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Abstract

Recently, Storm [8] defined the Thara-Selberg zeta function of a hypergraph, and
gave two determinant expressions of it. We define the Bartholdi zeta function of
a hypergraph, and present a determinant expression of it. Furthermore, we give
a determinant expression for the Bartholdi zeta function of semiregular bipartite
graph. As a corollary, we obtain a decomposition formula for the Bartholdi zeta
function of some regular hypergraph.

1 Introduction

Graphs and digraphs treated here are finite. Let G be a connected graph and D the
symmetric digraph corresponding to G. Set D(G) = {(u,v), (v,u) | uv € E(G)}. For
e = (u,v) € D(G), set u = o(e) and v = t(e). Furthermore, let e=! = (v, u) be the inverse
of e = (u,v).

A path P of length n in D(or G) is a sequence P = (ey,---,e,) of n arcs such that
e; € D(G), t(e;) = o(eiy1)(1 < i <n—1). If e = (v_1,v;) for i = 1,---,n, then we
write P = (vg,v1, -+, Un_1,Vp). Set | P |=n, o(P) = o(e;) and t(P) = t(e,). Also, P
is called an (o(P),t(P))-path. We say that a path P = (eq,---,e,) has a backtracking or
a bump at t(e;) if e} = e; for some i(1 <i < n —1). A (v,w)-path is called a v-cycle

(or v-closed path) if v = w. The inverse cycle of a cycle C' = (ey,---,e,) is the cycle
Cc'= (67:1> T 61_1)'
We introduce an equivalence relation between cycles. Two cycles C; = (eq,- -+, €n)

and Cy = (f1,---, fm) are called equivalent if f; = e,y for all j. The inverse cycle of C
is not equivalent to C. Let [C] be the equivalence class which contains a cycle C. Let B"
be the cycle obtained by going r times around a cycle B. Such a cycle is called a multiple
of B. A cycle C is reduced if both C' and C? have no backtracking. Furthermore, a cycle
C' is prime if it is not a multiple of a strictly smaller cycle. Note that each equivalence
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class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the
fundamental group m1(G,v) of G at a vertex v of G.
Let G be a connected graph. Then the cyclic bump count cbe(mw) of a cycle m =
(71, ) 1S
che(m) =[{i=1,,n|m=m}}]

where 7,11 = 7.
Bartholdi [1] introduced the Bartholdi zeta function of a graph. The Bartholdi zeta
function of G is defined by

C(Gu,t) = T = u® )=,
€]

where [C] runs over all equivalence classes of prime cycles of G, and u,t are complex
variables with | u |, | ¢ | sufficiently small.

If w = 0, then, since 0° = 1, the Bartholdi zeta function of G is the (Thara) zeta
function of G(see [5]):

((G,0,t) = Z(G,t) = [J(1 — N,
€]

where [C] runs over all equivalence classes of prime, reduced cycles of G. Thara [5] defined
zeta functions of graphs, and showed that the reciprocals of zeta functions of regular
graphs are explicit polynomials. A zeta function of a regular graph G associated with a
unitary representation of the fundamental group of G was developed by Sunada [9,10].
Hashimoto [4] treated multivariable zeta functions of bipartite graphs. Bass [2] generalized
Ihara’s result on the zeta function of a regular graph to an irregular graph G, and showed
that the reciprocal of the zeta function of G is given by

Z(G, ) = (1 =) det(I — tA(G) + t*(Dg — 1)),

where 7 is the Betti number of G, and Dg = (d;;) is the diagonal matrix with d; =
degg v; (V(G) = {v1,---,v,}). Stark and Terras [7] gave an elementary proof of this
formula, and discussed three different zeta functions of any graph. Various proofs of Bass’
Theorem were given by Kotani and Sunada [6], and Foata and Zeilberger [3].

Bartholdi [1] gave a determinant expression of the Bartholdi zeta function of a graph.

Theorem 1 (Bartholdi) Let G be a connected graph with n vertices and m unoriented
edges. Then the reciprocal of the Bartholdi zeta function of G is given by

C(Gut) ™ = (1 — (1 — w)22)™ " det(I — tA(G) + (1 — u)(Dg — (1 — w)D)e?).

Storm [8] defined the Ihara-Selberg zeta function of a hypergraph. A hypergraph
H = (V(H),E(H)) is a pair of a set of hypervertices V(H) and a set of hyperedges E(H),
which the union of all hyperedges is V(H). A hypervertex v is incident to a hyperedge
e if v € e. For a hypergraph H, its dual H* is the hypergraph obtained by letting its
hypervertex set be indexed by F(H) and its hyperedge set by V(H).
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A bipartite graph By associated with a hypergraph H is defined as follows: V(Bgy) =
V(H)UE(H)and v € V(H) and e € E(H) are adjacent in By if v is incident to e. Let
V(H) ={v1,...,v,}. Then an adjacency matriz A(H) of H is defined as a mtarix whose
rows and columns are parameterized by V(H), and (i, j)-entry is the number of directed
paths in By from v; to v; of length 2 with no backtracking.

