The maximum number of copies of $\boldsymbol{K}_{r, s}$ in graphs without long cycles or paths

Changhong Lu* Long-Tu Yuan ${ }^{\dagger}$
School of Mathematical Sciences, Shanghai Key Laboratory of PMMP
East China Normal University
Shanghai 200241, China
\{chlu, ltyuan\}@math.ecnu.edu.cn
Ping Zhang ${ }^{\ddagger}$
College of Science
University of Shanghai for Science and Technology
Shanghai 200093, China
mathzhangping@126.com

Submitted: Jan 19, 2021; Accepted: Aug 17, 2021; Published: Oct 8, 2021
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

The circumference of a graph is the length of a longest cycle of it. We determine the maximum number of copies of $K_{r, s}$, the complete bipartite graph with classes sizes r and s, in a 2 -connected graph with circumference less than k. As corollaries of our main result, we determine the maximum number of copies of $K_{r, s}$ in n-vertex P_{k}-free and M_{k}-free graphs for all values of n, where P_{k} is a path on k vertices and M_{k} is a matching on k edges.

Mathematics Subject Classifications: 05C35, 05C38

1 Introduction

For a graph G, we use $V(G)$ and $E(G)$ to denote its vertex set and edge set, respectively. Let $e(G)$ denote the number of edges in G. For two graphs G_{1} and $G_{2}, G_{1} \cup G_{2}$ is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. For positive integer

[^0]α, let $[\alpha]:=\{1, \ldots, \alpha\}$. If $G_{i} \cong G_{1}$ for $i \in[\alpha]$, then we use αG_{1} to denote $\bigcup_{i=1}^{\alpha} G_{i}$. For a given graph H, we use $N(H, G)$ to denote the number of (not necessarily induced) copies of H in G. If there is no copy of H in G, we say that G is H-free. For a family of graphs \mathcal{F}, if there is no copy of any member of \mathcal{F} in G, we say that G is \mathcal{F}-free. For a subgraph H of G, we use $G-H$ to denote the graph obtained from G by deleting the vertices of H and the edges incident with at least one vertex in H. The length of a cycle or a path is the number of edges in them. The circumference of G is the length of the longest cycle in G. For positive integers r and s, we use $K_{r, s}$ to denote the complete bipartite graph with two parts of size r and s, respectively. We use P_{k} and M_{k} to denote the path on k vertices and a matching with k edges, respectively. By $\mathcal{C}_{\geqslant k}$, we mean the set of all cycles of length at least k. Let G be a graph and v be a vertex of G. The neighborhood of v in G, denoted by $N(v)$, is the set of vertices in $V(G)$ which are adjacent to v.

For a graph T and a family of graphs \mathcal{F}, the maximum number of copies of T in an \mathcal{F}-free graph of order n is called the generalized Turán number, denoted by ex (n, T, \mathcal{F}). When $T \cong K_{2}$, it reduces to the classical Turán number $\operatorname{ex}(n, \mathcal{F})$, which is the maximum number of edges in an \mathcal{F}-free graph on n vertices. Similarly, we use $\operatorname{ex}_{\operatorname{con}}(n, T, \mathcal{F})$ and $\operatorname{ex}_{2 \text {-con }}(n, T, \mathcal{F})$ to denote the maximum number of copies of T in an \mathcal{F}-free n vertex connected graph and \mathcal{F}-free n-vertex 2 -connected graph, respectively. When \mathcal{F} contains a single graph F, we write ex (n, T, F), excon (n, T, F), ex $\operatorname{excon}(n, T, F)$ instead of $\operatorname{ex}(n, T,\{F\})$, $\operatorname{ex}_{\text {con }}(n, T,\{F\})$, ex 2 -con $(n, T,\{F\})$, respectively. Recently, the generalized Turán problem has received a lot of attention, see $[1,5,6,7,8,9,10,14,15,18]$.

The following are the famous theorems of Erdős and Gallai [4]. They first studied the maximum number of edges in P_{k}-free graphs and $\mathcal{C}_{\geqslant k}$-free graphs on n vertices and characterized the extremal graphs for some values of n.

Theorem 1 (Erdős and Gallai [4]). Let $n \geqslant k$. Then $\operatorname{ex}\left(n, P_{k}\right) \leqslant(k-2) n / 2$.
Theorem 2 (Erdős and Gallai [4]). Let $n \geqslant k$. Then $\operatorname{ex}(n, \mathcal{C} \geqslant k) \leqslant(k-1)(n-1) / 2$.
In [12], Kopylov extended the above results to 2-connected graphs. He showed the maximum number of edges in 2-connected n-vertex graphs with circumference less than k and characterized the extremal graphs. We first give the definition of a graph class.

For $n \geqslant k \geqslant 4$ and $k / 2>a \geqslant 1$, define the n-vertex graph $H_{n, k, a}$ as follows. The vertex set of $H_{n, k, a}$ is partitioned into three sets A, B, C with $|A|=a,|B|=n-k+a$ and $|C|=k-2 a$. The edge set of $H_{n, k, a}$ consists of all edges between A and B together with all edges in $A \cup C$ (see Figure 1). Note that when $a \geqslant 2, H_{n, k, a}$ is 2 -connected, has no cycle with k or more vertices.

The number of copies of K_{s} in $H_{n, k, a}$, denoted by $f_{s}(n, k, a)$, is $\binom{k-a}{s}+(n-k+a)\binom{a}{s-1}$.
Theorem 3 (Kopylov [12]). Let $n \geqslant k \geqslant 5$ and $t=\lfloor(k-1) / 2\rfloor$. Then $\operatorname{ex}_{2-\operatorname{con}}\left(n, K_{2}, \mathcal{C}_{\geqslant k}\right)$ $=\max \left\{f_{2}(n, k, 2), f_{2}(n, k, t)\right\}$.

For connected graphs, Kopylov[12] and Balister, Győri, Lehel and Schelp [2] independently proved the following theorem.

Theorem 4 (Kopylov[12] and Balister, Győri, Lehel, Schelp [2]). Let $n \geqslant k$ and $t=$ $\lfloor(k-2) / 2\rfloor$. Then $\operatorname{ex}_{\text {con }}\left(n, K_{2}, P_{k}\right)=\max \left\{f_{2}(n, k-1,1), f_{2}(n, k-1, t)\right\}$.

Figure 1: $H_{n, k, a}$
Luo [13] generalized the above results to s-cliques. She showed that the same extremal examples that maximize the number of edges in 2 -connected n-vertex graphs with circumference less than k also maximize the number of copies of clique with given size.
Theorem 5 (Luo [13]). Let $n \geqslant k \geqslant 5$ and $t=\lfloor(k-1) / 2\rfloor$. Then $\operatorname{ex}_{2-\operatorname{con}}\left(n, K_{s}, \mathcal{C}_{\geqslant k}\right)=$ $\max \left\{f_{s}(n, k, 2), f_{s}(n, k, t)\right\}$.

