that for every vertex v, f(v) +

∑
f(vu) = k where the sum is over all

vertices u adjacent to v. They prove that the following graphs have vertex-magic total
labelings: Cn; Pn for n > 2;Km,m for m > 1;Km,m − e for m > 2; and Kn for n odd.
They also prove that when n > m+1, Km,n does not have a vertex-magic total labeling.
They conjectured that Km,m+1 has a vertex-magic total labeling for all m and that Kn

has vertex-magic total labeling for all n ≥ 3. The latter conjecture was proved by Lin
and Miller [407] for the case that n is divisible by 4 whereas the remaining cases were
done by MacDougall, Miller, Slamin, and Wallis [428]. Gray, MacDougall, and Wallis
[269] then gave a simpler proof that all complete graphs are vertex-magic. McQuillan
and Smith [433] have shown that if n is odd Kn has a vertex-magic total labeling with
magic constant k if and only if (n/4)(n2 + 3) ≤ k ≤ (n/4)(n+ 1)2.

Lin and Miller [407] have shown that Km,m is vertex-magic total for all m > 1 and
that Kn is vertex-magic total for all n ≡ 0 (mod 4). Phillips, Rees, and Wallis [476]
generalized the Lin and Miller result by proving that Km,n is vertex-magic total if and
only if m and n differ by at most 1. Miller, Bača, and MacDougall [442] have proved
that the generalized Petersen graphs P (n, k) (see Section 2.7 for the definition) are
vertex-magic total when n is even and k ≤ n/2 − 1. They conjecture that all P (n, k)
are vertex-magic total when k ≤ (n − 1)/2 and all prisms Cn × P2 are vertex-magic
total. Bača, Miller, and Slamin [64] proved the first of these conjectures (see also [574]
for partial results) while Slamin and Miller prove the second. MacDougall et al. ([428],
[429] and [267]) have shown: Wn has a vertex-magic total labeling if and only if n ≤ 11;
fans Fn have a vertex-magic total labelings if and only if n ≤ 10; freindship graphs
have vertex-magic total labelings if and only if the number of triangles is at most 3;
Km,n (m > 1) has a vertex-magic total labeling if and only if m and n differ by at most
1. Wallis [624] proved: if G and H have the same order and G∪H is vertex-magic total
then so is G + H; if the disjoint union of stars is vertex-magic total then the average
size of the stars is less than 3; if a tree has n internal vertices and more than 2n leaves
then it does not have a vertex-magic total labeling. Wallis [625] has shown that if G
is a regular graph of even degree that has a vertex-magic total labeling then the graph
consisting of an odd number of copies of G is vertex-magic total. He also proved that if
G is a regular graph of odd degree (not K1) that has a vertex-magic total labeling then
the graph consisting of any number of copies of G is vertex-magic total.

Fronček, Kovář, and Kovářová [229] proved that Cn × C2m+1 and K5 × C2n+1 are
vertex-magic total. Kovář [352] furthermore proved some general results about products
of certain regular vertex-magic total graphs. In particular ifG is a (2r+1)-regular vertex-
magic total graph that can be factored into an (r + 1)-regular graph and an r-regular
graph then G ×K5 and G × Cn for n even are also vertex-magic total. He also proved
that if G an r-regular vertex-magic total graph and H is a 2s-regular supermagic graph
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that can be factored into two s-regular factors then their Cartesian product G × H is
vertex-magic total if either r is odd or r is even and |H| is odd.

Beardon [85] has shown that a necessary condition for a graph with c components, p
vertices, q edges and a vertex of degree d to be vertex-magic total is (d+2)2 ≤ (7q2+(6c+
5)q+c2+3c)/p. When the graph is connected this reduces to (d+2)2 ≤ (7q2+11q+4)/p.
As a corollary it follows that the following are not vertex-magic total: wheels Wn when
n ≥ 12; fans Fn when n ≥ 11; and friendship graphs C

(n)
3 when n ≥ 4.

Beardon [87] has investigated how vertices of small degree effects vertex-magic la-
belings. Let G(p, q) be a graph with a vertex-magic labeling with magic constant k and
let d0 be the minimum degree of any vertex. He proves k ≤ (1 + d0)(p + q − d0/2) and
q < (1 + d0)q. He also shows that if G(p, q) is a vertex-magic graph with a vertex of de-
gree one and t is the number of vertices of degree at least two, then t > q/3 ≥ (p− 1)/3.
Beardon [87] has shown that the graph obtained by attaching a pendant edge to Kn is
vertex-magic if and only if n = 2, 3, or 4.

Wood [637] generalizes vertex-magic and edge-magic labelings by requiring only that
the labels be positive integers rather than consecutive positive integers. He gives upper
bounds for the minimum values of the magic constant and the largest label for complete
graphs, forests, and arbitrary graphs.

Exoo et al. [217] call a function λ a totally magic labeling of a graph G if λ is both
an edge-magic and a vertex-magic labeling of G. A graph with such a labeling is called
totally magic. Among their results are: P3 is the only connected totally magic graph
that has a vertex of degree 1; the only totally magic graphs with a component K1 are
K1 and K1∪P3; the only totally magic complete graphs are K1 and K3; the only totally
magic complete bipartite graph is K1,2; nK3 is totally magic if and only if n is odd;
P3 ∪ nK3 is totally magic if and only if n is even. In [627] Wallis asks: Is the graph
K1,m ∪ nK3 ever totally magic?

McSorley and Wallis [434] examine the possible totally magic labelings of a union of
an odd number of triangles and determine the spectrum of possible values for the sum
of the label on a vertex and the labels on its incident edges and the sum of an edge label
and the labels of the endpoints of the edge for all known totally magic graphs.

Swaminathan and Jeyanthi [602] call a vertex-magic labeling of a (p, q)-graph super
vertex-magic if the edges are labeled 1, 2, . . . , q and the vertices are labeled q + 1, q +
2, . . . , q + p. They prove the following graphs are super edge magic: Pn if and only if n
is odd and n ≥ 3; Cn if and only if n is odd; the star graph if and only if it is P2; mCn

if and only if m and n are odd.
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In the following table we use the abbreviations

VMT vertex-magic total labeling

TM totally magic labeling

A question mark following an abbreviation indicates that the graph is conjectured to
have the corresponding property. The table was prepared by Petr Kovář and Tereza
Kovářová.
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Table 6: Summary of vertex-magic total labelings

Graph Labeling Notes
Cn VMT [428]

Pn VMT n > 2 [428]

Km,m VMT m > 1 [428],[407]

Km,m − e VMT m > 2 [428]

Km,n VMT iff |m− n| ≤ 1 [476],[428],[429]

Kn VMT for n odd [428]
for n ≡ 2 (mod 4), n > 2 [407]

Petersen P (n, k) VMT [64]

prisms Cn × P2 VMT [574]

Wn VMT iff n ≤ 11 [428],[429]

Fn VMT iff n ≤ 10 [428],[429]

friendship graphs (see §5.3) VMT iff # of triangles ≤ 3 [428],[429]

G+H VMT |V (G)| = |V (H)|
and G ∪H is VMT [624]

unions of stars VMT [624]

Tree with n internal vertices not VMT [624]
and more than 2n leaves

nG VMT n odd, G regular of even
degree, VMT [625]

nG VMT G is regular of odd
degree, VMT, but not K1 [625]
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Table 6: continued

Graph Labeling Notes
Cn × C2m+1 VMT [229]

K5 × C2n+1 VMT [229]

G× C2n VMT G 2r + 1-regular VMT (see §5.3) [352]

G×K5 VMT G 2r + 1-regular VMT (see §5.3) [352]

G×H VMT G r-regular VMT, r odd or r even and |H| odd,
H 2s-regular supermagic [352]

P3 TM the only connected TM graph
with vertex of degree 1 [217]

Kn TM iff n = 1, 3 [217]

Km,n TM iff Km,n = K1,2 [217]

nK3 TM iff n is odd [217]

P3 ∪ nK3 TM iff n is even [217]
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5.4 1-vertex magic vertex labeling
In 2001, Simanjuntak, Rodgers, and Miller [443] defined a 1-vertex magic vertex labeling
of G(V,E) as a bijection from V to {1, 2, . . . , |V |} with the property that there is a
constant k such that at any vertex v the sum

∑
f(u) taken over all neighbors of v

is k. Among their results are: H × K2k has a 1-vertex-magic vertex labeling for any
regular graph H; the symmetric complete multipartite graph with p parts, each of which
contains n vertices, has a 1-vertex-magic vertex labeling if and only if whenever n is odd,
p is also odd, and if n = 1, then p = 1; Pn has a 1-vertex-magic vertex labeling if and
only if n = 1 or 3; Cn has a 1-vertex-magic vertex labeling if and only if n = 4; Kn has
a 1-vertex-magic vertex labeling if and only if n = 1; Wn has a 1-vertex-magic vertex
labeling if and only if n = 4; a tree has a 1-vertex-magic vertex labeling if and only
if it is P1 or P3; and r-regular graphs with r odd do not have a 1-vertex-magic vertex
labeling.

In the table we use the abbreviation 1VM for 1-vertex magic vertex labeling. The
table was prepared by Petr Kovář and Tereza Kovářová.

Table 7: Summary of 1-vertex magic vertex labelings

Graph Labeling Notes

H ×K2k 1VM H is regular [443]

symmetric Kn, n, ... , n
︸ ︷︷ ︸

p

1VM iff whenever n is odd also p is odd ,
and for n = 1 also p = 1 [443]

Pn 1VM iff n = 1 or n = 3 [443]

Cn 1VM iff n = 4 [443]

Kn 1VM iff n = 1 [443]

Wn 1VM iff n = 4 [443]

tree T 1VM iff T = P1 or P3 [443]

r-regular graph not 1VM r is odd [443]
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5.5 Magic Labelings of Type (a, b, c)

A magic-type method for labeling the vertices, edges, and faces of a planar graph was
introduced by Lih [406] in 1983. Lih defines a magic labeling of type (1,1,0) of a planar
graph G(V,E) as an injective function from {1, 2, . . . , |V | + |E|} to V ∪ E with the
property that for each interior face the sum of the labels of the vertices and the edges
surrounding that face is some fixed value. Similarly, Lih defines a magic labeling of
type (1, 1, 1) of a planar graph G(V,E) with face set F as an injective function from
{1, 2, . . . , |V |+ |E|+ |F |} to V ∪E ∪F with the property that for each interior face the
sum of the labels of the face and the vertices and the edges surrounding that face is some
fixed value. Lih calls a labeling involving the faces of a plane graph consecutive if for
every integer s the weights of all s-sided faces constitute a set of consecutive integers. Lih
gave consecutive magic labelings of type (1, 1, 0) for wheels, friendship graphs, prisms,
and some members of the Platonic family. In [40] Bača shows that the cylinders Cn×Pm

have magic labelings of type (1, 1, 0) when m ≥ 2, n ≥ 3, n 6= 4.
Bača gave magic labelings of type (1, 1, 1) for fans [36], ladders [36], planar bipyramids

(that is, 2-point suspensions of paths) [36], grids [43], hexagonal lattices [42], Möbius
ladders [38], and Pn × P3 [39]. Bača [37], [46], [44], [39], [45] and Bača and Holländer
[54] gave magic labelings of type (1, 1, 1) and type (1, 1, 0) for certain classes of con-
vex polytopes. Kathiresan and Gokulakrishnan [330] provided magic labelings of type
(1, 1, 1) for the families of planar graphs with 3-sided faces, 5-sided faces, 6-sided faces,
and one external infinite face. Bača [41] also provides consecutive and magic labelings
of type (0, 1, 1) (that is, an injective function from {1, 2, . . . , |E| + |F |} to E ∪ F with
the property that for each interior face the sum of the labels of the face and the edges
surrounding that face is some fixed value) and a consecutive labeling of type (1, 1, 1) for
a kind of planar graph with hexagonal faces.

A magic labeling of type (1,0,0) of a planar graph G with vertex set V is an injective
function from {1, 2, . . . , |V |} to V with the property that for each interior face the sum
of the labels of the vertices surrounding that face is some fixed value. Kathiresan,
Muthuvel, and Nagasubbu [331] define a lotus inside a circle as the graph obtained from
the cycle with consecutive vertices a1, a2, . . . , an and the star with central vertex b0 and
end vertices b1, b2, . . . , bn by joining each bi to ai and ai+1 (an+1 = a1). They prove
that these graphs (n ≥ 5) and subdivisions of ladders have consecutive labelings of type
(1, 0, 0). Devaraj [190] proves that graphs obtained by subdividing each edge of a ladder
exactly the same number of times has a magic labeling of type (1, 0, 0).

In the table below we use following abbreviations

M(x,x,x) magic labeling of type (x, x, x)

CM(x,x,x) consecutive magic labeling of type (x, x, x)

A question mark following an abbreviation indicates that the graph is conjectured to
have the corresponding property. The table was prepared by Petr Kovář and Tereza
Kovářová.
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Table 8: Summary of magic labelings of type (a, b, c)

Graph Labeling Notes
Wn CM(1,1,0) [406]

friendship graphs CM(1,1,0) [406]

prisms CM(1,1,0) [406]

cylinders Cn × Pm M(1,1,0) m ≥ 2, n ≥ 3, n 6= 4 [40]

fans Fn M(1,1,1) [36]

ladders M(1,1,1) [36]

planar bipyramids M(1,1,1) [36]
(see §5.3)

grids M(1,1,1) [43]

hexagonal lattices M(1,1,1) [42]

Möbius ladders M(1,1,1) [38]

Pn × P3 M(1,1,1) [39]

certain classes of M(1,1,1) [37], [46], [44], [39],
convex polytopes M(1,1,0) [45], [54]

certain classes of planar graphs M(0,1,1) [41]
with hexagonal faces CM(0,1,1)

CM(1,1,1)

lotus inside a circle (see §5.3) CM(1,0,0) n ≥ 5 [331]

subdivisions of ladders M(1,0,0) [190]
CM(1,0,0) [331]
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5.6 Other Types of Magic Labelings
For any Abelian group A a graph G is said to be A-magic if there exists a labeling f of
the edges of G with the nonzero elements of A such that the vertex labeling f+ defined
by f+(v) = Σf(vu) over all edges vu is a constant. Shiu, Lam, and Sun [555] have shown
the following: the union of two edge-disjoint A-magic graphs with the same vertex set
is A-magic; the Cartesian product of two A-magic graphs is A-magic; the lexicographic
product of two A-magic connected graphs is A-magic; for an Abelian group A of even
order a graph is A-magic if and only if the degrees of all of its vertices have the same
parity; Km,n is A magic when m,n ≥ 2 and A and has order at least 4; Kn with an edge
deleted is A-magic when n ≥ 4 and A has order at least 4; all generalized theta graphs
are A-magic when A has order at least 4; Cn +Km is A-magic when n ≥ 3,m ≥ 2 and
A where A has order at least 2; Km,n is A where m,n ≥ 2 and A has order at least 4;
Kn with an edge deleted is A magic when n ≥ 4 and A has order at least 4; wheels are
A-magic when A has order at least 4; flower graphs Cm@Cn are A magic when m,n ≥ 2
and A has order at least 4 (Cm@Cn is obtained from Cn by joining the end points of a
path of length m− 1 to each pair of consecutive verticies of Cn).

