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Abstract
Macaulay posets are posets for which there is an analogue of the classical Kruskal-

Katona theorem for finite sets. These posets are of great importance in many
branches of combinatorics and have numerous applications. We survey mostly new
and also some old results on Macaulay posets, where the intention is to present
them as pieces of a general theory. In particular, the classical examples of Macaulay
posets are included as well as new ones. Emphasis is also put on the construction
of Macaulay posets, and their relations to other discrete optimization problems.

1 Introduction

Macaulay posets are, informally speaking, posets for which an analogue of the classical
Kruskal-Katona theorem for finite sets holds. They are related to many other combina-
torial problems like isoperimetric problems on graphs [15, 34] (see also Section 3) and
problems arising in polyhedral combinatorics [28, 30, 94, 100]. Several optimization prob-
lems can be solved within the class of Macaulay posets, or at least for Macaulay posets
with additional properties (cf. Section 5). Therefore, Macaulay posets are very useful and
interesting objects.

A few years ago, the classical Macaulay posets listed in Section 2 were the only known
essential examples, and, consequently, the theory of Macaulay posets was more or less
the theory of these examples. In his book [52, chapter 8], Engel made a first attempt
to unify the theory of Macaulay posets. Although the book appeared quite recently, a
number of new examples, relations and applications have been found in the meantime. In
this paper, our objective is to give a survey on Macaulay posets that includes these new
results and updates [52]. We also present some older results and applications which are
not mentioned in [52].

We start with some basic facts and definitions in Section 1 and the classical examples
in Section 2. For all definitions not included here we refer to Engel’s book [52]. In
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Section 3 we proceed with constructions for Macaulay posets and relations to isoperimetric
problems. New examples of Macaulay posets are presented in Section 4. Section 5 is
devoted to optimization problems on Macaulay posets and some other applications of this
theory. We also present some open questions and propose directions for further research
throughout the paper.

1.1 Some basic definitions

Let P be a partially ordered set (briefly, poset) with the associated partial order ≤. For
x, y ∈ P , we say that y covers x, denoted by x <· y, if x ≤ y and there is no z ∈ P such
that z 6= x, y and x ≤ z ≤ y. A subset X ⊆ P is called a chain if x, y ∈ X implies that
x ≤ y or y ≤ x. An antichain is defined as a subset X ⊆ P such that the conditions
x, y ∈ X and x ≤ y imply x = y. The width of P is the largest size of an antichain in P
and is denoted by d(P ).

A subset X ⊆ P is an ideal (or downset) if the conditions x ∈ X and y ≤ x imply
y ∈ X. If X is an antichain, then the set I(X) := {y ∈ P | y ≤ x for some x ∈ X} is
an ideal, which is called ideal generated by X. Conversely, if I is an ideal, then the set
max(I) := {x ∈ I | x 6≤ y for any y ∈ I, y 6= x} is an antichain, which is called the set of
maximal elements of I.

A rank function on P is a function r : P 7→ IN such that r(x) = 0 for some minimal
element x of P and r(y) = r(z) − 1 whenever y <· z. The poset P is called ranked , if
a rank function on P exists. The rank of P is defined by r(P ) := max{r(x) | x ∈ P},
where r(P ) = ∞ is allowed. A ranked poset P is called graded if all minimal elements
have rank 0, and all maximal elements have rank r(P ).

The dual P ∗ of P is the poset on the same set of elements with the partial order defined
by: x ≤∗ y iff y ≤ x. If P is ranked with r(P ) < ∞, then P ∗ is ranked. If P is ranked
with r(P ) = ∞, then P ∗ is not ranked in the usual sense. In this case r∗(x) := −r(x) will
considered to be the rank function for P ∗.

If P is ranked, then the set {x ∈ P | r(x) = i} is called the i-th level of P and is
denoted by Ni(P ) or Pi. The (lower) shadow of an element x ∈ Pi is the set ∆(x) :=
{y ∈ P | y <· x}, and its upper shadow is ∇(x) := {y ∈ P | x <· y}. The lower shadow
∆(X) (resp. upper shadow ∇(X)) of a subset X ⊆ Pi is defined as the union of the lower
(resp. upper) shadows of its elements. For given integers i and m with 1 ≤ i ≤ r(P ) and
1 ≤ m ≤ |Pi|, the shadow minimization problem (SMP) consists in finding an m-element
subset X ⊆ Pi such that |∆(X)| ≤ |∆(Y )| for all Y ⊆ Pi with |Y | = m. We say that a
subset X ⊆ Pi is optimal if it has minimum shadow among all subsets of Pi of the same
size. Obviously, the SMP is at least NP-hard, since it implies a solution to the Minimum
Cover Problem.

The (cartesian) product P ×Q of two posets P and Q is the set of all pairs (x, y) with
x ∈ P , y ∈ Q, where the partial order is given by: (x, y) ≤P×Q (x′, y′) iff x ≤P x′, y ≤Q y′.
If P and Q are ranked, then the poset P × Q is ranked, too, and the rank function for
P × Q is given by: r(x, y) := rP (x) + rQ(y). The n-th (cartesian) power of a poset P is
the poset P n := P × P × · · · × P (n times).
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1.2 Macaulay posets

Let P be a ranked poset and consider some total order � of its elements. Note that we do
not claim the order � to be a linear extension of P . For a subset X ⊆ P and a natural
number m ≤ |X| we will use the notation C(m, X) (resp. L(m, X)) for the set of the first
(resp. last) m elements of X w.r.t. �. In particular, for X ⊆ Pi we abbreviate C(|X|, Pi)
and L(|X|, Pi) by C(X) and L(X), respectively. The operation of replacing X ⊆ Pi with
C(X) is called compression, and we say that X is compressed if X = C(X). Compressed
subsets will also be called initial segments (IS), whereas a final segment of Pi is a subset
X ⊆ Pi with X = L(X). A segment of Pi simply is a set of elements of Pi which are
consecutive w.r.t. � (restricted to Pi). For an element x ∈ Pi, the initial segment of Pi

whose last element w.r.t. � is x is denoted by Fi(x).
The poset P is said to be a Macaulay poset if there exists a total order � of its elements

(called Macaulay order) such that

∆(C(X)) ⊆ C(∆(X)) for all X ⊆ Pi and for all i = 1, . . . , r(P ). (1)

If (1) is satisfied for a ranked poset P with a partial order ≤ and for a total order � of
the elements of P , then the triple (P,≤,�) is called Macaulay structure.

It is easy to verify (cf, [52] for details) that (1) holds iff the conditions N1 and N2

given below are satisfied for all X ⊆ Pi and for all i = 1, . . . , r(P ):

N1: |∆(C(X))| ≤ |∆(X)|,

N2: C(∆(C(X))) = ∆(C(X)).

According to N1, compressed subsets are optimal for the Macaulay poset P . Therefore,
N1 is called the condition of nestedness (of the optimal subsets). By N2, the shadow of
a compressed set is a compressed set again. That is why N2 is said to be the condition
of continuity .

If � is a total order of the elements of P , then the dual of � is the total order given
by: x �∗ y iff y � x. By definition, the upper shadow of an element x in P is equal to
the lower shadow of x in P ∗. Moreover, we have the following relation.

Proposition 1 (Bezrukov [14]). (P,≤,�) is a Macaulay structure iff so is (P ∗,≤∗,�∗).

Obviously, if the conditions N1 and N2 are satisfied for some total order �, then they
are satisfied for any total order �′ with x � y iff x �′ y for all x, y ∈ Pi and for all i.
In other words, for N1 and N2 to be satisfied, only the restrictions of the order � to the
levels Pi, i = 0, 1, . . . , r(P ), are relevant, rather than how elements of distinct levels are
compared by �.