Applying the shifting method, Wang [17] considered the maximum number of copies of $K_{r, s}^{*}$ in M_{k+1}-free graphs, where $K_{r, s}^{*}$ is obtained by taking a copy of $K_{r, s}$ and joining each pair of vertices inside the part with size r.
Theorem 6 (Wang [17]). Let $r \geqslant 1, s \geqslant 2$ and $n \geqslant 2 k+1$. Then $\operatorname{ex}\left(n, K_{r, s}^{*}, M_{k+1}\right)=$ $\max \left\{\binom{2 k+1}{s+r}\binom{s+r}{s},\binom{k}{r}\binom{n-s}{s}+(n-k)\binom{k}{s+r-1}\binom{s+r-1}{s}\right\}$.

Denote by S_{r} and C_{r} the star and cycle on r vertices respectively. Győri, Salia, Tompkins, Zamora [11] considered the maximum number of S_{r} and C_{4} copies in P_{k}-free graphs with sufficiently larger order.

Theorem 7 (Győri, Salia, Tompkins, Zamora [11]). For $k \geqslant 3, r \geqslant 3, t=\lfloor(k-2) / 2\rfloor$ and sufficiently large n, ex $\left(n, S_{r}, P_{k}\right)=g_{1, r-1}(n, k-1, t)$. Moreover, the only extremal graph is $H_{n, k-1, t}$, unless k is even and $t \leqslant r-2$ in which the only extremal graphs are $H_{n, k-1, t}$ and $H_{n, k-2, t}$.

Theorem 8 (Győri, Salia, Tompkins, Zamora [11]). For $k \geqslant 5, t=\lfloor(k-2) / 2\rfloor$ and sufficiently large n, $\operatorname{ex}\left(n, C_{4}, P_{k}\right)=g_{2,2}(n, k-1, t)$. Moreover, the only extremal graph is $H_{n, k-1, t}$.

In this paper, we show that the maximum number of copies of $K_{r, s}$ in 2-connected $\mathcal{C}_{\geqslant k^{-}}$ free n-vertex graphs and connected P_{k}-free n-vertex graphs. As corollaries of our main results, we also show the maximum number of copies of $K_{r, s}$ in P_{k}-free n-vertex graphs. Moreover, since C_{4} and S_{r} are complete bipartite graphs, we can improve Theorem 7 and Theorem 8 to all values of n. Also, the shifting method used in [17] seems not work for the case $K_{r, s}$. We can also determine the maximum number of copies of $K_{r, s}$ in M_{k}-free n-vertex graphs.

2 Main Results

We first consider the maximum number of copies of $K_{r, s}$ in 2-connected $\mathcal{C}_{\geqslant k}$-free graphs. For $n \geqslant k \geqslant 4$ and $k / 2>a \geqslant 1$, let

$$
g_{r, s}(n, k, a)= \begin{cases}\sum_{\substack{n-1}}^{n-k+a}\binom{a}{r}\binom{n-r-i}{r-1}+\frac{1}{2}\binom{k-a}{2 r}\binom{2 r}{r}, & r=s ; \\ \sum_{i=1}^{n-k+a}\left(\binom{a}{r}\binom{n-r-i}{s-1}+\binom{a}{s}\binom{n-s-i}{r-1}\right)+\binom{k-a}{r+s}\binom{r+s}{r}, & r \neq s .\end{cases}
$$

For $B \subset V\left(H_{n, k, a}\right)$, let $B=\left\{b_{1}, b_{2}, \ldots, b_{n-k+a}\right\}$. Note that for $i \in[n-k+a]$, the number of copies of $K_{r, s}$ containing b_{i} and not containing b_{1}, \ldots, b_{i-1} is $\binom{a}{r}\binom{n-r-i}{r-1}$ when $r=s$ and $\binom{a}{r}\binom{n-r-i}{s-1}+\binom{a}{s}\binom{n-s-i}{r-1}$ when $r \neq s$. Hence, the number of copies of $K_{r, s}$ in $H_{n, k, a}$ is $g_{r, s}(n, k, a)$.

Theorem 9. Let $n \geqslant k \geqslant 5$ and $t=\lfloor(k-1) / 2\rfloor$. Then

$$
\operatorname{ex}_{2-\operatorname{con}}\left(n, K_{r, s}, \mathcal{C}_{\geqslant k}\right)=\max \left\{g_{r, s}(n, k, 2), g_{r, s}(n, k, t)\right\} .
$$

In connected P_{k}-free graphs, we have the following result.
Theorem 10. Let $n \geqslant k \geqslant 4$ and $t=\lfloor(k-2) / 2\rfloor$. Then

$$
\operatorname{ex}_{\mathrm{con}}\left(n, K_{r, s}, P_{k}\right)=\max \left\{g_{r, s}(n, k-1,1), g_{r, s}(n, k-1, t)\right\}
$$

Very recently, Chakraborti and Chen [3] determined extremal graphs for the maximum number of cliques in n-vertex P_{k}-free graphs for all values of n. Their proof based on some convexity inequalities along with a recent generalized extremal result on maximizing the number of cliques in a graph with a given maximum degree. By Theorem 10, we have the following corollaries determining the maximum number of $K_{r, s}$ in n-vertex P_{k}-free and M_{k}-free graphs for all values of n. Let $n=\alpha(k-1)+\beta$ with $0 \leqslant \beta \leqslant k-2$. Define $f_{r, s}(n, k-1)=N\left(K_{r, s}, \alpha K_{k-1} \cup K_{\beta}\right)$.

Corollary 11. Let $n \geqslant k \geqslant 4, t=\lfloor(k-2) / 2\rfloor$ and $s \geqslant r \geqslant 2$. Then

$$
\operatorname{ex}\left(n, K_{r, s}, P_{k}\right)=\max \left\{g_{r, s}(n, k-1, t), f_{r, s}(n, k-1)\right\} .
$$

Corollary 12. Let $n \geqslant 2 k \geqslant 4$ and $s \geqslant r \geqslant 1$. Then

$$
\operatorname{ex}\left(n, K_{r, s}, M_{k}\right)=\max \left\{N\left(K_{r, s}, K_{2 k-1}\right), g_{r, s}(n, 2 k-1, k-1)\right\} .
$$

3 Proof of Main Results

We need the following lemmas, proposition and definition.
Lemma 13 (Pósa [16]). Let G be a 2-connected n-vertex graph and P be a path on m vertices with endpoints x and y. For $v \in V(G)$, let $d_{P}(v)=|N(v) \cap V(P)|$. Then G contains a cycle of length at least $\min \left\{m, d_{P}(x)+d_{P}(y)\right\}$.

The following two lemmas are well-known.
Lemma 14. For positive integer $r,\binom{a}{r}$ is a convex function of a.
Lemma 15. Let f_{1}, f_{2} be convex functions and g an affine function of a. Then $f_{1}+$ $f_{2}, f_{1} * f_{2}, f_{1}(g)$ are also convex functions of a.