In [375] Lee, Saba, Salehi, and Sun investigate graphs that A-magic where A = V4 ≈
Z2 ⊕ Z2 is the Klein four-group. They prove the following are V4-magic: a tree if and
only if every vertex has odd degree; the star K1,n if and only if n is odd; Km,n for all
m,n ≥ 2;Kn − e (edge deleted Kn) when n > 3; even cycles with k pendent edges if
and only if k is even; odd cycles with k pendent edges if and only if k is odd; wheels;
Cn +K2; generalized theta graphs; flowers graphs Cm@Cn; graphs that are copies of Cn

that share a common edge; and G+K2 whenever G is V4-magic.
In [153] Cahit says that a graph G(p, q) is total magic cordial (TMC) provided there

is a mapping f from V (G)∪E(G) to {0, 1} such that f(a) + f(b) = f(ab) is a constant
modulo 2 for all edges ab ∈ E(G) and |f(0)− f(1)| ≤ 1 where f(0) denotes the sum of
the number of vertices labeled with 0 and the number of edges labeled with 0 and f(1)
denotes the sum of the number of vertices labeled with 1 and the number of edges labeled
with 1. He says a graph G is total sequential cordial (TSC) if there is a mapping f from
V (G) ∪ E(G) to {0, 1} such that for each edge e = ab with f(e) = |f(a) − f(b)| it is
true that |f(0)−f(1)| ≤ 1 where f(0) denotes the sum of the number of vertices labeled
with 0 and the number of edges labeled with 0 and f(1) denotes the sum of the number
of vertices labeled with 1 and the number of edges labeled with 1. He proves that the
following graphs have a TMC labeling: Km,n(m,n > 1), trees, cordial graphs, Kn if and
only if n = 2, 3, 5, or 6. He also proves that the following graphs have a TSC labeling:
trees; cycles; complete bipartite graphs; friendship graphs; cordial graphs; cubic graphs
other than K4; wheels Wn (n > 3);K4k+1 if and only if k ≥ 1 and

√
k is an integer;

K4k+2 if and only
√
4k + 1 is an integer; K4k if and only if

√
4k + 1 is an integer; and

K4k+3 if and only if
√
k + 1 is an integer.
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5.7 Antimagic Labelings
Bača, et al. [51] introduced the notion of a (a, d)-vertex-antimagic total labeling in 2000.
For a graph G(V,E), an injective mapping f from V ∪E to the set {1, 2, . . . , |V |+ |E|}
is a (a, d)-vertex-antimagic total labeling if the set {f(v) +∑

f(vu)} where the sum is
over all vertices u adjacent to v for all v in G is {a, a + d, a + 2d, . . . , a + (|V | − 1)d}.
Among their results are: every super-magic graph has an (a, 1)-vertex-antimagic total
labeling; every (a, d)-antimagic graph G(V,E) is (a + |E| + 1, d + 1)-vertex-antimagic
total; and, for d > 1, every (a, d)-antimagic graph G(V,E) is (a+ |V |+ |E|, d−1)-vertex-
antimagic total. They also show that paths and cycles have (a, d)-vertex-antimagic total
labelings for a wide variety of a and d. In [52] Bača et al. use their results in [51]
to obtain numerous (a, d)-vertex-antimagic total labelings for prisms, antiprisms, and
generalized Petersen graphs. Lin, Miller, Simanjuntak, and Slamin [408] have shown
that for n > 20, Wn has no (a, d)-vertex-antimagic total labeling.

Simanjuntak, Bertault, and Miller [559] define an (a,d)-edge-antimagic vertex labeling
for a graph G(V,E) as an injective mapping f from V onto the set {1, 2, . . . , |V |} such
that the set {f(u)+f(v)|uv ∈ E} is {a, a+d, a+2d, . . . , a+(|E|−1)d}. (The equivalent
notion of (a,d)-indexable labeling was defined by Hegde in 1989 in his Ph. D. thesis–see
[290].) Similarly, Simanjuntak et al. define an (a,d)-edge-antimagic total labeling for a
graph G(V,E) as an injective mapping f from V ∪ E onto the set {1, 2, . . . , |V | + |E|}
such that the set {f(v) + ∑

f(vu)|uv ∈ E} where v ranges over all of V is {a, a +
d, a+2d, . . . , a+(|V | − 1)d}. Among their results are: C2n has no (a, d)-edge-antimagic
vertex labeling; C2n+1 has a (n + 2, 1)-edge-antimagic vertex labeling and a (n + 3, 1)-
edge-antimagic vertex labeling; P2n has a (n + 2, 1)-edge-antimagic vertex labeling; Pn

has a (3, 2)-edge-antimagic vertex labeling; Cn has a (2n+ 2, 1)- and a (3n+ 2, 1)-edge-
antimagic total labeling; C2n has a (4n + 2, 2)- and a (4n + 3, 2)-edge-antimagic total
labeling; C2n+1 has a (3n+ 4, 3)- and a (3n+ 5, 3)-edge-antimagic total labeling; P2n+1

has a (3n+4, 2)-, a (3n+4, 3)-, a (2n+4, 4)-, a (5n+4, 2)-, a (3n+5, 2)-, and a (2n+6, 4)-
edge-antimagic total labeling; P2n has a (6n, 1)- and a (6n + 2, 2)-edge-antimagic total
labeling; and several parity conditions for (a, d)-edge-antimagic total labelings. They
conjecture: paths have no (a, d)-edge-antimagic vertex labelings with d > 2; C2n has
a (2n + 3, 4)- or a (2n + 4, 4)-edge-antimagic total labeling; C2n+1 has a (n + 4, 5)-
or a (n + 5, 5)-edge-antimagic total labeling; and cycles have no (a, d)-antimagic total
labelings with d > 5.

Bača, Lin, Miller, and Simanjuntak [58] prove that a graph with v vertices and e edges
that has an (a, d)-edge-antimagic vertex labeling must satisfy d(e − 1) ≤ 2v − 1 − a ≤
2v − 4. As a consequence, they obtain: for every path there is no (a, d)-edge-antimagic
vertex labeling with d > 2; for every cycle there is no (a, d)-edge-antimagic vertex
labeling with d > 1; for Kn (n > 1) there is no (a, d)-edge-antimagic vertex labeling
(the cases for n = 2 and n = 3 are handled individually); Kn,n (n > 3) has no (a, d)-
edge-antimagic vertex labeling; for every wheel there is no (a, d)-edge-antimagic vertex
labeling; for every generalized Petersen graph there is no (a, d)-edge-antimagic vertex
labeling with d > 1. They also study the relationship between graphs with (a, d)-edge-



the electronic journal of combinatorics, 5 (2005), #DS6 85

antimagic labelings and magic and antimagic labelings. They conjecture that every tree
has an (a, 1)-edge-antimagic total labeling. Ngura [466] proved that every odd cycle
C2k+1 has a (4k + 4, 2)-edge-antimagic total labeling and a (4k + 5, 2)-edge-antimagic
total labeling.

An (a, d)-edge-magic total labeling of G(V,E) is called a super (a,d)-edge-magic if
the vertex labels are {1, 2, . . . , |V (G)|} and the edge labels are {|V (G)| + 1, |V (G)| +
2, . . . , |V (G)| + |E(G)|}. Ngurah and Baskoro [467] have shown that for n odd and at
least 3, the generalized Petersen graphs P (n, 1) and P (n, 2) have ((5n + 5)/2, 2)-edge-
antimagic total labelings and P (n,m), n ≥ 3, 1 ≤ m < n/2 has a super (4n+2, 1)-edge-
antimagic total labeling.

Hartsfield and Ringel [281] introduced antimagic graphs in 1990. A graph with q
edges is called antimagic if its edges can be labeled with 1, 2, . . . , q so that the sums of
the labels of the edges incident to each vertex are distinct. Among the antimagic graphs
are [281]: Pn (n ≥ 3), cycles, wheels, and Kn (n ≥ 3). Hartsfield and Ringel conjecture
that every tree except P2 is antimagic and, moreover, every connected graph except P2

is antimagic. Alon, Kaplan, Lev, Roditty, and Yuster [23] use probabilistic methods and
analytic number theory to show that this conjecture is true for all graphs with n vertices
and minmum degree Ω(log n). They also prove that if G is a graph with n ≥ 4 vertices
and ∆(G) ≥ n − 2, then G is antimagic and all complete partite graphs except K2 are
antimagic.

The concept of an (a, d)-antimagic labelings was introduced by Bodendiek and Wag-
ner [118] in 1993. A connected graph G = (V,E) is said to be (a, d)-antimagic if there
exist positive integers a, d and a bijection f :E → {1, 2, . . . , |E|} such that the induced
mapping gf :V → N , defined by gf (v) =

∑{f(u, v): (u, v) ∈ E(G)}, is injective and
gf (V ) = {a, a+ d, . . . , a+ (|V | − 1)d}. (In [408] these are called (a, d)-vertex-antimagic
edge labelings). They prove ([120] and [121]) the Herschel graph is not (a, d)-antimagic
and obtain both positive and negative results about (a, d)-antimagic labelings for various
cases of graphs called parachutes Pg,b. (Pg,b is the graph obtained from the wheelWg+p by
deleting p consecutive spokes.) In [53] Bača and Holländer prove that necessary condi-
tions for Cn×P2 to be (a, d)-antimagic are d = 1, a = (7n+4)/2 or d = 3, a = (3n+6)/2
when n is even, and d = 2, a = (5n + 5)/2 or d = 4, a = (n + 7)/2 when n is odd. Bo-
dendiek and Walther [119] conjectured that Cn×P2 (n ≥ 3) is ((7n+4)/2, 1)-antimagic
when n is even and is ((5n + 5)/2, 2)-antimagic when n is odd. These conjectures
were verified by Bača and Holländer [53] who further proved that Cn × P2 (n ≥ 3) is
((3n+6)/2, 3)-antimagic when n is even. Bača and Holländer [53] conjecture that Cn×P2

is ((n + 7)/2, 4)-antimagic when n is odd and at least 7. Bodendiek and Walther [119]
also conjectured that Cn × P2 (n ≥ 7) is ((n + 7)/2, 4)-antimagic. Bača and Holländer
[55] prove that the generalized Petersen graph P (n, 2) is ((3n + 6)/2, 3)-antimagic for
n ≡ 0 (mod 4), n ≥ 8 (see §2.7 for the definition). Bodendiek and Walther [122] proved
that the following graphs are not (a, d)-antimagic: even cycles; paths of even order;

stars; C
(k)
3 ;C

(k)
4 ; trees of odd order at least 5 that have a vertex that is adjacent to three

or more end vertices; n-ary trees with at least two layers when d = 1;K3,3; the Petersen
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graph; and K4. They also prove: P2k+1 is (k, 1)-antimagic; C2k+1 is (k+2, 1)-antimagic;
if a tree of odd order 2k + 1 (k > 1) is (a, d)-antimagic, then d = 1 and a = k; if
K4k (k ≥ 2) is (a, d)-antimagic, then d is odd and d ≤ 2k(4k − 3) + 1; if K4k+2 is
(a, d)-antimagic, then d is even and d ≤ (2k + 1)(4k − 1) + 1; and if K2k+1 (k ≥ 2) is
(a, d)-antimagic, then d ≤ (2k + 1)(k − 1). Lin, Miller, Simanjuntak, and Slamin [408]
show that no wheel Wn (n > 3) has an (a, d)-antimagic labeling.

Yegnanarayanan [656] introduced several variations of antimagic labelings and pro-
vides some results about them.

The antiprism on 2n vertices has vertex set {x1,1, . . . , x1,n, x2,1, . . . , x2,n} and edge
set {xj,i, xj,i+1} ∪ {x1,i, x2,i} ∪ {x1,i, x2,i−1} (subscripts are taken modulo n). For n ≥ 3
and n 6≡ 2 (mod 4) Bača [48] gives (6n + 3, 2)-antimagic labelings and (4n + 4, 4)-
antimagic labelings for the antiprism on 2n vertices. He conjectures that for n ≡ 2
(mod 4), n ≥ 6, the antiprism on 2n vertices has a (6n+ 3, 2)-antimagic labeling and a
(4n+ 4, 4)-antimagic labeling.

Nicholas, Somasundaram, and Vilfred [469] prove the following: IfKm,n wherem ≤ n
is (a, d)-antimagic then d divides ((m− n)(2a+ d(m+ n− 1)))/4 + dmn/2; if m+ n is
prime, then Km,n where n > m > 1 is not (a, d)-antimagic; if Kn,n+2 is (a, d)-antimagic,
then d is even and n+1 ≤ d < (n+1)2/2; if Kn,n+2 is (a, d)-antimagic and n is odd, then
a is even and d divides a; if Kn,n+2 is (a, d)-antimagic and n is even, then d divides 2a; if
Kn,n is (a, d)-antimagic, then n and d are even and 0 < d < n2/2; if G has order n and
is unicylic and (a, d)-antimagic, then (a, d) = (2, 2) when n is even and (a, d) = (2, 2)
or (a, d) = ((n + 3)/2, 1); a cycle with m pendant edges attached at each vertex is
(a, d)-antimagic if and only if m = 1; the graph obtained by joining an endpoint of Pm

with one vertex of the cycle Cn is (2, 2)-antimagic if m = n or m = n − 1; if m + n is
even the graph obtained by joining an endpoint of Pm with one vertex of the cycle Cn is
(a, d)-antimagic if and only if m = n or m = n− 1. They conjecture that for n odd and
at least 3, Kn,n+2 is ((n+1)(n2 − 1)/2, n+1)-antimagic and they have obtained several
results about (a, d)-antimagic labelings of caterpillars.