For many applications it turns out to be natural and useful to choose a Macaulay order
rank greedily. We say that a total order � is rank greedy (on P ), if it is a linear extension
of the partial order ≤ (i.e. if x ≤ y implies x � y), and if, in addition, r(x) = r(y) + 1
implies x � y whenever the last element of ∆(x) w.r.t. � precedes y in the order �. The
notion rank greedy refers to the following fact: If we are already given some initial part of
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the rank greedy order �, then the next element w.r.t. ≺ is one of those whose shadow is
already completely contained in this initial part and whose rank is maximum under this
condition.

It can be easily shown (see e.g. [52]) that for every Macaulay poset there exists a rank
greedy Macaulay order of its elements. The proof for this and the next assertion can be
found in [52].

Proposition 2 If a total order � is rank greedy for a Macaulay poset P , then �∗ is rank
greedy for P ∗.

If we associate a rank greedy total order with some Macaulay poset P , then we also
say that P is rank greedy. Note that all Macaulay orders presented in Sections 2 and 4
are rank greedy.

1.3 The shadow function

Let P be a Macaulay poset. The shadow function sfi assigns with each subset X ⊆ Pi the
number sfi(X) = |∆(C(X))|. We briefly discuss some properties of the shadow function
which are important for many applications.

The lower and upper new shadows of an element x ∈ P are defined by:

∆new(x) := {y ∈ P | y <· x and there is no z ∈ P with z � x, z 6= x, y <· z},
∇new(x) := {y ∈ P | x <· y and there is no z ∈ P with x � z, z 6= x, z <· y},

respectively. Note that the upper new shadow of x in P is exactly the lower new shadow
of x in P ∗. The lower new shadow ∆new(X) (resp. upper new shadow ∇new(X)) of a
subset X ⊆ P is the union of the lower (resp. upper) new shadows of its elements. The
shadow function sfi is called additive if the inequality

|∆new(X)| ≥ |∆new(Y )| ≥ |∆new(Z)|

is satisfied for all segments X, Y, Z ⊆ Pi with X being initial, Z being final, and |X| =
|Y | = |Z|. We say that P is additive if sfi is additive for all i = 0, . . . , r(P ).

Proposition 3 (Engel [52]). Let P be a Macaulay poset. P is graded and additive iff its
dual P ∗ is graded and additive.

The shadow function sfi is called little-submodular if

sfi(X) + sfi(Y ) ≥ sfi(X ∪ Y ) + sfi(X ∩ Y )

holds for all X, Y ⊆ Pi with X ∩ Y = ∅ or X ∪ Y = Pi.

Proposition 4 (Engel [52]). The shadow function sfi is additive iff sfi is little-submodular.
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The Macaulay poset P is called shadow increasing if for all i = 0, . . . , r(P )−1 and for
any initial segments X ⊆ Pi and Y ⊆ Pi+1 with |X| = |Y | the inequality |∆(X)| ≤ |∆(Y )|
holds.

We say that P is final shadow increasing if we have |∆new(X)| ≤ |∆new(Y )| for all
i = 0, . . . , r(P ) − 1 and for any final segments X ⊆ Pi and Y ⊆ Pi+1 with |X| = |Y |.

Finally, P is said to be weakly shadow increasing if |∆new(X)| ≤ |∆new(Y )| holds for
any segments X ⊆ Pi and initial segments Y ⊆ Pj such that i ≤ j, |X| = |Y | and X ∪ Y
is an antichain.

Proposition 5 (Engel, Leck [54]). Let P be a Macaulay poset.

a. If P is final shadow increasing, then P ∗ is shadow increasing.

b. Let P be graded, additive, and shadow increasing. If P ∗ is shadow increasing, then
P is final shadow increasing.

c. If P is a graded, additive and shadow increasing, then P is weakly shadow increasing.

2 Some known Macaulay posets

2.1 Boolean lattices

Boolean lattices are certainly the most popular examples of Macaulay posets. For a
natural number n the Boolean lattice Bn is defined as the collection of all subsets of
[n] := {1, 2, . . . , n} partially ordered by inclusion, i.e. X ≤ Y for X, Y ⊆ [n] iff X ⊆ Y .
The unique rank-function on Bn maps a set X ⊆ [n] to |X|. Representing the subsets of
[n] by their characteristic vectors, it is obvious that Bn is isomorphic to the n-th cartesian
power of the chain 0 <· 1 of length one. As an example, the Hasse diagram of B4 is shown
in Fig. 1a (parenthesis and commas are omitted).
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Figure 1: The Boolean lattice B4 (a) and the poset Q4 (b).

The lexicographic order of the elements of Bn is defined by X �lex Y iff max(X \Y ) ≤
max(Y \ X), where max(∅) := 0. The following theorem, which meanwhile became
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a classical one, was found by Schützenberger [95] (proof incomplete), Kruskal [66] and
Katona [63].

Theorem 1 (Kruskal-Katona theorem). (Bn,⊆,�lex) is a Macaulay structure.

It should be mentioned that the proof given by Kruskal in [66] is quite complicated and
consists of 30 pages. Katona’s proof [63] is done by purely discrete methods, is about 10
pages long, and based on isoperimetric type inequalities and manipulations with binomial
coefficients. Many short proofs consist just of 1.5 - 2 pages [48, 56, 97]. This theorem
is an immediate corollary of a vertex-isoperimetric problem (VIP) solved by Harper [60]
(see also Section 3.3). For short proofs of Harper’s theorem and more details we refer to
the survey [14].

Let A = C(m, Bn
k ) with respect to the lexicographic order. Then m is uniquely

represented in the form

m =

(
ak

k

)
+

(
ak−1

k − 1

)
+ · · ·+

(
at

t

)
(2)

for some ak, . . . , at with ak > ak−1 > · · · > at ≥ t. Following Kruskal [66] define the
(i, k)th pseudopower of m to be

m(i/k) =

(
ak

i

)
+ · · ·+

(
at

i − k + t

)
. (3)

Then (cf. [63]), |∆(C(m, Bn
k ))| = m(k−1/k) for k ≥ 1.

It is interesting that the formula (3) does not involve n. A useful lower bound is due

to Lovász: if m =
(

x
k

)
for some real x ≥ k, then |∆(C(m, Bn

k ))| ≥
(

x
k−1

)
. In [82] Maire

showed that |∆(C(m, Bn
k ))| ∼ k

k√
k!

m1−1/k as k is a constant and m → ∞.

The solution to the SMP provided by the Kruskal-Katona theorem is not unique, in
general. However, for at least 2n−1 cardinalities m the IS of the lexicographic order of
size m is essentially a unique optimal subset, as it is shown in the next theorem.

Theorem 2 (Füredi, Griggs [55], Mörs [84]). If (m+1)(k−1/k) > m(k−1/k) for some k ≥ 1,
then the set C(m, Bn

k ) is a unique optimal subset of size m (up to isomorphism).

This result, however, is a corollary of more general results [13, 14] which concern
the VIP. In particular, [13] implies a complete specification of all optimal subsets of the

size m such that
(
(m + 1)(k−1/k)

)(k−2/k−1)
>
(
m(k−1/k)

)(k−2/k−1)
for some k ≥ 2. In this

case, however, there are nonisomorphic optimal subsets, in general. It turns out that the
number of cardinalities m, 0 ≤ m ≤ 2n, which satisfy the above condition and the one
in Theorem 2 is asymptotically equal to 3

4
2n. Without going into details, for which the

readers are referred to the survey [14], we mention another corollary of results on the VIP.

