Algebraically grid-like graphs have large tree-width

Daniel Weißauer
Department of Mathematics
University of Hamburg
Hamburg, Germany
daniel.weissauer@gmail.com

Submitted: Feb 27, 2018; Accepted: Oct 15, 2018; Published: Jan 25, 2019
© The author. Released under the CC BY license (International 4.0).

Abstract

By the Grid Minor Theorem of Robertson and Seymour, every graph of sufficiently large tree-width contains a large grid as a minor. Tree-width may therefore be regarded as a measure of ‘grid-likeness’ of a graph.

The grid contains a long cycle on the perimeter, which is the \mathbb{F}_2-sum of the rectangles inside. Moreover, the grid distorts the metric of the cycle only by a factor of two. We prove that every graph that resembles the grid in this algebraic sense has large tree-width:

Let k, p be integers, γ a real number and G a graph. Suppose that G contains a cycle of length at least $2\gamma pk$ which is the \mathbb{F}_2-sum of cycles of length at most p and whose metric is distorted by a factor of at most γ. Then G has tree-width at least k.

Mathematics Subject Classifications: 05C83, 05C12, 05C38

1 Introduction

The edge space of a graph $G = (V, E)$ is the vector space over the 2-element field \mathbb{F}_2 consisting of all maps $E \to \mathbb{F}_2$, with addition defined pointwise as $(f \oplus g)(e) = f(e) + g(e)$. Each such map $f : E \to \mathbb{F}_2$ may be identified with the set of all $e \in E$ for which $f(e) = 1$. Addition of maps then corresponds to symmetric difference of sets of edges, and we call $F_1 \oplus F_2 := F_1 \Delta F_2$ the \mathbb{F}_2-sum of $F_1, F_2 \subseteq E$.

The cycle space of G is the subspace of the edge space which is generated by the (edge sets of) cycles of G. In this context, we do not formally distinguish between a cycle $C \subseteq G$ and its set of edges $E(C) \subseteq E$ and simply speak of the \mathbb{F}_2-sum of cycles. See the book by Diestel [5] for more background on the cycle space.

For a positive integer n, the $(n \times n)$-grid is the graph G_n whose vertices are all pairs (i, j) with $1 \leq i, j \leq n$, where two points are adjacent when they are at Euclidean
distance 1. The cycle C_n, which bounds the outer face in the natural drawing of G_n in the plane, has length $4(n - 1)$ and is the \mathbb{F}_2-sum of the rectangles bounding the inner faces. This is by itself not a distinctive feature of graphs with large tree-width: The situation is similar for the n-wheel W_n, the graph consisting of a cycle D_n of length n and a vertex $x \notin D_n$ which is adjacent to every vertex of D_n. There, D_n is the \mathbb{F}_2-sum of all triangles xyz for $yz \in E(D_n)$. Still, W_n only has tree-width 3.

The key difference is the fact that in the wheel, the metric of the cycle is heavily distorted: any two vertices of D_n are at distance at most two within W_n, even if they are far apart within D_n. In the grid, however, the distance between two vertices of C_n within G_n is at least half of their distance within C_n.

In order to incorporate this factor of two and to allow for more flexibility, we equip the edges of our graphs with lengths. For a graph G, a length-function on G is simply a map $\ell : E(G) \to \mathbb{R}_{>0}$. We then define the ℓ-length $\ell(H)$ of a subgraph $H \subseteq G$ as the sum of the lengths of all edges of H. This naturally induces a notion of distance between two vertices of G, where we define d_G^ℓ as the minimum ℓ-length of a path containing both. A subgraph $H \subseteq G$ is ℓ-geodesic if it contains a path of length $d_G^\ell(a, b)$ between any two vertices $a, b \in V(H)$.

When no length-function is specified, the notions of length, distance and geodesity are to be read with respect to $\ell \equiv 1$ constant.

On the grid-graph G_n, consider the length-function ℓ which is equal to 1 on $E(C_n)$ and assumes the value 2 elsewhere. Then C_n is ℓ-geodesic of length $\ell(C_n) = 4(n - 1)$ and the sum of cycles of ℓ-length at most 8. We show that any graph which shares this algebraic feature has large tree-width.