Let H be a hypergraph. A path P of length n in H is a sequence P = (vy, €1, v, €9, -+,
€n, Unt1) of n+1 hypervertices and n hyperedges such that v; € V(H), e; € E(H), v1 € e,
Unt1 € €, and v; € ¢j,6;_1 fori =2,....n—1. Set | P |=mn, o(P) =v; and t(P) = v,41.
Also, P is called an (o(P),t(P))-path. We say that a path P has a hyperedge backtracking
if there is a subsequence of P of the form (e,v,e), where e € E(H), v € V(H). A
(v, w)-path is called a v-cycle (or v-closed path) if v = w.

We introduce an equivalence relation between cycles. Such two cycles Cy = (vy, 1, v,
oo em,vr) and Cy = (wy, f1,we, - -+, fm, w1) are called equivalent if w; = v,y and f; =
e;j+r for all j. Let [C] be the equivalence class which contains a cycle C. Let B" be the
cycle obtained by going r times around a cycle B. Such a cycle is called a multiple of B.
A cycle C'is reduced if both C' and C? have no hyperedge backtracking. Furthermore, a
cycle C' is prime if it is not a multiple of a strictly smaller cycle.

The Ihara-Selberg zeta function of H is defined by

Cr(t) =] -t

(]

where [C] runs over all equivalence classes of prime, reduced cycles of H, and t is a
complex variable with | ¢ | sufficiently small(see [8]).

Let H be a hypergraph with E(H) = {ey,...,en}, and let {cy,..., ¢} be a set of
m colors, where c(e;) = ¢;. Then an edge-colored graph GH. is defined as a graph with
vertex set V(H) and edge set {vw | v,w € V(H);v,w € e € E(H)}, where an edge vw is
colored ¢; if v, w € e;.

Let GH? be the symmetric digraph corresponding to the edge-clored graph GH,.. Then
the oriented line graph H} = (V, EY) associated with GH? by

Vi, = D(GH?), and E} = {(e;,e;) € D(GH?) x D(GH?) | c(e;) #
c(ej), te) = olej)},

where c(e;) is the color assigned to the oriented edge e; € D(GHY). The Perron-Frobenius
operator T : C (V) — C(V1) is given by

(T@) = >, flte),

e€Eo(x)

where E,(z) = {e € E¢ | o(e) = x} is the set of all oriented edges with x as their origin
vertex, and C'(Vy) is the set of functions from Vj to the complex number field C.

Storm [8] gave two nice determinant expressions of the Ihara-Selberg zeta function of
a hypergraph by using the results of Kotani and Sunada [6], and Bass [2].
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Theorem 2 (Storm) Let H be a finite, connected hypergraph such that every hypervetex
s in at least two hyperedges. Then

Ca(t)™ =det(I—tT) = (1 — t)™ " det(I — VtA(By) +tQg,,),
where n =| V(By) |, m =| E(Bg) | and Qp,, = Dg,, — L

Furthermore, Storm [8] presented the Ihara-Selberg zeta function of a (d,r)-regular
hypergraph by using the results of Hashimoto [4].

In Section 2, we define the Bartholdi zeta function of a hypergraph, and present a
determinant expression of it. In Section 3, we give a decomposition formula (Theorem 4)
for the Bartholdi zeta function of semiregular bipartite graph. As a corollary, we obtain
a decomposition formula for the Bartholdi zeta function of some regular hypergraph. In
Section 4, we prove Theorem 4 by using an analogue of Hashimoto’s method [4].

2 Bartholdi zeta function of a hypergraph

Let H be a hypergraph. Then a path P = (vq,e1,v9,€9, -, €n,v,41) has a (broad)
backtracking or (broad) bump at e or v if there is a subsequence of P of the form (e, v,e)
or (v,e,v), where e € E(H), v € V(H). Furthermore, the cyclic bump count cbc(C') of a
cycle C' = (vy,e1,vg, €9, +,€,,v1) is

cbe(C) =[{t=1,---nfvi=viu} |+ |[{i=1.n|e=e€}]

where v, = v; and e,41 = e;.
The Bartholdi zeta function of H is defined by

C(H, u, t) — H(]- _ UCbC(C)t‘CI)_l,
(€]

where [C] runs over all equivalence classes of prime cycles of H, and u,t are complex
variables with | u |, | ¢ | sufficiently small.

