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Abstract

Let G be a group and S a non-empty subset of G. If ab /∈ S for any a, b ∈ S, then S
is called sum-free. We show that if S is maximal by inclusion and no proper subset
generates 〈S〉 then |S| ≤ 2. We determine all groups with a maximal (by inclusion)
sum-free set of size at most 2 and all of size 3 where there exists a ∈ S such that
a /∈ 〈S \ {a}〉.

1 Introduction

Let G be a group, S a non-empty subset of G. Then S is sum-free if ab /∈ S for all
a, b ∈ S. For example, if H is a subgroup of G then Hg is a sum-free set for any g /∈ H .
We say S is maximal sum-free if S is sum-free and not properly contained in any other
sum-free set. Some authors have used locally maximal for this concept and maximal to
mean maximal by cardinality (for example [12, 13]).

∗The first author was supported by an Australian Postdoctoral Fellowship and an Australian Research
Fellowship during the writing of this paper.
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Most work on sum-free sets has been done in the abelian group case, particularly
for Z and Zn. This includes studying the number of sum-free sets in the integers (for
example [2, 4]) and the density and number of sum-free sets in abelian groups (for example
[5]). Sum-free sets are also closely related to the widely studied concept of caps in finite
geometry. A k-cap in the projective space PG(n, q) is a collection of k points with no
three collinear (see [6]). Maximal (by inclusion) caps are known as complete caps. When
q = 2 caps are equivalent to sum-free sets of Z

n+1
2 and complete caps are equivalent to

maximal sum-free sets.
Much less is known for nonabelian groups, where sometimes the term product-free is

used instead of sum-free. Kedlaya [9] has shown that there exists a constant c such that
the largest sum-free set in a group G of order n has size at least cn11/14. See also [10]. On
the other hand Gowers [3, Theorem 3.3] has recently proved that if the smallest nontrivial
representation of G is of dimension k then G has no sum-free sets of size greater than
k−1/3n. Petrosyan [11] has determined the asymptotic behaviour of the number of sum-
free sets in groups of even order. Sum-free sets were also studied in [1] where the authors
ask what is the minimum size of a maximal sum-free set in a group of order n? Kedlaya
claims [10, Theorem 3] that for a maximal sum-free set S of size k in a group G of order
n we have k ≥

√

n/3 − 1. However, the proof forgets that G\S can contain elements
whose square lies in S. From this he deduces that 3k ≥ n− k, which is not correct as the
unique involution of Q8 is maximal sum-free and provides a counterexample. However,
we are unable to find a counterexample to the actual statement of the theorem.

In this paper we investigate the smallest maximal sum-free sets in arbitrary groups.
In particular we are interested in determining the possibilities for G given the existence of
a maximal sum-free set of size k for small values of k. In Section 2 we set out the notation
used in the paper. In Section 3 we establish some general results; for example Proposition
3.2 states that for a maximal sum-free set S of a group G, 〈S〉 is a normal subgroup of
G. In addition, G/〈S〉 is either trivial or an elementary abelian 2-group. In Section 4 we
show that if S is a maximal sum-free set and 〈S〉 is not generated by any proper subset of
S then |S| ≤ 2 (Theorem 4.4). We also determine all groups with a maximal sum-free set
of size 1 or 2. (In Theorem 1.1, Cn is the cyclic group of order n and Q8 is the quaternion
group.)

Theorem 1.1 Let S be a maximal sum-free set of size k in a group G.

• If k = 1 then G ∼= C2, C3, C4 or Q8, and S consists of an element of prime order in
G.

• If k = 2 then G and S are as in Tables 1, 2, or 3, or G = 〈x〉 ∼= C8 and S = {x2, x6},
or G ∼= Q12 = 〈g, h : g6 = 1, g3 = h2, hg = g−1h〉 and S = {g3, g2}.

Finally Section 5 is devoted to maximal sum-free sets of size 3. We classify all such sets
S for which not every subset of size 2 in S generates 〈S〉 (Theorem 5.6).
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2 Notation

In this section we establish the notation to be used in the rest of the paper. For subsets
A, B of a group G, we use the standard notation AB for the product of A and B. That
is,

AB = {ab : a ∈ A, b ∈ B}.
By definition, a nonempty set S ⊆ G is sum-free if and only if S ∩ SS = ∅. In order to
investigate maximal sum-free sets we introduce some further notation.

For a set S ⊆ G, we define the following sets:

S2 = {a2 : a ∈ S};
S−1 = {a−1 : a ∈ S};√

S = {x ∈ G : x2 ∈ S};
T (S) = S ∪ SS ∪ SS−1 ∪ S−1S;

Ŝ = {s ∈ S :
√

{s} 6⊂ 〈S〉}

For a single element set {a} we usually write
√

a instead of
√

{a}.
We will show (Lemma 3.1) that a sum-free set S ⊆ G is maximal sum-free in G if and

only if G = T (S) ∪
√

S. The size of T (S) is easy to bound (see Lemma 3.3). In general,
this is far from being the case for |

√
S|.

For an element g ∈ G, the order of g is denoted o(g). The centraliser of g in G is
denoted by CG(g) and the conjugacy class containing g by gG.

For positive integers n, Cn is the cyclic group of order n, D2n is the dihedral group
of order 2n and An is the alternating group of degree n. Finally, Q4n is the generalized
quaternion group of order 4n. That is, Q4n = 〈g, h : g2n = 1, gn = h2, hg = g−1h〉.

3 Preliminary Results

Our first result illustrates the importance of the set T (S).

Lemma 3.1 Suppose S is a sum-free set in the group G. Then S is maximal sum-free if
and only if G = T (S) ∪

√
S.

Proof Let S be sum-free in G. Suppose that G = T (S)∪
√

S. Let g ∈ G\S and consider
the set U = S ∪ {g}. Suppose g ∈ T (S) = S ∪ SS ∪ SS−1 ∪ S−1S. If g ∈ SS ⊂ UU , then
U is clearly not sum-free. If g ∈ SS−1, then g = st−1 for some s, t ∈ S. Hence gt = s and
again U is not sum-free. Similarly if g ∈ S−1S, then U is not sum-free. Suppose g ∈

√
S.

Then g2 ∈ S and hence UU ∩ U 6= ∅, so again U is not sum-free. Therefore S is not
properly contained in any sum-free set, so by definition S is a maximal sum-free set.