Proposition 16. $g_{r, s}(n, k, a)$ is a convex function of a.

Proof. Note that the number of copies of $K_{r, r}$ inside $A \cup C$ and not inside $A \cup C$ are $\frac{1}{2}\binom{k-a}{2 r}\binom{2 r}{r}$ and $\binom{a}{r}\left(\binom{n-r}{r}-\binom{k-a-r}{r}\right)$ respectively. Also note that the number of copies of $K_{r, s}$ inside $A \cup C$ and not inside $A \cup C$ are $\binom{k-a}{s+r}\binom{s+r}{r}$ and $\left.\binom{a}{s}\binom{n-s}{r}-\binom{k-a-s}{r}\right)+$ $\binom{a}{r}\left(\binom{n-r}{s}-\binom{k-a-r}{s}\right)$ respectively. It can be checked that

$$
g_{r, s}(n, k, a)= \begin{cases}\frac{1}{2}\binom{k-a}{2 r}\binom{2 r}{r}+\binom{a}{r}\left(\binom{n-r}{r}-\binom{k-a-r}{r}\right), & r=s ; \\ \binom{k-a}{s+r}\binom{s+r}{r}+\binom{a}{s}\left(\binom{n-s}{r}-\binom{k-a-s}{r}\right)+\binom{a}{r}\left(\binom{n-r}{s}-\binom{k-a-r}{s}\right), & r \neq s .\end{cases}
$$

By Lemmas 14 and 15, $g_{r, s}(n, k, a)$ is a convex function of a.
Definition 17 (Kopylov [12]). Let G be a graph and α be a natural number. Delete all vertices of degree at most α from G; for the resulting graph G^{\prime}, again delete all vertices of degree at most α from it. We keep running this progress until the minimum degree of the resulting graph is at least $\alpha+1$. The resulting graph, denoted by $H(G, \alpha)$, is called the $(\alpha+1)$-core of G.

Now we begin the proof of Theorem 9.

Proof of Theorem 9:

Proof. Let $n \geqslant k \geqslant 5, t=\lfloor(k-1) / 2\rfloor$. Let G be an edge-maximal counter-example, i.e., adding any additional edge to G creates a cycle of length at least k and

$$
\begin{equation*}
N\left(K_{r, s}, G\right)>\max \left\{g_{r, s}(n, k, 2), g_{r, s}(n, k, t)\right\} . \tag{1}
\end{equation*}
$$

Thus for each pair of nonadjacent vertices u and v of G, there is a path on at least k vertices starting from u and ending at v. We have that

Claim 1. $H(G, t)$ is not empty.
Proof. Suppose $H(G, t)$ is empty. For convenience, we divide the proof into the following two cases.

Case 1. $r=s$. In the process of getting $H(G, t)$, for the first $n-t$ vertices, once the i-th vertex of degree at most t is deleted, we delete at most $\binom{t}{r}\binom{n-r-i}{r-1}$ copies of $K_{r, r}$;
for all of the last t vertices, we delete at most $\frac{1}{2}\binom{t}{2 r}\binom{2 r}{r}$ copies of $K_{r, r}$. Thus we have the following upper bound on $N\left(K_{r, r}, G\right)$:

$$
\begin{aligned}
N\left(K_{r, r}, G\right) & \leqslant \sum_{i=1}^{n-t}\binom{t}{r}\binom{n-r-i}{r-1}+\frac{1}{2}\binom{t}{2 r}\binom{2 r}{r} \\
& =g_{r, r}(n, k, t)
\end{aligned}
$$

a contradiction to (1). Thus $H(G, t)$ is not empty.
Case 2. $\boldsymbol{r} \neq s$. In the process of getting $H(G, t)$, for the first $n-t$ vertices, once the i-th vertex of degree at most t is deleted, we delete at most $\binom{t}{r}\binom{n-r-i}{s-1}+\binom{t}{s}\binom{n-s-i}{r-1}$ copies of $K_{s, r}$; for all of the last t vertices, we delete at most $\binom{t}{s+r}\binom{s+r}{r}$ copies of $K_{s, r}$. Thus we have the following upper bound on $N\left(K_{r, s}, G\right)$:

$$
\begin{aligned}
N\left(K_{r, s}, G\right) & \leqslant \sum_{i=1}^{n-t}\left(\binom{t}{r}\binom{n-r-i}{s-1}+\binom{t}{s}\binom{n-s-i}{r-1}\right)+\binom{t}{s+r}\binom{s+r}{r} \\
& =g_{r, s}(n, k, t)
\end{aligned}
$$

a contradiction to (1). Hence $H(G, t)$ is not empty.
Claim 2. $H(G, t)$ is a clique.
Proof. Suppose there are two nonadjacent vertices in $H(G, t)$, then there is a path of length at least $k-1$ between these two vertices. Among all these nonadjacent pairs of vertices in $H(G, t)$, we choose $x, y \in H(G, t)$ such that the path between them is the longest. Then by the maximality of P, all neighbors of x in $H(G, t)$ lie in P. Similarly, all neighbors of y in $H(G, t)$ lie in P. Hence by Lemma 13, G has a cycle of length at least $\min \left\{k, d_{P}(x)+d_{P}(y)\right\}=\min \{k, 2(t+1)\}=k$, a contradiction.

Claim 3. Let $\ell=|V(H(G, t))|$. Then $2 \leqslant k-\ell \leqslant t$.
Proof. Since each vertex of $H(G, t)$ has degree at least $t+1$, we have $\ell \geqslant t+2$. Note that G is 2 -connected and $H(G, t)$ is a clique. If $\ell \geqslant k-1$, then since G is 2-connected, there is a cycle of length at least $\ell+1 \geqslant k$, a contradiction. Hence $t+2 \leqslant \ell \leqslant k-2$, i.e., $2 \leqslant k-\ell \leqslant t$.

Claim 4. $H(G, t) \neq H(G, k-\ell)$.
Proof. Suppose $H(G, t)=H(G, k-\ell)$. As in the proof of Claim 1, we divide the proof into the following two cases:

Case 1. $\boldsymbol{r}=\boldsymbol{s}$. Then the number of copies of $K_{r, r}$ can be estimated as follows.

$$
\begin{aligned}
N\left(K_{r, r}, G\right) & \leqslant \sum_{i=1}^{n-\ell}\binom{k-\ell}{r}\binom{n-r-i}{r-1}+\frac{1}{2}\binom{\ell}{2 r}\binom{2 r}{r} \\
& =g_{r, r}(n, k, k-\ell) \\
& \leqslant \max \left\{g_{r, r}(n, k, 2), g_{r, r}(n, k, t)\right\}
\end{aligned}
$$

where the last inequality is obtained from Proposition 16, a contradiction to (1). Thus we have $H(G, t) \neq H(G, k-\ell)$.

