
Bartholdi Zeta Functions for Hypergraphs

Iwao SATO
Oyama National College of Technology,

Oyama, Tochigi 323-0806, JAPAN

e-mail: isato@oyama-ct.ac.jp

Submitted: Oct 22, 2006; Accepted: Dec 19, 2006; Published: Jan 3, 2007

Mathematical Subject Classification: 05C50, 15A15

Abstract

Recently, Storm [8] defined the Ihara-Selberg zeta function of a hypergraph, and
gave two determinant expressions of it. We define the Bartholdi zeta function of
a hypergraph, and present a determinant expression of it. Furthermore, we give
a determinant expression for the Bartholdi zeta function of semiregular bipartite
graph. As a corollary, we obtain a decomposition formula for the Bartholdi zeta
function of some regular hypergraph.

1 Introduction

Graphs and digraphs treated here are finite. Let G be a connected graph and D the
symmetric digraph corresponding to G. Set D(G) = {(u, v), (v, u) | uv ∈ E(G)}. For
e = (u, v) ∈ D(G), set u = o(e) and v = t(e). Furthermore, let e−1 = (v, u) be the inverse
of e = (u, v).

A path P of length n in D(or G) is a sequence P = (e1, · · · , en) of n arcs such that
ei ∈ D(G), t(ei) = o(ei+1)(1 ≤ i ≤ n − 1). If ei = (vi−1, vi) for i = 1, · · · , n, then we
write P = (v0, v1, · · · , vn−1, vn). Set | P |= n, o(P ) = o(e1) and t(P ) = t(en). Also, P

is called an (o(P ), t(P ))-path. We say that a path P = (e1, · · · , en) has a backtracking or
a bump at t(ei) if e−1

i+1 = ei for some i(1 ≤ i ≤ n − 1). A (v, w)-path is called a v-cycle
(or v-closed path) if v = w. The inverse cycle of a cycle C = (e1, · · · , en) is the cycle
C−1 = (e−1

n , · · · , e−1
1 ).

We introduce an equivalence relation between cycles. Two cycles C1 = (e1, · · · , em)
and C2 = (f1, · · · , fm) are called equivalent if fj = ej+k for all j. The inverse cycle of C

is not equivalent to C. Let [C] be the equivalence class which contains a cycle C. Let Br

be the cycle obtained by going r times around a cycle B. Such a cycle is called a multiple
of B. A cycle C is reduced if both C and C2 have no backtracking. Furthermore, a cycle
C is prime if it is not a multiple of a strictly smaller cycle. Note that each equivalence
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class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the
fundamental group π1(G, v) of G at a vertex v of G.

Let G be a connected graph. Then the cyclic bump count cbc(π) of a cycle π =
(π1, · · · , πn) is

cbc(π) =| {i = 1, · · · , n | πi = π−1
i+1} |,

where πn+1 = π1.
Bartholdi [1] introduced the Bartholdi zeta function of a graph. The Bartholdi zeta

function of G is defined by

ζ(G, u, t) =
∏

[C]

(1 − ucbc(C)t|C|)−1,

where [C] runs over all equivalence classes of prime cycles of G, and u, t are complex
variables with | u |, | t | sufficiently small.

If u = 0, then, since 00 = 1, the Bartholdi zeta function of G is the (Ihara) zeta
function of G(see [5]):

ζ(G, 0, t) = Z(G, t) =
∏

[C]

(1 − t|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G. Ihara [5] defined
zeta functions of graphs, and showed that the reciprocals of zeta functions of regular
graphs are explicit polynomials. A zeta function of a regular graph G associated with a
unitary representation of the fundamental group of G was developed by Sunada [9,10].
Hashimoto [4] treated multivariable zeta functions of bipartite graphs. Bass [2] generalized
Ihara’s result on the zeta function of a regular graph to an irregular graph G, and showed
that the reciprocal of the zeta function of G is given by

Z(G, t)−1 = (1 − t2)r−1 det(I − tA(G) + t2(DG − I)),

where r is the Betti number of G, and DG = (dij) is the diagonal matrix with dii =
deg G vi (V (G) = {v1, · · · , vn}). Stark and Terras [7] gave an elementary proof of this
formula, and discussed three different zeta functions of any graph. Various proofs of Bass’
Theorem were given by Kotani and Sunada [6], and Foata and Zeilberger [3].