For the reverse implication, suppose that S is a maximal sum-free set in G. Then for all
g ∈ G \ S, the set V = S ∪ {g} is not sum-free. That is, V ∩ V V is nonempty. Now
V V = gS∪Sg∪{g2}∪SS. Suppose g ∈ V ∩V V . No sum-free set can contain the identity
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element, so g /∈ gS and g /∈ Sg. Therefore either g ∈ SS or g = 1. Since ss−1 = 1 for all
s ∈ S, we deduce that g ∈ SS∪SS−1. On the other hand, suppose there exists s ∈ S∩V V .
Now S ∩ SS = ∅. Thus either s = gt or s = tg for some t ∈ S, or s = g2. That is,
g ∈ SS−1∪S−1S∪

√
S. In summary, V ∩V V 6= ∅ forces g ∈ SS∪SS−1∪S−1S∪

√
S. This

holds for all g ∈ G \ S. Since T (S) = S ∪ SS ∪ SS−1 ∪ S−1S, we obtain G = T (S)∪
√

S.
�

As a stepping-stone to classifying the groups G that can contain a given maximal
sum-free set S, we often start by considering the subgroup generated by S. The structure
of the quotient G/〈S〉 given in the next result is a useful restriction on the possibilities
for G.

Proposition 3.2 Let S be a maximal sum-free set in G. Then 〈S〉 is a normal subgroup
of G. In addition, G/〈S〉 is either trivial or an elementary abelian 2-group.

Proof Suppose x ∈ G \ 〈S〉 and h ∈ 〈S〉. By Lemma 3.1, G = T (S) ∪
√

S. Thus, since
T (S) ⊆ 〈S〉, the elements xh and x both lie in

√
S. That is, there are elements s1 and s2

of S such that (xh)2 = s1 and x2 = s2. Then

xhxh = s1

xhx = s1h
−1

xhx−1x2 = s1h
−1

xhx−1 = s1h
−1s−1

2 ∈ 〈S〉.
Hence 〈S〉 E G. Furthermore, for all x ∈ G, x2 ∈ 〈S〉. Thus each element of G/〈S〉 has
order dividing 2. Therefore G/〈S〉 is either trivial or an elementary abelian 2-group. �

Proposition 3.2 allows us to bound |G| in terms of |〈S〉|. We first require a lemma
bounding the size of |T (S)|.
Lemma 3.3 Suppose S ⊆ G with |S| = k. Then |T (S)| ≤ 3k2 − k + 1.

Proof Recall that T (S) = S ∪ SS ∪ SS−1 ∪ S−1S. Since aa−1 = a−1a = 1 for all a ∈ S,
we need only count one of the 2k such products. Thus

|T (S)| ≤ |S|+ |SS|+ |SS−1|+ |S−1S|−2k+1 ≤ k+3k2−2k+1 = 3k2−k+1.
�

Theorem 3.4 Suppose S is maximal sum-free in G. Then |G| ≤ 2|T (S)| · |〈S〉|.

Proof Suppose G 6= 〈S〉. By Lemma 3.1 and the fact that T (S) ⊆ 〈S〉, for some a ∈ S
there exists x ∈ √

a with x /∈ 〈S〉. Let y ∈ CG(x). If y ∈
√

b for some b ∈ S, then
(xy)2 = x2y2 = ab /∈ S. Therefore xy ∈ T (S). Hence CG(x) ⊆ T (S) ∪ x−1T (S) and so
|CG(x)| ≤ 2|T (S)|. Moreover, since G/〈S〉 is abelian by Proposition 3.2, xG ⊆ x〈S〉. Now
|G| = |CG(x)| · |xG| gives the stated bound. �

The bound in Theorem 3.4 is sharp. For example it is attained in the case where S
consists of the unique involution in the quaternion group Q8.

Corollary 3.5 is an immediate consequence of Lemma 3.3 and Theorem 3.4.
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Corollary 3.5 Suppose S is maximal sum-free in G with |S| = k. Then |G| ≤ 2(3k2 −
k + 1)|〈S〉|.

In the rest of this section, we gather together some preliminary results which will be
of use to us later.

The next three results look more carefully at Ŝ = {s ∈ S :
√

s 6⊂ 〈S〉} in order to
obtain improved bounds on |G| in certain special cases. Proposition 3.7 is needed in the
proof of Proposition 3.8, but also gives constraints on the elements of Ŝ which in several
instances can be used to show that Ŝ = ∅ and hence that G = 〈S〉.

Proposition 3.6 Suppose S is maximal sum-free in G and that 〈S〉 is not an elementary
abelian 2-group. If |Ŝ| = 1, then |G| = 2|〈S〉|.

Proof Suppose Ŝ = {s}. Let h ∈ 〈S〉 with o(h) > 2. Let x, y ∈ G \ 〈S〉. It follows
from Lemma 3.1 that G = 〈S〉 ∪ √

s. Hence {x, y, xh, yh} ⊆ √
s \ 〈S〉. So xhxh = x2,

which forces x−1hx = h−1. Similarly y−1hy = h−1. But now (xy)−1h(xy) = h 6= h−1. So
xy /∈ √

s \ 〈S〉, and consequently xy ∈ 〈S〉. Since G/〈S〉 is an elementary abelian 2-group
(Proposition 3.2) it follows that |G/〈S〉| = 2. �

Proposition 3.7 Suppose S is maximal sum-free in G. Then every element s of Ŝ has
even order. Moreover all odd powers of s lie in S.

Proof Let s ∈ Ŝ and suppose x ∈ √
s \ 〈S〉. Consider xk for k odd. Suppose for a

contradiction that sk /∈ S. Then (xk)2 = sk /∈ S, so xk /∈
√

S. Hence (Lemma 3.1)
xk ∈ T (S) ⊆ 〈S〉. But xk = s(k−1)/2x. Therefore x = s(1−k)/2xk ∈ 〈S〉, a contradiction.
Thus sk ∈ S for all odd k. Clearly if o(s) is odd this implies 1 ∈ S which is impossible.
Therefore o(s) is even and all odd powers of s lie in S. �

Proposition 3.8 Suppose S is maximal sum-free in G. If there exist s ∈ S and integers
m1, . . . , mt such that Ŝ = {s, sm1 , . . . , smt}, then |G| divides 4|〈S〉|.

Proof By Proposition 3.7, each odd power of s lies in S. If any mi were even, then
smi−1 ∈ S and hence smi = ssmi−1 ∈ SS ∩ S, a contradiction. Therefore each mi is odd.