Theorem 1. Let k be a positive integer and $r > 0$. Let G be a graph with rational-valued length-function ℓ. Suppose G contains an ℓ-geodesic cycle C with $\ell(C) \geq 2rk$, which is the \mathbb{F}_2-sum of cycles of ℓ-length at most r. Then the tree-width of G is at least k.

In Section 3, we prove a qualitative converse to Theorem 1, showing that graphs of large tree-width are ‘algebraically grid-like’.

The starting point of Theorem 1 was a similar result of Matthias Hamann and the author [2]. There, it is assumed that not only the fixed cycle C, but the whole cycle space of G is generated by short cycles.

Theorem 2 ([2, Corollary 3]). Let k, p be positive integers. Let G be a graph whose cycle space is generated by cycles of length at most p. If G contains a geodesic cycle of length at least kp, then the tree-width of G is at least k.

It should be noted that Theorem 2 is not implied by Theorem 1, as the constant factors are different. In fact, the proofs are also quite different, although Lemma 5 below was inspired by a similar parity-argument in [2].

It is tempting to think that, conversely, Theorem 1 could be deduced from Theorem 2 by adequate manipulation of the graph G, but we have not been successful with such attempts.
2 Proof of Theorem 1

The relation to tree-width is established via a well-known separation property of graphs of bounded tree-width, due to Robertson and Seymour [3].

Lemma 3 ([3]). Let \(k \) be a positive integer, \(G \) a graph and \(A \subseteq V(G) \). If the tree-width of \(G \) is less than \(k \), then there exists \(X \subseteq V(G) \) with \(|X| \leq k \) such that every component of \(G - X \) contains at most \(\frac{1}{2}|A \setminus X| \) vertices of \(A \).

It is not hard to see that Theorem 1 can be reduced to the case where \(\ell \equiv 1 \). This case is treated in the next theorem.

Theorem 4. Let \(k, p \) be positive integers. Let \(G \) be a graph containing a geodesic cycle \(C \) of length at least \(4\lfloor p/2 \rfloor k \), which is the \(\mathbb{F}_2 \)-sum of cycles of length at most \(p \). Then for every \(X \subseteq V(G) \) of order at most \(k \), some component of \(G - X \) contains at least half the vertices of \(C \).

Proof of Theorem 1, assuming Theorem 4. Let \(\mathcal{D} \) be a set of cycles of \(\ell \)-length at most \(r \) with \(C = \bigoplus \mathcal{D} \). Since \(\ell \) is rational-valued and the premise also holds for \(r' \) the maximum \(\ell \)-length of a cycle in \(\mathcal{D} \), we may assume that \(r \in \mathbb{Q} \). Take an integer \(M \) so that \(rM \) and \(\ell'(e) \) are natural numbers for every \(e \in E(G) \).

Obtain the subdivision \(G' \) of \(G \) by replacing every \(e \in E(G) \) by a path of length \(\ell'(e) \). Denote by \(C', D' \) the subdivisions of \(C \) and \(D \) for every \(D \in \mathcal{D} \), respectively. Then \(C' = \bigoplus_{D \in \mathcal{D}} D' \) and \(|C'| = \ell(C) \geq 2(Mr)k \), while \(|D'| = \ell(D) \leq Mr \) for every \(D \in \mathcal{D} \).

Assume for a contradiction that the tree-width of \(G \) was less than \(k \). Since tree-width is invariant under subdivision, the tree-width of \(G' \) is also less than \(k \). By Lemma 3, there exists a set \(X \subseteq V(G') \) with \(|X| \leq k \) such that every component of \(G' - X \) contains at most \(\frac{1}{2}|V(C') \setminus X| \) vertices of \(V(C') \). Since \(C' \) is a connected subgraph of \(G' \), \(X \) must contain at least one vertex of \(C' \). By Theorem 4, there is a component \(K \) of \(G' - X \) that contains at least half the vertices of \(C' \). But then

\[
\frac{1}{2}|C'| \leq |K \cap V(C')| \leq \frac{1}{2}|V(C') \setminus X| < \frac{1}{2}|C'|,
\]

which is a contradiction. \(\square \)

Our goal is now to prove Theorem 4. The proof consists of two separate lemmas. The first lemma involves separators and \(\mathbb{F}_2 \)-sums of cycles.

