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Abstract

It is shown that a matching covered graph has an ear decomposition with no
more than one double ear if and only if there is no set S of edges such that |S∩A| is
even for every alternating circuit A but |S ∩C| is odd for some even circuit C. Two
proofs are presented. The first uses vector spaces and the second is constructive.
Some applications are also given.

1 Introduction

Look at the Petersen graph drawn below. The set S = {e2, e4, e15} of edges has the
following property: |S ∩ A| is even for each alternating circuit A but there is an even
circuit C (such as {e2, e3, e4, e10, e15, e7}) for which |S ∩ C| is odd. Bricks for which the
underlying simple graph is the Petersen graph are the only bricks that have such a set S.
This paper reveals why. We present two arguments. The first uses vector spaces, and is
based on Lovász’s formula for the dimension of the linear space over GF (2) generated by
the 1-factors of a matching covered graph. The second argument constructs S in those
matching covered graphs in which it exists.

We now present the relevant definitions, notation and background. The vertex and
edge sets of a graph G are denoted by V G and EG respectively. A 1-factor of G is the edge
set of a regular spanning subgraph of degree 1. A connected graph is matching covered if
every edge has a 1-factor containing it. Any such graph with more than two vertices is
necessarily 2-connected. A graph G is said to be bicritical if G− {u, v} has a 1-factor for
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Figure 1: The Petersen graph

any two vertices u and v. Such a graph must be matching covered and, moreover, cannot
be bipartite if it has more than two vertices. A 3-connected bicritical graph is a brick.
Any graph with the Petersen graph as its underlying simple graph furnishes an example
of a brick. Now let G be a matching covered bipartite graph with bipartition {X, Y }.
We say that G is a brace if G − {w, x, y, z} has a 1-factor whenever w and x are distinct
vertices of X and y and z are distinct vertices of Y .

Any matching covered graph may be subjected to a decomposition procedure, due to
Lovász [6]. It involves the concept of a tight cut. If X is a set of vertices, then we write
X = V G − X. We let ∇X be the set of edges joining a vertex of X to a vertex of X.
Thus ∇X = ∇X. The set ∇X is called a cut of G. Its shores are G[X] and G[X]. We
sometimes write ∇X = [X, X]. A cut is trivial if either shore has only one vertex.

Since G is matching covered, |V G| is even. Thus if |X| is odd, then so is |X|. In this
case each 1-factor must contain an odd number of edges of ∇X. If |∇X ∩F | = 1 for each
1-factor F , then the cut ∇X is said to be tight. It has been shown by Lovász [6] that
bricks and braces are the only matching covered graphs in which each tight cut is trivial.

Given a cut T = ∇X, we may form two new graphs by contracting the respective
shores of T to single vertices. We denote by G{X; x} the graph obtained from G by
contracting X to a single vertex x. Similarly G{X; x} denotes the graph formed by
contracting X to a single vertex x. These two graphs are called the T -contractions of
G. They may be written more briefly as G{X} and G{X}, respectively, if no ambiguity
emerges.

Now suppose that T is a non-trivial tight cut in a matching covered graph. Then
both T -contractions are also matching covered. We may repeat this process of finding
non-trivial tight cuts and taking their contractions inductively until we are left with a
family of graphs that lack non-trivial tight cuts. These graphs are bricks or braces. The
process just described is referred to as tight cut decomposition. Lovász [6] has shown that
the list of bricks and braces emerging from this procedure is uniquely determined up to
multiplicities of edges. At least one brick emerges from the decomposition if and only if
the graph is not bipartite.