Theorem 3 (Bezrukov [13]). If A ⊆ Bn
k is optimal for some k ≥ 0, then so is ∆(A).
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Presently it is not known if this property is valid for other Macaulay posets.
The following poset, denoted here by Qn, is closely related to Bn. This poset is formed

on the element set of Bn and has just two levels. The level Qn
0 (resp. Qn

1 ) consists of all
vertices of Bn with an even (resp. odd) number of ones. For x ∈ Qn

0 and y ∈ Qn
1 we write

x ≤ y if the Hamming distance between x and y is 1 (cf. Fig. 1b). The SMP for Qn was
solved independently by three groups of authors.

Theorem 4 (Bezrukov [8, 10], Körner, Wei [69, 70], Tiersma [96]).
The poset Qn is Macaulay for any n ≥ 1.

The Macaulay order on Qn is a restriction of the order introduced by Harper [60] for
the VIP on Bn. It turns out that the Macaulayness of Qn implies a solution for the VIP
for Bn and vice versa (cf. [14] for more details).

2.2 Chain products

Cartesian products of chains, called also lattices of multichains , are well-studied gen-
eralizations of Boolean lattices. For positive integers n and k1 ≤ k2 ≤ · · · ≤ kn

the chain product S(k1, k2, . . . , kn) consists of all vectors x = (x1, x2, . . . , xn) such that
xi ∈ {0, 1, . . . , ki} for i = 1, 2, . . . , n. The partial order is a coordinatewise one: x ≤ y
iff xi ≤ yi for i = 1, 2, . . . , n. Again we have a uniquely determined rank-function,
namely r(x) =

∑n
i=1 xi. Obviously, S(k1, k2, . . . , kn) is the cartesian product of the chains

0 <· 1 <· · · · <· ki, i = 1, 2, . . . , n.
A natural extension of the lexicographic order to chain products is established by:

x �lex y iff x = y or xj < yj, where j is the smallest index with xj 6= yj. As an
example, S(1, 2, 3) is shown in Fig. 2a, with the elements of each level placed in increasing
lexicographic order from left to right.
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Figure 2: The chain product S(1, 2, 3) (a) and the poset R(2, 3) (b).

the electronic journal of combinatorics (Jan 2005), #DS12 7



The following theorem was found by Clements and Lindström, appeared in [43], and is
qualified in [29] as a famous and influential result. In the special case k1 = · · · = kn = ∞
the theorem can be derived from a paper of Macaulay [81] (presented in algebraic terms
there, cf. section 5.7), who actually provided the chain products as a first example for a
Macaulay poset in 1927.

Theorem 5 (Clements-Lindström theorem). (S(k1, . . . , kn),≤,�lex) is a Macaulay
structure.

A short proof of this theorem can be obtained by using the approach of [97] for the
Boolean lattice, which is based on compression. Another short proof is based on the
shifting technique and is published in [72]. A principally different approach used in [27]
for the MWI problem (cf. Section 5.2) implies a short proof, too. The properties of chain
products given in the following theorem are important for many applications (see Section
5.1 for instance).

Theorem 6 (Clements [35]). Chain products are additive and shadow increasing.

The original proofs of these properties are rather complicated. Shorter proofs can be
found in the book of Engel [52] and, for the shadow increase property, in [42]. These
elegant proofs are based on an idea of Kleitman, consisting in embedding a chain product
S into a chain product S ′ of higher dimension, and to obtain the above properties of S
as corollaries of the Macaulayness of S ′. A similar technique works well for establishing
these properties for the Macaulay posets considered in the next two sections.

We conjecture that an analogue of Theorem 3 is valid for the chain products. Moreover,
we guess that it is possible to construct a Macaulay poset R(k1, . . . , kn) with two levels,
consisting of the vertices of the “odd” and “even” levels of S(k1, . . . , kn), respectively, as
it is done for the poset Qn (as an example, see R(2, 3) in Fig. 2b). Our guess is based on
a similarity between the VIP on the Boolean poset and on chain products.

2.3 The star posets

Another natural way to generalize Boolean lattices is to consider the chain 0 <· 1 as a star
with just two vertices. This leads to cartesian products of stars which, in contradistinction
to chain products, are not self-dual if at least one of the stars in the product has more
than two vertices.

For positive integers n and k1 ≤ k2 ≤ · · · ≤ kn the star poset T (k1, k2, . . . , kn) consists
of all vectors x = (x1, x2, . . . , xn) such that xi ∈ {kn − ki, kn − ki + 1, . . . , kn} for i =
1, 2, . . . , n, where the partial order is given by: x ≤ y iff xi = yi or yi = kn for i =
1, 2, . . . , n. The unique rank-function on T (k1, k2, . . . , kn) is given by r(x) = |{i | xi =
kn}|. According to the above definition, T (k1, k2, . . . , kn) is the cartesian product of the
stars T (ki), (i = 1, 2, . . . , n), shown in Fig. 3a.

To introduce a Macaulay order � on T (k1, k2, . . . , kn), define x(j) := {i ∈ [n] | xi = j}
for x ∈ T (k1, k2, . . . , kn) and j = 0, 1, . . . , kn. Now � is defined as follows: x � y iff
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Figure 3: The star T (ki) (a) and the star poset T (2, 3) (b).

x = y or y(h) ≺lex x(h), where h is the smallest number with x(h) 6= y(h). In Fig. 3b,
the elements of each level of T (2, 3) are placed in increasing order � from left to right.

Theorem 7 (T (k1, k2, . . . , kn),≤,�) is a Macaulay structure.

This theorem is found by Lindström [79] for the case k1 = · · · = kn = 2 (his proof,
however, contains a gap), and is proved by Leeb [78] and Bezrukov [12] in the case
k1 = · · · = kn. Actually, both mentioned proofs can be extended to the case k1 6= kn.
Explicit proofs for this general case are given in [52, 73].

Theorem 8 Star products are additive and shadow increasing.

These two properties of the star poset are very important for applications. The addi-
tivity part is again due to Clements [37] (see [52] for simplification), the shadow increase
property was shown by Leck [74] using Kleitman’s technique mentioned above.

2.4 Colored complexes

Obviously, for kn ≥ 2 the star product T (k1, k2, . . . , kn) is not isomorphic to its dual.
Engel [52] observed that the duals of star products are isomorphic to colored complexes
which were introduced by Frankl, Füredi and Kalai [59] in the case kn − k1 ≤ 1.

To define colored complexes in general, for positive integers n and k1 ≤ k2 ≤ · · · ≤ kn,
and for i = 1, 2, . . . , n, let the i-th color class be the set

Ai := {i, n + i, 2n + i, . . . , (ki − 1)n + i}.

Now the colored complex Col(k1, k2, . . . , kn) consists of all subsets X ⊆ A :=
⋃n

i=1 Ai such
that |X ∩ Ai| ≤ 1 for i = 1, 2, . . . , n, i.e. of all subsets of A which meet every color class
at most once. The corresponding partial order is the usual set inclusion. According to
this definition, Col(k1, k2, . . . , kn) is the cartesian product of the stars Col(ki) shown in
Fig. 4a.
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Figure 4: The star Col(ki) (a) and Col(1, 2, 3) (b).

Engel [52] established the following isomorphism ϕ from Col(k1, k2, . . . , kn) to the dual
of T (k1, k2, . . . , kn):

ϕ(X) = (z1, . . . , zn), where zi =




kn − 1 − x−i
n

if x ≡ i (mod n)
for some x ∈ X,

kn otherwise.

It is easily seen that for X, Y ∈ Col(k1, k2, . . . , kn) we have ϕ(X) � ϕ(Y ) in T (k1, k2, . . . , kn)
iff Y �lex X. Consequently, Proposition 1 and Theorem 7 yield the following corollary.

Corollary 1 (Colored Kruskal-Katona theorem).
(Col(k1, k2, . . . , kn),⊆,�lex) is a Macaulay structure.