Lemma 5. Let \(G \) be a graph, \(C \subseteq G \) a cycle and \(\mathcal{D} \) a set of cycles in \(G \) such that \(C = \bigoplus \mathcal{D} \). Let \(\mathcal{R} \) be a set of disjoint vertex-sets of \(G \) such that for every \(R \in \mathcal{R} \), \(R \cap V(C) \) is either empty or induces a connected subgraph of \(C \). Then either some \(D \in \mathcal{D} \) meets two distinct \(R, R' \in \mathcal{R} \) or there is a component \(Q \) of \(G - \bigcup \mathcal{R} \) with \(V(C) \subseteq V(Q) \cup \bigcup \mathcal{R} \).

Proof. Suppose that no \(D \in \mathcal{D} \) meets two distinct \(R, R' \in \mathcal{R} \). Then \(C \) has no edges between the sets in \(\mathcal{R} \), since any such edge would have to lie in at least one \(D \in \mathcal{D} \). Let \(Y := \bigcup \mathcal{R} \) and let \(Q \) be the set of components of \(G - Y \).
We claim that for all $Q \in \mathcal{Q}, R \in \mathcal{R}$ and $D \in \mathcal{D}$, the number of edges of D between Q and R is even. This is trivial if D has no edges between Q and R. Otherwise, D meets R and thus cannot meet $Y \setminus R$. Therefore, all edges of D between Q and $V(G) \setminus Q$ must join Q to R. As D is a cycle, it has an even number of edges between Q and $V(G) \setminus Q$ and thus between Q and R. This finishes the proof of the claim.

Now, as $C = \bigoplus \mathcal{D}$, we find that for all $Q \in \mathcal{Q}, R \in \mathcal{R}$, the number of edges of C between Q and R is

$$e_C(Q, R) \equiv \sum_{D \in \mathcal{D}} e_D(Q, R) \equiv 0 \mod 2.$$.

For every $R \in \mathcal{R}$, there exists a family \mathcal{D} with $\bigcup \mathcal{D} \supseteq X$ to deduce that some component of R. Then there exists a family \mathcal{D} with $\bigcup \mathcal{D} \supseteq X$ to deduce that some component of C. Here, \mathcal{D} consists of cycles of length at most ℓ, so if the sets in \mathcal{R} are at pairwise distance $\geq \lfloor \ell/2 \rfloor$, then no $D \in \mathcal{D}$ can pass through two of them. The next lemma ensures that we can find such a family \mathcal{R} with a bound on $|\bigcup \mathcal{R}|$, when the cycle C is geodesic.

Lemma 6. Let d be a positive integer, G a graph, $X \subseteq V(G)$ and $C \subseteq G$ a geodesic cycle. Then there exists a family \mathcal{R} of disjoint sets of vertices of G with $X \subseteq \bigcup \mathcal{R} \subseteq X \cup V(C)$ and $|V(C) \cap \bigcup \mathcal{R}| \leq 2d|X|$ such that for each $R \in \mathcal{R}$, the set $V(C) \cap R$ induces a (possibly empty) connected subgraph of C and the distance between any two sets in \mathcal{R} is greater than d.

Proof. Let $Y \subseteq V(G)$ and $y \in Y$. For $j \geq 0$, let $B^j_Y(y)$ be the set of all $z \in Y$ at distance at most jd from y. Since $|B^0_Y(y)| = 1$, there is a maximum number j for which $|B^j_Y(y)| \geq 1 + j$, and we call this $j = j_Y(y)$ the range of y in Y. Observe that every $z \in Y \setminus B^{j_Y(y)}_Y$ has distance greater than $(j_Y(y) + 1)d$ from y.

Starting with $X_1 := X$, repeat the following procedure for $k \geq 1$. If X_k does not meet C, terminate the process. Otherwise, pick an $x_k \in X_k \cap V(C)$ of maximum range in X_k. Let $j_k := j_{X_k}(x_k)$ and $B_k := B^{j_k}_{X_k}(x_k)$. Define $X_{k+1} := X_k \setminus B_k$ and repeat.