The number of bricks plays an important role in the theory, not least because it is
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relevant to the calculation of the dimension of the linear space of the graph. Each vector
space considered in this paper is over the field GF (2), has sets of edges as vectors and
has symmetric difference as the addition operation. The linear space, L(G), of a graph
G is the space spanned by the 1-factors. Lovász’s formula for the dimension of L(G)
depends on the number of bricks resulting from the decomposition procedure, except
that bricks whose underlying simple graph is isomorphic to the Petersen graph are to be
counted twice. Accordingly we let b(G) be the total number of bricks resulting from the
decomposition procedure applied to a matching covered graph G and we let p(G) be the
number of those bricks whose underlying simple graph is isomorphic to the Petersen graph.
We are then interested in the number b(G) + p(G). Its relevance to the computation of
dimL(G) is shown in the following theorem of Lovász [6].

Theorem 1.1 For a matching covered graph G,

dimL(G) = |EG| − |V G| + 2 − b(G) − p(G).

This formula bears a striking resemblance to that for the dimension of the cycle space,
C(G), of G, which is the space spanned by the circuits. (Throughout this paper, paths
and circuits are taken to be sets of edges.) Indeed, since G is connected we have

dim C(G) = |EG| − |V G| + 1.

These spaces therefore have equal dimension if b(G) + p(G) = 1.
For our purposes, a subspace of the cycle space, called the even space, is of particular

importance. The even space, E(G), of G is the subspace of C(G) spanned by the even
circuits (those of even length). For bipartite graphs these spaces are the same, but for
graphs that are not bipartite we have the following theorem. (See [4], for example.)

Theorem 1.2 For a 2-connected non-bipartite graph G,

dim E(G) = dim C(G) − 1.

The even space, in turn, has an important subspace called the alternating space and
denoted by A(G). This is the subspace spanned by the alternating circuits. (A circuit is
alternating if it is a symmetric difference of two 1-factors. More specifically, it is said to
be alternating with respect to either of those 1-factors.)

In the next section we derive the existence or otherwise of the set S described earlier
by relating the dimensions of the spaces L(G), C(G), E(G) and A(G).

2 An argument using vector spaces

Every generating set for a vector space over any field includes a basis. In particular, we
have the following theorem.
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Theorem 2.1 Let G be a graph with a 1-factor. Then L(G) has a basis consisting of
1-factors.

We have already seen in Theorem 1.2 how the dimensions of the cycle and even spaces
are related for a 2-connected non-bipartite graph. We now derive an analogous result for
the linear and alternating spaces in a graph with a 1-factor.

Theorem 2.2 For a graph G with a 1-factor,

dimA(G) = dimL(G) − 1.

Proof: Let (F0, F1, . . . , Fn) be a basis B for L(G), where F0, F1, . . . , Fn are 1-factors,
and let

A = (F0 + F1, F0 + F2, . . . , F0 + Fn).

We shall show that A is a basis for A(G).
First we consider a non-empty set

{F0 + Fi1 , F0 + Fi2 , . . . , F0 + Fim}

of components of A. Observe that either

m
∑

j=1

(F0 + Fij) =
m

∑

j=1

Fij

or
m

∑

j=1

(F0 + Fij ) = F0 +
m

∑

j=1

Fij ,

depending on the parity of m. In either case the linear independence of B is contradicted
if we assume that

m
∑

j=1

(F0 + Fij) = ∅.

We infer that A is linearly independent.
Next, let C be an alternating circuit. Then C = X + Y for some 1-factors X and

Y . Both X and Y are sums of components of B. Since every 1-factor contains an odd
number of edges incident on any vertex, each of these sums must have an odd number
of summands. Therefore C is a sum of an even number of components of B. Let these
components be Fl1 , Fl2, . . . , Fl2k

. Then

C =
2k
∑

j=1

Flj =
2k
∑

j=1

(F0 + Flj ).

As F0 + F0 = ∅, the components of A span A(G). The theorem follows. 2

Let G be a matching covered graph. If b(G) + p(G) = 0, then G is bipartite and
A(G) = E(G), by Theorem 1.1 and Theorem 2.2. Consequently every even circuit is a
sum of alternating circuits.
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If b(G) + p(G) = 1 then by Theorem 1.1 we have

dimL(G) = dim C(G),

and so
dimA(G) = dim E(G)

by Theorem 1.2 and Theorem 2.2. Once again, in this case A(G) = E(G) and every even
circuit is a sum of alternating circuits.