The original paper of Frankl, Füredi, Kalai [59] and a simpler proof given by Lon-
don [80] establish Corollary 1 for kn − k1 ≤ 1 without using Theorem 7 and the above
isomorphism.

Since Col(k1, k2, . . . , kn) is isomorphic to the dual of T (k1, k2, . . . , kn), Proposition 3
implies that colored complexes are additive.

Theorem 9 (Leck [74]). Colored complexes are shadow increasing.

This theorem is the result of another application of the Kleitman’s idea mentioned
above.

3 Construction of Macaulay posets

In this section we present some constructions of Macaulay posets. We start with a criterion
for Macaulayness and some simple observations, and then proceed with deep relations to
extremal problems on graphs. In the last part of this section we discuss product theorems
for Macaulay posets.
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3.1 A criterion for Macaulayness

Let P be a ranked poset with the associated partial order ≤ and some total order � of
its elements. Denote by P ′ and P ′′ the posets obtained from P by deleting its top and
bottom levels respectively. Thus, r(P ′) = r(P ′′) = r(P ) − 1. Furthermore, denote by ≤′,
≤′′, �′, and �′′ the restrictions of ≤ and � to P ′ and P ′′, respectively.

Proposition 6 (P,≤,�) is a Macaulay structure iff so are (P ′,≤′,�′) and (P ′′,≤′′,�′′).

Proof. The “only if” part of the assertion is an immediate consequence of the definitions.
On the other hand, if both P ′ and P ′′ are Macaulay, then we construct a new total order
�∗ on P by ordering first the elements of P ′ within the level P ′

0 according to the order
�′, and then proceeding similarly with the levels P ′

1, P
′
2, . . . , P

′
r(P ′). Finally we order the

elements of Pr(P ) according to the order �′′. It is easily seen that the order �∗ and its
restrictions to P ′ and P ′′ are Macaulay orders for P , P ′, and P ′′.

Unfortunately, this statement does not provide direct constructions for Macaulay
posets, since to construct nontrivial Macaulay posets even with just two levels is a difficult
problem. However, we believe that this proposition can be useful for answering some open
questions mentioned in Section 5.

3.2 Posets with a given shadow function

Here we show that for any shadow function sfi there exists a Macaulay poset with this
shadow function. Obviously, it suffices to construct Macaulay posets with two levels only.

Let P be a ranked poset with r(P ) = 1 and consider the SMP on its top level P1.
Denote by ∆(m) the minimal size of the shadow of a set consisting of m elements of P1.
Obviously, the sequence {∆(m)} is nondecreasing.

Proposition 7 For any nondecreasing sequence {∆(1), ..., ∆(p)} there exists a corre-
sponding Macaulay poset P with r(P ) = 1.

Proof. Let P1 = {a1, . . . , ap} and P0 = {b1, . . . , b∆(p)}. We define a partial order ≤ on
P = P0 ∪ P1 as follows. For any i = 1, . . . , p set ai > bj for j = 1, . . . , ∆(i) (cf. Fig. 5).
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Figure 5: A poset corresponding to the sequence (2, 3, 3, 5, 6, 9, 10).
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Obviously, the constructed poset is Macaulay and the labelings of the ai’s and bi’s
provide Macaulay orders on P1 and P0, respectively.

Similarly, Macaulay posets with more levels can be constructed. This construction
is, in a sense, invertible. Given a Macaulay poset (P,≤,�), construct another poset
Q = (P,v) as follows. Take an element a ∈ Pi for some i > 1 and consider Fi(a). Then
∆(Fi(a)) = Fi−1(b) for some b ∈ Pi−1. Let c ∈ Fi−1(b) and assume c 6≤ a. Now we extend
the partial order ≤ by setting c ≤ a (cf. Fig. 6).
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Figure 6: Posets P (a) and Q (b)

Proposition 8 (Bezrukov, Portas, Serra [25]). The poset Q is Macaulay.

Proof. Denote ∆P (m, i) = min |∆(A)|, where the minimum runs over all A ⊆ Pi with
|A| = m. Since the partial order ≤ is a suborder of v, then ∆P (A) ⊆ ∆Q(A) for any
A ⊆ Pi, Thus,

∆P (m, i) ≤ ∆Q(m, i) for all m = 1, . . . , |Pi| and i = 1, . . . , r(P ). (4)

However, ∆P (Fi(a)) = ∆Q(Fi(a)) for any a ∈ Pi. Therefore, since P is Macaulay, then
the lower bound (4) for Q is tight. This implies that (P,v,�) is Macaulay, too.

Hence, applying any number of the above extensions leads to a Macaulay poset. If we
add to P all possible relations provided by the above construction, then one will come to
Macaulay poset in the normal form.

3.3 Posets related to isoperimetric problems on graphs

Let G = (VG, EG) be a graph. For A ⊆ VG denote

E(A) = {(u, v) ∈ EG | u ∈ A, v 6∈ A},
E(m) = max

|A|=m
|E(A)|.
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Consider an edge-isoperimetric problem (EIP): for any m ≤ |VG| find A ⊆ VG such that
|A| = m and |E(A)| = E(m). We say that the edge-isoperimetric problem has nested
solutions if there exists a numbering of V such that each IS is an optimal set. For more
information on edge-isoperimetric problems on graphs we refer to the survey [18].

Assume that the EIP has nested solutions for the graph G. We construct a Macaulay
poset (P,≤) with |P | = |VG| by induction on |VG| (cf. [17]). If |VG| = 1, then the poset is
trivial. For |VG| > 1 let VG = {1, . . . , |VG|} and assume that for each m = 1, . . . , |VG| the
subset {v1, . . . , vm} ⊆ VG is optimal. Note that for m < |VG| this subset is also optimal
for the subgraph G′ which is induced by the vertex set {1, . . . , |VG| − 1}. Construct the
representing poset (P ′,≤′) for G′ by induction. Now extend P ′ by adding a new element
v at level i = E(|VG|) − E(|VG| − 1) and extend the partial order ≤′ by setting v to be
greater than any element of P ′ at level i − 1. This procedure results in the poset (P,≤).

Applying this algorithm to the Petersen graph (see Fig. 7a) results in a poset P shown
in Fig. 7b. (with dotted lines). The elements of P are numbered in Fig. 7b in the same
order as they appear in the Petersen graph.

s s
s s

s s
s

s s

s

T
T
T
T
T
T
TT

�
�
�
�
�
�
��

�
�
�
�
�
�
��

"
"
"
"
"
"
""

L
L
L
L
L
L
LL

b
b

b
b

b
b

bb

#
#

#
#

#
#

##

c
c
c
c
c
c
cc

1 5

6 8

2 49 10

7

3

a.

s

s s s s

s s s s

s

Q
Q

Q
Q

Q
QQ

A
A
A
AA

�
�
�
�
�
��

�
�
�
��

�
�
�
��

��
��

��
��
�

@
@

@
@@

��
��

��
��
�

HH
HH

HH
HH

H

�
�
�
��

HH
HH

HH
HH

H

@
@

@
@@

�
�

�
�

�
��

�
�
�
��

A
A
A
AA

Q
Q
Q
Q
Q
QQ

1

2 3 4 6

5 7 8 9

10

P0

P1

P2

P3

p p p p p p
p p p p p p
p p p

pppppp
pppppp

ppp

p p p p p p p p p p p
p p p p p p p p p p p

p p p p p p p p

b.

Figure 7: The EIP-construction

Due to the observations in the last subsection the resulting poset is a Macaulay poset
in the normal form. Thus, we have the following observation.

Proposition 9 (cf. [17]). If G has nested solutions in the EIP, then the poset obtained
according to the EIP-construction is Macaulay.