Case 2. $r \neq s$. We count the number of copies of $K_{r, s}$ as follows.

$$
\begin{aligned}
N\left(K_{r, s}, G\right) & \leqslant \sum_{i=1}^{n-\ell}\left(\binom{k-\ell}{r}\binom{n-r-i}{s-1}+\binom{k-\ell}{s}\binom{n-s-i}{r-1}\right)+\binom{\ell}{s+r}\binom{s+r}{r} \\
& =g_{r, s}(n, k, k-\ell) \\
& \leqslant \max \left\{g_{r, s}(n, k, 2), g_{r, s}(n, k, t)\right\}
\end{aligned}
$$

where the last inequality is obtained from Proposition 16, a contradiction to (1). Hence we have $H(G, t) \neq H(G, k-\ell)$.

Claim 5. G contains a cycle of length at least k.
Proof. Note that $H(G, t) \subseteq H(G, k-\ell)$. By Claim 4, $H(G, t)$ is a proper subgraph of $H(G, k-\ell)$ and there must be a vertex in $H(G, t)$ and a vertex in $H(G, k-\ell)$ that are nonadjacent. Among all such pairs of vertices, we choose $x \in V(H(G, t))$ and $y \in$ $V(H(G, K-\ell))$ such that there is a longest path P between them. Then P contains at least k vertices, and all neighbors of x in $H(G, t)$ and all neighbors of y in $H(G, k-\ell)$ lie in P. Then by Lemma 13, G contains a cycle of length at least $\min \left\{k, d_{P}(x)+d_{P}(y)\right\}=$ $\min \{k, \ell-1+k-\ell+1\}=k$. This finishes the proof of Claim 5 .

Claim 5 contradicts our assumption. Hence $N\left(K_{r, s}, G\right) \leqslant \max \left\{g_{r, s}(n, k, 2), g_{r, s}(n, k, t)\right\}$. The proof is complete.

Proof of Theorem 10:

Proof. Let $n \geqslant k \geqslant 4$ and $t=\lfloor(k-2) / 2\rfloor$. Suppose for contradiction that

$$
\begin{equation*}
N\left(K_{r, s}, G\right)>\max \left\{g_{s, r}(n, k-1,1), g_{s, r}(n, k-1, t)\right\} . \tag{2}
\end{equation*}
$$

Let G_{0} be the graph obtained from G by adding a dominating vertex v_{0} adjacent to all vertices of G. Then G_{0} is 2 -connected, has $n+1$ vertices and contains no cycle of length $k+1$ or more. Let G^{\prime} be the $(k+1)$-closure of G_{0}, i.e., add edges to G_{0} until any additional edge creates a cycle of length at least $k+1$. Let $G^{*}=G^{\prime}-\left\{v_{0}\right\}$. Thus
$N\left(K_{r, s}, G^{*}\right) \geqslant N\left(K_{r, s}, G_{0}-\left\{v_{0}\right\}\right) \geqslant N\left(K_{r, s}, G\right)$. Now we show that $H\left(G^{\prime}, t+1\right)$ is not empty. Suppose $H\left(G^{\prime}, t+1\right)$ is empty. We divide the proof into the following two cases.

Case 1. $\boldsymbol{r}=\boldsymbol{s}$. Note that v_{0} is adjacent to each vertex of G^{*} and $k \in\{2 t+2,2 t+3\}$. We have

$$
\begin{aligned}
N\left(K_{r, r}, G^{*}\right) & \leqslant \sum_{i=1}^{n-t}\binom{t}{r}\binom{n-r-i}{r-1}+\frac{1}{2}\binom{t}{2 r}\binom{2 r}{r} \\
& \leqslant g_{r, r}(n, k-1, t)
\end{aligned}
$$

a contradiction to (2).
Case 2. $r \neq s$. Similarly, we have

$$
\begin{aligned}
N\left(K_{r, s}, G^{*}\right) & \leqslant \sum_{i=1}^{n-t}\left(\binom{t}{r}\binom{n-r-i}{s-1}+\binom{t}{s}\binom{n-s-i}{r-1}\right)+\binom{t}{s+r}\binom{s+r}{r} \\
& \leqslant g_{r, s}(n, k-1, t)
\end{aligned}
$$

a contradiction to (2). Thus $H\left(G^{\prime}, t+1\right)$ is not empty.
The same argument as in the proof of Theorem 9 also shows that $H\left(G^{\prime}, t+1\right)$ is a clique, otherwise there would be a cycle of length at least $2(t+2) \geqslant(k-1)+2$ in G^{\prime}, a contradiction. Note that v_{0} must be contained in $H\left(G^{\prime}, t+1\right)$ as it is adjacent to all other vertices of G^{\prime}. Let $\left|V\left(H\left(G^{\prime}, t+1\right)\right)\right|=\ell$, where $t+3 \leqslant \ell \leqslant k-1$. And so $k-\ell \geqslant 1$. In particular, $k+1-\ell \leqslant t+1$. If $H\left(G^{\prime}, t+1\right) \neq H\left(G^{\prime}, k+1-\ell\right)$, then again we can find a cycle of length at least $\ell-1+k+2-\ell=k+1$ in G^{\prime}, a contradiction. Otherwise, suppose $H\left(G^{\prime}, t+1\right)=H\left(G^{\prime}, k+1-\ell\right)$. We will finish our proof in the following two cases.

Case 1. $\boldsymbol{r}=\boldsymbol{s}$. In $H\left(G^{\prime}, t+1\right)$, the number of $K_{r, r}$ that do not include v_{0} is $\frac{1}{2}\binom{(\ell-1}{2 r}\binom{2 r}{r}$. In $G^{\prime}-H\left(G^{\prime}, k+\ell-1\right)$, every vertex had at most $k-\ell$ neighbors that were not v_{0} at the time of its deletion. We have

$$
\begin{aligned}
N\left(K_{r, r}, G^{*}\right) & \leqslant \sum_{i=1}^{n+1-\ell}\binom{k-\ell}{r}\binom{n-r-i}{r-1}+\frac{1}{2}\binom{\ell-1}{2 r}\binom{2 r}{r} \\
& =g_{r, r}(n, k-1, k-\ell) \\
& \leqslant \max \left\{g_{r, r}(n, k-1,1), g_{r, r}(n, k-1, t)\right\},
\end{aligned}
$$

where the last inequality is obtained from Proposition 16, a contradiction.
Case 2. $r \neq s$. Similarly, we have

$$
\begin{aligned}
N\left(K_{r, s}, G^{*}\right) \leqslant & \sum_{i=1}^{n+1-\ell}\left(\binom{k-\ell}{r}\binom{n-r-i}{s-1}+\binom{k-\ell}{s}\binom{n-s-i}{r-1}\right) \\
& +\binom{\ell-1}{s+r}\binom{s+r}{r} \\
= & g_{r, s}(n, k-1, k-\ell) \\
\leqslant & \max \left\{g_{r, s}(n, k-1,1), g_{s, r}(n, k-1, t)\right\},
\end{aligned}
$$

where the last inequality is obtained from Proposition 16, a contradiction. This completes the proof of Theorem 10.