Let x ∈ G\〈S〉. Then by Lemma 3.1 {x, xs} ⊆
√

Ŝ. Thus for some odd integers j and m,
we have (xs)2 = sj and x2 = sm. Rearranging xsxs = sj gives sx = xs−m+j−1. Because
−m + j − 1 is odd, it follows that for any odd integer i there exists an odd integer l such
that six = xsl.

Suppose that y〈S〉 and x〈S〉 are distinct non-trivial cosets of 〈S〉. Then xy /∈ 〈S〉 and
so (xy)2 ∈ Ŝ, meaning that (xy)2 = smi for some odd integer mi. Thus yx = xx−2smiy−2y.
Since x−2 and y−2 are both odd powers of s it follows that yx = xysr for some odd integer
r.
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Finally suppose x〈S〉, y〈S〉 and z〈S〉 are distinct non-trivial cosets of 〈S〉. Then

(xyz)2 = xyzxyz = xyxzsr1yz where zx = xzsr1 with r1 odd
= xxysr2zsr1yz where yx = xysr2 with r2 odd
= x2sr3yzsr1yz where ysr2 = sr3y with r3 odd
= x2sr3sr4(yz)2 where (yz)sr1 = sr4(yz) with r4 odd
= sj for some even integer j

Therefore xyz ∈ 〈S〉, and hence x〈S〉y〈S〉z〈S〉 = 〈S〉. Now Proposition 3.2 implies that
either G = 〈S〉, G/〈S〉 ∼= C2 or G/〈S〉 ∼= C2 × C2. Thus |G| divides 4|〈S〉|. �

Given that |T (S)| can be bounded in terms of |S|, the following lemma provides us
with a quick bound for |G| in the special case when S ∩ S−1 = ∅.

Lemma 3.9 Suppose S is maximal sum-free in G. If S ∩ S−1 = ∅, then G = T (S) ∪
T (S)−1.

Proof Let x ∈
√

S. Then (x−1)2 = (x2)−1 ∈ S−1. By hypothesis, x−1 /∈
√

S. Since
G = T (S) ∪

√
S by Lemma 3.1, x−1 ∈ T (S). Therefore x ∈ T (S)−1. Hence G =

T (S) ∪
√

S ⊆ T (S) ∪ T (S)−1 and so G = T (S) ∪ T (S)−1. �

Corollary 3.10 Suppose S is maximal sum-free in G with |S| = k. If S ∩S−1 = ∅, then
|G| ≤ 4k2 + 1.

Proof Note that (SS−1)−1 = SS−1 and (S−1S)−1 = S−1S. So T (S)∪T (S)−1 = T (S)∪
S−1 ∪ (SS)−1. By Lemma 3.3, |T (S)| ≤ 3k2 − k + 1. Hence |T (S) ∪ T (S)−1| ≤ 4k2 + 1.
The result now follows from Lemma 3.9. �

Corollary 3.10 will be used repeatedly in subsequent sections. For example, it shows
that a maximal sum-free set of size one either consists of an involution or is contained in
a group of order at most 5.

The final three results in this section deal with the situation where a maximal sum-free
set S contains one or more elements a with the property that a /∈ 〈S \{a}〉. We show that
there are strong restrictions on the possible orders of such elements. These results enable
us to show in Theorem 4.4 that if no proper subset of S generates 〈S〉, then |S| ≤ 2.

Proposition 3.11 Let S be maximal sum-free in G. Suppose a ∈ S is such that a /∈
〈S \ {a}〉. Then either o(a) ∈ {2, 3} or o(a) is even, greater than 4 and a−2 ∈ S.

Proof Assume that a /∈ 〈S\{a}〉 and o(a) ≥ 4. We first show that a−2 ∈ S. This follows
immediately if a−1 ∈

√
S. So suppose that a−1 /∈

√
S. Then the fact that G = T (S)∪

√
S

(Lemma 3.1) implies a−1 ∈ T (S). That is, a−1 = bc for some b, c ∈ S ∪ S−1. Since
a−1 /∈ 〈S\{a}〉, at least one of b, c ∈ {a, a−1}. Thus a−1 ∈ {a±2, ab±1, b±1a, a−1b, ba−1} for
some b ∈ S \ {a}. Since a has order at least 4 it follows that b ∈ {a2, a−2}. However, S
is sum-free and so b = a−2. That is, a−2 ∈ S. It remains to show that o(a) is even and
greater than 4. If o(a) were odd, then a ∈ 〈a−2〉 ⊆ 〈S \ {a}〉, a contradiction. Hence o(a)
is even. If o(a) = 4, then a−2 = a2 ∈ S ∩ SS, another contradiction. Therefore o(a) is
even, greater than 4 and a−2 ∈ S. �
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Corollary 3.12 Let S be maximal sum-free in 〈S〉. Then either 〈S〉 = 〈S\{b}〉 for some
b ∈ S or o(a) ≤ 3 for all a ∈ S.

Proof Suppose that for all b ∈ S, 〈S〉 6= 〈S \ {b}〉. Suppose for a contradiction that
there exists a ∈ S such that o(a) ≥ 4. Then by Proposition 3.11, a−2 ∈ S. If a−2 = b for
b 6= a, then b ∈ 〈a〉, contradicting the fact that b /∈ 〈S \ {b}〉. Thus a−2 = a and hence
o(a) = 3, another contradiction. Hence the result. �

Proposition 3.13 Suppose S is maximal sum-free in G. Let a ∈ S, and write A =
S \ {a}. Then either a ∈ 〈A〉; or a2 ∈ 〈A〉 and o(a) > 4; or A is maximal sum-free in
〈A〉.

Proof Suppose that a /∈ 〈A〉 and that A is not maximal sum-free in 〈A〉. Then there
exists z ∈ 〈A〉 \ S with A∪ {z} sum-free. Write B = A∪ {z}. Then B ∪ {a} = S ∪ {z} is
not sum-free, because S is maximal. That is, the addition of a to B results in a non-sum-
free set. Therefore a ∈ BB ∪ BB−1 ∪ B−1B ∪

√
B ⊆ 〈A〉 ∪

√
B. Since a /∈ 〈A〉, we get

a ∈
√

B. That is, a2 ∈ B ⊆ 〈A〉 \ {1}. If o(a) = 3 then a2 ∈ 〈A〉 if and only if a ∈ 〈A〉.
Therefore o(a) ≥ 4. By Proposition 3.11, o(a) > 4 and the result follows. �

4 Maximal sum-free sets of size at most 2

First we determine all groups with a maximal sum-free set of size 1.