It is easily seen that the relations represented by the dotted lines in Fig. 7b can
be deleted from the partial order, and the remaining poset is Macaulay, too [17]. It is
interesting that if a poset P represents a graph G, and if P n is Macaulay, then the EIP
on Gn has nested solutions [15, 16]. The inverse proposition is, however, not correct, in
general (see an example in Fig. 19). However, the posets P n are good candidates for
being Macaulay (cf. the discussion in Section 5.3).

the electronic journal of combinatorics (Jan 2005), #DS12 13



Note that not every Macaulay poset of the form above represents a graph. Consider,
for example, the poset shown in Fig. 8 together with an order of the elements in the
construction above. If the corresponding graph G exists, then E(m) for m = 1, . . . , 5 has
to be 0, 1, 2, 4, 7 respectively. Hence, the subgraph of G induced by the first four vertices
is a 4-cycle and the fifth vertex has degree 3. However, such a graph necessarily contains
a 3-cycle. Thus, the three first values of E(m) should be 0, 1, 3.

t
t t
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1

2 3

4

5

Figure 8: A poset that represents no graph

Now we turn to a vertex-isoperimetric problem on G = (VG, EG). For A ⊆ VG denote

Γ(A) = {v ∈ VG \ A | (v, u) ∈ EG, u ∈ A},
Γ(m) = min

|A|=m
|Γ(A)|.

The vertex-isoperimetric problem (VIP) consists in finding for a given m ≤ |VG| a set A ⊆
VG such that |A| = m and |Γ(A)| = Γ(m). Such problems often arise in combinatorics.
For a survey we refer to [14].

We claim more than nestedness from the VIP. Namely, we additionally assume that
for any IS A ⊆ VG the set A ∪ Γ(A) is an IS, too. This property corresponds to the
continuity in the definition of Macaulay posets and holds for many graph families.

Let VG = {1, . . . , |VG|}, where any IS represents an optimal set. We construct a
poset (P,≤) with r(P ) = 1 and |P | = 2|VG| as follows. Let P0 = {b1, . . . , b|VG|} and
P1 = {a1, . . . , a|VG|}. We set bi < ai for i = 1, . . . , |VG|. Furthermore, if (i, j) ∈ EG, then
set bi < aj and bj < ai.

For example, consider the 3-cube in Fig. 9a. A solution to the VIP for an n-cube is
due to Harper [60]. Any IS of the numbering shown in Fig. 9a provides an optimal set.
The corresponding poset is shown in Fig. 9b. Note that this poset is isomorphic to the
poset Q4 (cf. Fig. 1b). It can be easily proved that the VIP-construction being applied
to Bn results in a poset that is isomorphic to Qn+1.

Proposition 10 The poset obtained according to the VIP-construction from a graph G is
Macaulay iff G satisfies the nestedness and continuity properties with respect to the VIP.

Proof. The assertion follows from the fact that for A ⊆ VG one has ∆({ai | i ∈ A}) =
{bj | j ∈ A ∪ Γ(A)}.
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Figure 9: The VIP-construction

3.4 Product theorems

Counterexamples show that if P and Q are Macaulay posets, then P ×Q is not necessarily
Macaulay. For example, if P is a poset whose Hasse diagram is isomorphic to Kp,p for
p ≥ 2 (i.e. we have a special case of a so-called complete poset [50]) then P × P is not
Macaulay in contradistinction to a conjecture in [50]. Indeed, if m ≤ p, then a set of m
elements of P 2

1 has minimal shadow iff these elements agree in some entry whose rank in
P is 0. However, the shadow of any element of P 2

2 consists of 2p elements of P 2
1 , which

do not contain p elements of the form above.
Thus, a condition on P and Q is needed for a product theorem. The situation is,

however, simple if Q is a trivial poset with r(Q) = 0. In this case a necessary and
sufficient condition for P is found by Clements:

Theorem 10 (Clements [38]). If r(Q) = 0, then P × Q is additive and Macaulay iff so
is P .

Probably, the next case in this hierarchy are posets of the form P ×Cq with Cq being
a chain with q elements. Here a condition for P is required, too, as the following example
of a poset Q of the form P × C2 shows (cf. Fig. 10). For simplicity, some dotted edges
are not shown in this figure.
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Figure 10: A non Macaulay poset of the form P × C2

Consider an optimal set of size 4 in Q2. It is easy to show that any such set contains
the 3 leftmost elements of Q2 in Fig. 10. One of the optimal sets is displayed by squares.
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Its shadow consists of 6 elements of Q1, whose shadow, in turn, consists of 9 elements of
Q0. However, the shadow of an optimal subset of Q1 of size 6 has only 7 elements (one of
such sets is represented by larger circles in Fig. 10).

Theorem 11 Let P be a poset with r(P ) = 1 and let q ≥ 1. Then P ×Cq is a Macaulay
poset iff P is Macaulay.

Proof. Let P be a rank greedy Macaulay order on P and consider the poset Q = P ×Cq.
Denote by LQ the lexicographic order on the set Q = P × {0, . . . , q − 1}. We show that
this order is Macaulay. It is easily shown that the order LQ satisfies the property N2.

Furthermore, for i = 0, . . . , q−1 denote by P (i) the subposet of Q with the element set
{(x, i) | x ∈ P} and the induced partial order (cf. Fig. 11). Obviously, P (i) is isomorphic
to P for any i. Without loss of generality we assume q ≥ 2.
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Figure 11: Construction of Qi(m) in Theorem 11

We show that for any m and i the subset C(m, Qi) is optimal. For this, consider a set
A ⊆ Qi with |A| = m. If i = q, then

|∆(A)| ≥ |A| + ∆(m). (5)

This equality is strict for the set C(m, Qq). Now for i ≤ q − 1 denote A′ = A ∩ P1(i − 1)
and A′′ = A∩P0(i) (cf. Fig. 11), and let m′ = |A′| and m′′ = |A′′|. If 2 ≤ i ≤ q − 1, then

|∆(A)| ≥ |∆(A′) ∩ P1(i − 2)| + |∆(A′′) ∩ P0(i − 1)| = m′ + m′′ = m.

This inequality is also strict for C(m, Qi), which provides its optimality for 2 ≤ i ≤ q−1.
It remains to consider the case i = 1. Let A be an optimal set. One has

|∆(A)| ≥ max{∆(m′), m′′} ≥ m′′. (6)

Since P is Macaulay, then we can assume that A′ and A′′ are isomorphic to C(m′, P1) and
C(m′′, P0) (in the order P), respectively. In this case the inequalities (6) are strict. Now if
m′′ > ∆(m′+1), then replace A′′ with C(m′′−1, P0) and replace A′ with C(m′+1, P1) (in
the order P). Similarly, if m′′ < ∆(m′), then replace A′′ with C(m′′ + 1, P0) and replace
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A′ with C(m′ − 1, P1). In both cases the shadow of the resulting set does not increase.
Similar transformations result in an optimal set B such that

∆(|B′|) ≤ |B′′| ≤ ∆(|B′| + 1),

and both B′ and B′′ are isomorphic to some initial segments of the order P. Hence, B is
isomorphic to C(m, Qi) for the order LQ.

Now assume that Q is Macaulay. Thus, there exists a total order Q that satisfies the
properties N1 and N2. Since for the set A = C(m, Qq+1) (in the order Q) the inequality
(5) is strict, then the subset B ⊆ P1, which is isomorphic to A, has minimal shadow. This
implies that P is Macaulay.

3.5 A local-global principle

Consider the SMP on a cartesian power P n of a Macaulay poset P . There exists a powerful
technique for establishing the Macaulayness of such posets, which, in particular, involves
induction on the number n of posets in the product. However, the general arguments
within this technique work for n ≥ 3 only. The case n = 2 is a special one and must be
considered separately.