To prove Corollary 11, we need the following lemmas.
Lemma 18. Let a, b, k and m be positive integers with $a \leqslant b \leqslant k-1$. Then $\binom{a}{m}+\binom{b}{m} \leqslant$ $\binom{k-1}{m}+\binom{a+b-k+1}{m}$.

Proof. We only need to prove $\binom{a}{m}-\binom{a+b-k+1}{m} \leqslant\binom{ k-1}{m}-\binom{b}{m}$. If $k-1<m$ or $b=k-1$, then the inequality holds trivially by $a \leqslant b \leqslant k-1$. So assume $k-1 \geqslant m$ and $b<k-1$. For positive integer x, let $f(x)=\binom{x+k-1-b}{m}-\binom{x}{m}$. Then

$$
\begin{aligned}
f(x+1)-f(x) & =\binom{x+1+k-1-b}{m}-\binom{x+1}{m}-\binom{x+k-1-b}{m}+\binom{x}{m} \\
& =\binom{x+k-1-b}{m-1}-\binom{x}{m-1} \\
& \geqslant 0 .
\end{aligned}
$$

So $f(x+1) \geqslant f(x)$ and $f(x)$ is nondecreasing of x. So $f(a+b-k+1) \leqslant f(b)$. We complete the proof of Lemma 18.

Lemma 19. Let $t=\lfloor(k-2) / 2\rfloor$. There is a positive integer n_{0} such that

$$
\operatorname{ex}_{\mathrm{con}}\left(n, K_{r, s}, P_{k}\right)= \begin{cases}g_{r, s}(n, k-1, t), & n \geqslant n_{0} \\ g_{r, s}(n, k-1,1), & n<n_{0} .\end{cases}
$$

Proof. It is enough to prove that, for positive integer n, if $g_{r, s}(n, k-1, t) \geqslant g_{r, s}(n, k-1,1)$, then $g_{r, s}(n+1, k-1, t) \geqslant g_{r, s}(n+1, k-1,1)$. For $r=s$, it follows from the definition of $g_{r, r}$ that

$$
g_{r, r}(n+1, k-1, t)-g_{r, r}(n, k-1, t)=\binom{t}{r}\binom{n-r}{r-1}
$$

and

$$
g_{r, r}(n+1, k-1,1)-g_{r, r}(n, k-1,1)=\binom{1}{r}\binom{n-r}{r-1} .
$$

So we have $g_{r, r}(n+1, k-1, t)-g_{r, r}(n, k-1, t) \geqslant g_{r, r}(n+1, k-1,1)-g_{r, r}(n, k-1,1)$. Thus $g_{r, r}(n+1, k-1, t) \geqslant g_{r, r}(n+1, k-1,1)$ provided $g_{r, r}(n, k-1, t) \geqslant g_{r, r}(n, k-1,1)$. If $r<s$, then the proof is similar and is omitted.

Lemma 20. Let $t=\lfloor(k-2) / 2\rfloor$. For two positive integers n_{1}, n_{2}, we have $g_{r, s}\left(n_{1}, k-\right.$ $1, t)+g_{r, s}\left(n_{2}, k-1, t\right) \leqslant g_{r, s}\left(n_{1}+n_{2}, k-1, t\right)$.

Proof. It can be easily checked. So we omit the proof here.

Lemma 21. For positive integers x, y, a, with $a \geqslant 2$ and $x \geqslant y$, we have $\binom{x}{a}+\binom{y}{a} \leqslant$ $\binom{x+y-1}{a}$.
Proof. If $y<a$, then the inequality holds. So we suppose $y \geqslant a$. We prove the lemma by induct on y. If $y=a$, then the inequality holds. Assume the lemma holds for $y=y_{1}$, i.e., $\binom{x}{a}+\binom{y_{1}}{a} \leqslant\binom{ x+y_{1}-1}{a}$. Since $\binom{y_{1}+1}{a}-\binom{y_{1}}{a} \leqslant\binom{ x+y_{1}}{a}-\binom{x+y_{1}-1}{a}$, we have $\binom{x}{a}+\binom{y_{1}+1}{a} \leqslant\binom{ x+y_{1}}{a}$ by Lemma 18. So the inequality holds for $y=y_{1}+1$. We complete the proof of Lemma 21.

Proof of Corollary 11:

Proof. Let $n \geqslant k \geqslant 4, t=\lfloor(k-2) / 2\rfloor$ and $s \geqslant r \geqslant 2$. Let G be a P_{k}-free n-vertex graph and n_{0} be the positive integer determined by Lemma 19. We divide the proof into the following two cases basing on the value of n.

Case 1. $\boldsymbol{n}<\boldsymbol{n}_{\mathbf{0}}$.
Let $n=\alpha(k-1)+\beta$ and $0 \leqslant \beta \leqslant k-2$. We show that $N\left(K_{r, s}, G\right) \leqslant N\left(K_{r, s}, \alpha K_{k-1} \cup\right.$ $\left.K_{\beta}\right)$. We induct on the number of components in G. If G is connected, then $n<k$ and

$$
N\left(K_{r, s}, G\right)=N\left(K_{r, s}, K_{n}\right) \leqslant N\left(K_{r, s}, \alpha K_{k-1} \cup K_{\beta}\right),
$$

or $n \geqslant k$ and

$$
N\left(K_{r, s}, G\right) \leqslant g_{r, s}(n, k-1,1)
$$

by Theorem 10 and Lemma 19. Note that when $s \geqslant r \geqslant 2$, we have

$$
g_{r, s}(n, k-1,1)=N\left(K_{r, s}, K_{k-2}\right) \leqslant N\left(K_{r, s}, K_{k-1}\right) \leqslant N\left(K_{r, s}, \alpha K_{k-1} \cup K_{\beta}\right) .
$$

Otherwise if G is not connected, let C_{1} be a component of G with n_{1} vertices, $n_{1}=$ $\alpha_{1}(k-1)+\beta_{1}, 0 \leqslant \beta_{1} \leqslant k-2, n-n_{1}=\alpha_{2}(k-1)+\beta_{2}, 0 \leqslant \beta_{2} \leqslant k-2$. Then

$$
\begin{aligned}
N\left(K_{r, s}, G\right) & =N\left(K_{r, s}, C_{1}\right)+N\left(K_{r, s}, G-C_{1}\right) \\
& \leqslant N\left(K_{r, s}, \alpha_{1} K_{k-1} \cup K_{\beta_{1}}\right)+N\left(K_{r, s}, \alpha_{2} K_{k-1} \cup K_{\beta_{2}}\right) \\
& \leqslant N\left(K_{r, s}, \alpha K_{k-1} \cup K_{\beta}\right),
\end{aligned}
$$