On the other hand, if b(G) + p(G) > 1 then by the same argument we have

dimA(G) < dim E(G).

Thus A(G) is a proper subspace of E(G) and there must be an even circuit that is not a
sum of alternating circuits.

In summary, we have the following theorem.

Theorem 2.3 Let G be a matching covered graph. Then b(G) + p(G) > 1 if and only if
there is an even circuit that is not a sum of alternating circuits.

Let A1, A2, . . . , Am be the alternating circuits in a matching covered graph G. If C

is a circuit that is a sum of alternating circuits, then there exist constants x1, x2, . . . , xm

such that xi ∈ {0, 1} for all i and

C =
m

∑

i=1

xiAi. (1)

Now let EG = {e1, e2, . . . , en}, and for each j let cj = 1 if ej ∈ C and let cj = 0 otherwise.
Similarly for each relevant i and j let aij = 1 if ej ∈ Ai and let aij = 0 otherwise. From
(1) we have the equation

cj =
m

∑

i=1

aijxi

for each j. In fact, C is a sum of alternating circuits if and only if these n equations
have a solution for x1, x2, . . . , xm over GF (2). By applying the necessary and sufficient
condition for the existence of a solution for a system of linear equations, we obtain the
following corollaries.

Corollary 2.4 Let G be a matching covered graph. Then b(G) + p(G) > 1 if and only if
there exists a set S of edges such that |S ∩ A| is even for each alternating circuit A but
|S ∩ C| is odd for some even circuit C.

For brevity we shall refer to a set S of edges in a matching covered graph as compli-
cating if |S ∩ A| is even for each alternating circuit A but |S ∩ C| is odd for some even
circuit C. A matching covered graph is said to be a near brick if b(G) = 1. In particular,
any brick is a near brick.

Corollary 2.5 Let G be a near brick. Then the unique brick in the decomposition of G

into bricks and braces has the Petersen graph as its underlying simple subgraph if and
only if there exists a complicating set of edges.
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3 A constructive argument

We now consider how to obtain the results in the previous section constructively. The
key tool here is another decomposition of a matching covered graph, called the ear de-
composition. An ear in a graph G is a maximal path whose internal vertices are of degree
2 in G. If P is an ear in G and H = G[EG − P ], then we say that G is obtained from
H by a single ear adjunction. Likewise, let P and Q be vertex-disjoint ears of G. If
H = G[EG − (P ∪ Q)], then G is obtained from H by a double ear adjunction. An ear
decomposition of a matching covered graph G is a sequence G0, G1, . . . , Gn of matching
covered subgraphs such that G0 = K2, Gn = G and, for all i > 0, Gi is obtained from
Gi−1 by a single or double ear adjunction.

The following theorem is proved in [7]. (See also [5] and [8].)

Theorem 3.1 Every matching covered graph has an ear decomposition.

An ear decomposition of a matching covered graph is an invaluable tool, often facili-
tating the use of induction. It is especially helpful if the decomposition is chosen so that
the number of steps requiring a double ear adjunction is minimised. Thus we seek an ear
decomposition that minimises the number of double ear adjunctions, that is, the number
of values of i > 0 such that Gi is obtained from Gi−1 by a double ear adjunction. Such an
ear decomposition is said to be optimal. In particular, if Gi, for some i > 0, is obtained
from Gi−1 by the adjunction of ears P and Q in an optimal decomposition, then neither
G[EGi − P ] nor G[EGi − Q] is matching covered. In this case, any alternating circuit in
Gi that includes P must also include Q.

The number of double ear adjunctions required in an optimal ear decomposition has
been found by de Carvalho, Lucchesi and Murty in [3] to be b(G)+p(G). By Theorem 1.1
and Theorem 2.2, this number is dim C(G) − dimA(G). Thus we have the following
theorem.