A similar situation also occurs in the edge isoperimetric problem on graphs (see section
3.3) and in the more general problem of the minimization of submodular functions on
graphs. For a finite set S a function f : 2S 7→ IR is called submodular if for any A, B ⊆ S

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B).

If S is the vertex set of a graph G = (VG, EG), then the size of the edge cut separating a
set A ⊆ VG from VG \A is an example of a submodular function. Based on a submodular
function f defined on 2VG , some special functions f (n) on the nth cartesian power of G
are considered in [1]. These functions f (n) are, in a sense, decomposable, i.e. they can
be represented as certain sums of functions f (n−1). Without going into details, consider,
for example, the function f (n) defined as the size of an edge cut that separates a subset
of vertices of the n-cube from its complement. Then f (n) can be represented as the sum
over i = 1, . . . , n of the number of cut edges which are parallel to the ith dimension.

Ahlswede and Cai proved in [2] that if the lexicographic order (see Section 2) provides
nestedness (cf. N1) in minimizing f (n) for n = 2, then it is so for any n ≥ 3. It turns
out that the last result, which is called the local-global principle in [2], is valid for the
edge-isoperimetric problem also with respect to some other total orders [18].

In what concerns the SMP, the above approach can not be directly applied because
of the necessity to maintain the level structure of a poset. Another difficulty in applying
the results of [1, 2] is that the function |∆(·)| is not decomposable in the sense above.

However, similar general principles in the proof techniques for establishing the Macaulay-
ness of posets and solving edge-isoperimetric problems provide a local-global principle
with respect to the SMP. It turns out [25] that for the validity of such a principle with
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Figure 12: Counterexamples to Theorem 13 for n = 2

respect to the lexicographic order it is important that the poset satisfies some additional
conditions, which have no analogues for graphs yet.

We call a Macaulay poset P strongly Macaulay if it is additive, shadow increasing and
final shadow increasing. Note that Theorems 10 and 11 are valid with respect to strongly
Macaulay posets, too.

Denote by M the class of ranked posets having only one maximal and only one minimal
element.

Proposition 11 A poset P ∈ M is strongly Macaulay iff so is its dual P ∗.

Theorem 12 (Bezrukov, Portas, Serra [25]). Let (P,≤,�) ∈ M be strongly Macaulay
and rank-greedy. Let the lexicographic order �2 be Macaulay for P 2. Then for any n ≥ 2
the lexicographic order �n is a Macaulay order for P n.

The assumptions concerning the poset P in Theorem 12 are essential, as the following
result shows.

Theorem 13 (Bezrukov, Portas, Serra [25]). Let (P,≤,�) be a Macaulay poset. Fur-
thermore, let r(P ) ≥ 3 and assume that the orders �2 and �3 are Macaulay for P 2 and
P 3, respectively. Then for any n ≥ 1

a. P n ∈ M;

b. P n is rank greedy;

c. P n is strongly Macaulay.

The last theorem, however, is not true without the conditions concerning �3 and r(P ).
Indeed, for the poset shown in Fig. 12 the lexicographic order �n is Macaulay for n = 2,
however, not for n = 3.

Moreover, the Macaulay order for the poset P in Fig. 12 is not rank greedy, while
for p = 1, 2 the poset P 2 is Macaulay with the lexicographic order as a Macaulay order.
Furthermore, for the chain poset Cq with the partial order 0 < 1 < · · · < q and a non
rank greedy Macaulay order 0 � 1 � · · · ≺ q the lexicographic order �n is Macaulay for
n = 1, 2, but not for n ≥ 3 if q > 1. For q = 1 (i.e. for the hypercube) the order �n is
still Macaulay for n = 3, but not for n ≥ 4.
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Theorem 12 being applied to chains implies the Kruskal-Katona theorem [63, 66] and
the particular case of the Clements-Lindström theorem [43] when all the chains in the
product are of the same length.

As another application of the local-global principle consider the following poset (T (k),≤
) ∈ M of rank k. For 1 ≤ i ≤ k−1 the ith level of T (k) consists of two elements ai and bi.
Denote by b0 and ak the elements of T0 and Tk, respectively. The partial order is defined
as follows: x < y iff r(x) < r(y). The Hasse diagram of (T (3),≤) is shown in Fig. 13a.
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Figure 13: Posets (T (3),≤) (a.), 3 × 2 grid (b.), and torus T3 (c.)

We define the total order � on T (k) by setting bi−1 ≺ ai for i = 1, . . . , k and ai ≺ bi

for i = 1, . . . , k − 1. Obviously, the order � is Macaulay on (T (k),≤).

Theorem 14 (Bezrukov, Portas, Serra [25]). For any k ≥ 1 and any n ≥ 1 the poset
(T n(k),≤×,�n) is Macaulay.

It is interesting that if we modify the partial order in T (k) by making the elements ai

and bi+1 incomparable for i = 1, . . . , k−1, then the resulting poset Q is isomorphic to the
k × 2 grid (cf. Fig. 13b). Being a product of chains, the obtained poset is Macaulay due
to the Clements-Lindström theorem [43]. However, no lexicographic order is Macaulay
(cf. [25]).

If we further modify the poset T (k) by making the elements bi and ai+1 incomparable
for i = 1, . . . , k−1, then this results in a cycle Tk (cf. Fig. 13c). Any cartesian power of Tk

(which is isomorphic to a torus) is Macaulay. The Macaulay order can be derived from [62,
86], where a vertex-isoperimetric problem for tori was studied, and is not lexicographic.

Further posets for which the local-global principle is applicable can be constructed
using Proposition 8. Let P satisfy the assumptions of Theorem 12, and construct the
poset Q = (P,v) as in Section 3.3. Then Theorem 12 is applicable to Q.

Indeed, the poset Q is Macaulay by Proposition 8. Now consider P 2. Since

∆P 2(Fi((x, y))) = {(x, ξ) | ξ ∈ ∆P (Fi−rP (x)(y))} ∪ {(ξ, y) | ξ ∈ ∆P (Fi−rP (y)(x))},

then ∆P 2(Fi((x, y)) = ∆Q2(Fi((x, y))). Therefore, if P satisfies the assumptions of The-
orem 12, then so does Q. On the other hand, since the lexicographic order is Macaulay
for P 2, then so it is for P 4, for example. Extending P 2 as shown in Section 3.1 results in
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a new poset, for which Theorem 12 is applicable. In particular, the Macaulayness of the
torus poset T n

k (cf. Section 4.3) implies a similar result for the powers of k × 2 grids (cf.
Fig. 13b,c).

In [26] a similar technique is applied for establishing a local-global principle with
respect to a problem related to the theory of Macaulay posets, namely the vertex-
isoperimetric problem on graphs (cf. Section 3.3).

4 New Macaulay posets

In this section we present some new families of Macaulay posets. We start with posets
which are factorable by using the cartesian product operation in subsections 1 - 3 and
proceed with two posets which do not appear to be cartesian products.

4.1 The products of trees and spider posets

Evidently, the classical Macaulay posets mentioned in Section 2 (we mean the Boolean
lattice, the chain products, and the star poset) have something in common. Namely, the
Hasse diagrams of the underlying posets in the product are trees.

These posets are also upper semilattices . For a, b ∈ P denote by supP (a, b) an element
c ∈ P (if it exists) such that a ≺ c, b ≺ c and c ≺ d if a ≺ d and b ≺ d. The poset P is
an upper semilattice if for any a, b ∈ P , supP (a, b) exists and is unique.