Bača [47] defines a connected plane graph G with edge set E and face set F to
be (a, d)-face antimagic if there exist positive integers a and d and a bijection g:E →
{1, 2, . . . , |E|} such that the induced mapping ψg:F → {a, a+d, . . . , a+(|F (G)|−1)d} is
also a bijection where for a face f, ψg(f) is the sum of all g(e) for all edges e surrounding
f . Bača [47] and Bača and Miller [61] describe (a, d)-face antimagic labelings for a
certain classes of convex polytopes. In [60] Bača and Miller define the class Qm

n of
convex polytopes with vertex set {yj,i : i = 1, 2, . . . , n; j = 1, 2, . . . ,m + 1} and edge
set {yj,iyj,i+1 : i = 1, 2, . . . , n; j = 1, 2, . . . ,m + 1} ∪ {yj,iyj+1,i : i = 1, 2, . . . , n; j =
1, 2, . . . ,m} ∪ {yj,i+1yj+1,i : 1 + 1, 2, . . . , n; j = 1, 2, . . . ,m, j odd} ∪ {yj,iyj+1,i+1 : i =
1, 2, . . . , n; j = 1, 2, . . . ,m, j even} where yj,n+1 = yj,1. They prove that for m odd,
m ≥ 3, n ≥ 3, Qm

n is (7n(m + 1)/2 + 2, 1)-face antimagic and when m and n are even,
m ≥ 4, n ≥ 4, Qm

n is (7n(m + 1)/2 + 2, 1)-face antimagic. They conjecture that when
n is odd, n ≥ 3, and m is even, then Qm

n is ((5n(m + 1) + 5)/2, 2)−face antimagic
and ((n(m+ 1) + 7)/2, 4)-face antimagic. They further conjecture that when n is even,
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n > 4,m > 1 or n is odd, n > 3 and m is odd, m > 1 then Qm
n is (3n(m+ 1)/2 + 3, 3)-

face antimagic. In [49] Bača proves that for n even and at least 4 the prism Cn × P2

is (6n + 3, 2)-face antimagic and (4n + 4, 4)-face antimagic. He also conjectures that
Cn × P2 is (2n + 5, 6)-face antimagic. In [57] Bača, Lin, and Miller investigate (a, d)-
face antimagic labelings of the convex polytopes Pm+1 × Cn. They show that if these
graphs are (a, d)-face antimagic then either d = 2 and a = 3n(m + 1) + 3 or d = 4 and
a = 2n(m+1)+4, or d = 6 and a = n(m+1)+5. They also prove that if n is even, n ≥ 4
and m ≡ 1 (mod 4), m ≥ 3, then Pm+1 × Cn has a (3n(m + 1) + 3, 2)-face antimagic
labeling and if n is even, n ≥ 4 and m is odd, m ≥ 3, or if n ≡ 2 (mod 4), n ≥ 6
and m is even, m ≥ 4, then Pm+1 ×Cn has a (3n(m+ 1) + 3, 2)-face antimagic labeling
and a (2n(m + 1) + 4, 4)-face antimagic labeling. They conjecture that Pm+1 × Cn has
(3n(m + 1) + 3, 2)- and (2n(m + 1) + 4, 4)-face antimagic labelings when m ≡ 0 (mod
4), n ≥ 4 and for m even and m ≥ 4 and that Pm+1 × Cn has a (n(m + 1) + 5, 6)-face
antimagic labeling when n is even and at least 4.

For a plane graph G, Bača and Miller [62] call a bijection h from V (G)∪E(G)∪F (G)
to {1, 2, . . . , |V (G)|+ |E(G)| ∪ |F (G)|} a d-antimagic labeling of type (1, 1, 1) if for every
number s the set of s-sided face weights is Ws = {as, as + d, as + 2d, . . . , as + (fs − 1)d}
for some integers as and d, where fs is the number of s-sided faces (Ws varies with
s). They show that the prisms Cn × P2 (n ≥ 3) have a 1-antimagic labeling of type
(1, 1, 1) and that for n ≡ 3 (mod 4) Cn ×P2 have a d-antimagic labeling of type (1, 1, 1)
for d = 2, 3, 4, and 6. They conjecture that for all n ≥ 3, Cn × P2 has a d-antimagic
labeling of type (1, 1, 1) for d = 2, 3, 4, 5, and 6. This conjecture has been proved for
the case d = 3 and n 6= 4 by Bača, Miller, and Ryan [63] (the case d = 3 and n = 4 is
open). The cases for d = 2, 4, 5, and 6 were done by Lin, Slamin, Baca, and Miller [409].
Bača, Miller, and Ryan [63] also prove that for n ≥ 4 the antiprism on 2n vertices has
a d-antimagic labeling of type (1, 1, 1) for d = 1, 2, and 4. They conjecture the result
holds for d = 3, 5, and 6 as well.

Bača, Baskoro, and Miller and [50] have proved that hexagonal planar honeycomb
graphs with an even number of columns have a 2-antimagic and 4-antimagic labelings of
type (1, 1, 1). They conjecture that these honeycombs also have d-antimagic labelings of
type (1, 1, 1) for d = 3 and 5. They pose the odd number of columns case for 1 ≤ d ≤ 5
as an open problem.

Sonntag [585] has extended the notion of antimagic labelings to hypergraphs. He
shows that certain classes of cacti, cycle, and wheel hypergraphs have antimagic label-
ings. In [59] Bača et al. survey results on antimagic, edge-magic total, and vertex-magic
total labelings.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [219] have introduced multiplica-
tive analogs of magic and antimagic labelings. They define a graph G of size q to be
product magic if there is a labeling f from E(G) onto {1, 2, . . . , q} such that, at each
vertex v, the product of the labels on the edges incident with v is the same. They call a
graph G of size q product antimagic if there is a labeling f from E(G) onto {1, 2, . . . , q}
such that the products of the labels on the edges incident at each vertex v are distinct.
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They prove that a graph of size q is product magic if and only if q ≤ 1 (that is, if and
only if it is K2, Kn or K2 ∪ Kn); Pn (n ≥ 4) is product antimagic; every 2-regular
graph is product antimagic; and, if G is product antimagic, then so are G + K1 and
G ⊙Kn. They conjecture that a connected graph of size q is product antimagic if and
only if q ≥ 3. They also define a graph G with p vertrices and q edges to be product
edge-magic if there is a labeling f from V (G) ∪ E(G) onto {1, 2, . . . , p + q} such that
f(u) · f(v) · f(uv) is a constant for all edges uv and product edge-antimagic if there is
a labeling f from V (G) ∪ E(G) onto {1, 2, . . . , p + q} such that for all edges uv the
products f(u) · f(v) · f(uv) are distinct. They prove K2 ∪Kn is product edge-magic, a
graph of size q without isolated vertices is product edge-magic if and only if q ≤ 1 and
that every graph other than K2 and K2 ∪Kn is product edge-antimagic.

In the table following we use the abbreviations

A antimagic labeling

(a, d)-VAT (a, d)-vertex-antimagic total labeling

(a, d)-EAV (a, d)-edge-antimagic vertex labeling

(a, d)-EAT (a, d)-edge-antimagic total labeling

(a, d)-VAE (a, d)-antimagic labeling

(a, d)-FA (a, d)-face antimagic labeling

d-AT d-antimagic labeling of type (1, 1, 1)

A question mark following an abbreviation indicates that the graph is conjectured
to have the corresponding property. The table was prepared by Petr Kovář and Tereza
Kovářová.



the electronic journal of combinatorics, 5 (2005), #DS6 89

Table 9: Summary of antimagic labelings

Graph Labeling Notes
Pn (a, d)-VAT wide variety of a and d [51]

Cn (a, d)-VAT wide variety of a and d [51]

generalized Petersen (a, d)-VAT [52]
graph P (n, k)

prisms Cn × P2 (a, d)-VAT [52]

antiprisms (a, d)-VAT [52]

Wn not (a, d)-VAT for n > 20 [408]

Pn (3, 2)-EAV [559]
not (a, d)-EAV with d > 2 [559]

P2n (n+ 2, 1)-EAV [559]

Cn not (a, d)-EAV with d > 1 [58]

C2n not (a, d)-EAV [559]

C2n+1 (n+ 2, 1)-EAV [559]
(n+ 3, 1)-EAV [559]

Kn not (a, d)-EAV for n > 1 [58]

Kn,n not (a, d)-EAV for n > 3 [58]

Wn not (a, d)-EAV [58]

generalized Petersen not (a, d)-EAV with d > 1 [58]
graph P (n, k)

Pn not (a, d)-EAT with d > 2 [58]
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Table 9: continued

Graph Labeling Notes
P2n (6n, 1)-EAT [559]

(6n+ 2, 2)-EAT [559]

P2n+1 (3n+ 4, 2)-EAT [559]
(3n+ 4, 3)-EAT [559]
(2n+ 4, 4)-EAT [559]
(5n+ 4, 2)-EAT [559]
(3n+ 5, 2)-EAT [559]
(2n+ 6, 4)-EAT [559]

Cn (2n+ 2, 1)-EAT [559]
(3n+ 2, 1)-EAT [559]
not (a, d)-EAT with d > 5 [58]

C2n (4n+ 2, 2)-EAT [559]
(4n+ 3, 2)-EAT [559]
(2n+ 3, 4)-EAT? [559]
(2n+ 4, 4)-EAT? [559]

C2n+1 (3n+ 4, 3)-EAT [559]
(3n+ 5, 3)-EAT [559]
(n+ 4, 5)-EAT? [559]
(n+ 5, 5)-EAT? [559]

Kn not (a, d)-EAT with d > 5 [58]

Kn,n not (a, d)-EAT with d > 5 [58]

Wn not (a, d)-EAT with d > 4 [58]
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Table 9: continued

Graph Labeling Notes
generalized Petersen not (a, d)-EAT with d > 4 [58]
graph P (n, k) ((5n+ 5)/2, 2)-EAT for n odd, n ≥ 3 and k = 1, 2 [467]

super (4n+ 2, 1)-EAT for n ≥ 3, and 1 ≤ k ≤ n/2 [467]

Trees (a, 1)-EAT? [58]
Pn A for n ≥ 3 [281]

Cn A [281]

Wn A [281]

Kn A for n ≥ 3 [281]
every connected graph A? [281]
except K2

n ≥ 4 vertices A [23]
∆(G) ≥ n− 2

all complete partite A [23]
except K2

Hershel graph not (a, d)-VAE [118], [120]

parachutes Pg,b (a, d)-VAE for certain classes [118], [120]
(see §5.7)

prisms Cn × P2 ((7n+ 4)/2, 1)-VAE n ≥ 3, n even [119], [53]
((5n+ 5)/2, 2)-VAE n ≥ 3, n odd [119], [53]
((3n+ 6)/2, 3)-VAE n ≥ 3, n even [53]
((n+ 7)/2, 4)-VAE? n ≥ 7, [120] [53]

generalized Petersen ((3n+ 6)/2, 3)-VAE n ≥ 8, n ≡ 0(mod 4) [55]
graph P (n, 2)

Cn not (a, d)-VAE n even [122]

C2n+1 not (n+ 2, 1)-VAE n even [122]

P2n not (a, d)-VAE [122]
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Table 9: continued

Graph Labeling Notes
P2n+1 (n, 1)-VAE [122]

stars not (a, d)-VAE [122]

C
(k)
3 , C

(k)
4 not (a, d)-VAE [122]

Kn,n+2

(
(n+1)(n2−1)

2
, n+ 1

)

-VAE n ≥ 3, n odd [122]

K3,3 not (a, d)-VAE [122]

K4 not (a, d)-VAE [122]

Petersen graph not (a, d)-VAE [122]

Wn not (a, d)-VAE n > 3 [408]

antiprism on 2n (6n+ 3, 2)-VAE n ≥ 3, n 6≡ 2(mod 4) [48]
vertices (see §5.7) (4n+ 4, 4)-VAE n ≥ 3, n 6≡ 2(mod 4) [48]

(2n+ 5, 6)-VAE? n ≥ 4 [48]
(6n+ 3, 2)-VAE? n ≥ 6, n 6≡ 2(mod 4) [48]
(4n+ 4, 4)-VAE? n ≥ 6, n 6≡ 2(mod 4) [48]

Qm
n (see §5.7) (7n(m+ 1)/2 + 2, 1)-FA m ≥ 3, n ≥ 3, m odd [60]

(7n(m+ 1)/2 + 2, 1)-FA m ≥ 4, n ≥ 4, m,n even [60]
((5n(m+ 1) + 5)/2, 2)-FA? m ≥ 2, n ≥ 3, m even, n odd [60]
((n(m+ 1) + 7)/2, 4)-FA? m ≥ 2, n ≥ 3, m even, n odd [60]
(3n(m+ 1)/2 + 3, 3)-FA? m > 1, n > 4, n even [60]
(3n(m+ 1)/2 + 3, 3)-FA? m > 1, n > 3, m odd, n odd [60]

Cn × P2 (6n+ 3, 2)-FA n ≥ 4, n even [49]
(4n+ 4, 4)-FA n ≥ 4, n even [49]
(2n+ 5, 6)-FA? [49]
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Table 9: continued

Graph Labeling Notes
Pm+1 × Cn (3n(m+ 1) + 3, 2)-FA n ≥ 4, n even and [57]

m ≥ 3, m ≡ 1(mod 4),
(3n(m+ 1) + 3, 2)-FA and n ≥ 4, n even and [57]
(2n(m+ 1) + 4, 4)-FA m ≥ 3, m odd, [57]

or n ≥ 6, n ≡ 2(mod 4) and
m ≥ 4, m even

(3n(m+ 1) + 3, 2)-FA? m ≥ 4, n ≥ 4, m ≡ 0(mod 4) [57]
(2n(m+ 1) + 4, 4)-FA? m ≥ 4, n ≥ 4, m ≡ 0(mod 4) [57]
(n(m+ 1) + 5, 6)-FA? n ≥ 4, n even [57]

Cn × P2 d-AT with d = 1 [62]
d-AT with d = 2, 3, 4 and 6 [62]

for n ≡ 3 (mod 4)
d-AT with d = 2, 4, 5, 6 for n ≥ 3 [409]
d-AT with d = 3 for n ≥ 5 [63]

antiprism on 2n d-AT with d = 1, 2 and 4 for n ≥ 4 [63]
vertices d-AT? with d = 3, 5 and 6 for n ≥ 4 [63]

honeycomb graphs with d-AT with d = 2, 4 [50]
even number of columns d-AT? with d = 3, 5 [50]
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6 Miscellaneous Labelings

6.1 Sum Graphs
In 1990, Harary [275] introduced the notion of a sum graph. A graph G(V,E) is called
a sum graph if there is an bijective labeling f from V to a set of positive integers S such
that xy ∈ E if and only if f(x) + f(y) ∈ S. Since the vertex with the highest label
in a sum graph cannot be adjacent to any other vertex, every sum graph must contain
isolated vertices. In 1991 Harary, Hentzel, and Jacobs [277] defined a real sum graph in
an analogous way by allowing S to be any finite set of positive real numbers. However,
they proved that every real sum graph is a sum graph. Bergstrand et al. [92] defined a
product graph analogous to a sum graph except that 1 is not permitted to belong to S.
They proved that every product graph is a sum graph and vice versa.