Bartholdi [1] gave a determinant expression of the Bartholdi zeta function of a graph.

Theorem 1 (Bartholdi) Let G be a connected graph with n vertices and m unoriented
edges. Then the reciprocal of the Bartholdi zeta function of G is given by

ζ(G, u, t)−1 = (1 − (1 − u)2t2)m−n det(I− tA(G) + (1 − u)(DG − (1 − u)I)t2).

Storm [8] defined the Ihara-Selberg zeta function of a hypergraph. A hypergraph
H = (V (H), E(H)) is a pair of a set of hypervertices V (H) and a set of hyperedges E(H),
which the union of all hyperedges is V (H). A hypervertex v is incident to a hyperedge
e if v ∈ e. For a hypergraph H, its dual H∗ is the hypergraph obtained by letting its
hypervertex set be indexed by E(H) and its hyperedge set by V (H).
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A bipartite graph BH associated with a hypergraph H is defined as follows: V (BH) =
V (H) ∪ E(H) and v ∈ V (H) and e ∈ E(H) are adjacent in BH if v is incident to e. Let
V (H) = {v1, . . . , vn}. Then an adjacency matrix A(H) of H is defined as a mtarix whose
rows and columns are parameterized by V (H), and (i, j)-entry is the number of directed
paths in BH from vi to vj of length 2 with no backtracking.

Let H be a hypergraph. A path P of length n in H is a sequence P = (v1, e1, v2, e2, · · ·,
en, vn+1) of n+1 hypervertices and n hyperedges such that vi ∈ V (H), ej ∈ E(H), v1 ∈ e1,
vn+1 ∈ en and vi ∈ ei, ei−1 for i = 2, . . . , n − 1. Set | P |= n, o(P ) = v1 and t(P ) = vn+1.
Also, P is called an (o(P ), t(P ))-path. We say that a path P has a hyperedge backtracking
if there is a subsequence of P of the form (e, v, e), where e ∈ E(H), v ∈ V (H). A
(v, w)-path is called a v-cycle (or v-closed path) if v = w.

We introduce an equivalence relation between cycles. Such two cycles C1 = (v1, e1, v2,
· · · , em, v1) and C2 = (w1, f1, w2, · · · , fm, w1) are called equivalent if wj = vj+k and fj =
ej+k for all j. Let [C] be the equivalence class which contains a cycle C. Let Br be the
cycle obtained by going r times around a cycle B. Such a cycle is called a multiple of B.
A cycle C is reduced if both C and C2 have no hyperedge backtracking. Furthermore, a
cycle C is prime if it is not a multiple of a strictly smaller cycle.

The Ihara-Selberg zeta function of H is defined by

ζH(t) =
∏

[C]

(1 − t|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of H, and t is a
complex variable with | t | sufficiently small(see [8]).

Let H be a hypergraph with E(H) = {e1, . . . , em}, and let {c1, . . . , cm} be a set of
m colors, where c(ei) = ci. Then an edge-colored graph GHc is defined as a graph with
vertex set V (H) and edge set {vw | v, w ∈ V (H); v, w ∈ e ∈ E(H)}, where an edge vw is
colored ci if v, w ∈ ei.

Let GHo
c be the symmetric digraph corresponding to the edge-clored graph GHc. Then

the oriented line graph Ho
L = (VL, Eo

L) associated with GHo
c by

VL = D(GHo
c ), and Eo

L = {(ei, ej) ∈ D(GHo
c ) × D(GHo

c ) | c(ei) 6=
c(ej), t(ei) = o(ej)},

where c(ei) is the color assigned to the oriented edge ei ∈ D(GHo
c ). The Perron-Frobenius

operator T : C(VL) −→ C(VL) is given by

(Tf)(x) =
∑

e∈Eo(x)

f(t(e)),

where Eo(x) = {e ∈ Eo
L | o(e) = x} is the set of all oriented edges with x as their origin

vertex, and C(VL) is the set of functions from VL to the complex number field C.
Storm [8] gave two nice determinant expressions of the Ihara-Selberg zeta function of

a hypergraph by using the results of Kotani and Sunada [6], and Bass [2].
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Theorem 2 (Storm) Let H be a finite, connected hypergraph such that every hypervetex
is in at least two hyperedges. Then

ζH(t)−1 = det(I − tT ) = (1 − t)m−n det(I −
√

tA(BH) + tQBH
),

where n =| V (BH) |, m =| E(BH) | and QBH
= DBH

− I.