Since the size of X_k decreases in each step, there is a smallest integer m for which $X_{m+1} \cap V(C)$ is empty, at which point the process terminates. By construction, the distance between B_k and X_{k+1} is greater than d for each $k \leq m$. For each k satisfying $1 \leq k \leq m$, there are two edge-disjoint paths $P^1_k, P^2_k \subseteq C$, starting at x_k and each of length at most j_kd, so that $B_k \cap V(C) \subseteq S_k := P^1_k \cup P^2_k$, because C is geodesic. Choose these paths minimal, so that the endvertices of S_k lie in B_k. Note that every vertex of S_k has distance at most j_kd from x_k. Therefore, the distance between $R_k := B_k \cup S_k$ and X_{k+1} is greater than d.

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(1) (2019), #P1.15

4
We claim that the distance between \(R_k \) and \(R_{k'} \) is greater than \(d \) for any \(k < k' \). Since \(B_{k'} \subseteq X_{k+1} \), it is clear that every vertex of \(B_{k'} \) has distance greater than \(d \) from \(R_k \). Take a vertex \(q \in S_{k'} \setminus B_{k'} \) and assume for a contradiction that its distance to \(R_k \) was at most \(d \). Then the distance between \(x_k \) and \(q \) is at most \((j_k + 1)d\). Let \(a, b \in B_{k'} \) be the endvertices of \(S_{k'} \). If \(x_k \notin S_{k'} \), then one of \(a \) and \(b \) lies on the shortest path from \(x_k \) to \(q \) within \(C \). Since \(C \) is geodesic, that endvertex then has distance at most \((j_k + 1)d\) from \(x_k \). But then, since \(j_k \) is the range of \(x_k \) in \(X_k \), that vertex would already lie in \(B_k \), a contradiction. Suppose now that \(x_k \in S_{k'} \). Then \(x_k \) lies on one of \(P^1_k \) or \(P^2_k \), so the distance between \(x_k \) and \(x_{k'} \) is at most \(j_kd \). Since \(x_{k'} \in X_k \cap V(C) \), it follows from our choice of \(x_k \) that

\[j_k = jX_k(x_k) \geq jX_{k'}(x_{k'}) \geq jX_{k'}(x_{k'}) = j_{k'}, \]

where the second inequality follows from the fact that \(X_{k'} \subseteq X_k \) and \(jY(y) \geq jY'(y) \) whenever \(Y \supseteq Y' \). But then \(x_{k'} \in B_k \), a contradiction. This finishes the proof of the claim.

Finally, let \(\mathcal{R} := \{ R_k : 1 \leq k \leq m \} \cup \{ X_{m+1} \} \). The distance between any two sets in \(\mathcal{R} \) is greater than \(d \). For \(k < m \), \(R_k \cap V(C) = S_k \) is a connected subgraph of \(C \), while \(X_{m+1} \cap V(C) \) is empty. Moreover,

\[
|V(C) \cap \bigcup \mathcal{R}| = \sum_{k=1}^{m} |S_k| \leq \sum_{k=1}^{m} (1 + 2j_kd) \leq \sum_{k=1}^{m} (1 + 2(|B_k| - 1)d) \\
\leq \sum_{k=1}^{m} 2|B_k|d \leq 2d|X|.
\]

\(\square \)

Proof of Theorem 4. Let \(X \subseteq V(G) \) be of order at most \(k \) and let \(d := \lfloor p/2 \rfloor \). By Lemma 6, there exists a family \(\mathcal{R} \) of disjoint sets of vertices of \(G \) with \(X \subseteq \bigcup \mathcal{R} \subseteq X \cup V(C) \) and \(|V(C) \cap \bigcup \mathcal{R}| \leq 2dk \) so that for each \(R \in \mathcal{R} \), the set \(R \cap V(C) \) induces a (possibly empty) connected subgraph of \(C \) and the distance between any two sets in \(\mathcal{R} \) is greater than \(d \).

Let \(\mathcal{D} \) be a set of cycles of length at most \(p \) with \(C = \bigoplus \mathcal{D} \). Then no \(D \in \mathcal{D} \) can meet two distinct \(R, R' \in \mathcal{R} \), since the diameter of \(D \) is at most \(d \). By Lemma 5, there is a component \(Q \) of \(G - \bigcup \mathcal{R} \) which contains every vertex of \(C \setminus \bigcup \mathcal{R} \). This component is connected in \(G - X \) and therefore contained in some component \(Q' \) of \(G - X \), which then satisfies

\[
|Q' \cap V(C)| \geq |C| - |V(C) \cap \bigcup \mathcal{R}| \geq |C| - 2dk.
\]

Since \(|C| \geq 4dk \), the claim follows. \(\square \)

3 Remarks

We have described the content of Theorem 1 as an **algebraic** criterion for a graph to have large tree-width. The reader might object that the cycle \(C \) being \(\ell \)-geodesic is a metric property and not an algebraic one. Karl Heuer has pointed out to us, however,
that geodecity of a cycle can be expressed as an algebraic property after all. This is a consequence of a more general lemma of Gollin and Heuer [1], which allowed them to introduce a meaningful notion of geodecity for cuts.