For a connected graph G, let σ(G), the sum number of G, denote the minimum
number of isolated vertices that must be added to G so that the resulting graph is a
sum graph (some authors use s(G) for the sum number of G). A labeling that makes G
together with σ(G) isolated points a sum graph is called an optimal sum graph labeling.
Ellingham [202] proved the conjecture of Harary [275] that σ(T ) = 1 for every tree
T 6= K1. Smyth [581] proved that there is no graph G with e edges and σ(G) = 1
when n2/4 < e ≤ n(n− 1)/2. Smyth [582] conjectures that the disjoint union of graphs
with sum number 1 has sum number 1. More generally, Kratochvil, Miller, and Nguyen
[353] conjecture that σ(G ∪ H) ≤ σ(G) + σ(H) − 1. Hao [274] has shown that if
d1 ≤ d2 ≤ · · · ≤ dn is the degree sequence of a graph G then σ(G) > max(di − i) where
the maximum is taken over all i. Bergstand et al. [91] proved that σ(Kn) = 2n − 3.
Hartsfield and Smyth [282] claimed to have proved that σ(Km,n) = ⌈3m+n−3⌉/2 when
n ≥ m but Yan and Liu [648] found counterexamples to this assertion when m 6= n.
Pyatkin [481], Liaw, Kuo, and Chang [405], Wang and Liu [630], and He et al. [286] have

shown that for 2 ≤ m ≤ n, σ(Km,n) = ⌈n
p
+ (p+1)(m−1)

2
⌉ where p = ⌈

√
2n

m−1
+ 1

4
− 1

2
⌉ is

the unique integer such that (p−1)p(m−1)
2

< n ≤ (p+1)p(m−1)
2

.
Miller et al. [445] proved that σ(Wn) =

n
2
+2 for n even and σ(Wn) = n for n ≥ 5 and

n odd (see also [600]). Miller, Ryan, and Smyth [446] prove that the complete n-partite
graph on n sets of 2 nonadjacent vertices has sum number 4n − 5 and obtain upper
and lower bounds on the complete n-partite graph on n sets of m nonadjacent vertices.
Gould and Rödl [261] investigated bounds on the number of isolated points in a sum
graph. A group of six undergraduate students [260] proved that σ(Kn− edge) ≤ 2n− 4.
The same group of six students also investigated the difference between the largest and
smallest labels in a sum graph, which they called the spum. They proved spum of Kn

is 4n− 6 and the spum of Cn is at most 4n− 10. Kratochvil, Miller, and Nguyen [353]
have proved that every sum graph on n vertices has a sum labeling such that every label
is at most 4n.

At a conference in 2000 Miller [439] posed the following two problems. Given any
graph G, does there exist an optimal sum graph labeling that uses the label 1? Find a
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class of graphs G that have sum number of the order |V (G)|s for s > 1. (Such graphs
were shown to exist for s = 2 by Gould and Rödl in [261]).

Chang [158] generalized the notion of sum graph by permitting x = y in the definition
of sum graph. He calls graphs that have this kind of labeling strong sum graphs and
uses i∗(G) to denote the minimum positive integer m such that G ∪ mK1 is a strong
sum graph. Chang proves that i∗(Kn) = σ(Kn) for n = 2, 3, and 4 and i∗(Kn) > σ(Kn)

for n ≥ 5. He further shows that for n ≥ 5, 3nlog2
3 > i∗(Kn) ≥ 12⌊n/5⌋ − 3.

In 1994 Harary [276] generalized sum graphs by permitting S to be any set of integers.
He calls these graphs integral sum graphs. Unlike sum graphs, integral sum graphs need
not have isolated vertices. Sharary [542] has shown that Cn and Wn are integral sum
graphs for all n 6= 4. Chen [169] proved that trees obtained from a star by extending
each edge to a path and trees all of whose vertices of degree not 2 are at least distance
4 apart are integral sum graphs. He conjectures that all trees are integral sum graphs.
This conjecture was proved in 2004 by Sethuraman and Venkatesh [541]. In [169] and
[171] Chen gives methods for constructing new connected integral sum graphs from given
integral sum graphs by identifying verticies. Chen [171] has shown that every graph is
an induced subgraph of a connected integral sum graph. Chen [171] calls a vertex of a
graph saturated if it is adjacent to every other vertex of the graph. He proves that every
integral sum graph except K3 has at most two saturated vertices and gives the exact
structure of all integral sum graphs that have exactly two saturated vertices. Chen [171]
also proves that a connected integral sum graph with p > 1 vertices and q edges and
no saturated vertices satisfies q ≤ p(3p − 2)/8 − 2. Wu, Mao, and Le [638] proved that
mPn are integral sum graphs. They also show that the conjecture of Harary [276] that
the sum number of Cn equals the integral sum number of Cn if and only if n 6= 3 or 5 is
false and that for n 6= 4 or 6 the integral sum number of Cn is at most 1.

He, Wang, Mi, Shen, and Yu [284] say that a graph has a tail if the graph contains
a path for which each interior vertex has degree 2 and an end vertex of degree at least
3. They prove that every tree with a tail of length at least 3 is an integral sum graph.

B. Xu [645] has shown that the following are integral sum graphs: the union of any
three stars; T ∪ K1,n for all trees T ; mK3 for all m; and the union of any number of
integral sum trees. Xu also proved that if 2G and 3G are integral sum graphs, then so
is mG for all m > 1. Xu poses the question as to whether all disconnected forests are
integral sum graphs. Nicholas and Somasundaram [468] prove that all banana trees (see
Section 2.1) and the union of any number of stars are integral sum graphs.

Liaw, Kuo, and Chang [405] proved that all caterpillars are integral sum graphs (see
also [638] and [645] for some special cases of caterpillers). This shows that the assertion
by Harary in [276] that K(1, 3) and S(2, 2) are not integral sum graphs is incorrect.
They also prove that all cycles except C4 are integral sum graphs and they conjecture
that every tree is an integral sum graph. Singh and Santhosh show that the crowns
Cn ⊙ K1 are integral sum graphs for n ≥ 4 [568] and that the subdivsion graphs of
Cn ⊙K1 are integral sum graphs for n ≥ 3 [500].

Melnikov and Pyatkin [436] have shown that every 2-regular graph except C4 is
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an integral sum graph and that for every positive integer r there exists an r-regular
integral sum graph. They also show that the cube is not an integral sum graph. For
any integral sum graph G, Melnikov and Pyatkin define the integral radius of G as the
smallest natural number r(G) that has all its vertex labels in the interval [−r(G), r(G)].
For the family of all integral sum graphs of order n they use r(n) to denote maximum
integral radius among all members of the family. Two questions they raise are: Is there
a constant C such that r(n) ≤ Cn; and for n > 2, is r(n) equal to the (n− 2)th prime.

The concepts of sum number and integral sum number have been extended to hy-
pergraphs. Sonntag and Teichert [587] prove that every hypertree (i.e., every connected,
non-trivial, cycle-free hypergraph) has sum number 1 provided that a certain cardinality
condition for the number of edges is fulfilled. In [588] the same authors prove that for
d ≥ 3 every d-uniform hypertree is an integral sum graph and that for n ≥ d + 2 the
sum number of the complete d-uniform hypergraph on n vertices is d(n− d) + 1. They
also prove that the integral sum number for the complete d-uniform hypergraph on n
vertices is 0 when d = n or n− 1 and is between (d− 1)(n− d− 1) and d(n− d) + 1 for
d ≤ n − 2. They conjecture that for d ≤ n − 2 the sum number and the integral sum
number of the complete d-uniform hypergraph are equal.

Teichert [606] proves that hypercycles have sum number 1 when each edge has cardi-
nality at least 3 and that hyperwheels have sum number 1 under certain restrictions for
the edge cardinalities. (A hypercycle Cn = (Vn, En) has Vn = ∪n

i=1{vi1, vi2, . . . , vidi−1}, En =

{e1, e2, . . . , en} with ei = {vi1, . . . , vidi = vi+1
1 } where i+1 is taken modulo n. A hyperwheel

Wn = (V ′
n, E ′

n) has V ′
n = Vn ∪ {c} ∪n

i=1 {v2n+i, . . . , vdn+i−1
n+i}, E ′

n = En ∪ {en+1, . . . , e2n}
with en+i = {v1n+i = c, v2

n+i, . . . , vdn+i−1
n+i, vdn+i

n+i = v1
i}.)

Teichert [605] determined an upper bound for the sum number of the d-partite com-
plete hypergraph Kd

n1,...,nd
. In [607] Teichert defines the strong hypercycle Cd

n to be the
d-uniform hypergraph with the same vertices as Cn where any d consecutive vertices
of Cn form an edge of Cd

n. He proves that for n ≥ 2d + 1 ≥ 5, σ(Cd
n) = d and for

d ≥ 2, σ(Cd
d+1) = d. He also shows that σ(C3

5) = 3; σ(C3
6) = 2, and he conjectures that

σ(Cd
n) < d for d ≥ 4 and d+ 2 ≤ n ≤ 2d.
The integral sum number, ζ(G), of G, is the minimum number of isolated vertices

that must be added to G so that the resulting graph is an integral sum graph. Thus, by
definition, G is a integral sum graph if and only if ζ(G) = 0. Harary [276] conjectured
that for n ≥ 4 the integral sum number ζ(Kn) = 2n− 3. This conjecture was verified by
Chen [168], by Sharary [542], and by B. Xu [645]. Yan and Liu proved: ζ(Kn−E(Kr)) =
n− 1 when n ≥ 6, n ≡ 0 (mod 3) and r = 2n/3− 1 [649]; ζ(Km.m) = 2m− 1 for m ≥ 2
[649]; ζ(Kn − edge) = 2n − 4 for n ≥ 4 [649], [645]; if n ≥ 5 and n − 3 ≥ r, then
ζ(Kn −E(Kr)) ≥ n− 1 [649]; if ⌈2n/3⌉ − 1 > r ≥ 2, then ζ(Kn −E(Kr)) ≥ 2n− r − 2
[649]; and if 2 ≤ m < n, and n = (i + 1)(im − i + 2)/2, then σ(Km,n) = ζ(Km,n) =
(m− 1)(i+ 1) + 1 while if (i+ 1)(im− i+ 2)/2 < n < (i+ 2)[(i+ 1)m− i+ 1]/2, then
σ(Km,n) = ζ(Km,n) = ⌈((m− 1)(i+ 1)(i+ 2) + 2n)/(2i+ 2)⌉ [649].

Nagamochi, Miller, and Slamin [460] have determined upper and lower bounds on
the sum number a graph. For most graphs G(V,E) they show that σ(G) = Ω(|E|).
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He et al. [285] investigated ζ(Kn − E(Kr)) where n ≥ 5 and r ≥ 2. They proved
that ζ(Kn − E(Kr)) = 0 when r = n or n − 1; ζ(Kn − E(Kr)) = n − 2 when r =
n−2; ζ(Kn−E(Kr)) = n−1 when n−3 ≥ r ≥ ⌈2n/3⌉−1; ζ(Kn−E(Kr)) = 3n−2r−4
when ⌈2n/3⌉ − 1 > r ≥ n/2; ζ(Kn − E(Kr)) = 2n− 4 when ⌈2n/3⌉ − 1 ≥ n/2 > r ≥ 2.
Moreover, they prove that if n ≥ 5, r ≥ 2, and r 6= n − 1, then σ(Kn − E(Kr)) =
ζ(Kn − E(Kr)).

In [470] Nicholas and Vilfred define the edge reduced sum number of a graph as the
minimum number of edges whose removal from the graph results in a sum graph. They
show that for Kn, n ≥ 3, this number is (n(n − 1)/2 + ⌊n/2⌋)/2. They ask for a
characterization of graphs for which the edge reduced sum number is the same as its
sum number. They conjecture that an integral sum graph of order p and size q exists if
and only if q ≤ 3(p2 − 1)/8− ⌊(p− 1)/4⌋ when p is odd and q ≤ 3(3p− 2)/8 when p is
even. They also define the edge reduced integral sum number in an analogous way and
conjecture that for Kn this number is (n− 1)(n− 3)/8+ ⌊(n− 1)/4⌋ when n is odd and
n(n− 2)/8 when n is even.

Alon and Scheinermann [24] generalized sum graphs by replacing the condition f(x)+
f(y) ∈ S with g(f(x), f(y)) ∈ S where g is an arbitrary symmetric polynomial. They
called a graph with this property a g-graph and proved that for a given symmetric
polynomial g not all graphs are g-graphs. On the other hand, for every symmetric
polynomial g and every graph G there is some vertex labeling so that G together with
at most |E(G)| isolated vertices is a g-graph.

Boland, Laskar, Turner, and Domke [125] investigated a modular version of sum
graphs. They call a graph G(V,E) a mod sum graph (MSG) if there exists a positive
integer n and an injective labeling from V to {1, 2, . . . , n − 1} such that xy ∈ E if and
only if (f(x) + f(y)) (mod n) = f(z) for some vertex z. Obviously, all sum graphs are
mod sum graphs. However, not all mod sum graphs are sum graphs. Boland et al. [125]
have shown the following graphs are MSG: all trees on 3 or more vertices; all cycles
on 4 or more vertices; and all K2,n. They further proved that Kp (p ≥ 2) is not MSG
(see also [255]) and that W4 is MSG. They conjecture that Wp is MSG for p ≥ 4. This
conjecture was refuted by Sutton, Miller, Ryan, and Slamin [601] who proved that for
n 6= 4, Wn is not MSG (the case where n is prime had been proved in 1994 by Ghoshal
et al. [255]). In the same paper Sutton et al. also showed that for n ≥ 3, Kn,n is not
MSG. Ghoshal, Laskar, Pillone, and Fricke [255] proved that every connected graph is
an induced subgraph of a connected MSG graph and any graph with n vertices and at
least two vertices of degree n− 1 is not MSG.

Sutton et al. define the mod sum number, ρ(G), of a connected graph G to be the
least integer r such that G + Kr is MSG. Sutton and Miller [599] define the cocktail
party graph Hm,n, m, n ≥ 2, as the graph with a vertex set V = {v1, v2, v3, . . . , vmn}
partitioned into n independent sets V = {I1, I2, . . . , In} each of sizem such that vivj ∈ E
for all i, j ∈ {1, . . . ,mn} where i ∈ Ip, j ∈ Iq, p 6= q. The graphs Hm,n can be used
to model relational database management systems (see [597]). Sutton and Miller prove
that Hm,n is not MSG for n > m ≥ 3 and ρ(Kn) = n for n ≥ 4. In [598] Sutton,
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Draganova and Miller prove that for n odd and n ≥ 5, ρ(Wn) = n and when n is even,
ρ(Wn) = 2. Draganova [197] has shown that for n ≥ 5 and n odd, ρ(Fn) = n. She poses
as an open problem the determination of the mod sum number of the t-point suspension
of Cn. Wallace [623] has proved that Km,n is MSG when n is even and n ≥ 2m or
when n is odd and n ≥ 3m − 3 and that ρ(Km,n) = m when 3 ≤ m ≤ n < 2m. He
also proves that the complete m-partite Kn1,n2,...,nm

is not MSG when there exist ni and
nj such that ni < nj < 2ni. He poses the following conjectures: ρ(Km,n) = n when
3m − 3 > n ≥ m ≥ 3; if Kn1,n2,...,nm

where n1 > n2 > · · · > nm, is not MSG then
(m−1)nm ≤ ρ(Kn1,n2,...,nm

) ≤ (m−1)n1; if G has n vertices then ρ(G) ≤ n; determining
the mod sum number of a graph is NP -complete (Sutton has observed that Wallace
probably meant to say ‘NP -hard’); Miller [439] has asked if it is possible for the mod
sum number of a graph G be of the order |V (G)|2.