Theorem 4.1 Let S be a maximal sum-free set of size 1 in the group G. Then G ∼=
C2, C3, C4 or Q8. In each case S consists of an element of prime order in G.

Proof Let S = {a}. If a is not an involution, then S ∩ S−1 = ∅. Hence, by Corollary
3.10, |G| ≤ 5. A quick check shows that the only example is G ∼= C3. Suppose o(a) = 2.
Then, by Lemma 3.1, every x ∈ G\〈a〉 has order 4 and 〈a〉 is the unique subgroup of G
of order 2. By Proposition 3.8, G has order 2, 4 or 8 and so G ∼= C2, C4 or Q8. Each of
these possibilities does yield a maximal sum-free set. �

We now begin our investigation of maximal sum-free sets of size 2.

Proposition 4.2 Let S = {a, b} be a maximal sum-free set of size 2 in the group G.
Then either 〈S〉 = 〈a〉, 〈S〉 = 〈b〉, or 2 ∈ {o(a), o(b)} ⊆ {2, 3}.

Proof Assume 〈S〉 is not generated by a or b. By Corollary 3.12, {o(a), o(b)} ⊆ {2, 3}.
We must eliminate the possibility that o(a) = o(b) = 3. Suppose this occurs. Then
S ∩ S−1 = ∅, so by Lemma 3.9, G = T (S) ∪ T (S)−1. Now

T (S) ∪ T (S)−1 = {1, a, b, a2, b2, ab, ba, ab−1, a−1b, ba−1, b−1a, b−1a−1, a−1b−1}.

Thus |G| ≤ 13 and of course 3 divides |G|. If G has even order, then there exists an
involution σ ∈ G. The only possibility is σ = aibj for some nonzero i and j. But
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then aibj = σ = σ−1 = b3−ja3−i. In addition aibjaibj = 1 implies bjaibjai = 1, so
bjai = a3−ib3−j . This means two pairs in T (S) ∪ T (S)−1 are actually equal. So |G| ≤ 11.
Hence |G| ∈ {3, 6, 9}. A quick check reveals that none of these cases results in a maximal
sum-free set with o(a) = o(b) = 3. Thus at least one of a and b has order 2. �

We are now in a position to classify the groups containing a maximal sum-free set S
of size 2 which also generates the group.

Proposition 4.3 Suppose S is a maximal sum-free set of order 2 in 〈S〉.

1. If S contains no involutions, then 〈S〉 = 〈a〉 for some a ∈ S and the possibilities for
S are as in Table 1.

〈a〉 S
C4 {a, a−1}
C5 {a, a−1}
C6 {a, a4}
C7 {a, a−1}, {a, a3}, {a, a5}
C8 {a, a6}

Table 1: Maximal sum-free sets with no involution

2. If S contains an involution a, then S = {a, b} and the possibilities for 〈S〉 are given
in Table 2.

〈S〉 S = {a, b}
C2 × C2 a, b any pair of involutions

C6 a the unique involution and b any element of order 3
D6 a any involution and b any element of order 3.

Table 2: Maximal sum-free sets with an involution

Proof Let S = {a, b}. Suppose first that b = ak for some k. Then

T (S) = {1, a, a2, ak−1, ak, ak+1, a2k, a1−k}.

Because 〈S〉 = 〈a〉 is cyclic, each element of 〈S〉 has at most two square roots. Thus
|
√

S| ≤ 4. Since S is maximal sum-free in 〈S〉 Lemma 3.1 implies 〈S〉 = T (S) ∪
√

S and
so |〈S〉| ≤ |T (S)| + 4 ≤ 12. The cyclic groups of order up to 12 were checked by hand.
The only maximal sum-free sets of order two containing a generator and no involutions
are the ones given in Table 1. The only example where S contains an involution is the
C6 example given in Table 2. (By symmetry, the same reasoning applies to the situation
a ∈ 〈b〉.)
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Suppose S contains no involution. Then by Proposition 4.2, 〈S〉 is generated by either
a or b and we have already dealt with this possibility. Thus the list given in Table 1 is
complete.

Suppose S contains an involution a. By Proposition 4.2, either 〈S〉 = 〈b〉, or o(b) ∈
{2, 3}. If 〈S〉 = 〈b〉, then the only possibility is 〈S〉 = C6 as mentioned above. So
assume o(b) ∈ {2, 3}, and consider the element bab−1. Now o(bab−1) = 2, so bab−1 /∈

√
S.

Therefore, by Lemma 3.1, bab−1 ∈ T (S) = {1, a, b, b2, ab, ba, ab−1, b−1a}. Working through
each possibility leads to two outcomes; either ba = ab or ba = ab−1. If o(b) = 2, we get a
maximal sum-free set in C2 × C2; if o(b) = 3 we get a maximal sum-free set in either C6

or D6, as shown in Table 2. These are the only possibilities. �

Proposition 4.3 allows us to prove Theorem 4.4, which concerns groups containing
maximal sum-free sets S with the property that no proper subset of S generates 〈S〉.
We show that such sets have size at most 2. Thus all examples can be found from a
classification of groups containing a maximal sum-free set of size 1 or 2.

Theorem 4.4 Suppose S is a maximal sum-free set in G such that no proper subset of
S generates 〈S〉. Then |S| ≤ 2.

Proof Suppose |S| ≥ 3 and no proper subset of S generates 〈S〉. By Corollary 3.12
every element of S has order 2 or 3. Proposition 3.13 then implies that every proper
subset A of S is maximal sum-free in 〈A〉. In particular, for all a, b ∈ S, we have that
{a, b} is maximal sum-free in 〈a, b〉. The possibilities for {a, b} and 〈a, b〉 are given in
Proposition 4.3. Since the orders of a and b are at most 3, 〈a, b〉 cannot be generated by
a or b. Therefore at least one of a, b is an involution and either ba = ab or o(b) = 3 and
ba = ab−1. Hence all but at most one element of S is an involution and all the involutions
commute. Let A consist of all the involutions of S. Then 〈A〉 ∼= C l

