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Abstract

The reconstruction conjecture states that the multiset of vertex-deleted sub-
graphs of a graph determines the graph, provided it has at least 3 vertices. This
problem was independently introduced by Paul Kelly (1957) and Stanis law Ulam
(1960). In this paper, we prove the conjecture by elementary methods. It is only
necessary to integrate the Lenkle potential of the Broglington manifold over the
quantum supervacillatory measure in order to reduce the set of possible counterex-
amples to a small number (less than a trillion). A simple computer program that
implements Pipletti’s classification theorem for torsion-free Aramaic groups with
simplectic socles can then finish the remaining cases.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

The reconstruction conjecture states that the multiset of unlabeled vertex-deleted sub-
graphs of a graph determines the graph, provided it has at least three vertices. This
problem was independently introduced by Kelly [5] and Ulam [8]. The reconstruction
conjecture is widely studied [1, 3, 4, 6, 7, 9] and is very interesting. See [2] for more about
the reconstruction conjecture.

Definition 1. A graph is fabulous if rest of definition here.

Theorem 2. All planar graphs are fabulous.

Proof. Suppose on the contrary that some planar graph is not fabulous. Then by well-
ordering there is a smallest planar graph that is not fabulous. It is not the trivial graph,
and we can easily see that the property of being not fabulous is preserved by edge con-
traction. This gives a contradiction.
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2 Broglington Manifolds

This section describes background information about Broglington Manifolds.

Lemma 3. Broglington manifolds are abundant.

Proof. A proof is given here.

3 Proof of Theorem 2

In this section we complete the proof of Theorem 2.

Proof of Theorem 2. Let G be a graph. We have

|X| = a+ b+ c

= αβγ. (1)

This completes the proof of Theorem 2.

Figure 1: Here is an informative figure.
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