where the last inequality is obtained by Lemma 18 .
Case 2. $n \geqslant \boldsymbol{n}_{\mathbf{0}}$.
If G is connected, then we have $\operatorname{ex} \operatorname{con}\left(n, K_{r, s}, P_{k}\right)=g_{r, s}(n, k-1, t)$ by Theorem 10 and Lemma 19. Suppose G is not connected and $C_{i}, i \in[p]$, are the components of G with n_{i} vertices, respectively. If $n_{i}<n_{0}$ for all $i \in[p]$, then

$$
N\left(K_{r, s}, G\right) \leqslant N\left(K_{r, s}, \alpha K_{k-1} \cup K_{\beta}\right)
$$

by Case 1 and Lemma 18. If $n_{i} \geqslant n_{0}$ for all $i \in[p]$, then

$$
N\left(K_{r, s}, G\right) \leqslant \sum_{i=1}^{p} g_{r, s}\left(n_{i}, k-1, t\right) \leqslant g_{r, s}(n, k-1, t)
$$

by Lemma 20. If $n_{i} \geqslant n_{0}$ for $i \in[q]$ and $n_{i}<n_{0}$ for $i \in[p] \backslash[q]$, then by Lemma 20, we may assume $q=1$. Then by Case 1 ,

$$
N\left(K_{r, s}, G\right) \leqslant N\left(K_{r, s}, C_{1}\right)+N\left(K_{r, s}, G-C_{1}\right) \leqslant g_{r, s}\left(n_{1}, k-1, t\right)+f_{r, s}\left(n-n_{1}, k-1\right) .
$$

We now prove that $g_{r, s}\left(n_{1}, k-1, t\right)+f_{r, s}\left(n-n_{1}, k-1\right) \leqslant \max \left\{g_{r, s}(n, k-1, t), f_{r, s}(n, k-\right.$ $1)\}$ for any $k \leqslant n_{1} \leqslant n$. Assume that $r=s$. For the case $r \neq s$, the proof is similar and is omitted.

If $g_{r, s}\left(n_{1}, k-1, t\right) \leqslant f_{r, s}\left(n_{1}, k-1\right)$, then by Lemma 18 ,
$g_{r, s}\left(n_{1}, k-1, t\right)+f_{r, s}\left(n-n_{1}, k-1\right) \leqslant f_{r, s}\left(n_{1}, k-1\right)+f_{r, s}\left(n-n_{1}, k-1\right) \leqslant f_{r, s}(n, k-1)$.
So suppose that

$$
\begin{equation*}
g_{r, s}\left(n_{1}, k-1, t\right)>f_{r, s}\left(n_{1}, k-1\right) . \tag{3}
\end{equation*}
$$

Let $n-n_{1}=\alpha^{\prime}(k-1)+\beta^{\prime}$ where $\alpha^{\prime} \geqslant 0,0 \leqslant \beta^{\prime} \leqslant k-2$ and $n_{1}=\alpha^{\prime \prime}(k-1)+\beta^{\prime \prime}$ where $1 \leqslant \alpha^{\prime \prime}, 1 \leqslant \beta^{\prime \prime} \leqslant k-1$. Let $H=H\left(n_{1}, k-1, t\right)$ with the vertex sets A, B, C as its definition. We order the vertices of H in A, B, C with $v_{1}, \ldots, v_{t}, v_{t+1}, \ldots, v_{k-1-t}, v_{k-t}, \ldots, v_{n_{1}}$ successively. Let S_{0} be the vertex set of the first $\beta^{\prime \prime}$ vertices in H and H_{0} be the subgraph of H induced by S_{0}. Then $H_{0} \subseteq K_{\beta^{\prime \prime}}$ and

$$
\begin{equation*}
N\left(K_{r, r}, H_{0}\right) \leqslant N\left(K_{r, r}, K_{\beta^{\prime \prime}}\right) . \tag{4}
\end{equation*}
$$

We divide the remaining vertices of H into $\alpha^{\prime \prime}$ sets of size $k-1$ as its order. Let S_{i} be the vertex set of the i-th $k-1$ vertices of $H-H_{0}$ and H_{i} be the subgraph induced by $\bigcup_{j=0}^{i} S_{j}$. Let $N_{i}=N\left(K_{r, r}, H_{i}\right)-N\left(K_{r, r}, H_{i-1}\right)$ for $i=1, \ldots, \alpha^{\prime \prime}$. Let X_{i} be the number of $K_{r, r}$ in H containing v_{i} but not containing $v_{i+1}, \ldots, v_{n_{1}}$ for $i=1, \ldots, n_{1}$. It can be checked that if k is even, then $t=(k-2) / 2,|B|=1$ and X_{i} is nondecreasing. Hence if $\alpha^{\prime \prime} \geqslant 2$, then

$$
\begin{equation*}
N_{i+1} \geqslant N_{i} \text { for } i=1, \ldots, \alpha^{\prime \prime}-1 . \tag{5}
\end{equation*}
$$

If k is odd, then $t=(k-3) / 2,|B|=2$. It can be checked that $X_{k-1} \geqslant X_{t+2}$ and $X_{i+1} \geqslant X_{i}$ for $i \in\left[n_{1}-1\right] \backslash\{t+2\}$. So if $\alpha^{\prime \prime} \geqslant 2$, (5) also holds. By (3) and (4), we have that

$$
\sum_{i=1}^{\alpha^{\prime \prime}} N_{i}>N\left(K_{r, r}, \alpha^{\prime \prime} K_{k-1}\right)=\alpha^{\prime \prime} N\left(K_{r, r}, K_{k-1}\right)
$$

By (5), we have $N_{\alpha^{\prime \prime}}>N\left(K_{r, r}, K_{k-1}\right)$. Furthermore, adding additional $k-1$ vertices (if any) to C of H and joining the new $k-1$ vertices with A of H will produce more number of $K_{r, r}$ than $N_{\alpha^{\prime \prime}}$. Hence

$$
g_{r, r}\left(n_{1}, k-1, t\right)+f_{r, r}\left(n-n_{1}, k-1\right) \leqslant g_{r, r}\left(n-\beta^{\prime}, k-1, t\right)+N\left(K_{r, r}, K_{\beta^{\prime}}\right) .
$$

If $\beta^{\prime}<2 r$, then we are done. So suppose that $2 r \leqslant \beta^{\prime}<k-1$.
Note that

$$
N\left(K_{r, r}, K_{\beta^{\prime}}\right) \leqslant \frac{k-1}{\beta^{\prime}} N\left(K_{r, r}, K_{k-1}\right)
$$

and

$$
N\left(K_{r, r}, H(n, k-1, t)\right)-N\left(K_{r, r}, H\left(n-\beta^{\prime}, k-1, t\right)\right) \geqslant \frac{k-1}{\beta^{\prime}} N_{\alpha^{\prime \prime}}
$$

Hence

$$
g_{r, r}\left(n-\beta^{\prime}, k-1, t\right)+N\left(K_{r, r}, K_{\beta^{\prime}}\right) \leqslant g_{r, r}(n, k-1, t) .
$$

We complete the proof of the corollary.