2 where l = |A|. But,
writing A = {a1, . . . , al}, if l > 2 the set {a1, . . . , al, a1a2a3} is sum-free. Thus A is not
maximal sum-free in 〈A〉, a contradiction. Therefore S contains at most two involutions.
Since |S| ≥ 3, the only case remaining is S = {a, b, c}, where a and b are involutions, c
has order 3 and ab = ba. Moreover either ca = ac or ca = ac−1, and either cb = bc or
cb = bc−1. So every element of 〈S〉 can be written aibjcl where i, j = 0 or 1 and l is 0, 1 or
2. Hence |〈S〉| divides 12. Since a /∈ 〈b, c〉, in fact |〈S〉| = 12. If ca = ac−1 and cb = bc−1

then there are 9 involutions in 〈S〉. No group of order 12 contains 9 involutions (see for
example [7], pg 239). Therefore we can assume that ca = ac. Hence a ∈ Z(〈S〉). Consider
abc. Now abc /∈ T (S) = S ∪ SS ∪ SS−1 ∪ S−1S, because we know 〈S〉 has order 12 and
for this to occur, abc cannot have an alternative expression involving just one or two of
a, b and c. But (abc)2 = (bc)2 ∈ {1, c2}. Hence abc /∈

√
S, which means 〈S〉 6= T (S)∪

√
S.

But now Lemma 3.1 implies S is not maximal sum-free in 〈S〉, a contradiction. Therefore
our initial assumption, that |S| ≥ 3, was false. Hence |S| ≤ 2. �

The last three results in this section complete the classification of groups containing
maximal sum-free sets S of size 2. They deal with the cases where S contains zero, one
or two involutions respectively.

the electronic journal of combinatorics 16 (2009), #R59 9



Proposition 4.5 Suppose S is a maximal sum-free set of size 2 in G such that S contains
no involutions. Then either G = 〈S〉 with the possibilities as in Proposition 4.3(1), or
there exists x ∈ G with G = 〈x〉 ∼= C8 and S = {x2, x6}.

Proof If S is maximal sum-free in G, then S must certainly be maximal in 〈S〉. There-
fore S and 〈S〉 are as described in Proposition 4.3(1). Suppose that G 6= 〈S〉. Then, by
Lemma 3.1, Ŝ is nonempty. Furthermore, by Proposition 3.7, each element a of Ŝ has
even order and all odd powers of a are in S. Since |S| = 2 and a is not an involution,
it follows that a has order 4, and then S is forced to be {a, a−1}, so 〈S〉 ∼= C4. Since
Ŝ ⊆ {a, a−1}, Proposition 3.8 implies that G has order 8 or 16. Every element of

√
S has

order 8. If G had order 16, since G = 〈S〉 ∪
√

S, it would have to contain one involution,
two elements of order 4 and 12 elements of order 8. There are no groups of this form (see
[7] pg 239). Therefore |G| = 8 and so G is cyclic. This case does yield a maximal sum-free
set. Given any x ∈

√
S we have G = 〈x〉 ∼= C8 and S = {x2, x6}. �

Proposition 4.6 Suppose that S is maximal sum-free of size 2 in G and that S contains
exactly one involution. Then one of the following holds.

1. G = 〈S〉 ∼= C6;

2. G = 〈S〉 ∼= D6;

3. G ∼= Q12 = 〈g, h : g6 = 1, g3 = h2, hg = g−1h〉 and S = {g3, g2} or {g3, g4}.

Proof Since S is maximal sum-free in G, S is also maximal in 〈S〉. By Proposition
4.3(2), writing S = {a, b}, we have a2 = b3 = 1 and either 〈S〉 = C6 or D6. By Propositions
3.6 and 3.7, either G = 〈S〉 or Ŝ = {a} and |G| = 12. If G = 〈S〉, then we are done.
Suppose |G| = 12. Then since G = 〈S〉∪

√
S and the elements of

√
S not in 〈S〉 all square

to a, it follows that G has six elements of order 4. The only such group is Q12 (see [7, p
239]), which has a unique involution and two elements of order 3, meaning there are two
possibilities for S. Writing Q12 = 〈g, h : g6 = 1, g3 = h2, hg = g−1h〉 gives S = {g3, g2} or
{g3, g4}. This completes the proof. �

Proposition 4.7 Suppose that S is maximal sum-free of size 2 in G and that S contains
2 involutions. Then (G, S) is one of the pairs given in Table 3.

G S
C2 × C2 any 2 involutions
C4 × C2

∼= 〈x, y : x4 = y2 = 1, xy = yx〉 {x2, y}, {x2, x2y}
C2 × Q8 = 〈b〉 × Q8 {a, b} or {a, ab} where a ∈ Q8, a

2 = 1.
〈g, h : g4 = 1 = h4, hg = g−1h〉 {g2, h2}

Table 3: Maximal sum-free sets with 2 involutions
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Proof Since S is maximal sum-free in G, S is also maximal in 〈S〉. We may write
S = {a, b} where a2 = 1, b2 = 1 and ab = ba by Proposition 4.3. Since by Lemma
3.1 G = 〈S〉 ∪

√
S, either G = 〈S〉 ∼= C2 × C2 or

√
S\〈S〉 6= ∅. Suppose there exists

g ∈
√

S\〈S〉 = G\〈S〉. Without loss of generality, g ∈ √
a. Then gb ∈ G\〈S〉 and since

(gb)2 6= b it follows that (gb)2 = a = g2. Thus gb = bg and so S ⊆ CG(g). Consequently
S ⊆ Z(G).

Suppose x, y ∈
√

S\〈S〉 with y /∈ x〈S〉. Then xy /∈ 〈S〉 and so xy ∈
√

S. Thus xyxy =
s for some s ∈ S. Rearranging gives yx = x−1sy−1 = xx2syy2, since o(x) = o(y) = 4.
Now x2 and y2, as elements of S, are central in G and hence yx = xyx2y2s. At least
two of x2, y2, s are the same and thus cancel. Hence yx = xys′ for some s′ ∈ S. Now
suppose x1〈S〉, x2〈S〉, x3〈S〉 are three distinct non-trivial cosets of 〈S〉. Then (x1x2x3)

2 =
x1x2x3x1x2x3 = x2

1(x2x3)
2s1s2 for some si ∈ S. At least two of x2

1, (x2x3)
2, s1 and s2 are

the same and thus cancel. Therefore (x1x2x3)
2 ∈ {1, ab}, forcing x1x2x3 ∈ 〈S〉 and hence

by Proposition 3.2 (x1〈S〉)(x2〈S〉) = x3〈S〉. In other words the factor group G/〈S〉 has
order 2 or 4. Hence |G| ∈ {8, 16}. Furthermore G has exactly 3 elements of order 2, with
the remaining non-trivial elements having order 4.