Grimaldi [270] has investigated labeling the vertices of a graph G(V,E) with n ver-
tices with distinct elements of the ring Zn so that xy ∈ E whenever (x + y)−1 exists in
Zn

In his 2001 Ph.D. thesis Sutton [597] introduced two methods of graph labelings
with applications to storage and manipulation of relational database links specifically
in mind. He calls a graph G = (Vp ∪ Vi, E) a sum* graph of Gp = (Vp, Ep) if there is
an injective labeling λ of the vertices of G with non-negative integers with the property
that uv ∈ Ep if and only if λ(u)+λ(v) = λ(z) for some vertex z ∈ G. The sum∗ number,
σ∗(Gp), is the minimum cardinality of a set of new vertices Vi (members of Vi are called
incidentals) such that there exists a sum* graph of Gp on the set of vertices Vp ∪ Vi. A
mod sum* graph of Gp is defined in the identical fashion except the sum λ(u) + λ(v) is
taken modulo n where the vertex labels of G are restricted to {0, 1, 2, . . . , n − 1}. The
mod sum* number, ρ∗(Gp), of a graph Gp is defined in the analogous way. Sum* graphs
are a generalization of sum graphs and mod sum* graphs are a generalization of mod
sum graphs. Sutton shows that every graph is an induced subgraph of a connected sum*
graph.

The following table summarizing what is known about sum graphs, mod sum graphs,
sum* graphs and mod sum* graphs is reproduced from Sutton’s Ph. D. thesis [597]. The
results on sum* and mod sum* graphs are found in [597]. Sutton [597] poses the following
conjectures: ρ(Hm,n) ≤ mn form,n ≥ 2, σ∗(Gp) ≤ |Vp|, ρ∗(Gp) ≤ |Vp|. A question mark
indicates the value is unknown.
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Table 10: Summary of sum graph Labelings

Graph σ(G) ρ(G) σ∗(G) ρ∗(G)

K2 = S1 1 1 0 0

Stars, Sn, n ≥ 2 1 0 0 0

Trees, Tn, n ≥ 3 when Tn 6= Sn 1 0 1 0

Cycle, C3 1 0 1 0

Cycles, C4 3 0 2 0

Cycles, Cn, n ≥ 4 2 0 2 0

Wheels, W4 4 0 2 0

Wheels, Wn, n ≥ 5, n odd n n 2 0

Wheels, Wn, n ≥ 6, n even n
2
+ 2 2 2 0

Fans, Fn, n ≥ 5, n odd ? n 1 0

Complete graphs, Kn, n ≥ 3 2n− 3 n n− 2 0

Cocktail party graphs, H2,n 4n− 5 0 ? 0

Complete symmetric bipartite graphs, Kn,n

⌈
4n−3

2

⌉
? ? ?

Complete bipartite graphs, Km,n

2nm ≥ n ≥ 3
? n ? ?

Complete bipartite graphs, Km,n

m ≥ 3n− 3, n ≥ 3, m odd
? 0 ? 0

Complete bipartite graphs, Km,n

m ≥ 2n, n ≥ 3, m even
? 0 ? 0
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6.2 Prime and Vertex Prime Labelings
The notion of a prime labeling originated with Entringer and was introduced in a paper
by Tout, Dabboucy, and Howalla (see [400]). A graph with vertex set V is said to have
a prime labeling if its vertices are labeled with distinct integers 1, 2, . . . , |V | such that
for each edge xy the labels assigned to x and y are relatively prime. Around 1980,
Entringer conjectured that all trees have a prime labeling. So far, there has been little
progress towards proving this conjecture. Among the classes of trees known to have
prime labelings are: paths, stars, caterpillars, complete binary trees, spiders (i.e., trees
with a one vertex of degree at least 3 and with all other vertices with degree at most 2),
and all trees of order up to 50 (see [477], [478], and [236]).

Other graphs with prime labelings include all cycles and the disjoint union of C2k

and Cn [188]. The complete graph Kn does not have a prime labeling for n ≥ 4 and Wn

is prime if and only if n is even (see [400]).
Seoud, Diab, and Elsakhawi [511] have shown the following graphs are prime: fans;

helms; flowers (see §2.2); stars; K2,n; and K3,n unless n = 3 or 7. They also shown that
Pn +Km (m ≥ 3) is not prime.

For m and n at least 3, Seoud and Youssef [516] define S
(m)
n , the (m,n)-gon star,

as the graph obtained from the cycle Cn by joining the two end vertices of the path
Pm−2 to every pair of consecutive vertices of the cycle such that each of the end vertices
of the path is connected to exactly one vertex of the cycle. Seoud and Youssef [516]

have proved the following graphs have prime labelings: books; S
(m)
n ;Cn ⊙ Pm;Pn +K2

if and only if n = 2 or n is odd; and Cn ⊙ K1 with a complete binary tree of order
2k − 1 (k ≥ 2) attached at each pendant vertex. They also prove that every spanning
subgraph of a prime graph is prime and every graph is a subgraph of a prime graph.
They conjecture that all unicycle graphs have prime labelings. Seoud and Youssef [516]
proved the following graphs are not prime: Cm + Cn;C

2
n for n ≥ 4; P 2

n for n = 6 and
for n ≥ 8; and Möbius ladders Mn for n even. They also give an exact formula for the
maximum number of edges in a prime graph of order n and an upper bound for the
chromatic number of a prime graph.

Youssef [658] has shown that helms, the union of stars Sm ∪ Sn, and the union of
cycles and stars Cm ∪ Sn are prime. He has also proved: Km ∪Pn is prime if and only if
m is at most 3 or if m = 4 and n is odd; Kn⊙K1 is prime if and only if n ≤ 7; Km ∪Sn

is prime if and only if the number of primes less than or equal to m + n + 1 is at least
m; and that the complement of every prime graph with odd order at least 21 and every
even order graph of order at least 16 is not prime.

Salmasian [498] has shown that every tree with n vertices (n ≥ 50) can be labeled
with n integers between 1 and 4n so that every two adjacent vertices have relatively
prime labels. Pikhurko [478] has improved this by showing that for any c > 0 there is
an N such that any tree of order n > N can be labeled with n integers between 1 and
(1 + c)n so that labels of adjacent vertices are relatively prime.

Varkey and Singh (see [617]) have shown the following graphs have prime labelings:
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ladders, crowns, cycles with a chord, books, one point unions of Cn, cycles with a chord,
Ln + K1. Varkey [617] has shown that graph obtained by connecting two points with
internally disjoint paths of equal length are prime. Varkey defines a twig as a graph
obtained from a path by attaching exactly two pendent edges to each internal vertex of
the path. He proves that twigs obtained from a path of odd length (at least 3) and lotus
inside a circle (see Section 5.1) graphs are prime.

Given a collection of graphs G1, . . . , Gn and some fixed vertex vi from each Gi, Lee,
Wui, and Yeh [400] define Amal{(Gi, vi)}, the almagamation of {(Gi, vi)| i = 1, . . . , n},
as the graph obtained by taking the union of the Gi and identifying v1, v2, . . . , vn. Lee et
al. [400] have shown Amal{(Gi, vi)} has a prime labeling when Gi are paths and when
Gi are cycles. They also showed that the almagamation of any number of copies of Wn,
n odd, with a common vertex is not prime. They conjecture that for any tree T and
v from T , the almagamation of two or more copies of T with v in common is prime.
They further conjecture that the almagamation of two or more copies of Wn that share
a common point is prime when n is even (n 6= 4). Vilfred, Somasundaram, and Nicholas
[622] have proved this conjecture for the case that n ≡ 2 (mod 4) where the central
vertices are identified.

Vilfred, Somasundaram, and Nicholas [622] have also proved the following: helms
are prime; the grid Pm × Pn is prime when m ≤ 3 and n is a prime greater than m; the
ladder P2×Pn is prime in the cases that 2n+1, n+1, or n+2 is prime; the double cone
Cn +K2 is prime only for n = 3; the double fan P2 ×K2(n 6= 2) is prime if and only if n
is odd; and every cycle with a Pk-chord is prime. They conjecture that the grid Pm×Pn

is prime when n is prime and n > m.
For any finite collection {Gi, uivi} of graphs Gi, each with a fixed edge uivi, Carlson

[156] defines the edge amalgamation Edgeamal{(Gi, uivi)} as the graph obtained by
taking the union of all the Gi and identifying their fixed edges. The case where all
the graphs are cycles she calls generalized books. She proves that all generalized books
are prime graphs. Moreover, she shows that graphs obtained by taking the union of
cycles and identifying in each cycle the path Pn are also prime. Carlson also proves that
Cm-snakes are prime.

A dual of prime labelings has been introduced by Deretsky, Lee, and Mitchem [188].
They say a graph with edge set E has a vertex prime labeling if its edges can be labeled
with distinct integers 1, . . . , |E| such that for each vertex of degree at least 2 the greatest
common divisor of the labels on its incident edges is 1. Deretsky, Lee, and Mitchem show
the following graphs have vertex prime labelings: forests; all connected graphs; C2k∪Cn;
C2m ∪ C2n ∪ C2k+1; C2m ∪ C2n ∪ C2t ∪ Ck; and 5C2m. They further prove that a graph
with exactly two components, one of which is not an odd cycle, has a vertex prime
labeling and a 2-regular graph with at least two odd cycles does not have a vertex prime
labeling. They conjecture that a 2-regular graph has a vertex prime labeling if and only
if it does not have two odd cycles. Let G =

⋃t
i=1C2ni

and N =
∑t

i=1 ni. In [127] Borosh,
Hensley and Hobbs proved that there is a positive constant n0 such that the conjecture
of Deretsky et al. is true for the cases that (i) G is the disjoint union of at most seven
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cycles, or (ii) G is a union of cycles all of the same even length 2n if n ≤ 150 000 or if
n ≥ n0, or (iii) ni ≥ (logN)4 log log logn for all i = 1, . . . , t, or (iv) each C2ni

is repeated
at most ni times. They end their paper with a discussion of graphs whose components
are all even cycles, and of graphs with some components that are not cycles and some
components that are odd cycles.

6.3 Edge-graceful Labelings
In 1985, Lo [422] introduced the notion of edge-graceful graphs. A graph G(V,E) is
said to be edge-graceful if there exists a bijection f from E to {1, 2, . . . , |E|} so that the
induced mapping f+ from V to {0, 1, . . . , |V | − 1} given by f+(x) =

∑{f(xy)|xy ∈ E}
(mod |V |) is a bijection. Note that an edge-graceful graph is anti-magic (see §5.7). A
necessary condition for a graph with p vertices and q edges to be edge-graceful is that
q(q + 1) ≡ p(p+ 1)/2 (mod p). Lee [363] notes that this necessary condition extends to
any multigraph with p vertices and q edges. Lee, Lee, and Murthy [360] proved that Kn

is edge-graceful if and only if n 6≡ 2 (mod 4). (An edge-graceful labeling for Kn for n 6≡ 2
(mod 4) in [422] was incorrect.) Lee [363] notes that a multigraph with p ≡ 2 (mod
4) vertices is not edge-graceful and conjectures that this condition is sufficient for the
edge-gracefulness of connected graphs. Lee [362] has conjectured that all trees of odd
order are edge-graceful. Small [580] has proved that spiders (see §5.2 for the definition)
of odd degree with the property that the distance from the vertex of degree greater than
2 to each end vertex is the same are edge-graceful. Keene and Simoson [332] proved
that all spiders of odd order with exactly three end vertices are edge-graceful. Cabaniss,
Low, and Mitchem [141] have shown that regular spiders of odd order are edge-graceful.

Lee and Seah [381] have shown that Kn,n,...,n is edge-graceful if and only if n is odd
and the number of partite sets is either odd or a multiple of 4. Lee and Seah [380] have
also proved that Ck

n (the kth power of Cn) is edge-graceful for k < ⌊n/2⌋ if and only if
n is odd and Ck

n is edge-graceful for k ≥ ⌊n/2⌋ if and only if n is a multiple of 4 or n
is odd (see also [141]). Lee, Seah, and Wang [386] gave a complete characterization of
edge-graceful P k

n graphs. Shiu, Lam, and Cheng [551] proved that the composition of
the path P3 and any null graph of odd order is edge-graceful.

Lo proved that all odd cycles are edge-graceful and Wilson and Riskin [633] proved
the Cartesian product of any number of odd cycles is edge-graceful. Lee, Ma, Valdes, and
Tong [369] investigated the edge-gracefulness of grids Pm × Pn. The necessity condition
of Lo [422] that a (p, g) graph must satisfy q(q + 1) ≡ 0 or p/2 (mod p) severely limits
the possibilities. Lee et al. prove the following: P2 × Pn is not edge-graceful for all
n > 1; P3 × Pn is edge-graceful if and only if n = 1 or n = 4; P4 × Pn is edge-graceful
if and only if n = 3 or n = 4; P5 × Pn is edge-graceful if and only if n = 1; P2m × P2n

is edge-graceful if and only if m = n = 2. They conjecture that for all m,n ≥ 10 of the
form m = (2k + 1)(4k + 1), n = (2k + 1)(4k + 3) the grids Pm × Pn are edge-graceful.

Shiu, Lee, and Schaffer [557] investigated the edge-gracefulness of multigraphs de-
rived from paths, combs, and spiders obtained by replacing each edge by k parallel edges.
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Lee and Seah [382] have also investigated edge-gracefulness of various multigraphs.
Lee and Seah (see [363]) define a sunflower graph SF (n) as the graph obtained by

starting with an n-cycle with consecutive vertices v1, v2, . . . , vn and creating new vertices
w1, w2, . . . , wn with wi connected to vi and vi+1 (vn+1 is v1). In [383] they prove that
SF (n) is edge-graceful if and only if n is even. In the same paper they prove that
C3 is the only triangular snake that is edge-graceful. Lee and Seah [380] prove that for
k ≤ n/2, Ck

n is edge-graceful if and only if n is odd and, for k ≥ n/2, Ck
n is edge-graceful

if and only if n 6≡ 2 (mod 4). Lee, Seah, and Lo (see [363]) have proved that for n odd,
C2n ∪ C2n+1, Cn ∪ C2n+2, and Cn ∪ C4n are edge-graceful. They also show that for odd
k and odd n, kCn is edge-graceful. Lee and Seah (see [363]) prove that the generalized
Petersen graph P (n, k) (see Section 2.7) is edge-graceful if and only if n is even and
k < n/2. In particular, P (n, 1) = Cn × P2 is edge-graceful if and only if n is even.