Corollary 22. Let $n \geqslant 2 k \geqslant 4$. Then

$$
\operatorname{ex}_{\mathrm{con}}\left(n, K_{r, s}, M_{k}\right)=\max \left\{g_{r, s}(n, 2 k-1,1), g_{r, s}(n, 2 k-1, k-1)\right\} .
$$

Proof. Let \mathcal{F}_{1} and \mathcal{F}_{2} denote the classes of connected M_{k}-free graphs and connected $P_{2 k^{-}}$ free graphs on n vertices, respectively. We know that $\mathcal{F}_{1} \subseteq \mathcal{F}_{2}$. So excon $\left(n, K_{r, s}, M_{k}\right) \leqslant$ excon $\left(n, K_{r, s}, P_{2 k}\right)$. Note that $H(n, 2 k-1,1), H(n, 2 k-1, t)$ are M_{k}-free and equality holds if G is $H(n, 2 k-1,1)$ or $H(n, 2 k-1, k-1)$. $\operatorname{So} \operatorname{excon}\left(n, K_{r, s}, M_{k}\right)=\max \left\{g_{r, s}(n, 2 k-\right.$ $\left.1,1), g_{r, s}(n, 2 k-1, k-1)\right\}$.

Proof of Corollary 12: Let $n \geqslant 2 k \geqslant 4$ and $s \geqslant r \geqslant 1$. Let G be an extremal graph for M_{k} on n vertices.

Assume G is not connected. Let $i=1, \ldots, p$ and C_{i} be the components of G with n_{i} vertices and $k_{i}>0$ matchings, respectively. We may suppose $\sum_{i=1}^{p} k_{i}=k-1$.

We partition the components of G into two classes.

- Class I. Components C_{i} such that $n_{i} \leqslant 2 k_{i}+1$, that is $n_{i}=2 k_{i}$ or $2 k_{i}+1$.
- Class II. Components C_{i} such that $n_{i} \geqslant 2 k_{i}+2$.

First we show that if there is a component of Class I, then there will not be any component of Class II. Assume C_{1} and C_{2} are components of Class I and Class II, respectively. Then $n_{1}=2 k_{1}$ or $2 k_{1}+1$ and $N\left(K_{r, s}, C_{1}\right) \leqslant N\left(K_{r, s}, K_{n_{1}}\right)$.

$$
\begin{aligned}
N\left(K_{r, s}, C_{2}\right) & \leqslant \max \left\{g_{r, s}\left(n_{2}, 2 k_{2}+1,1\right), g_{r, s}\left(n, 2 k_{2}+1, k_{2}\right)\right\} \\
& =\max \left\{N\left(K_{r, s}, H\left(n_{2}, 2 k_{2}+1,1\right)\right), N\left(K_{r, s}, H\left(n_{2}, 2 k_{2}+1, k_{2}\right)\right)\right\}
\end{aligned}
$$

Let A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ be the vertex sets of $H\left(n_{2}, 2 k_{2}+1,1\right)$ and $H\left(n_{2}, 2 k_{2}+1, k_{2}\right)$, respectively. Let $H_{1}\left(H_{2}\right)$ be the graph obtained from C_{1} and $H\left(n_{2}, 2 k_{2}+1,1\right)\left(H\left(n_{2}, 2 k_{2}+\right.\right.$ $\left.1, k_{2}\right)$) by adding edges between C_{1} and $A\left(A^{\prime}\right)$. Then H_{1}, H_{2} are $M_{k_{1}+k_{2}+1}$ free and

$$
\begin{aligned}
N\left(K_{r, s}, C_{1} \cup C_{2}\right) & \leqslant \max \left\{N\left(K_{r, s}, H_{1}\right), N\left(K_{r, s}, H_{2}\right)\right\} \\
& <\operatorname{ex} \operatorname{con}\left(n_{1}+n_{2}, K_{r, s}, M_{k_{1}+k_{2}+1}\right)
\end{aligned}
$$

contradicting the maximality of G.
Assume all components belong to Class I. Then $N\left(K_{r, s}, \bigcup_{i=1}^{p} C_{i}\right) \leqslant N\left(K_{r, s}, \bigcup_{i=1}^{p} K_{n_{i}}\right)$. If there is one such components, such as C_{1}, have even number of vertices, then let C^{\prime} be
the graph obtained from C_{1}, C_{2} by adding the edges between C_{1} and C_{2}. C^{\prime} is a $M_{k_{1}+k_{2}+1^{-}}$ free graph with $n_{1}+n_{2}$ vertices. $N\left(K_{r, s}, C_{1} \cup C_{2}\right) \leqslant N\left(K_{r, s}, C^{\prime}\right)$. So we may suppose that all the components have odd number of vertices, that is, $n_{i}=2 k_{i}+1$. Then

$$
\begin{equation*}
N\left(K_{r, s}, \bigcup_{i=1}^{p} C_{i}\right) \leqslant N\left(K_{r, s}, \bigcup_{i=1}^{p} K_{2 k_{i}+1}\right)<N\left(K_{r, s}, K_{2 k-1}\right) \tag{6}
\end{equation*}
$$

The last inequality is obtained by Lemma 21.
Assume all components belong to Class II. Suppose ex $\left(n_{i}, K_{r, s}, M_{k_{i}+1}\right)=g_{r, s}\left(n_{i}, 2 k_{i}+\right.$ $1,1)=N\left(K_{r, s}, H\left(n_{i}, 2 k_{i}+1,1\right)\right)$ for $i \in[q](q=0$ means that such i does not exist $)$ and $\operatorname{ex}\left(n_{i}, K_{r, s}, M_{k_{i}+1}\right)=g_{r, s}\left(n_{i}, 2 k_{i}+1, k_{i}\right)=N\left(K_{r, s}, H\left(n_{i}, 2 k_{i}+1, k_{i}\right)\right)$ for $i \in[p] \backslash[q]$. Let

$$
G_{i}= \begin{cases}H\left(n_{i}, 2 k_{i}+1,1\right), & i \in[q] \\ H\left(n_{i}, 2 k_{i}+1, k_{i}\right), & i \in[p] \backslash[q] .\end{cases}
$$

Then $N\left(K_{r, s}, G\right) \leqslant N\left(K_{r, s}, \bigcup_{i=1}^{p} G_{i}\right)$. Let A_{i}, B_{i} and C_{i} be the vertex sets of G_{i} as the definition of $H(n, k, a)$, respectively. Let G^{\prime} be the graph obtained from $\bigcup_{i=1}^{p} G_{i}$ by adding the edges between A_{i} and C_{i+1} for $i=1, \ldots, p-1$. Note that G^{\prime} is also M_{k}-free and the number of copies of $K_{r, s}$ does not decrease. So we may suppose G is connected. By Corollary 22, we have

$$
\begin{equation*}
N\left(K_{r, s}, G\right) \leqslant \max \left\{g_{r, s}(n, 2 k-1,1), g_{r, s}(n, 2 k-1, k-1)\right\} \tag{7}
\end{equation*}
$$