If G has order 8, then in addition G must be abelian, as G = 〈S〉 ∪ x〈S〉 and 〈S〉 ⊆
Z(G). The only possibility is G = 〈x, y : x4 = y2 = 1, xy = yx〉 ∼= C4 × C2, with
S = {x2, y} or {x2, x2y}. If G has order 16, then G = 〈S〉 ∪ x〈S〉 ∪ y〈S〉 ∪ xy〈S〉 for
x ∈ √

a and y ∈
√

S. Note that xy 6= yx, since xy = yx implies (xy)2 = x2y2 ∈ {1, ab},
and so xy ∈ G \ (〈S〉 ∪

√
S), contradicting Lemma 3.1. Hence G is not abelian; in fact

Z(G) = 〈S〉 ∼= C2 × C2. There are only two non-abelian groups of order 16 with 3
involutions and centre C2×C2 (see [7], pg 239), namely C2×Q8 and K = 〈g, h : g4 = 1 =
h4, hg = g−1h〉 as given in the statement of Proposition 4.7. Both these groups contain
maximal sum-free sets of size 2. For C2 × Q8, a is the unique involution of Q8 and b is
an involution outside Q8. For K we get S = {g2, h2}. (Note that g2 = h2 is impossible
as this would result in K having fewer than 16 elements. So we may assume g ∈ √

a and
h ∈

√
b.) This completes the analysis. �

5 Maximal sum-free sets of size 3

Theorem 4.4 tells us that if S is maximal sum-free and no proper subset of S generates
〈S〉, then |S| ≤ 2. In this section our goal is to prove Theorem 5.6, in which we classify all
the maximal sum-free sets S of size 3 for which at least one two-element subset does not
generate 〈S〉. In other words, those S for which there exists a ∈ S such that a /∈ 〈S \{a}〉.
In view of Corollary 3.10, it is natural to look for sum-free sets of size k = 3 in groups
of order up to 4k2 + 1 = 37. Maximal sum-free sets of size 3 might still possibly exist
in groups of order more than 37 but we conjecture that they do not; see the end of the
section.

Theorem 5.1 Up to isomorphism, the only instances of maximal sum-free sets S of size
3 of a group G where |G| ≤ 37 are given in Table 5.
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Proof The maximal sum-free sets of size 3 for groups of order up to 37 were checked
using the computer algebra package GAP [8], using the ‘AllSmallGroups’ command. As
can be seen from the final column of Table 5, there may be more than one set in the group
of the form given. One set is listed for each form. So for example if G ∼= C9 then for some
generator g of G, either S = {g, g3, g8} or S = {g, g4, g7}. �

Corollary 5.2 is an immediate consequence of Theorem 5.1 and Corollary 3.10.

Corollary 5.2 If S is a maximal sum-free set of size 3 in G and S ∩ S−1 = ∅, then
(G, S) is one of the possibilities listed in Table 5.

Theorem 5.1 also allows us to bound |〈S〉| in the case of maximal sum-free sets S of
size three for which 〈S〉 is cyclic. The bound is required in the proof of Theorem 5.6.

Corollary 5.3 Suppose S is maximal sum-free set of size 3 in 〈S〉. If 〈S〉 is cyclic, then
|〈S〉| ≤ 15.

Proof Using the fact that 〈S〉 is abelian, we see that T (S) = S ∪ SS ∪ SS−1 and
hence that |T (S)| ≤ 21. Since 〈S〉 is cyclic, each element has at most two square roots.
Therefore |

√
S ∩ 〈S〉| ≤ 6. Hence, by Lemma 3.1, |〈S〉| ≤ 27. From Table 5 we see that

the largest possibility that actually occurs is C15. Hence |〈S〉| ≤ 15. �

For the rest of the section we concentrate on the case where S is a maximal sum-free
set of size 3 in G, with a ∈ S such that a /∈ 〈S \ {a}〉.

The next two results are needed for the proof of Theorem 5.6.

Proposition 5.4 Suppose S is maximal sum-free of size 3 in G and a is an element of
S for which a /∈ 〈S \ {a}〉. If o(a) = 2, then |G| ≤ 32.

Proof Write S = {a, b, c}. By Proposition 3.13, {b, c} is maximal sum-free in 〈b, c〉.
The possibilities for {b, c} are given in Proposition 4.3.

First, consider the case where c ∈ 〈b〉, so S = {a, b, bi} for some i and by Proposition
4.3, o(b) ∈ {4, 5, 6, 7, 8}. Now b−1ab is an involution, so cannot lie in

√
S. Thus by Lemma

3.1, b−1ab ∈ T (S). Given that a /∈ 〈b〉, we get b−1ab ∈ {a, ab, ba, b−ia, bia}. Note that we
do not need to consider ab−i or abi, since if these are involutions, then ab−i = bia and
abi = b−ia.

Now b−1ab = ab is impossible. The other four possibilities imply that ab = bja for
some integer j. Hence every element of 〈S〉 can be written blaε for 0 ≤ l < o(b) and
ε ∈ {0, 1}. Therefore |〈S〉| ≤ 2o(b) and since a /∈ 〈b〉 we have |〈S〉| = 2o(b). Suppose
first that o(b) = 4 and consider ab2. By Proposition 4.3(1), c = b−1, so ab2 /∈ T (S),
and hence ab2 ∈

√
S. But (ab2)2 = ab2ab2 = b2ja2b2 ∈ {1, b2} /∈ S, a contradiction.

Therefore o(b) ≥ 5. Now Proposition 3.7 states that all elements s of Ŝ have even order
and moreover that all odd powers of s lie in S. Considering the remaining possible orders
of b and corresponding values of i given in Proposition 4.3 we quickly see that Ŝ ⊆ {a}.
Therefore, by Proposition 3.6, |G| ≤ 2|〈S〉| = 4o(b) ≤ 32.
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We have shown that if c ∈ 〈b〉, then |G| ≤ 32. By symmetry if b ∈ 〈c〉, then |G| ≤ 32.
It remains to consider the case 〈b〉 6= 〈b, c〉 6= 〈c〉. Then, by Proposition 4.2, we may
assume o(b) = 2 and o(c) ∈ {2, 3}. Proposition 4.3 implies that 〈b, c〉 is either abelian or
isomorphic to D6. Furthermore by Theorem 4.4, at least one proper subset of S generates
〈S〉. So either b ∈ 〈a, c〉 or c ∈ 〈a, b〉. If o(c) = o(b) = 2, then without loss of generality,
c ∈ 〈a, b〉. Therefore we may assume that either c ∈ 〈a, b〉 or both o(c) = 3 and c /∈ 〈a, b〉.