If uw = 0, then the Bartholdi zeta function of H is the Thara-Selberg zeta function of
H.

A determinant expression of the Bartholdi zeta function of a hypergraph is given as
follows:

Theorem 3 Let H be a finite, connected hypergraph such that every hypervetex is in at
least two hyperedges. Then

C(H,u,t) = (B, u, Vi) = (1=(1-u)*t)” """ det(I-vVtA(By)+(1~u)t(Dp, —(1-u)L)) !

where n =| V(Bg) | and m =| E(By) |.
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Proof. The argument is an analogue of Storm’s method [8].

At first, we show that there exists a one-to-one correspondence between equivalence
classes of prime cycles of length [ in H and those of prime cycles of length 2/ in By, and
cbe(C) = cbe(C) for any prime cycle C in H and the corresponding cycle C' in By.

Let C' = (vy,eq,v,...,v;,€,v1) be a prime cycle of length [ in H. Then a cycle
C = (v1,v1€1, €1, .., U, V€, €, €01,V1) is a prime cycle of length 2] in By. Thus, there
exists a one-to-one correspondence between equivalence classes of prime cycles of length
[ in H and those of prime cycles of length 2/ in By.

Let C' a prime cycle in H and C a prime cycle corresponding to C' in By. Then there
exists a subsequence (v,e,v) (or (e,v,e)) in C if and only if there exists a subsequence
(v, ve, e, ev,v) (or (e,ev,v,ve,e)) in C. Thus, we have cbe(C) = cbe(C).

Therefore, it follows that

C(H, u,t) = [T = u @Ot~ = T](1 — u OV = (B, u, V),
(€] [C]

where [C] and [C] runs over all equivalence classes of prime cycles in H and By, respec-
tively.
By Theorem 1, we have

C(H,u,t) = (1 — (1 —u)?)" " det(I — VtA(By) + (1 — u)t(Dp, — (1 — u)I))"",

where n =| V(H) | and m =| E(H) |. O
If uw =0, then Theorem 3 implies Theorem 2.

Corollary 1 Let H be a finite, connected hypergraph such that every hypervetex is in at
least two hyperedges. Then
C(H,u,t)=C(H", u,t).

Proof. By the fact that By = By«. O

3 Bartholdi zeta functions of (d, r)-regular hypergraphs

At first, we state a decomposition formula for the Bartholdi zeta function of a semiregular
bipartite graph. Hashimoto [4] presented a determinant expression for the Thara zeta
function of a semiregular bipartite graph. We generalize Hashimoto’s result on the Thara
zeta function to the Bartholdi zeta function.

A graph G is called bipartite, denoted by G = (Vi,V5) if there exists a partition
V(G) = ViUV, of V(G) such that the vertices in V; are mutually nonadjacent for i = 1, 2.
A bipartite graph G = (V1, V5) is called (141, g2+ 1)-semiregularif deg ¢v = ¢;+1 for each
v e Vi(i=1,2). Fora (q + 1, g» + 1)-semiregular bipartite graph G = (V, V%), let Gl be
the graph with vertex set V; and edge set {P : reduced path | | P |=2;0(P),t(P) € V;}
for i = 1,2. Then G is (¢ + 1)go-regular, and G2 is (go + 1)gi-regular.

A determinant expression for the Bartholdi zeta function of a semiregular bipartite
graph is given as follows. For a graph G, let Spec(G) be the set of all eigenvalues of the
adjacency matrix of G.
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Theorem 4 Let G = (V1,Vs) be a connected (q1 + 1, qe + 1)-semireqular bipartite graph
with v vertices and € edges. Set | Vi |=n and | Vo |= m(n < m). Then

C(Gut)™ = (1= (1 —u)?’) "1+ (1 —u)(ge +u)t?)™ "
« 1_1 (1= w) (g1 + o+ 20))2 + (1 — 0)(q1 + u)(gs + u)t)
= (1-(1—w* )1+ (1 —u)(g+u)t*)" " det(I, — (AM = (g2 — 1)
(g1 + @ — 2)u+ 2uH)L) 2 + (1 — u)*(qr + u)(go + uw)t'L,)
= (I—(1—-w?®) 1+ 1 —u)(q+uwt2)""det(I, — (AD - ((¢ — 1)
@+ go — 2)u+ 20?)L,) 8 + (1 — w)*(q1 + u)(g2 + u)t'Ly,),
where Spec(G) = {£A1, -+, £, 0,--+,0} and Al = A(GW)(i = 1,2).

The proof of Theorem 4 is given in section 4.