Furthermore, Storm [8] presented the Ihara-Selberg zeta function of a (d, r)-regular
hypergraph by using the results of Hashimoto [4].

In Section 2, we define the Bartholdi zeta function of a hypergraph, and present a
determinant expression of it. In Section 3, we give a decomposition formula (Theorem 4)
for the Bartholdi zeta function of semiregular bipartite graph. As a corollary, we obtain
a decomposition formula for the Bartholdi zeta function of some regular hypergraph. In
Section 4, we prove Theorem 4 by using an analogue of Hashimoto’s method [4].

2 Bartholdi zeta function of a hypergraph

Let H be a hypergraph. Then a path P = (v1, e1, v2, e2, · · · , en, vn+1) has a (broad)
backtracking or (broad) bump at e or v if there is a subsequence of P of the form (e, v, e)
or (v, e, v), where e ∈ E(H), v ∈ V (H). Furthermore, the cyclic bump count cbc(C) of a
cycle C = (v1, e1, v2, e2, · · · , en, v1) is

cbc(C) =| {i = 1, · · · , n | vi = vi+1} | + | {i = 1, · · · , n | ei = ei+1} |,

where vn+1 = v1 and en+1 = e1.
The Bartholdi zeta function of H is defined by

ζ(H, u, t) =
∏

[C]

(1 − ucbc(C)t|C|)−1,

where [C] runs over all equivalence classes of prime cycles of H, and u, t are complex
variables with | u |, | t | sufficiently small.

If u = 0, then the Bartholdi zeta function of H is the Ihara-Selberg zeta function of
H.

A determinant expression of the Bartholdi zeta function of a hypergraph is given as
follows:

Theorem 3 Let H be a finite, connected hypergraph such that every hypervetex is in at
least two hyperedges. Then

ζ(H, u, t) = ζ(BH, u,
√

t) = (1−(1−u)2t)−(m−n) det(I−
√

tA(BH)+(1−u)t(DBH
−(1−u)I))−1

where n =| V (BH) | and m =| E(BH) |.
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Proof. The argument is an analogue of Storm’s method [8].
At first, we show that there exists a one-to-one correspondence between equivalence

classes of prime cycles of length l in H and those of prime cycles of length 2l in BH , and
cbc(C) = cbc(C̃) for any prime cycle C in H and the corresponding cycle C̃ in BH .

Let C = (v1, e1, v2, . . . , vl, el, v1) be a prime cycle of length l in H. Then a cycle
C̃ = (v1, v1e1, e1, . . ., vl, vlel, el, elv1, v1) is a prime cycle of length 2l in BH . Thus, there
exists a one-to-one correspondence between equivalence classes of prime cycles of length
l in H and those of prime cycles of length 2l in BH .

Let C a prime cycle in H and C̃ a prime cycle corresponding to C in BH . Then there
exists a subsequence (v, e, v) (or (e, v, e)) in C if and only if there exists a subsequence
(v, ve, e, ev, v) (or (e, ev, v, ve, e)) in C̃. Thus, we have cbc(C) = cbc(C̃).

Therefore, it follows that

ζ(H, u, t) =
∏

[C]

(1 − ucbc(C)t|C|)−1 =
∏

[C̃]

(1 − ucbc(C̃)t|C̃|/2)−1 = ζ(BH , u,
√

t),

where [C] and [C̃] runs over all equivalence classes of prime cycles in H and BH , respec-
tively.

By Theorem 1, we have

ζ(H, u, t) = (1 − (1 − u)2t)−(m−n) det(I−
√

tA(BH) + (1 − u)t(DBH
− (1 − u)I))−1,

where n =| V (H) | and m =| E(H) |. 2

If u = 0, then Theorem 3 implies Theorem 2.

Corollary 1 Let H be a finite, connected hypergraph such that every hypervetex is in at
least two hyperedges. Then

ζ(H, u, t) = ζ(H∗, u, t).