Theorem 3.2 The number of double ear adjunctions in an optimal ear decomposition of
a matching covered graph G is dim C(G) − dimA(G).

Given an optimal ear decomposition G0, G1, . . . , Gn of a matching covered graph G,
for each i > 0 there is an alternating circuit Ai in Gi that includes the ears adjoined to
Gi−1 in the construction of Gi. The alternating circuits A1, A2, . . . , An are described as
basic. They are linearly independent, and it follows from Theorem 3.2 that there are just
enough of them to span A(G). Accordingly we have the following corollary.

Corollary 3.3 Given an optimal ear decomposition of a matching covered graph G, any
set of basic alternating circuits constitutes a basis for A(G).

Note that the basic alternating circuits alternate with respect to a fixed 1-factor F such
that F ∩ EGi is a 1-factor of Gi for each i. Consequently each ear in the decomposition
is of odd length.
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With these preliminaries out of the way, we are now ready for the construction of
the complicating set S of Corollary 2.4 or a direct proof that no such set exists. In the
latter case, it suffices to show that the alternating and even spaces of the graph coincide.
Throughout this discussion, we will be contemplating an optimal ear decomposition of
a matching covered graph G, and we will denote by H the penultimate graph of the
decomposition.

We begin with the following theorem.

Theorem 3.4 If H has no complicating set of edges and G is obtained from H by a single
ear adjunction, then G has no complicating set of edges.

Proof: Let G be obtained from H by the adjunction of an ear P . This ear is a path in
some alternating circuit A of G. Now consider an even circuit C of G. If C ⊆ EH then C

is a sum of alternating circuits in H and these are also alternating in G. In the remaining
case P ⊂ C. Thus A + C is the union of disjoint even circuits in H. Hence there are
alternating circuits A1, A2, . . . , An in H (and therefore in G) such that

A + C =
n

∑

i=1

Ai.

Consequently

C = A +
n

∑

i=1

Ai,

as required. 2

This theorem is applicable in the case where no double ear adjunctions occur in an
ear decomposition of G. This case arises precisely when G is bipartite. Thus we have the
following corollary.

Corollary 3.5 Matching covered bipartite graphs have no complicating set of edges.

It follows immediately that if S is a set of edges of a bipartite matching covered graph
G and |S ∩ A| is even for each alternating circuit A, then |S ∩ C| is even for each circuit
C.

Next we deal with the case where the last ear adjunction is the only double one. This
case arises precisely when H is bipartite but G is not.

Theorem 3.6 Let G be a non-bipartite matching covered graph obtained from a bipartite
matching covered subgraph H by a (double) ear adjunction. Then G has no complicating
set of edges.

Proof: Let G be obtained from H by the adjunction of ears P and Q. Thus every
alternating circuit in G including P or Q must include them both. In addition, G[EG−P ]
and G[EG − Q] are not bipartite, and so any even circuit including P or Q must also
include them both. It therefore follows, as in the proof of Theorem 3.4, that every even
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circuit is a sum of alternating circuits, since each even circuit C satisfies C ⊆ EH or
P ∪ Q ⊂ C. 2

Suppose next that just one double ear adjunction occurs during an optimal ear de-
composition of G but the last ear adjunction is single. It follows from Theorem 3.6, by
applying Theorem 3.4 inductively, that every even circuit of G is a sum of alternating
circuits.

Next we consider the case where H is not bipartite and G is obtained from H by a
double ear adjunction. This double ear adjunction is at least the second of the decompo-
sition.

Theorem 3.7 If G is obtained from a non-bipartite graph H by a double ear adjunction,
then G has a complicating set of edges.