For a contradiction, assume that o(c) = 3 and c /∈ 〈a, b〉. Then b ∈ 〈a, c〉. Moreover, by
Proposition 3.13, {a, b} is maximal sum-free in 〈a, b〉. Since a and b are both involutions,
we must have 〈a, b〉 ∼= C2×C2, and in particular ab = ba. We also know, from the fact that
{b, c} is maximal sum-free in 〈b, c〉, that either bc = cb or cb = bc−1. A quick calculation
shows that

T (S) = {1, a, b, c, c2, ab, bc, cb, bc−1, c−1b, ac, ca, ac−1, ca−1}.

Let x ∈ G and suppose that o(x) = 3i for some i ≥ 1. If x ∈ T (S), then x ∈
{c, c2, ac, ca, ac−1, ca−1}. Otherwise x ∈

√
S by Lemma 3.1. But then since o(a) =

o(b) = 2 we must have x2 = c, forcing x = x4 = c2 ∈ T (S). Therefore there are at most
6 non-trivial elements of Sylow 3-subgroups of G. By Sylow’s Theorems, the number of
Sylow subgroups is either 1 or at least 4. An elementary counting argument shows that
there is a unique Sylow 3-subgroup of order 3, namely 〈c〉. This subgroup is therefore
normal and hence either ac = ca or ac = c−1a. But then |〈a, c〉| = 6. But the subgroup
〈a, b〉 of 〈a, c〉 has order 4, a contradiction.

It now remains to deal with the case c ∈ 〈a, b〉. Since a and b are both involutions,
〈a, b〉 = 〈S〉 is dihedral. Now a and b lie in the non-trivial coset of the cyclic subgroup
〈ab〉 of index 2 in 〈S〉. This coset is sum-free, so if c also lies in the coset, then the fact
that S is maximal forces |〈ab〉| = 3. That is, 〈S〉 ∼= D6. However we would then have
a = bcb ∈ 〈b, c〉, contrary to our hypothesis. Hence c = (ab)i for some i > 1. The fact
that {a, b, c} and {a, b, aba} are sum-free but {a, b, aba, c} is not forces c ∈ {abab, baba}.
Recalling that o(c) ≤ 3, we have 〈S〉 ∼= D8 or 〈S〉 ∼= D12. However in D12, (ab)3 ∈
{abc, bac} is an involution not contained in T (S), which is impossible by Lemma 3.1.
Therefore 〈S〉 = 〈a, b〉 ∼= D8, where (ab)4 = 1 and c = (ab)2. Suppose x ∈ √

a. Then
(bxb)2 = bab /∈ S. Thus bxb ∈ T (S) and hence x ∈ 〈S〉. Therefore

√
a ⊆ 〈S〉 and similarly√

b ⊆ 〈S〉. Hence Ŝ ⊆ {c} and therefore, by Proposition 3.6, |G| ≤ 16. We have now
shown that in all cases where o(a) = 2, |G| ≤ 32. �

Proposition 5.5 Suppose S is maximal sum-free of size 3 in G and a is an element of
S for which a /∈ 〈S \ {a}〉. If o(a) = 3 and S = {a, b, b−1} for some b ∈ G, then |G| ≤ 21.

Proof By Proposition 3.13, {b, b−1} is maximal sum-free in 〈b〉. Hence by Proposition
4.3, o(b) ∈ {4, 5, 7}. Here

T (S) = {1, b, b−1, b2, b−2, a, a2, ab, ba, b−1a, ab−1, a−1b, ba−1, b−1a−1, a−1b−1}.

Let x ∈ G and suppose o(x) = 3i for some i ≥ 1. If x ∈ √
a then x2 = a, so x = x4 =

a2 ∈ T (S). Hence the elements of order 3i lie in T (S). Therefore G contains between 2
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and 10 elements of 3-power order. Also note that o(ba) = o(ab) = o(a−1b−1) = o(b−1a−1)
and o(b−1a) = o(ab−1) = o(a−1b) = o(ba−1). Let

U = {ab, ba, b−1a, ab−1, a−1b, ba−1, b−1a−1, a−1b−1}.

Now the Sylow 3-subgroups must have order 3 or 9. By Sylow’s Theorems either there are
1 or 4 Sylow subgroups of order 3, or there is a unique Sylow 3-subgroup of order 9. If the
Sylow 3-subgroup is C9, then there are six elements of order 9, forcing o(ab) = 9 = o(ab−1)
and |U | = 6. However if any pair of elements in U is equal then it is easy to check that
either a ∈ 〈b〉 or |U | ≤ 4, a contradiction. If the Sylow 3-subgroup is C3 × C3, or there
are four Sylow 3-subgroups of order 3, then there are eight elements of order 3, including
a and a2, which means again that |U | = 6, which is impossible. Hence there is a unique
Sylow 3-subgroup of order 3, which implies 〈a〉 is normal. Hence b−1ab = a±1. That
is, ab = ba±1. Therefore every element of 〈S〉 can be written biaj for 0 ≤ i < o(b) and
0 ≤ j < 3. So |〈S〉| ≤ 3o(b) and as a /∈ 〈b〉 we have |〈S〉| = 3o(b). Suppose that
o(b) = 4. Then |〈S〉| = 12. Now ab2 /∈ T (S), so (by Lemma 3.1) ab2 ∈

√
S. But

(ab2)2 = ab2ab2 = ab−2ab2 ∈ {1, a2}, a contradiction. Hence o(b) 6= 4, so o(b) is odd. Now
Proposition 3.7 implies that 〈S〉 = G. Hence |G| ≤ 21. �

Theorem 5.6 The only examples of maximal sum-free sets S of size 3 for which not
every proper two-element subset of S generates 〈S〉 are those given in Table 4.