Proof. By the fact that BH = BH∗. 2

3 Bartholdi zeta functions of (d, r)-regular hypergraphs

At first, we state a decomposition formula for the Bartholdi zeta function of a semiregular
bipartite graph. Hashimoto [4] presented a determinant expression for the Ihara zeta
function of a semiregular bipartite graph. We generalize Hashimoto’s result on the Ihara
zeta function to the Bartholdi zeta function.

A graph G is called bipartite, denoted by G = (V1, V2) if there exists a partition
V (G) = V1∪V2 of V (G) such that the vertices in Vi are mutually nonadjacent for i = 1, 2.
A bipartite graph G = (V1, V2) is called (q1+1, q2+1)-semiregular if deg Gv = qi+1 for each
v ∈ Vi(i = 1, 2). For a (q1 + 1, q2 + 1)-semiregular bipartite graph G = (V1, V2), let G[i] be
the graph with vertex set Vi and edge set {P : reduced path | | P |= 2; o(P ), t(P ) ∈ Vi}
for i = 1, 2. Then G[1] is (q1 + 1)q2-regular, and G[2] is (q2 + 1)q1-regular.

A determinant expression for the Bartholdi zeta function of a semiregular bipartite
graph is given as follows. For a graph G, let Spec(G) be the set of all eigenvalues of the
adjacency matrix of G.
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Theorem 4 Let G = (V1, V2) be a connected (q1 + 1, q2 + 1)-semiregular bipartite graph
with ν vertices and ε edges. Set | V1 |= n and | V2 |= m(n ≤ m). Then

ζ(G, u, t)−1 = (1 − (1 − u)2t2)ε−ν(1 + (1 − u)(q2 + u)t2)m−n

×
n

∏

j=1

(1 − (λ2
j − (1 − u)(q1 + q2 + 2u))t2 + (1 − u)2(q1 + u)(q2 + u)t4)

= (1 − (1 − u)2t2)ε−ν(1 + (1 − u)(q2 + u)t2)m−n det(In − (A[1] − ((q2 − 1)

+(q1 + q2 − 2)u + 2u2)In)t2 + (1 − u)2(q1 + u)(q2 + u)t4In)

= (1 − (1 − u)2t2)ε−ν(1 + (1 − u)(q1 + u)t2)n−m det(Im − (A[2] − ((q1 − 1)

+(q1 + q2 − 2)u + 2u2)Im)t2 + (1 − u)2(q1 + u)(q2 + u)t4Im),

where Spec(G) = {±λ1, · · · ,±λn, 0, · · · , 0} and A[i] = A(G[i])(i = 1, 2).

The proof of Theorem 4 is given in section 4.
A hypergraph H is a (d, r)-regular if every hypervertex is incident to d hyperedges,

and every hyperedge contains r hypervertices. If H is a (d, r)-regular hypergraph, then
the associated bipartite graph BH is (d, r)-semiregular. Let V1 = V (H), V2 = E(H) and
d ≥ r. Set n =| V1 | and m =| V2 |. Then we have A[1] = A(H) and A[2] = A(H∗). By
Theorems 3 and 4, we obtain the following result. Let Spec(B) be the set of all eigenvalues
of the square matrix B.

Theorem 5 Let H be a finite, connected (d, r)-regular hypergraph with d ≥ r. Set
n =| V (H) | and m =| E(H) |. Then

ζ(H, u, t)−1 = (1 − (1 − u)2t)ε−ν(1 + (1 − u)(r − 1 + u)t)m−n

×
n

∏

j=1

(1 − (λ2
j − (1 − u)(d + r − 2 + 2u))t + (1 − u)2(d − 1 + u)(r − 1 + u)t2)

= (1 − (1 − u)2t)ε−ν(1 + (1 − u)(r − 1 + u)t)m−n det(In − (A(H) − (r − 2

+(d + r − 4)u + 2u2)In)t + (1 − u)2(d − 1 + u)(r − 1 + u)t2In)

= (1 − (1 − u)2t)ε−ν(1 + (1 − u)(d − 1 + u)t)n−m det(Im − (A(H∗) − (d − 2

+(d + r − 4)u + 2u2)Im)t + (1 − u)2(d − 1 + u)(r − 1 + u)t2Im),

where ε = nd = mr, ν = n + m and Spec(A(H)) = {±λ1, · · · ,±λn, 0, · · · , 0}.