Proof: Let G be obtained from H by the adjunction of ears P and Q. Thus every
alternating circuit of G including P or Q also includes the other. On the other hand, the
non-bipartite graph H has an odd circuit D. Being matching covered, H is 2-connected.
Thus by Menger’s theorem there are vertex-disjoint paths X and Y in H, of minimal
length, joining the respective ends of P to distinct vertices x and y of D. Let R =
X ∪ P ∪ Y . The odd circuit D includes a path Z, joining x and y, of the same parity as
|R|. By the minimality of X and Y , we find that R ∪ Z is a circuit C, and the choice of
Z ensures that C is even. Now let S = P ∪ Q. Then |S ∩ A| is even for each alternating
circuit A but |S ∩ C| is odd. Hence S is the required complicating set. 2

Finally we deal with the case where at least two double ear adjunctions occur in the
decomposition of H but G is obtained from H by a single ear adjunction. Here H has a
complicating set of edges. In the proof of the following theorem we make essential use of
the fact that the ear decomposition is optimal.

Theorem 3.8 Suppose that H has a complicating set of edges and that G is obtained
from H by a single ear adjunction. Then G has a complicating set of edges.

Proof: Let S be a complicating set of edges in H. Note that |S ∩C| is odd for some even
circuit C in H. Let G be constructed from H by the adjunction of a single ear P . Then
P ⊂ A for some alternating circuit A of G. Since the ear decomposition is optimal, by
Corollary 3.3 there is a basis B for A(H) such that B′ = B ∪ {A} is a basis for A(G).

Suppose that |A ∩ S| is even. By assumption this property holds also for each al-
ternating circuit in H and hence for every member of B′. Therefore it holds for each
member of A(G) and in particular for each alternating circuit that includes P . Thus if
one alternating circuit of G that includes P has an intersection with S of even cardinality,
then all such alternating circuits do. It follows that if one such alternating circuit has an
intersection with S of odd cardinality, then all of them do.

We conclude that the parity of |A ∩ S| is well defined. Let S ′ = S if this parity is
even; otherwise let S ′ = S ∪ P . Since |P | is odd, |A∩ S ′| is even. This property therefore
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holds for every member of B′ and consequently for every alternating circuit in G, since
S ′ ∩ EH = S. For the same reason, |C ∩ S ′| is odd for the even circuit C of G. 2

As an example, we refer once again to Figure 1. There is an optimal ear decomposition
defined by the following sets of ears, in order:

({{e8}}, {{e3, e9, e12, e7, e1, e6, e11}}, {{e5, e10, e13}, {e14}}, {{e4}, {e15}}, {{e2}}).

The last double ear is {{e4}, {e15}}, and it is followed only by the single ear {{e2}}.
Moreover {e2, e8, e13, e10, e4, e9, e12, e7} is an alternating circuit that contains e2 and just
one of e4 and e15. According to our construction, we therefore obtain the complicating
set S = {e2, e4, e15} mentioned before. Note, however, that this is not the only possible
choice for S. Any pentagon supplies another example.

4 Applications

We conclude this paper with some examples of theorems in whose proofs the concept of
a complicating set is useful. For brevity, we shall refer to a graph as ordinary if it has no
complicating set of edges. As we have already seen, this is the case if and only if every
even circuit is a sum of alternating circuits (with respect to some fixed 1-factor F ).

Theorem 4.1 Let T = [X, X] be a tight cut in a matching covered graph G. Let G{X; x}
and G{X; x} be the two T -contractions. If G is ordinary then so are G{X} and G{X}.

Proof: Let C be an even circuit in G{X; x}. Two cases are possible, according to whether
C passes through x.

Case I: Suppose first that C does not pass through x. Then C is an even circuit in G.
Accordingly C is a sum of alternating circuits A1, A2, . . . , An in G with respect to some
1-factor F .