Lee and Schaffer [502] proved that Cm × Cn (m > 2, n > 2) is edge-graceful if and
only if m and n are odd. They also showed that if G and H are edge-graceful regular
graphs of odd order then G×H is edge-graceful and that if G and H are edge-graceful
graphs where G is c-regular of odd orderm and H is d-regular of odd order n, then G×H
is edge-magic if gcd(c,mn) = gcd(d,m) = 1. They further show that if H has odd order,
is 2d-regular and edge-graceful with gcd(d,m) = 1, then C2m ×H is edge-magic and if
G is odd-regular, edge-graceful of even order m which is not divisible by 3, and G can
be partitioned into 1-factors, then G× Cm is edge-graceful.

In 1987 Lee (see [384]) conjectured that C2m ∪ C2n+1 is edge-graceful for all m and
n except for C4 ∪ C3. Lee, Seah, and Lo [384] have proved this for the case that m = n
and m is odd. They also prove: the disjoint union of an odd number copies of Cm is
edge-graceful when m is odd; Cn ∪C2n+2 is edge-graceful; and Cn ∪C4n is edge-graceful
for n odd.

Kendrick and Lee (see [363]) proved that there are only finitely many n for which
Km,n is edge-graceful and they completely solve the problem for m = 2 and m = 3. Ho,
Lee, and Seah [301] use S(n; a1, a2, . . . , ak) where n is odd and 1 ≤ a1 ≤ a2 ≤ · · · ≤
ak < n/2 to denote the (n, nk)-multigraph with vertices v0, v1, . . . , vn−1 and edge set
{vivj| i 6= j, i−j ≡ at ( mod n) for t = 1, 2, . . . , k}. They prove that all such multigraphs
are edge-graceful. Lee and Pritikin (see [363]) prove that the Möbius ladders of order 4n
are edge-graceful. Lee, Tong, and Seah [390] have conjectured that the total graph of a
(p, p)-graph is edge-graceful if and only if p is even. They have proved this conjecture
for cycles.

Kuang, Lee, Mitchem, and Wang [356] have conjectured that unicyclic graphs of odd
order are edge-graceful. They have verified this conjecture in the following cases: graphs
obtained by identifying the end point of a path Pm with a vertex of Cn when m + n is
even; crowns with one pendant edge deleted; graphs obtained from crowns by identifying
an endpoint of Pm, m odd, with a vertex of degree 1; amalgamations of a cycle and a
star obtained by identifying the center of the star with a cycle vertex where the resulting
graph has odd order; graphs obtained from Cn by joining a pendant edge to n− 1 of the
cycle vertices and two pendant edges to the remaining cycle vertex.
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A graph with p vertices and q edges is said to be k-edge graceful if its edges can be
labeled with k, k+1, . . . , k+ q− 1 so that the sums of the edges incident to each vertex
are distinct modulo p. In [393] Lee and Wang show that for each k 6= 1 there are only
finitely many trees that are k-edge graceful (there are infinitely many 1-edge graceful
trees). They describe completely the k-edge-graceful trees for k = 0, 2, 3, 4, and 5.

A labeling that is stronger than edge-graceful for some classes of graphs is super edge-
graceful. A graph G(V,E) is called super edge-graceful if there is a bijection f from E to
{0,±1,±2, . . . ,±(|E|−1)/2} when |E| is odd and from E to {±1,±2, . . . ,±|E|/2} when
|E| is even such that the induced vertex labeling f ∗ defined by f ∗(u) = Σf(u, v)| (u, v) ∈
E} is a bijection from V to {0,±1,±2, . . . ,±(p − 1)/2} when p is odd and from V to
{±1,±2, . . . , p/2} when p is even. Lee, Wang, and Nowak [395] proved the following:
K1,n is super-edge-magic if and only if n is even; the double star DS(m,n) is super
edge-graceful if and only if m and n are both odd. They conjecture that all trees of odd
order are super edge-graceful.

In 1997 Yilmaz and Cahit [657] introduced a weaker version of edge-graceful called
E-cordial. Let G be a graph with vertex set V and edge set E and let f a function from
E to {0, 1}. Define f on V by f(v) =

∑{f(uv)|uv ∈ E} (mod 2). The function f is
called an E-cordial labeling of G if the number of vertices labeled 0 and the number of
vertices labeled 1 differ by at most 1 and the number of edges labeled 0 and the number
of edges labeled 1 differ by at most 1. A graph that admits an E-cordial labeling is
called E-cordial. Yilmaz and Cahit prove the following graphs are E-cordial: trees with
n vertices if and only if n 6≡ 2 (mod 4); Kn if and only if n 6≡ 2 (mod 4); Km,n if and only
if m+ n 6≡ 2 (mod 4); Cn if and only if n 6≡ 2 (mod 4); regular graphs of degree 1 on 2n

vertices if and only if n is even; friendship graphs C
(n)
3 for all n (see §2.2); fans Fn if and

only if n 6≡ 1 (mod 4); and wheels Wn if and only if n 6≡ 1 (mod 4). They observe that
graphs with n ≡ 2 (mod 4) vertices can not be E-cordial. They generalize E-cordial
labelings to Ek-cordial (k > 1) labelings by replacing {0, 1} by {0, 1, 2, . . . , k − 1}. Of
course, E2-cordial is the same as E-cordial.

6.4 Line-graceful Labelings
Gnanajothi [256] has defined a concept similar to edge-graceful. She calls a graph with n
vertices line-graceful if it is possible to label its edges with 0, 1, 2, . . . , n so that when each
vertex is assigned the sum modulo n of all the edge labels incident with that vertex the
resulting vertex labels are 0, 1, . . . , n− 1. A necessary condition for the line-gracefulness
of a graph is that its order is not congruent to 2 (mod 4). Among line-graceful graphs
are (see [256, pp. 132–181]) Pn if and only if n 6≡ 2 (mod 4); Cn if and only if n 6≡ 2
(mod 4); K1,n if and only if n 6≡ 1 (mod 4); Pn ⊙K1 (combs) if and only if n is even;
(Pn ⊙K1)⊙K1 if and only if n 6≡ 2 (mod 4); (in general, if G has order n, G⊙H is the
graph obtained by taking one copy of G and n copies of H and joining the ith vertex of
G with an edge to every vertex in the ith copy of H); mCn when mn is odd; Cn ⊙K1

(crowns) if and only if n is even; mC4 for all m; complete n-ary trees when n is even;



the electronic journal of combinatorics, 5 (2005), #DS6 105

K1,n ∪K1,n if and only if n is odd; odd cycles with a chord; even cycles with a tail; even
cycles with a tail of length 1 and a chord; graphs consisting of two triangles having a
common vertex and tails of equal length attached to a vertex other than the common
one; the complete n-ary tree when n is even; trees for which exactly one vertex has even
degree. She conjectures that all trees with p 6≡ 2 (mod 4) vertices are line-graceful and
proved this conjecture for p ≤ 9.

Gnanajothi [256] has investigated the line-gracefulness of several graphs obtained
from stars. In particular, the graph obtained from K1,4 by subdividing one spoke to
form a path of even order (counting the center of the star) is line-graceful; the graph
obtained from a star by inserting one vertex in a single spoke is line-graceful if and
only if the star has p 6≡ 2 (mod 4) vertices; the graph obtained from K1,n by replacing
each spoke with a path of length m (counting the center vertex) is line-graceful in the
following cases: n = 2; n = 3 and m 6≡ 3 (mod 4); m is even and mn+ 1 ≡ 0 (mod 4).

Gnanajothi studied graphs obtained by joining disjoint graphs G and H with an
edge. She proved such graphs are line-graceful in the following circumstances: G = H;
G = Pn, H = Pm and m+n 6≡ 0 (mod 4); and G = Pn⊙K1, H = Pm⊙K1 and m+n 6≡ 0
(mod 4).

6.5 Difference Graphs
Analogous to a sum graph, Harary [275] calls a graph a difference graph if its vertices
can be labeled with positive integers such that the positive difference of the endpoints
of every edge is also a vertex label. Bloom, Hell, and Taylor [114] have shown that
the following graphs are difference graphs: trees, Cn, Kn, Kn,n, Kn,n−1, pyramids, and
n-prisms. Gervacio [252] proved that wheels Wn are difference graphs if and only if
n = 3, 4, or 6. Sonntag [586] proved that cacti (that is, graphs in which every edge
is contanied in at most one cycle) with girth at least 6 are difference graphs and he
conjectures that all cacti are difference graphs.

6.6 Radio Labelings
In 2001 Chartrand, Erwin, Zhang, and Harary [163] were motivated by regulations for
channel assignments of FM radio stations to introduce radio labelings of graphs. A radio
labeling of a connected graph G is an injection c from the vertices of G to the natural
numbers such that

d(u, v) + |c(u)− c(v)| ≥ 1 + diam(G)

for every two distinct vertices u and v of G. The radio number of c, rn(c), is the
maximum number assigned to any vertex of G. The radio number of G, rn(G), is the
minimum value of rn(c) taken over all radio labelings c of G. Chartrand et al. and
Zhang [667] gave bounds for the radio numbers of cycles. The exact values for the radio
numbers for paths and cycles were reported by Liu and Zhu [413] as follows: for odd
n ≥ 3, rn(Pn) = (n − 1)2/2 + 2; for even n ≥ 4, rn(Pn) = n2/2 − n + 1; rn(C4k) =



the electronic journal of combinatorics, 5 (2005), #DS6 106

(k + 2)(k − 2)/2 + 1; rn(C4k+1) = (k + 1)(k − 1)/2; rn(C4k+2) = (k + 2)(k − 2)/2 +
1; rn(C4k+3) = (k + 2)(k− 1)/2. However, Chartrand, Erwin, and Zhang [162] obtained
different values than Liu and Zhu for P4 and P5. Chartrand, Erwin, and Zhang [162]

proved: rn(Pn) ≤
(
n− 1
2

)

+ n/2 + 1 when n is even; rn(Pn) ≤
(
n
2

)

+ 1 when n

is odd; rn(Pn) < rn(Pn+1) (n > 1); for a connected graph G of diameter d, rn(G) ≥
(d+ 1)2/4 + 1 when d is odd; and rn(G) ≥ d(d+ 2)/4 + 1 when d is even.

Chartrand, Erwin, Zhang, and Harary [163] proved rn(Kn1,n2,...,nk
) = n1 +n2 + · · ·+

nk + k − 1 and if G is a connected graph of order n and diameter 2, then n ≤ rn(G) ≤
2n − 2 and that for every pair of integers k and n with n ≤ k ≤ 2n − 2, there exists
a connected graph of order n and diameter 2 with rn(G) = k. They further provide a
characterization of connected graphs of order n and diameter 2 with prescribed radio
number.

Liu [412] has found lowers bounds for the radio numbers of spiders (see §5.2 for the
definition) in terms of the lengths of their legs.

6.7 Representations of Graphs modulo n
In 1989 Erdős and Evans [211] defined a representation modulo n of a graph G with
vertices {v1, v2, . . . , vr} as a set {a1, . . . , ar} of distinct, nonnegative integers each less
than n satisfying gcd(ai− aj, n) = 1 if and only if vi is adjacent to vj. They proved that
every finite graph can be represented modulo some positive integer. The representation
number, Rep(G), is smallest such integer. Obviously the representation number of a
graph is prime if and only if a graph is complete. Evans, Fricke, Maneri, McKee, and
Perkel [215] have shown that a graph is representable modulo a product of a pair of
distinct primes if and only if the graph does not contain an induced subgraph isomorphic
to K2 ∪ 2K1, K3 ∪ K1, or the complement of a chordless cycle of length at least five.
Nešetřil and Pultr [463] showed that every graph can be represented modulo a product of
some set of distinct primes. Evans et al. [215] proved that if G is representable modulo n
and p is a prime divisor of n, then p ≥ χ(G). Evans, Isaak, and Narayan [216] determined
representation numbers for specific families as follows (here we use qi to denote the ith
prime and for any prime pi we use pi+1, pi+2, . . . , pi+k to denote the next k primes larger
than pi): Rep(Pn) = 2 · 3 · · · · · q

⌈log
2
(n−1)⌉

; Rep(C4) = 4 and for n ≥ 3, Rep(C2n) =

2 · 3 · · · · · q
⌈log

2
(n−1)⌉+1

; Rep(C5) = 3 · 5 · 7 = 105 and for n ≥ 4 and not a power of 2,

Rep(C2n+1) = 3 ·5 · · · · ·q
⌈log

2
n⌉+1

; if m ≥ n ≥ 3, then Rep(Km−Pn) = pipi+1 where pi is

the smallest prime greater than or equal to m− n = ⌈n/2⌉; if m ≥ n ≥ 4, and pi is the
smallest prime greater than or equal to m−n = ⌈n/2⌉ then Rep(Km−Cn) = qiqi+1 if n
is even and Rep(Km−Cn) = qiqi+1qi+2 if n is odd; if n ≤ m−1, then Rep(Km−K1,n) =
psps+1 · · · ps+n−1 where ps is the smallest prime greater than or equal to m−1; Rep(Km)
is the smallest prime greater than or equal to m; Rep(nK2) = 2 · 3 · · · · q

⌈log
2
n⌉+1

; if

n,m ≥ 2, then Rep(nKm) = pipi+1 · · · pi+m−1, where pi is the smallest prime satisfying
pi ≥ m, if and only if there exists a set of n − 1 mutually orthogonal Latin squares of
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order m; Rep(mK1) = 2m; if t ≤ (m − 1)!, then Rep(Km + tK1) = psps+1 · · · ps+m−1

where ps is the smallest prime greater than or equal to m. Narayan [462] proved that
for r ≥ 3 the maximum value for Rep(G) over all graphs of order r is psps+1 · · · ps+r−2,
where ps is the smallest prime that is greater than or equal to r − 1.

Evans [214] used matries over the additive group of a finite field to obtain various
bounds for the representation number of graphs of the form nKm. Among them are
Rep(4K3) = 3 · 5 · 7 · 11; Rep(7K5) = 5 · 7 · 11 · 13 · 17 · 19 · 23; and Rep((3q− 1)/2)Kq) ≤
pqpq+1 · · · p(3q−1)/2) where q is a prime power with q ≡ 3 mod 4, pq is the smallest prime
greater than or equal to q, and the remaining terms are the next consecutive (3q− 3)/2
primes; Rep(2q−2)Kq) ≤ pqpq+1 · · · p(3q−3)/2) where q is a prime power with q ≡ 3 mod 4,
and pq is the smallest prime greater than or equal to q; Rep((2q−2)Kq) ≤ pqpq+1 · · · p2q−3.