A hypergraph H is a (d,r)-regular if every hypervertex is incident to d hyperedges,
and every hyperedge contains r hypervertices. If H is a (d,r)-regular hypergraph, then
the associated bipartite graph By is (d,r)-semiregular. Let Vi = V(H), Vo = E(H) and
d>r. Set n=| Vi | and m =| V, |. Then we have Al = A(H) and A2 = A(H*). By
Theorems 3 and 4, we obtain the following result. Let Spec(B) be the set of all eigenvalues
of the square matrix B.

Theorem 5 Let H be a finite, connected (d,r)-reqular hypergraph with d > r. Set
n=|V(H)| and m=| E(H) |. Then

C(Hou,t) ' =(1—-1—=u?t)"(14+ (1 —u)(r—1+u)t)™"
X ﬁ L= (N —(1—u)(d+r—2+2u)t+ (1 —u)’(d—1+u)(r—1+u)t?)

= 1-0=w?t)(1+1—u)(r—1+u)t)" "det(I, — (AH)— (r—2
+(d+r—du+2u)L)t+ (1 —u)?(d — 1+ u)(r — 1+ u)t?L,)
= 1-0=-w?*)"1+1—u)(d—1+u)t)" ™det(L, — (A(H*) — (d —2

+H(d+ 7 —4)u+ 20t + (1= w)2(d = 1+ u)(r — 1+ u)t?L,),
where ¢ = nd = mr, v =mn +m and Sp€C<A(H)) = {Zl:)\h Tty :|:>\n707 te JO}

In the case of u = 0, we obtain Theorem 16 in [8].
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Corollary 2 (Storm) Let H be a finite, connected (d,r)-regular hypergraph with d > r.
Setn=|V(H)|, m=|EH)| andq=(d—1)(r —1). Then

Cu®)™ = Q=01+ (r—1)t)" "det(I, — (A(H) —r + 2)t + qt?)

= 1=+ (d—-1)t)"™det(I,, — (A(H*) — d + 2)t + qt?),

where e =nd =mr and v =n +m.

4 A proof of Theorem 4

The argument is an analogue of Hashimoto’s method [4].
By Theorem 1, we have

C(Gyut) ™ = (1— (1 — u)22) " det(L, — tA + (1 — w)t3(Qe + ul,)).

Let Vi = {uy, -, u,} and Vo = {vy,- -+, v, }. Arrange vertices of G in n + m blocks:
UL,y Up; V1, - -+ Uy We consider the matrix A = A(G) under this order. Then, let

0 E
SEXI

where 'E is the transpose of E.
Since A is symmetric, there exists a orthogonal matrix W € O(m) such that

L1 0 0 --- 0
EW=|F 0]= , : :
* Lo O -+ 0
Now, let
I, O
P[5 8]
Then we have
0 FO
'"PAP=|'F 0 O
0 0O

Furthermore, we have
"P(Qg + ul,)P = Qg + ul,,.

Thus,
C(Gu, )t =(1—(1—u)?t2) 1+ (1 —u)(g+u)t?)™ " det [ _C;I?F _b;F ]
_ _ _ 242\e—v _ 2\m—n aIn 0
= (1= (1 —u)t?) "1+ 1 —u)(g +u)t?)" " det l LR L o tFF]

= (1—-(1—uw?* )1+ (1 —u)(ge +u)t*)" " det(abl, — t* 'FF),
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where a = 1+ (1 —u)(q; +u)t? and b =1 + (1 — u)(qo + u)t%
Since A is symmetric, ‘FF is symmetric and positive semi-definite, i.e., the eigenvalues
of 'FF are of form:
A XA, A > 0).

Therefore it follows that

(G u,t) ™ = (1 — (1 —w)* ) "(1+ (1 —u)(g +u)t H (ab— A3t%).
But, we have

det(AI — A) = A™ " det(\’I — 'FF),

and so
Spec(A) = {£A, -+, £A,,0,---,0}.

Thus, there exists a orthogonal matrix S such that

tSAZS: . S:[SI O‘|

L O 0 -

where S; is an n X n matrix. Furthermore, we have
A?=Ay+(Qe+1),
where Ay = ((A2)uv)u,vEV(G):
(A3)y = the number of reduced (u,v) — paths with length 2.
By the definition of the graphs Gll(i = 1,2),

AZ_ Al + (g + 1T, 0

- 0 AP+ (g + DL, |
Thus,

tSA2S _ Sl_lA[l}Sl + (Q1 + 1>In 0

a 0 % |
Therefore, it follows that
A= (q+1) 0
s;tAlls, =
0 Ao = (o +1)

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R00 8



Hence
n

det(abl, — (AU + (¢ + DI,)t%) = [[ (ab— X3t2).

J=1

Thus, the second equation follows.
Similarly to the proof of the second equation, the third equation is obtained. O
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