Proposition 7 ([1]). Let \(G \) be a graph with length-function \(\ell \) and \(C \subseteq G \) a cycle. Then \(C \) is \(\ell \)-geodesic if and only if there do not exist cycles \(D_1, D_2 \) with \(\ell(D_1), \ell(D_2) < \ell(C) \) such that \(C = D_1 \oplus D_2 \).

Finally, we would like to point out that Theorem 1 does not only offer a ‘one-way criterion’ for large tree-width, but that it has a qualitative converse. First, we recall the Grid Minor Theorem of Robertson and Seymour [4], phrased in terms of walls. For a positive integer \(t \), an elementary \(t \)-wall is the graph obtained from the \(2t \times t \)-grid as follows. Delete all edges with endpoints \((i, j), (i, j + 1) \) when \(i \) and \(j \) have the same parity. Delete the two resulting vertices of degree one. A \(t \)-wall is any subdivision of an elementary \(t \)-wall. Note that the \((2t \times 2t)\)-grid has a subgraph isomorphic to a \(t \)-wall.

Theorem 8 (Grid Minor Theorem [4]). For every \(t \in \mathbb{N} \) there exists a \(k \in \mathbb{N} \) such that every graph of tree-width at least \(k \) contains a \(t \)-wall.

Here, then, is our qualitative converse to Theorem 1, showing that the algebraic condition in the premise of Theorem 1 in fact captures tree-width.

Corollary 9. For every \(L \in \mathbb{N} \) there exists a \(k \in \mathbb{N} \) such that for every graph \(G \) the following holds. If \(G \) has tree-width at least \(k \), then there exists a rational-valued length-function on \(G \) such that \(G \) contains an \(\ell \)-geodesic cycle \(C \) with \(\ell(C) \geq L \) which is the \(\mathbb{F}_2 \)-sum of cycles of \(\ell \)-length at most 1.

Proof. Let \(s := 6L \). By the Grid Minor Theorem, there exists an integer \(k \) such that every graph of tree-width at least \(k \) contains an \(s \)-wall. Suppose \(G \) is a graph of tree-width at least \(k \). Let \(W \) be an elementary \(s \)-wall so that \(G \) contains some subdivision \(W' \) of \(W \), where each \(e \in E(W) \) has been replaced by some path \(P^e \subseteq G \) of length \(m(e) \). The outer cycle \(C \) of \(W \) satisfies \(d_C(u, v) \leq 3d_W(u, v) \) for all \(u, v \in V(C) \). Moreover, \(C \) is the \(\mathbb{F}_2 \)-sum of cycles of length at most six.

Define a length-function \(\ell \) on \(G \) as follows. Let \(e \in E(G) \). If \(e \in P^f \) for \(f \in E(C) \), let \(\ell(e) := 1/m(f) \). Then \(\ell(P^f) = 1 \) for every \(f \in E(C) \). If \(e \in P^f \) for \(f \in E(W) \setminus E(C) \), let \(\ell(e) := 3/m(f) \). Then \(\ell(P^f) = 3 \) for every \(f \in E(W) \setminus E(C) \). If \(e \notin E(W') \), choose \(\ell(e) \) large enough so that \(\ell(e) > \ell(W') \), for example take \(\ell(e) := 10s^3 \).

It is easy to see that the subdivision \(C' \subseteq G \) of \(C \) is \(\ell \)-geodesic in \(G \). It has length \(\ell(C') = |C| \geq 3s \) and is the \(\mathbb{F}_2 \)-sum of the subdivisions of 6-cycles of \(W \). Each of these has \(\ell \)-length 18. Rescaling all lengths by a factor of 1/18 yields the desired result. \(\square \)

References