In [461] Narayan asked for the values of Rep(C2k+1) when k ≥ 3 and Rep(G) when G
is a complete multipartite graph or a disjoint union of complete graphs. He also asked
about the behavior of the representation number for ramdom graphs.

6.8 k-sequential Labelings
In 1981 Bange, Barkauskas, and Slater [71] defined a k-sequential labeling f of a graph
G(V,E) as one for which f is a bijection from V ∪ E to {k, k + 1, . . . , |V ∪ E|+ k − 1}
such that for each edge xy in E, f(xy) = |f(x) − f(y)|. This generalized the notion
of simply sequential where k = 1 introduced by Slater. Bange, Barkauskas, and Slater
showed that cycles are 1-sequential and if G is 1-sequential then G + K1 is graceful.
Hegde [291] proved that every graph can be embedded as an induced subgraph of a
1-sequential graph. Hegde and Shetty [295] have shown that every Tp-tree (see §4.2 for
the definition) is 1-sequential. In [575], Slater proved: Kn is 1-sequential if and only
if n ≤ 3; for n ≥ 2, Kn is not k-sequential for any k ≥ 2; and K1,n is k-sequential if
and only if k divides n. Acharya and Hegde [16] proved: If G is k-sequential then k is
at most the independence number of G; P2n is n-sequential for all n and P2n+1 is both
n-sequential and (n + 1)-sequential for all n; Km,n is k-sequential for k = 1,m, and
n; Km,n,1 is 1-sequential; and the join of any caterpillar and Kt is 1-sequential. Acharya
[11] showed that if G(E, V ) is an odd graph with |E|+ |V | ≡ 1 or 2 (mod 4) when k is
odd or |E|+ |V | ≡ 2 or 3 (mod 4) when k is even, then G is not k-sequential. Acharya
also observed that as a consequence of results of Bermond, Kotzig, and Turgeon [97] we
have: mK4 is not k-sequential for any k when m is odd and mK2 is not k-sequential
for any odd k when m ≡ 2 or 3 (mod 4) or for any even k when m ≡ 1 or 2 (mod 4).
He further noted that Km,n is not k-sequential when k is even and m and n are odd,
whereas Km,k is k-sequential for all k. Acharya [11] points out that the following result
of Slater’s [576] for k = 1 linking k-graceful graphs and k-sequential graphs holds in
general: A graph is k-sequential if and only if G + v has a k-graceful labeling f with
f(v) = 0. Slater [575] also proved that a k-sequential graph with p vertices and q > 0
edges must satisfy k ≤ p − 1. Hegde [291] proved that every graph can be embedded
as an induced subgraph of a simply sequential graph. In [11] Acharya conjectured that
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if G is a connected k-sequential graph of order p with k > ⌊p/2⌋, then k = p − 1 and
G = K1,p−1 and that, except for K1,p−1, every tree in which all vertices are odd is k-
sequential for all odd positive integers k ≤ p/2. Hegde [291] gave counterexamples for
both of these conjectures.

6.9 IC-colorings
For a subgraph H of a graph G with vertex set V and a coloring f from V to the
natural numbers define fs(H) = Σf(v) over all v ∈ H. The coloring f is called an
IC-coloring if the induced mapping if for any integer k between 1 and fs(G) there is a
connected subgraph H of G such that fs(H) = k. The IC-index of a graph G, M(G),
is max{S(f)| f is an IC-coloring of G}. Salehi, Lee, and Khatirinejad [497] obtained
the following: M(Kn) = 2n − 1; for n ≥ 2, M(K1,n) = 2n + 2; if ∆ is the maximum
degree of a connected graph G, then M(G) ≥ 2∆ +2; if ST (n; 3n) is the graph obtained
by identifying the end points of n paths of length 3, ST (n; 3n) is at least 3n + 3 (they
conjecture that equality holds for n ≥ 4); for n ≥ 2, M(K2,n) = 3 · 2n + 1; M(Pn) ≥
(2 + ⌊n/2⌋)(n − ⌊n/2⌋) + ⌊n/2⌋ − 1; for m,n ≥ 2, the IC-index of the double star
DS(m,n) is at least (2m−1 + 1)(2n−1 + 1) (they conjecture that equality holds); for
n ≥ 3, n(n + 1)/2 ≤ M(Cn) ≤ n(n − 1) + 1; and for n ≥ 3, 2n + 2 ≤ M(Wn) ≤
2n + n(n − 1) + 1. They pose the following open problems: find the IC-index of the
graph obtained by identifying the end points of n paths of length b; find the IC-index
of the graph obtained by identifying the end points of n paths of lengths b1, b2, . . . , bn;
find the IC-index of Km,n.

6.10 Binary Labelings
In 1996 Caccetta and Jia [142] introduced binary labelings of graphs. Let G = (V,E)
be a graph. A mapping f : E 7→ {0, 1}m is called an M-coding if the induced mapping
g : V 7→ {0, 1}m, defined as g(v) =

∑

u∈V, uv∈E f(uv) is injective, where the summation
is modulo 2. An M-coding is called positive if the zero vector is not assigned to an edge
and a vertex of G. Cacetta and Jia show that the minimal m for a positive M-coding
equals k + 1 if |V | ∈ {2k, 2k − 2, 2k − 3} and k otherwise, where k = ⌈log2 |V |⌉.

6.11 Average Labelings
In 1997 Harminc [279] introduced a new kind of labeling in an effort to characterize
forests and graphs without edges. Let G = (V,E) be a graph. A mapping f : V 7→ N
is called average labeling if for any (v, u), (u, w) ∈ E one has f(u) = (f(v) + f(w))/2. A
labeling is called nontrivial if any connected component of G (excluding isolated vertices)
has at least two differently labeled vertices. Harminc provides three results towards
the characterization of hereditary graphs properties in terms of average labelings. In
particular, all maximal connected subgraphs of G are exactly paths (i.e., G is a linear
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forest) if and only if there exists a nontrivial average labeling of G. He also characterizes
forests and graphs without edges by introducing a bit more complicated average-type
labelings. In 2001 Harminc and Soták [280] gave a characterization of all non-complete
connected graphs that have a non-trivial average labeling.

6.12 Sequentially Additive Graphs
Bange, Barkauskas, and Slater [72] defined a k-sequentially additive labeling f of a graph
G(V,E) to be a bijection from V ∪ E to {k, . . . , k + |V ∪ E| − 1} such that for each
edge xy, f(xy) = f(x) + f(y). They proved: Kn is 1-sequentially additive if and only
if n ≤ 3; C3n+1 is not k-sequentially additive for k ≡ 0 or 2 (mod 3); C3n+2 is not
k-sequentially additive for k ≡ 1 or 2 (mod 3); Cn is 1-sequentially additive if and only
if n ≡ 0 or 1 (mod 3); and Pn is 1-sequentially additive. They conjecture that all trees
are 1-sequentially additive. Hegde [292] proved that K1,n is k-sequentially additive if
and only if k divides n.

Acharya and Hegde [18] have generalized k-sequentially additive labelings by allowing
the image of the bijection to be {k, k+d, . . . , (k+|V ∪E|−1)d}. They call such a labeling
additively (k, d)-sequential.

6.13 Divisor Graphs
G. Santhosh and G. Singh [501] call a graph G(V,E) a divisor graph if V is a set of
integers and uv ∈ E if and only if u divides v or vice versa. They prove the following are
divisor graphs: trees; mKn; induced subgraphs of divisor graphs; Hm,n (see Section 5.7);
the one-point union of complete graphs of different orders; complete bipartite graphs;
Wn for n even and n > 2; and Pn + Kt. They also prove that Cn (n ≥ 4) is a divisor
graph if and only if n is even and if G is a divisor graph then for all n so is G+Kn.

6.14 Strongly Multiplicative Graphs
Beineke and Hegde [88] call a graph with p vertices strongly multiplicative if the vertices
of G can be labeled with distinct integers 1, 2, . . . , p so that the labels induced on the
edges by the product of the end vertices are distinct. They prove the following graphs
are strongly multiplicative: trees; cycles; wheels; Kn if and only if n ≤ 5; Kr,r if and
only if r ≤ 4; and Pm×Pn. They then consider the maximum number of edges a strongly
multiplicative graph on n vertices can have. Denoting this number by λ(n), they show
that λ(4r) ≤ 6r2, λ(4r+1) ≤ 6r2+4r, λ(4r+2) ≤ 6r2+6r+1, and λ(4r+3) ≤ 6r2+10r+3.
It remains an open problem to find a nontrivial lower bound for λ(n).

Seoud and Zid [523] prove the following graphs are multiplicative: Wheels; rKn for
all r and n at most 5; rKn for r ≥ 2 and n = 6 or 7; rKn for r ≥ 3 and n = 8 or 9; K4,r

for all r; and the corona of Pn and Km for all n and 2 ≤ m ≤ 8.
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6.15 Strongly ⋆-graphs
A variation of strong multiplicity of graphs is a strongly ⋆-graph. A graph of order n is
said to be a strongly ⋆-graph if its vertices can be assigned the values 1, 2, . . . , n in such
a way that, when an edge whose vertices are labeled i and j is labeled with the value
i+ j + ij, all edges have different labels. Adiga and Somashekara [20] have shown that
all trees, cycles, and grids are strongly ⋆-graphs. They further consider the problem of
determining the maximum number of edges in any strongly ⋆-graph of given order and
relate it to the corresponding problem for strongly multiplicative graphs.

6.16 Sigma Labelings
Vilfred and Jinnah [621] call a labeling f from V (G) to {1, 2, . . . , |V (G)|} a sigma labeling
if for every vertex u the sum of all f(v) such that v is adjacent to u is a constant
independent of u. This notion was first introduced by Vilfred in his Ph. D. thesis in
1994. In [621] Vilfred and Jinnah give a number of necessary conditions for a graph to
have a sigma labeling. One of them is that if u and v are vertices of a graph with a
sigma labeling then the order of the symmetric difference of N(u) and N(v) is not 1 or
2. This condition rules out a large class of graphs as having sigma labelings. Vilfred
and Jinnah raise a number of open questions: Does there exist connected graphs that
have sigma labelings other than complete multipartite graphs (in [620] it is shown that
K2,2,...,2 has a sigma labeling); Which complete multipartite graphs have sigma labelings;
Is it true that Pm×Cn (m > 1) does not have a sigma labeling; Is every graph an induced
subgraph of a graph with a sigma labeling (they show that every graph is a subgraph of
a graph with a sigma labeling).

6.17 Set Graceful and Set Sequential Graphs
The notions of set graceful and set sequential graphs were introduced in by Acharaya in
1983. A graph is called set graceful if there is an assignment of nonempty subsets of a
finite set to the vertices and edges of the graph so that the value given to each edge is the
symmetric difference of the sets assigned to the endpoints of the edge, the assignment of
sets to the vertices is injective and the assignment to the edges is bijective. A graph is
called set sequential if there is an assignment of nonempty subsets of a finite set to the
vertices and edges of the graph so that the value given to each edge is the symmetric
difference of the sets assigned to the endpoints of the edge and the the assignment of sets
to the vertices and the edges is bijective. The following has been shown: no cycle is set
sequential [17]; a necessary condition for Kn to be set sequential is the n has the form
(
√
2m+3 + 7− 1)/2 for some m [17]; a necessary condition for Ka,b,c to be set sequential

is that a, b, and c cannot have the same parity; K2,b,c is not set sequential when b and c
are odd [294]; Pn (n > 3) is not set graceful [294]; no theta graph is set graceful [294];
the complete nontrivial n-ary tree is set sequential if and only if n + 1 is a power of 2
and the number of levels is 1 [294]; a tree is set sequential graceful if and only if it is
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set graceful [294]; every graph can be embedded as an induced subgraph of a connected
set sequential graph [294]; every graph can be embedded as an induced subgraph of a
connected set graceful graph [294].
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Discrete Math., 207 (1999) 271-276.

[181] P. Deb and N. B. Limaye, On elegant labelings of triangular snakes, J. Combin.
Inform. System Sci., 25 (2000) 163–172.

[182] P. Deb and N. B. Limaye, Some families of elegant and harmonius graphs, Ars
Combin., 61 (2001) 271-286.

[183] P. Deb and N. B. Limaye, On harmonius labelings of some cycle related graphs,
Ars Combin., 65 (2002) 177–197.

[184] C. Delorme, Two sets of graceful graphs, J. Graph Theory, 4 (1980) 247-250.

[185] C. Delorme, M. Maheo, H. Thuillier, K. M. Koh, and H. K. Teo, Cycles with a
chord are graceful, J. Graph Theory, 4 (1980) 409-415.

[186] Y. X. Deng, Harmoniousness of the graphs Cn +Kt, J. Math. Res. Exposition, 15
(1995), suppl., 79–81.

[187] G. Denham, M.G. Leu, and A. Liu, All 4-stars are Skolem-graceful, Ars Combin.,
36 (1993) 183-191.

[188] T. Deretsky, S.M. Lee, and J. Mitchem, On vertex prime labelings of graphs,
in Graph Theory, Combinatorics and Applications Vol. 1, J.Alavi, G. Chartrand,
O. Oellerman, and A. Schwenk, eds., Proceedings 6th International Conference
Theory and Applications of Graphs (Wiley, New York, 1991) 359-369.

[189] U.Derings and H.Hünten, Magic graphs - A new characterization, Report No.
83265 - OR, Universität Bonn April 1983, ISSN 0724-3138.

[190] J. Devraj, On consecutive labelings of ladder graphs, preprint.

[191] A. T. Diab, Generalizations of some existing results on cordial graphs, preprint.

[192] J. Doma, Unicyclic Graceful Graphs, M. S. Thesis, McMaster Univ., 1991.

[193] D. Donovan, S. El-Zanati, C. Vanden Eynden, and S. Sutinuntopas, Labelings of
unions of up to four uniform cycles, Australas. J. Combin., 29 (2004), 323–336.

[194] M. Doob, On the construction of magic graphs, Congress Numer., 10 (1974) 361–
374.

[195] M. Doob, Generalizations of magic graphs, J. Combin. Theory, Ser. B 17 (1974)
205-217.

[196] M. Doob, Characterizations of regular magic graphs, J. Combin. Theory, Ser. B,
25 (1978) 94–104.

[197] A. Draganova, personal communication.

[198] G. M. Du, Cordiality of complete k-partite graphs and some special graphs,
Neimenggu Shida Xuebao Ziran Kexue Hanwen Ban, (1997) 9–12.

[199] G. Duan and Y. Qi, k-gracefulness of two classes of graphs, (Chinese) J. Zhengzhou
Univ. Nat. Sci. Ed., 34 (2002) 36–38, 49.



the electronic journal of combinatorics, 5 (2005), #DS6 121

[200] M. Dufour, Sur la Decomposition d’un Graphe Complet en Arbres Isomorphes,
Ph. D. Thesis, Universite de Montreal, 1995.