Denote by P the class of upper semilattices P whose Hasse diagrams are trees. Which
posets P ∈ P have the property that any cartesian power P n is Macaulay ? Denote by
Q(k, l) ∈ P the poset with the element set {0, 1, . . . , (k + 1)l}, and the partial order ≤
being defined as follows: α ≤ β iff (i) α = β (mod k + 1) and α ≤ β, or (ii) β = (k + 1)l.
The Hasse diagram of Q(k, l) is a regular spider with k + 1 legs consisting of l vertices
each. As an example, Q(1, 2) is shown in Fig. 14a.

Theorem 15 (Bezrukov [16]). Suppose for some poset P ∈ P that P n is Macaulay for
some integer n ≥ r(P ) + 3. Then P is isomorphic to Q(k, l) for some k ≥ 1 and l ≥ 1.

In the proof it is shown first that if x is a leaf of the Hasse graph of P , then rP (x) ∈
{0, r(P )}. In this part of the proof the condition n ≥ r(P ) + 3 arises. The rest of the
proof is devoted to the case when the Hasse graph of P contains a vertex z of degree at
least 3. It is shown that the assumption rP (z) < r(P ) leads to a contradiction. It turns
out that the inverse theorem is also valid.

Theorem 16 (Bezrukov, Elsässer [22]). The poset Qn(k, l) is Macaulay for all integers
n, k and l.

The Macaulay order for Qn(k, l) is quite complicated and involves, in particular, the
star poset order. We refer to [22] for exact definitions. The poset Q2(1, 3) is shown in
Fig. 14b. Although the proof is based on compression techniques, the compression itself

the electronic journal of combinatorics (Jan 2005), #DS12 20



s s

s s

s
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
BB

0 1

2 3

4

a.

s

s

s s

B
B
B
BB

�
�
�
��

�
�
�
��

B
B
B
BB

s

s

s s

B
B
B
BB

�
�
�
��

�
�
�
��

B
B
B
BB

s

s

s s

B
B
B
BB

�
�
�
��

�
�
�
��

B
B
B
BB

s

s

s s

B
B
B
BB

�
�
�
��

�
�
�
��

B
B
B
BB

s s s s

s s s s

s

B
B
B
B
B
B
B
BB

@
@
@
@@

B
B
B
B
B
B
B
BB

@
@
@
@@

B
B
B
B
B
B
B
BB

@
@
@
@@

�
�

�
��

"
"

"
"

"
"

""

�
�
�
��

�
�
�
��

�
�
�
��

"
"
"
"
"
"
""

�
�
�
��

�
�
�
��

��
��

��
��

��
��

���
��

��
��

��
��

�
B
B
B
BB

���������

HHHHHHHHH











J
J
J
JJ

b.

44

00 01 10 11

02 20 03 21 30 12 13 31

22 04 23 40 32 14 33 41

24 42 34 43

Figure 14: The spider poset Q(1, 2) (a.) and Q2(1, 2) (b.)

is a pretty small part of the proof. As a poset becomes more and more complex, the main
problem is how to transform a compressed set into an initial segment of the corresponding
order. For this, a new technique is proposed in [22], which, hopefully, can be well applied
to further posets.

Looking back at Theorem 7 for star posets it is natural to ask if all cartesian products
of the form Q(k1, l)×Q(k2, l)×· · ·×Q(kn, l) are Macaulay. We conjecture an affirmative
answer. On the other hand, it is easily seen that products of the form Q(k, l1)×Q(k, l2)×
· · · × Q(k, ln) are not Macaulay in general.

A natural question remains open: what if we omit the condition of being a semilattice
in the definition of the class P ? Products of which trees (considered as posets) are
Macaulay ? We conjecture that the condition rP (x) ∈ {0, r(P )} still should be satisfied
for any leaf x, and rP (z) ∈ {0, r(P )} holds for any vertex of degree at least 3.

4.2 Generalized submatrix orders

Our next example is closely related to colored complexes (and, consequently, to the star
posets as well).

Let n and k1 ≤ k2 ≤ . . . km be positive integers such that k0 := n − ∑m
i=1 ki ≥ 0.

Furthermore, let A0, A1, . . . , Am be the sets defined by

A0 := {1, 2, . . . , k0},

Ai :=




i−1∑
j=0

kj + 1,
i−1∑
j=0

kj + 2, . . . ,
i∑

j=0

kj


 for i = 1, 2, . . . , m.

Clearly, the sets Ai (i = 0, 1, . . . , m) form a partition of [n] = {1, 2, . . . , n}.
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The generalized submatrix order S := SM(n; k1, . . . , km) consists of all subsets X of
[n] such that Ai 6⊆ X for all i = 1, 2, . . . , m. The corresponding partial order is given
by: X ≤ Y iff X ⊆ Y . According to this definition, S is isomorphic to the cartesian
product Bk0 × B̃k1 × · · · × B̃km , where B̃s denotes the Boolean lattice Bs without its
maximal element (see Fig. 15a). In particular, in the case k0 = 0, k1 = · · · = km = 2 it is
isomorphic to the colored complex Col(2, 2, . . . , 2).

The name generalized submatrix order refers to the work of Sali [88, 90] who actually
considered the dual of S in the case m = 2, k0 = 0. For m = 2, k0 = 0 he considered S∗

as the poset of all non-empty submatrices of an (k1×k2)-matrix M with A1, A2 being the
set of rows and columns, respectively, of M . Now in S∗ every submatrix M ′ is represented
by the union X of the sets of rows and columns that have to be deleted from M to obtain
M ′. Clearly, if we delete all rows or all columns, then we will not obtain a non-empty
submatrix. Therefore, we have the conditions Ai 6⊆ X, i = 1, 2. Sali proved for this poset
several analogues to classical theorems on finite sets (Sperner, Erdös-Ko-Rado). For this
poset, he also solved the problem of minimizing the number of atoms which are covered
by an m-element subset of the i-th level for given i, m and conjectured Theorem 17 below
in an equivalent form.

Harper introduced the name orthogonal product of simplices for the dual of S with
k0 = 0 (i.e. the forbidden subsets form a partition of [n]). For k0 = 0, a statement
equivalent to Theorem 17 below was conjectured by Moghadam [85].
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Figure 15: The poset B̃3 (a) and the submatrix order SM(5; 2, 3) (b).

To introduce a total order of the elements of S, for X ∈ S and i = 1, 2, . . . , m let
pi(X) denote the greatest element of Ai which is not contained in X. Furthermore, define
P (X) := {p1(X), p2(X), . . . , pm(X)}. Now the total order � on S is established by the
following two conditions:

(1) X � Y if P (X) 6= P (Y ) and min[(P (X) ∪ P (Y )) \ (P (X) ∩ P (Y ))] ∈ P (Y ),

(2) X � Y if P (X) = P (Y ) and X �lex Y .
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Note that condition (1) partitions the poset S into blocks, where each of these blocks
is isomorphic to a Boolean lattice. By condition (2), the order � acts lexicographically
on the blocks. The poset SM(5; 2, 3) is shown in Fig. 15b with the elements ordered
according to � from left to right on each level.

Theorem 17 (Leck [76, 77]). (S,⊆,�) is a Macaulay structure.

Note that Theorem 17 coincides with the colored Kruskal-Katona theorem in the case
k0 = 0, k1 = · · · = km = 2. It is natural to ask for the following generalization: Let
1 ≤ k < s be integers, and let P be the poset obtained from the Boolean lattice Bs by
deleting all elements of rank greater than s − k, i.e. the subposet Bs

0 ∪ Bs
1 ∪ · · · ∪ Bs

s−k.
Is the poset P n Macaulay for all n ≥ 2? It is not difficult to show that, in general, the
answer is negative. In fact, one can even show that the answer is positive iff k = 1 (i.e. P n

is a generalized submatrix order) or k = s − 1 (i.e. P n is a colored complex).
Before the above theorem was established, the closely related problem of finding ideals

of maximum rank (cf. section 5.3) was solved by Vasta [98] for S∗ with k0 = 0. Using
Theorem 17, a more general statement is now implied by Theorem 30.