Fix i ∈ {1, 2, . . . , n}. Suppose that Ai ∩ T = ∅. Then either Ai ⊆ EG{X} or
Ai ∩ EG{X} = ∅. In the former case Ai is an alternating circuit in G{X}, since the
tightness of T implies that F ∩ EG{X} is a 1-factor of G{X}. If Ai ∩ T 6= ∅, then
|Ai ∩ T | = 2 and |Ai ∩ T ∩ F | = 1. It follows again that Ai ∩ EG{X} is an alternating
circuit in G{X} with respect to F .

Thus in all cases we find that Ai ∩ EG{X}, if non-empty, is an alternating circuit in
G{X}. The sum of these alternating circuits is C.

Case II: Suppose C passes through x. Let e and f be the edges of C incident on x.
Let u and v, respectively, be the ends of these edges in X. Let Me and Mf be perfect
matchings of G containing e and f , respectively.

Let D be the circuit of Me + Mf containing e. Since T is tight, Me ∩ T = {e} and
Mf ∩ T = {f}, and it follows that f ∈ D. Now, the segment of D − {e, f} contained in
G[X] is an even path P joining u and v. Thus C ∪ P is a circuit of even length in G.
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We infer that C ∪ P is a sum of alternating circuits A1, A2, . . . , An in G with respect
to F . As in Case I, their non-empty intersections with EG{X} are alternating circuits in
G{X} with sum C.

We have now shown that G{X} is ordinary. The proof that G{X} is ordinary is
similar. 2

Theorem 4.2 Let T = [X, X] be a tight cut in a matching covered graph G. Suppose
there exists a circuit C in G such that |C ∩EG[X]| and |C ∩EG[X]| are both odd. Then
G is not ordinary.

Proof: Were G ordinary, the even circuit C would be a sum of alternating circuits.
But consider an alternating circuit A with respect to a fixed 1-factor F . If A ∩ T = ∅
then A ⊆ EG[X] or A ⊆ EG[X]. The remaining possibility is that |A ∩ T | = 2 and
|A∩ F ∩ T | = 1. In every case it follows that |A∩EG[X]| is even. However |C ∩EG[X]|
is odd. Hence C cannot be a sum of alternating circuits and G is not ordinary. 2

Theorem 4.3 If neither G[X] nor G[X] is bipartite, then G is not ordinary.

Proof: By hypothesis, b(G) + p(G) ≥ 2, and so the result follows from Theorem 2.3. 2

The proof of the next theorem is facilitated by the following lemma, which concerns
binary sequences. Let n be a positive integer. We define a binary sequence of length n to
be an ordered n-tuple of zeros and ones. The binary sequence (a1, a2, . . . , an) is usually
written more compactly as a1a2 . . . an. Now let B be a binary sequence of even length, 2k.
We may write this binary sequence as b1c1b2c2 . . . bkck. For each j ∈ {1, 2, . . . , k}, define

mj(B) =

{

1 if bj = cj

0 otherwise

and let

m(B) =
k

∑

j=1

mj(B).

Lemma 4.4 Let B be a binary sequence such that the number of ones is congruent modulo
4 to the number of zeros. Then m(B) is even.

Proof: We begin with the case where B is of the form 00 . . . 011 . . . 1. We may write
the number of zeros as 2q + r for some non-negative integers q and r, where r ∈ {0, 1}.
Then the number of ones is 2q + r + 4s for some integer s. In this case it follows that

m(B) = q + (q + 2s) = 2q + 2s,

which is even.
Any other binary sequence B ′ with the same number of zeros as B and the same

number of ones as B is obtained by a permutation of B. It therefore suffices to show
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that m(B′) has the parity of m(B) whenever B ′ is obtained by a transposition of two
consecutive components of B. Let

B = b1c1b2c2 . . . bkck.

There is no loss of generality in considering just the cases where

B′ = c1b1b2c2b3c3 . . . bkck

or
B′ = b1b2c1c2b3c3b4c4 . . . bkck.