Hence combining (6) and (7), we have

$$
N\left(K_{r, s}, G\right) \leqslant \max \left\{N\left(K_{r, s}, K_{2 k-1}\right), g_{r, s}(n, 2 k-1,1), g_{r, s}(n, 2 k-1, k-1)\right\}
$$

We now prove that $g_{r, s}(n, 2 k-1,1) \leqslant \max \left\{N\left(K_{r, s}, K_{2 k-1}\right), g_{r, s}(n, 2 k-1, k-1)\right\}$. If $k=2$, then we are done. If $s \geqslant r \geqslant 2$, then

$$
g_{r, s}(n, 2 k-1,1)=N\left(K_{r, s}, H(n, 2 k-1,1)\right)=N\left(K_{r, s}, K_{2 k-2}\right) \leqslant N\left(K_{r, s}, K_{2 k-1}\right)
$$

the result follows.
Thus we may assume that $s \geqslant 2, r=1$ and $k \geqslant 3$. Note that both $K_{2 k-1}$ and $H_{n, 2 k-1,1}$ contain $K_{2 k-2}$ as a subgraph. Counting the number of copies of $K_{1, s}$ with given center, we have

$$
\begin{gathered}
N\left(K_{r, s}, K_{2 k-1}\right)=(2 k-1)\binom{2 k-2}{s}, \\
g_{r, s}(n, 2 k-1,1)=\binom{n-1}{s}+(2 k-3)\binom{2 k-3}{s}
\end{gathered}
$$

and

$$
g_{r, s}(n, 2 k-1, k-1)=(k-1)\binom{n-1}{s}+(n-k+1)\binom{k-1}{s} .
$$

Suppose that $g_{r, s}(n, 2 k-1,1) \geqslant N\left(K_{r, s}, K_{2 k-1}\right)$, that is $\binom{n-1}{s} \geqslant(2 k-1)\binom{2 k-2}{s}-(2 k-$ 3) $\binom{2 k-3}{s}=(s+1)\binom{2 k-2}{s}+\binom{2 k-3}{s}$. Then, we have

$$
\begin{aligned}
& g_{r, s}(n, 2 k-1, k-1)-g_{r, s}(n, 2 k-1,1) \\
= & (k-1)\binom{n-1}{s}+(n-k+1)\binom{k-1}{s}-\binom{n-1}{s}-(2 k-3)\binom{2 k-3}{s} \\
= & (k-2)\binom{n-1}{s}+(n-k+1)\binom{k-1}{s}-(2 k-3)\binom{2 k-3}{s} \\
\geqslant & (k-2)(s+1)\binom{2 k-2}{s}-(k-1)\binom{2 k-3}{s}+(n-k+1)\binom{k-1}{s} \\
\geqslant & 0,
\end{aligned}
$$

where the last inequality holds by $k \geqslant 3$ and $s \geqslant 2$. The proof is complete.

4 Concluding Remarks

In [4], Erdős and Gallai showed the extremal graphs for the maximum number of edges in n-vertex P_{k}-free graphs are the $n /(k-1)$ disjoint unions of cliques of size $k-1$, where $k-1$ divides n. In [13], Luo showed these graphs are also the extremal examples for the maximum number of cliques in n-vertex P_{k}-free graphs. But as we show in Corollary 11 , if n is sufficiently large, the extremal graphs for the maximum number of complete bipartite graphs in n-vertex P_{k}-free graphs are not the same as the above two cases.

Acknowledgements

The authors would like to thank the two anonymous referees for their valuable suggestions which helped us a lot to improve the presentation of this paper.

References

[1] N. Alon and C. Shikhelman. Many T copies in H-free graphs. J. Combin. Theory Ser. B, 121:146-172, 2016.
[2] P. N. Balister, E. Győri, J. Lehel, and R. H. Schelp. Connected graphs without long paths. Discrete Math., 308(19):4487-4494, 2008.
[3] D. Chakraborti and D. Q. Chen. Exact results on generalized Erdős-Gallai problems. arXiv:2006.04681v2, 2020.
[4] P. Erdős and T. Gallai. On maximal paths and circuits of graphs. Acta Mathematica Hungarica, 10(3-4):337-356, 1959.
[5] D. Gerbner. Generalized Turán problems for small graphs. arXiv:2006.16150v1, 2020.
[6] D. Gerbner, E. Győri, A. Methuku and M. Vizer. Generalized Turán numbers for even cycles. J. Combin. Theory Ser. B, 145:169-213, 2020.
[7] D. Gerbner, A. Methuku, and M. Vizer. Generalized Turán problems for disjoint copies of graphs. Discrete Math., 342(11): 3130-3141, 2019.
[8] D. Gerbner and C. Palmer. Counting copies of a fixed subgraph in F-free graphs. European J. Combin., 82:103001, 2019.
[9] L. Gishboliner and A. Shapira. A generalized Turán problem and its applications. Int. Math. Res. Not., 2020(11):3417-3452, 2020.
[10] E. Győri and H. Li. The maximum number of triangles in $C_{2 k+1}$-free graph. J. Combin. Theory Ser. B, 102:1061-1066, 2012.
[11] E. Győri, N. Salia, C. Tompkins and O. Zamora. The maximum number of P_{ℓ} copies in P_{k}-free graphs. Discrete Math. Theor. Comput. Sci., 21 (2019), no. 1, Paper No. 14, $21 \mathrm{pp}, 2019$.
[12] G. N. Kopylov. Maximal paths and cycles in a graph. Dokl. Akad. Nauk SSSR, 234:19-21, 1977; English translation: Sov. Math., Dokl., 18(3):593-596, 1977.
[13] R. Luo. The maximum number of cliques in graphs without long cycles. J. Combin. Theory Ser. B, 128:219-226, 2017.
[14] J. Ma and Y. Qiu. Some sharp results on the generalized Turán numbers. European J. Combin., 84:103026, 2020.
[15] B. Ning and X. Peng. Extensions of Erdős-Gallai Theorem and Luo's Theorem with applications. Comb. Probab. Comput., 29(1):128-136, 2020.
[16] L. Pósa. A theorem concerning Hamilton lines. Magyar Tud. Akad. Mat. Kutató Int. Közl, 7:225-226, 1962.
[17] J. Wang. The shifting method and generalized Turán number of matching. European J. Combin., 85:103057, 2020.
[18] L. Zhang, L. Wang, and J. Zhou. The generalized Turán number of spanning linear forests. arXiv:2009.00181v1, 2020.

[^0]: *Supported by NSFC grant 11871222, and Science and Technology Commission of Shanghai Municipality grants 18 dz 2271000 and 19jc1420100.
 ${ }^{\dagger}$ Supported by NSFC grant 11901554, and Science and Technology Commission of Shanghai Municipality grants 18dz2271000 and 19jc1420100.
 ${ }^{\ddagger}$ Corresponding author.