G S 〈S〉 #S

〈g, h : g4 = h2 = 1, hgh−1 = g−1〉 ∼= D8 {h, gh, g2} ∼= D8 4
〈g : g10 = 1〉 ∼= C10 {g5, g2, g8} ∼= C10 2
〈g : g12 = 1〉 ∼= C12 {g, g6, g10} ∼= C12 4
Alternating group of degree 4 ∼= A4 {z, x, y : x2 = y2 = z3 = 1} ∼= A4 24
〈g, h : g10 = 1, g5 = h2, hgh−1 = g−1〉 ∼= Q20 {g5, g2, g8} ∼= C10 2
〈g, h : g12 = 1, g6 = h2, hgh−1 = g−1〉 ∼= Q24 {g, g6, g10} ∼= C12 4

Table 4: Maximal sum-free sets S = {a1, a2, a3} with a1 /∈ 〈a2, a3〉.

Proof Suppose S is maximal sum-free in G, that |S| = 3 and that not every proper
two-element subset of S generates 〈S〉. Then there exists a ∈ S for which a /∈ 〈S \ {a}〉.
We will show that |G| ≤ 37. By Proposition 3.11, either o(a) ∈ {2, 3} or o(a) is even,
greater than 4 and a−2 ∈ S. If o(a) = 2, then Proposition 5.4 implies |G| ≤ 32. If
o(a) = 3, then either S ∩ S−1 = ∅ or S = {a, b, b−1}. By Corollary 3.10 and Proposition
5.5, |G| ≤ 37. It remains to consider the case where o(a) is even, greater than 4 and
a−2 ∈ S. Then S = {a, a−2, b} for some b ∈ G. If S ∩ S−1 = ∅, then by Corollary 3.10,
|G| ≤ 37. So suppose S ∩ S−1 is non-empty. Now S−1 = {a−1, a2, b−1}. Clearly a−1 /∈ S,
since this would imply a−2 ∈ S ∩ SS, contradicting the fact that S is sum-free. Similarly
a2 /∈ S. Therefore b = b−1. If b /∈ 〈a〉, then by Proposition 5.4, |G| ≤ 32. So suppose
b ∈ 〈a〉. Then 〈S〉 is cyclic, so by Corollary 5.3, |〈S〉| ≤ 15. Next we consider Ŝ. By
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Proposition 3.7, if a ∈ Ŝ then every odd power of a lies in S. In particular, a−1 ∈ S, a
contradiction. Similarly a−2 ∈ Ŝ implies a2 ∈ S, another contradiction. Hence |Ŝ| ≤ 1.
Thus either G = 〈S〉 or, by Proposition 3.6, |G| = 2|〈S〉|. In either case |G| ≤ 2 · 15 = 30.
Therefore, again, |G| ≤ 37. By Theorem 5.1, (G, S) is one of the pairs given in Table
5. However in some of these cases, every proper subset of S generates 〈S〉. Table 4 lists
the examples for which not every proper subset of S generates 〈S〉. In each case the first
element of S as listed in the table is not contained in the span of the other two elements.
�

We have checked, using GAP, all groups of order up to 100 and found no further
examples of maximal sum-free sets of size 3. We are led to the following conjecture.

Conjecture 5.7 If G is a group of order greater than 24 than G does not contain a
maximal sum-free set of size 3.

If G is a group of order greater than 24 with a maximal sum-free set S of size 3 then
by Theorem 5.6, 〈S〉 = 〈a, b〉 for any a, b ∈ S. Corollary 5.3 implies that 〈S〉 is not cyclic
and so if a ∈ S is of order at least 3 then a−1 /∈ S. Corollary 5.2 then implies that S
contains an involution.

Acknowledgements: The authors would like to thank the referee whose comments and
suggestions greatly improved the quality of the paper.
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G S 〈S〉
#maximal
sum-free

sets of size
3 in G

〈g : g6 = 1〉 ∼= C6 {g, g3, g5} ∼= C6 1
〈g, h : g3 = h2 = 1, hgh = g−1〉 ∼= D6 {h, gh, g2h} ∼= D6 1
〈g : g8 = 1〉 ∼= C8 {g, g−1, g4} ∼= C8 2
〈g, h : g4 = h2 = 1, hgh−1 = g−1〉 ∼= D8 {h, gh, g2} ∼= D8 4
〈g : g9 = 1〉 ∼= C9 {g, g3, g8}, {g, g4, g7} ∼= C9 8
〈g, h : g3 = h3 = 1, gh = hg〉 ∼= C3 × C3 {g, h, g2h2} ∼= C3 × C3 8
〈g : g10 = 1〉 ∼= C10 {g2, g5, g8}, {g, g5, g8} ∼= C10 6
〈g : g11 = 1〉 ∼= C11 {g, g3, g5} ∼= C11 10
〈g : g12 = 1〉 ∼= C12 {g2, g6, g10} ∼= C6 1

{g, g6, g10}, {g, g3, g8} ∼= C12 8
〈g, h : g6 = 1, g3 = h2, hgh−1 = g−1〉 ∼= Q12 {g, g3, g5} ∼= C6 1
Alternating group of degree 4 = A4 {x, y, z : x2 = y2 = z3 = 1} = A4 48

{x, z, xzx : x2 = z3 = 1}
{x, z, zxz : x2 = z3 = 1}

〈g : g13 = 1〉 ∼= C13 {g, g3, g9}, {g, g6, g10} ∼= C13 16
〈g : g15 = 1〉 ∼= C15 {g, g6, g11} ∼= C15 4
〈g, h : g4 = h4 = 1, gh = hg〉 ∼= C4 × C4 {g, h, g−1h−1} ∼= C4 × C4 16
〈g, h : g8 = 1, g4 = h2, hgh−1 = g−1〉 ∼= Q16 {g, g4, g−1} ∼= C8 2
〈g, h : g8 = h2 = 1, hgh−1 = y3〉 (order 16) {g, g6, g3h} ∼= G 8
〈g, h : g10 = 1, g5 = h2, hgh−1 = g−1〉 ∼= Q20 {g, g5, g8}, {g2, g5, g8} ∼= C10 6
〈g, h : g3 = h7 = 1, ghg−1 = h2〉 ∼= C7 ⋊ C3 {gh, gh−1, g−1} ∼= C7 ⋊ C3 42
〈x : x3 = 1〉 × 〈g, h : g4 = 1, g2 = h2, hgh−1 = g−1〉 ∼= C3 × Q8 {g2, xg2, x2g2} ∼= C6 1
〈g, h : g12 = 1, g6 = h2, hgh−1 = g−1〉 ∼= Q24 {g2, g6, g10} ∼= C6 1

{g, g6, g10} ∼= C12 4

Table 5: Maximal sum-free sets in groups of order up to 37
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