In the case of u = 0, we obtain Theorem 16 in [8].
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Corollary 2 (Storm) Let H be a finite, connected (d, r)-regular hypergraph with d ≥ r.
Set n =| V (H) |, m =| E(H) | and q = (d − 1)(r − 1). Then

ζH(t)−1 = (1 − t)ε−ν(1 + (r − 1)t)m−n det(In − (A(H) − r + 2)t + qt2)

= (1 − t)ε−ν(1 + (d − 1)t)n−m det(Im − (A(H∗) − d + 2)t + qt2),

where ε = nd = mr and ν = n + m.

4 A proof of Theorem 4

The argument is an analogue of Hashimoto’s method [4].
By Theorem 1, we have

ζ(G, u, t)−1 = (1 − (1 − u)2t2)ε−ν det(Iν − tA + (1 − u)t2(QG + uIν)).

Let V1 = {u1, · · · , un} and V2 = {v1, · · · , vm}. Arrange vertices of G in n + m blocks:
u1, · · · , un; v1, · · · , vm. We consider the matrix A = A(G) under this order. Then, let

A =

[

0 E
tE 0

]

,

where tE is the transpose of E.
Since A is symmetric, there exists a orthogonal matrix W ∈ O(m) such that

EW =
[

F 0
]

=









µ1 0 0 · · · 0
. . .

...
...

? µn 0 · · · 0









.

Now, let

P =

[

In 0
0 W

]

.

Then we have

tPAP =







0 F 0
tF 0 0
0 0 0






.

Furthermore, we have
tP(QG + uIν)P = QG + uIν.

Thus,

ζ(G, u, t)−1 = (1 − (1 − u)2t2)ε−ν(1 + (1 − u)(q2 + u)t2)m−n det

[

aIn −tF
−t tF bIn

]

= (1 − (1 − u)2t2)ε−ν(1 + (1 − u)(q2 + u)t2)m−n det

[

aIn 0
−t tF bIn − a−1t2 tFF

]

= (1 − (1 − u)2t2)ε−ν(1 + (1 − u)(q2 + u)t2)m−n det(abIn − t2 tFF),
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where a = 1 + (1 − u)(q1 + u)t2 and b = 1 + (1 − u)(q2 + u)t2.
Since A is symmetric, tFF is symmetric and positive semi-definite, i.e., the eigenvalues

of tFF are of form:
λ2

1, · · · , λ2
n(λ1, · · · , λn ≥ 0).

Therefore it follows that

ζ(G, u, t)−1 = (1 − (1 − u)2t2)ε−ν(1 + (1 − u)(q2 + u)t2)m−n
n

∏

j=1

(ab − λ2
jt

2).

But, we have
det(λI − A) = λm−n det(λ2I − tFF),

and so
Spec(A) = {±λ1, · · · ,±λn, 0, · · · , 0}.

Thus, there exists a orthogonal matrix S such that

tSA2S =









































λ2
1 0

. . .

λ2
n

λ2
1

. . .

λ2
n

0
. . .

0 0









































,S =

[

S1 0
0 ∗

]

,

where S1 is an n × n matrix. Furthermore, we have

A2 = A2 + (QG + Iν),

where A2 = ((A2)uv)u,v∈V (G):

(A2)uv = the number of reduced (u, v) − paths with length 2.

By the definition of the graphs G[i](i = 1, 2),

A2 =

[

A[1] + (q1 + 1)In 0
0 A[2] + (q2 + 1)Im

]

.

Thus,

tSA2S =

[

S−1
1 A[1]S1 + (q1 + 1)In 0

0 ∗

]

.

Therefore, it follows that

S−1
1 A[1]S1 =









λ2
1 − (q1 + 1) 0

. . .

0 λ2
n − (q1 + 1)









.
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Hence

det(abIn − (A[1] + (q1 + 1)In)t2) =
n

∏

j=1

(ab − λ2
j t

2).

Thus, the second equation follows.
Similarly to the proof of the second equation, the third equation is obtained. 2
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