[201] P. Eldergill, Decomposition of the Complete Graph with an Even Number of Ver-
tices, M. Sc. Thesis, McMaster University, 1997.

[202] M. N. Ellingham, Sum graphs from trees, Ars Combin., 35 (1993) 335–349.

[203] S. El-Zanati, H.-L. Fu, and C.-L. Shiue, A note on the α-labeling number of
bipartite graphs, Discrete Math., 214 (2000) 241-243.

[204] S. El-Zanati and C. Vanden Eynden, Decompositions of Km,n into cubes, J. Com-
bin. Designs, 4 (1996) 51-57.

[205] S. El-Zanati and C. Vanden Eynden, On graphs with strong α-valuations, Ars
Combin., 56 (2000) 175–188.

[206] S. El-Zanati and C. Vanden Eynden, On α-valuations of disconnected graphs, Ars
Combin., 61 (2001) 129-136.

[207] S. El-Zanati, M. Kenig, and C. Vanden Eynden, Near α-labelings of bipartite
graphs, Australasian J. Combin., 21 (2000) 275-285.

[208] S. El-Zanati, C. Vanden Eynden, and N. Punnim, On the cyclic decomposition of
complete graphs into bipartite graphs, Australasian J. Combin., 24 (2001) 209-
219.

[209] H. Enomoto, A. S. Llado, T. Nakamigawa, and G. Ringel, Super edge-magic
graphs, SUT J. Math., 34 (1998) 105–109.

[210] H. Enomoto, K. Masuda, and T. Nakamigawa, Induced graph theorem on magic
valuations, Ars Combin., 56 (2000) 25-32.
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atický Casopis, 15 (1965) 229-233.

[346] A. Kotzig, β-valuations of quadratic graphs with isomorphic components, Utilitas
Math., 7 (1975) 263-279.

[347] A. Kotzig, Decomposition of complete graphs into isomorphic cubes, J. Combin.
Theory, Series B, 31 (1981) 292-296.



the electronic journal of combinatorics, 5 (2005), #DS6 128

[348] A. Kotzig, Recent results and open problems in graceful graphs, Congress. Numer.,
44 (1984) 197-219.

[349] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13
(1970) 451-461.

[350] A. Kotzig and A. Rosa, Magic valuations of complete graphs, Centre de Recherches
Mathematiques, Universite de Montreal, (1972) CRM-175.

[351] A. Kotzig and J. Turgeon, β-valuations of regular graphs with complete compo-
nents, Colloq. Math. Soc. János Bolyai 18, Combinatorics, Keszthély, Hungary,
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[573] Slamin, M. Bača, Y.Lin, M. Miller, and R. Simanjuntak, Edge-magic total labek-
ings of wheels, fans and friendship graphs, preprint.



the electronic journal of combinatorics, 5 (2005), #DS6 139

[574] Slamin and M. Miller, On two conjectures concerning vertex-magic total labelings
of generalized Petersen graphs, Bull. Inst. Combin. Appl., 32 (2001) 9–16.

[575] P. J. Slater, On k-sequential and other numbered graphs, Discrete Math., 34 (1981)
185-193.

[576] P. J. Slater, On k-graceful graphs, Proc. of the 13th S.E. Conf. on Combinatorics,
Graph Theory and Computing, (1982) 53-57.

[577] P. J. Slater, On k-graceful, locally finite graphs, J. Combin. Theory, Series B, 35
(1983) 319-322.

[578] P. J. Slater, Problems in graph theory: graceful and sequential numbering of
infinite graphs, Southeast Asian Bull. Math., 9 (1985) 15-22.

[579] P. J. Slater, On k-graceful, countably infinite graphs, Discrete Math., 61 (1986)
293-303.

[580] D. Small, Regular (even) spider graphs are edge-graceful, Congrss. Numer., 74
(1990) 247-254.

[581] W. Smyth, Sum graphs of small sum number, Colloquia Mathematica Societatis
János Bolyai 60 (1991) 669-678.

[582] W. Smyth, Sum graphs: New results, new problems, Bull. Inst. Combin. Appl., 2
(1991) 79-81.

[583] H. Snevily, Combinatorics of Finite Sets, Ph.D. Thesis, U. Illinois, 1991.

[584] H. Snevily, New families of graphs that have α-labelings, Discrete Math., 170
(1997) 185-194.

[585] M. Sonntag, Antimagic vertex-labelling of hypergraphs, Discrete Math., 247
(2002) 187-199.

[586] M. Sonntag, Difference labelling of cacti, Discuss. Math. Graph Theory, 23 (2003)
55–65.

[587] M. Sonntag and H.-M. Teichert, Sum numbers of hypertrees, Discrete Math., 214
(2000) 285-290.

[588] M. Sonntag and H.-M. Teichert, On the sum number and integral sum number of
hypertrees and complete hypergraphs, Discrete Math., 236 (2001) 339-349.
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Index
(k, d)-graceful labeling, 34
(m,n)-gon star, 100
Ek-cordial, 45
H-cordial, 44
Hn-cordial, 44
Tp-tree, 34
α-labeling

eventually, 30
free, 32
near, 32
strong, 31
weakly, 31, 40

α-labeling, 14, 18, 28, 36, 40
α-size, 31
α-valuation, 9, 55
β-valuation, 4
γ-labeling, 39
ρ̂-labelings, 37
ρ-valuation, 38
ρ+-labeling, 39
θ-labeling, 39
ρ̃-labelings, 40
f -permutation graph, 19
k-cordial labeling, 45
k-fold G, 66
k-graceful, 33
kCn-snake, 38

linear, 38
n-cone, 7
n-cube, 12, 28
n-point suspension, 7
sum∗ number, 98

A-cordial graph, 45
abbreviated double tree of T , 59
adjacency matrix, 38
almost graceful labeling, 38
almost-bipartite graph, 39
antiprism, 84, 86, 87

bamboo tree, 6, 37
banana tree, 6, 37, 41
bigraceful graph, 19
bipartite labeling, 31
bisequential graph, 50
bistar, 63
block-cutpoint, 30, 38
book, 4, 9, 12, 37, 63, 65, 101

generalized, 101
stacked, 12

boundary value, 30

cactus
k-angular, 41
triangular, 9

Cartesian product, 10, 41, 42, 102
caterpillar, 6, 28, 32, 37, 41, 49, 63
chain graph, 30
chord, 8, 101
closed helm, 7
complete

n-partite graph, 42, 94
bipartite graph, 9, 12
graph, 12
tripartite graph, 12

component, 102
composition, 12, 41, 102
convex polytope, 81, 86
cordial graph, 42
cordial labeling, 41
corona, 62
critical number, 30
crown, 10, 37, 48, 49, 95, 101, 104
cube, 11, 19
cubic graph, 66
cycle, 4, 38, 97, 101
cycle with a Pk-chord, 8
cyclic G-decomposition, 32
cyclic decomposition, 38
cylinders, 81
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decomposition, 4, 28, 32, 37, 39
deficiency

edge-magic, 65
super edge-magic, 65

difference graph, 105
disconnected graph, 14
disjoint union, 14, 37
divisor graph, 109
dodecahedron, 19
double tree, 58
dragon, 9
Dutch t-windmill, 9
Dutch windmill, 57

edge magic strength, 57
edge reduced

integral sum number, 97
sum number, 97

edge-decomposition, 32
edgeamal, 101
elegant labeling, 52
elem. parallel transformation, 34, 52
Eulerian graph, 46

face, 81, 86
fan, 41, 52, 56, 62, 63, 65, 76, 81, 100
firecracker, 6
flag, 43
flower, 7, 100
forest, 65
free α-labeling, 32
friendship graph, 9, 41, 64, 75, 76, 81

gear graph, 7
generalized

book, 101
bundle, 44
fan, 44
wheel, 44

graceful graph, 4
gracesize, 31
gracious k-labeling, 32
gracious labeling, 32

graph
(a, d)-antimagic, 85
(k, d)-balanced, 34
E-cordial, 104
Ek-cordial, 45
H-cordial, 44
Hn-cordial, 44
f -permutation, 19
g-graph, 97
k- magic, 58
k-balanced, 47
t-uniform homeomorph, 43
A-cordial, 45
almost-bipartite, 39
antimagic, 85
arbitrarily graceful, 33
arithmetic, 51
bigraceful, 19
bisequential, 50
complete, 12
composition, 12
cordial, 65
countable infinite, 62
directed, 5
disconnected, 14
divisor, 109
edge-magic, 66
graceful, 4
H-elegant, 53
H-harmonious, 53
Hamming-graceful, 48
harmonious, 4
ideal magic, 63
joins, 16
line-graceful, 104
minimally k-equitable, 47
node-graceful, 36
prime, 100
pseudo-magic, 57
replicated, 18
semi-magic, 56
set graceful, 110
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set sequential, 110
shell-type, 8
simply sequential, 107
Skolem labeled, 36
splitting, 18
strong magic, 63
strongly c-elegant, 55
strongly k-indexable, 65
strongly 1-harmonious, 65
strongly felicitous, 55
strongly multiplicative, 109
supermagic, 56
total, 18
totally magic, 76
unicyclic, 7, 40
weak magic, 63

graph labeling, 4
grid, 10, 33

Hamming-graceful graph, 48
harmonious graph, 4
Heawood graph, 19, 32
helm, 7, 43, 100

closed, 43
generalized, 43

Herschel graph, 19, 85
hexagonal lattice, 81
honeycomb graph, 87
host graph, 30
hypercycle, 96

strong, 96
hypergraph, 57, 66, 87, 96
hyperwheel, 96

IC-coloring, 108
IC-index, 108
icosahedron, 19
incidental, 98
integer-magic spectrum, 58
integral radius, 96
integral sum

graphs, 95
number, 96

tree, 95

label, 4
labeling

(a, d)- vertex-antimagic edge, 85
(a, d)-edge-antimagic total, 84
(a, d)-edge-antimagic vertex, 84
(a, d)-face antimagic, 86
(a, d)-indexable, 84
(a, d)-vertex-antimagic total, 84
(k, d)-arithmetic, 50
(k, d)-graceful, 34
d-antimagic of type (1, 1, 1), 87
k-cordial, 45
k-edge graceful, 104
k-equitable, 46, 47
k-sequential, 107
k-sequentially additive, 109
1-vertex magic vertex, 80
additively (k, d)-sequential, 109
additively graceful, 50
almost graceful, 38
antimagic, 85
average, 108
balanced, 28
bigraceful, 32
bipartite, 31
complete k-equitable, 48
consecutive, 55
cordial, 41
E-cordial, 104
edge-graceful, 102
edge-magic, 66
edge-magic total, 62
elegant, 52
felicitous, 54
friendly, 46
gracious, 32
indexable, 51
interlaced, 28
line-graceful, 104
magic, 56, 57
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consecutive, 81
of type (0,1,1), 81
of type (1,0,0), 81
of type (1,1,0), 81
of type (1,1,1), 81

near-elegant, 52
nearly graceful, 37
nontrivial, 108
odd graceful, 36
odd sequential, 50
one modulo three graceful, 40
optimal k-equitable, 48
optimal sum graph, 94
polychrome, 54
prime, 100
product antimagic, 87
product edge-antimagic, 88
product edge-magic, 88
product magic, 87
pseudograceful, 39
radio, 105
ramdomly cordial, 46
randomly cordial, 46
range-relaxed graceful, 40
semi-elegant, 52
sequential, 49
sigma, 110
simply sequential, 107
Skolem-graceful, 35
strongly c-harmonious, 49
strongly k-indexable, 51
strongly edge-magic, 63
strongly graceful, 31
strongly harmonious, 50
strongly indexable, 51
sum graph, 94
super edge-graceful, 104
super edge-magic, 63, 85
supermagic, 56, 65
total magic cordial, 83
totally magic, 76
triangular graceful, 40

vertex prime, 101
vertex-magic total, 75
vertex-relaxed graceful, 40

labeling number, 30
ladder, 10, 41, 49, 81, 101
level joined planar grid, 52
lobster, 6, 37, 38, 41
lotus inside a circle, 81

M-coding, 108
positive, 108

Möbius ladder, 11, 49, 56, 57, 81, 100,
103

magic square, 56
magic strength, 57
mod sum graph, 97
mod sum number, 97
mod sum* graph, 98
mod sum* number, 98
Mongolian tent, 11, 33
Mongolian village, 11, 33
multigraph, 65, 66, 102
multiple shell, 8

near α-labeling, 32
nearly graceful labeling, 37

odd graceful labeling, 36
olive tree, 6
one modulo three graceful labeling, 40
one-point union, 9, 13, 28, 37, 41, 42, 54,

101
optimal

sum graph, 94

parachutes, 85
path, 8, 52
path-union, 44
pendant edge, 30
perfect system of difference sets, 33
Petersen graph, 19

generalized, 17, 41, 63, 64, 75, 84, 85
planar bipyramid, 81
planar graph, 81, 86, 87
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Platonic family, 81
polyminoes, 33
prime graph, 100
prime labeling, 100
prism, 11, 75, 81, 84, 87
product graph, 94
pseudo-magic graph, 57
pseudograceful labeling, 39

radio number, 105
range-relaxed graceful labeling, 40
real sum graph, 94
regular graph, 56, 57, 63, 75, 80
replicated graph, 18
representation, 106
representation number, 106
root, 43
rooted tree, 37

saturated vertex, 95
sequential join, 30
shell, 8, 43

multiple, 8
shell graph, 46
sigma labeling, 110
Skolem labeled graph, 36
Skolem sequence, 6, 15
Skolem-graceful labelings, 35
snake, 9

n-polygonal, 10, 41
quadrilateral, 29
triangular, 38

spanning tree, 39
splitting graph, 18, 37
spum, 94
stable set, 19
star, 15, 17, 35, 41, 75, 105
strength

edge magic, 57
magic, 57, 63
maximum magic, 63

strong
α-labeling, 31

sum graph, 95
strongly ⋆-graph, 110
strongly graceful labeling, 31
subdivision, 6, 10, 37, 81
subgraph, 34
sum graph, 94

mod, 97
real, 94

sum graphs
integral, 95

sum number, 94
sum* graph, 98
sunflower, 43, 103
supersubdivision, 18

tadpoles, 9
theta graph, 53
torus grid, 11
total graph, 18
tree, 4, 6, 16, 62, 65, 66, 75, 85, 97

binary, 63
symmetrical, 6

triangular graceful labeling, 40
twig, 101

unicyclic graph, 9, 40
union, 14, 15, 32, 62, 64, 65, 75, 95, 100,

101

vertex prime labeling, 101
vertex-relaxed graceful labeling, 40

weak tensor product, 30, 32
weakly α-labeling, 31
web, 7

generalized, 63
weight, 87
wheel, 7, 41, 43, 49, 56, 62, 76, 81, 84,

85
windmill, 13, 43
wreath product, 54

Young tableau, 11, 33