In the former case m(B ′) = m(B). In the latter case, the same equation holds if c1 = b2.
If c1 6= b2, however, then we have m1(B

′) = 1 − m1(B), m2(B
′) = 1 − m2(B) and

mj(B
′) = mj(B) for all j > 2. Hence

m(B′) = 2 − m1(B) − m2(B) +
k

∑

j=3

mj(B) ≡ m(B) (mod 2).

In every case we have
m(B′) ≡ m(B) (mod 2),

and the result follows immediately. 2

Theorem 4.5 Let ∇X be a bond in a near brick G, and suppose that its shores G[X]
and G[X] are 2-connected and non-bipartite. Suppose that for any two 1-factors F1 and
F2 of G we have

|F1 ∩∇X| ≡ |F2 ∩ ∇X| (mod 4).

Then the unique brick in the decomposition of G into bricks and braces has the Petersen
graph as its underlying simple graph.

Proof: Fix a 1-factor F of G and let A be an alternating circuit of the form F + F ′ for
some 1-factor F ′ of G. If A ∩ ∇X = ∅, then A ∩ EG[X] ∈ {∅, A}. Hence |A ∩ G[X]| is
even in this case. We shall therefore assume that A ∩∇X 6= ∅ and show that |A ∩ G[X]|
is even under this hypothesis as well.

From A we construct a binary sequence in the following manner: traverse A in either
sense, starting at any initial vertex, and record a 1 each time an edge of F ∩ ∇X is
encountered and a 0 each time an edge of F ′ ∩ ∇X is met. Let r and s denote the
numbers of ones and zeros, respectively. Thus r + s is even, so that r ≡ s(mod2).

Suppose that
r ≡ s + 2 (mod 4).

Then
|F ′ ∩∇X| = |F ∩∇X| − r + s ≡ |F ∩ ∇X| + 2 (mod 4),

contrary to hypothesis. We infer that r ≡ s(mod4), and consequently that Lemma 4.4 is
applicable.
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Now consider any maximal path R included in A ∩ EG[X]. There are just two edges
in A∩∇X having an end in common with R; call them x and y respectively. Then |R| is
odd if and only if x and y are both in F or both in F ′. By Lemma 4.4 we find that there
are an even number of maximal paths R included in A∩EG[X] that satisfy this condition.
Hence |A ∩ EG[X]| is even. Since alternating circuits that alternate with respect to F

span A(G), we conclude that every alternating circuit has an intersection with EG[X] of
even cardinality.

Finally, choose independent edges e and f in ∇X. Since G[X] is 2-connected and not
bipartite, there is a path P in G[X], of odd length, joining the ends of e and f in X.
Similarly there is a corresponding odd path Q in G[X] joining the ends of e and f in X.
Thus P ∪ Q ∪ {e, f} is a circuit C, of even length, such that |C ∩ EG[X]| is odd.

The theorem now follows immediately from Corollary 2.5. 2

A graph G is critical if G − {v} has a 1-factor for each vertex v.

Corollary 4.6 Let G be a near brick with an odd cut ∇X = [X, X]. Suppose that G[X]
and G[X] are critical, 2-connected and non-bipartite, and that

|F ∩ EG[X]| ≡
|X| − 1

2
(mod 2)

for all 1-factors F . Then the unique brick resulting from the decomposition of G into
bricks and braces has the Petersen graph as its underlying simple graph.

Proof: Let e be an edge of ∇X joining vertices u ∈ X and v ∈ X. As G[X] is
critical, G[X] − {u} has a 1-factor F1. Similarly G[X] − {v} has a 1-factor F2. Let
F = F1 ∪ F2 ∪ {e}. Then F is a 1-factor of G such that |F ∩∇X| = 1.

Now let F ′ be another 1-factor of G. By hypothesis,

|F ′ ∩ EG[X]| ≡ |F ∩ EG[X]| (mod 2).

Therefore
|F ′ ∩ ∇X| ≡ |F ∩∇X| (mod 4).

The result now follows from the theorem. 2
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