In the proof of Theorem 17, again the case m = 2 required some special treatment,
a modification of the well-known shifting operator for finite sets was used to settle this
case. The following theorem is used in the proof for m > 2, which is done by induction.

Theorem 18 (Leck [77]). Generalized submatrix orders are additive.

Another interesting poset which is related to the generalized submatrix orders is the
poset Mn of square submatrices of a square matrix of order n ordered by inclusion. This
poset also was studied by Sali [87, 89] with respect to Sperner and intersection properties.

In other words the poset Mn can be also represented with the help of the rankwise direct
product operation introduced by Sali in [87]. Given posets P and Q with r(P ) = r(Q), the
poset R = P ×rQ is a poset with r(R) = r(P ) and such that Ri = Pi×Qi, i = 0, . . . , r(P ).
The partial relation on R is defined as follows: (x, y) ≤R (x′, y′) iff x ≤P x′ and y ≤Q y′.
Applying this operation with P = Q = Bn (the Boolean lattice) results in the poset Mn.

For n ≤ 3 the poset Mn is Macaulay, but not for n ≥ 4 in contradistinction to a
conjecture in [50]. In order to see it consider for n ≥ 4 an optimal set A ⊆ Mn

2 with
|A| = 6. Brute force methods provide |∆(A)| = 8, and, moreover, the elements of A must
agree in some entry. Adding any new element to such a set results in an increase of the
shadow size by at least 2. However, |∆(B)| = 9 holds for an optimal set B ⊆ Mn with
|B| = 7.

4.3 The torus poset

Denote by Tk the poset whose Hasse diagram can be obtained from two disjoint chains of
length k each by identifying their top and bottom vertices. Obviously, the Hasse diagram
of Tk is a cycle of length 2k (cf. Fig. 16a).
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Let T n
k1,...,kn

= Tk1 × · · · × Tkn. The solution to the SMP for this poset follows from
a solution to a more general problem: the VIP (cf. Section 3.2). In order to show the
relation, let us consider a bipartite graph G. Fix a vertex v0 ∈ VG and denote by Gi

the set of all vertices of G at distance i from v0. This leads to a ranked poset P with
Pi = Gi whose Hasse diagram is isomorphic to G. Assume that a solution to the VIP on
G satisfies the nestedness and continuity properties. Moreover, we assume that the total
order O which provides a solution to the VIP orders the vertices of Gi in sequence. In
other words, if A is an IS of O and

∑r
i=0 |Gi| ≤ |A| ≤ ∑r+1

i=0 |Gi|, then A contains a ball of
radius r centered in v0 and is contained in the ball of radius r + 1 with the same center.

Obviously, a solution to the SMP with respect to the minimization of ∇(·) for the
subsets of Pr follows. Moreover, each IS of the order O restricted to Pr provides an
optimal set. This problem is equivalent to the SMP with respect to the minimization of
∆(·) for the dual of P . Thus, both P ∗ and P are Macaulay.

The Macaulay order for T n
k1,...,kn

, thus, can be obtained from the VIP-order for the
torus. This order is first established in [62], mentioned in the survey [14] and recently
rediscovered in [86]. We follow [62] to present a solution. Assuming k1 ≤ k2 · · · ≤ kn ≤ ∞
we represent the elements of Tki

as −ki+1, . . . ,−1, 0, 1, . . . , ki in cyclic order with 0 at the
bottom level (cf. Fig. 16a). For x = (x1, . . . , xn) ∈ T n

k1,...,kn
denote |x| = (|x1|, . . . , |xn|),

σ(x) = (σ1, . . . , σn) with σi = 1 if xn−i+1 > 0 and 0 otherwise. Finally, denote N(x) =∑n
i=1 |xi|. Obviously, N(x) is the level of T n

k1,...,kn
containing x.

Now we are ready to define the optimal VIP-order T for the torus. We say x precedes
y iff

(1) N(x) < N(y), or

(2) N(x) = N(y) and σ(y) precedes σ(x) lexicographically, or

(3) N(x) = N(y), σ(x) = σ(y) and |y| precedes |x| lexicographically.

This order is schematically shown in Fig. 16b for T 2
3,3. To simplify the figure the wrap-

around edges of the torus are not shown.

Theorem 19 (Karachanjan [62], Riordan [86]). Any IS of the T -oder provides a solution
to the VIP. Moreover, the T -oder satisfies the continuity property.

It should be mentioned that if some basic cycle of a torus has an odd length then no
nestedness in the VIP exists in general [62]. However, this case is not related to posets.

4.4 Subword orders

Let us now turn to a first example of a Macaulay poset which is not representable as a
cartesian product of nontrivial factors.

Let n ≥ 2 be an integer, and let Ω denote the set {0, 1, . . . , n − 1}. In the sequel, we
call Ω the alphabet . The subword order SO(n) consists of all strings (called words) that
contain symbols (called letters) from Ω only. The partial order on SO(n) is the subword
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Figure 16: The torus T3 (a.) and the VIP-order for T 2
3,3 (b.)

relation, i.e. we have x1x2 . . . xk ≤ y1y2 . . . yl iff there is a set {i1, i2, . . . , ik} ⊆ {1, 2, . . . , l}
of indices such that i1 < i2 < · · · < ik and xj = yij for j = 1, 2, . . . , k. In other words,
x ≤ y holds iff the word x can be obtained from the word y by successively deleting
letters. By this definition, the rank of an element of SO(n) equals its length, that means
r(x1x2 . . . xi) = i. The only element of N0(SO(n)) is the empty word ε.

Consider the case n = 2. Clearly, the level Ni(SO(2)) consists of all 0-1-words of length
i and, therefore, in an obvious way its elements can be considered as the elements of the
Boolean lattice Bi. It was shown by Harper [60] that, among all subsets X ⊆ Bi of fixed
cardinality, the IS in the VIP-order minimizes |ΓB(X)| (the size of the vertex-boundary
of X in the Boolean lattice Bi). This order induces a total order of the elements for each
level of SO(2). For convenience, we define w(x1x2 . . . xi) := |{j | xj = 1, 1 ≤ j ≤ i}|.
Now the rank greedy extension of the VIP-order to the whole poset SO(2) is given by the
following conditions:

(1) x �vip y if w(x) < w(y),

(2) x �vip y if w(x) = w(y) and there is some j ≤ min{r(x), r(y)} such that xj > yj

and xh = yh for h = 1, 2, . . . , j − 1,

(3) x �vip y if w(x) = w(y), r(x) ≤ r(y) and xj = yj for j = 1, 2, . . . , r(x).

Fig. 17 shows the first levels of SO(2), where in each level the elements are ordered
w.r.t. �vip.

The next theorem reflects the importance of the VIP-order. It was proved indepen-
dently in three different papers almost at the same time.

Theorem 20 (Ahlswede, Cai [3], Daykin, Danh [45, 46], Bezrukov [15]). (SO(2),≤,�vip)
is a Macaulay structure.
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Figure 17: The subword order SO(2).

Let us remark that there are also several other Macaulay orders for SO(2) which were
determined by Daykin [51].

Based on the numerical approach of Ahlswede and Cai in [3], Engel and Leck [54]
provided a relatively simple proof of Theorem 20. One of the main observations relates
the SMP for SO(2) to the VIP for Boolean lattices: If X ⊆ Ni(SO(2)) is a final segment,
then |∇(X)| = |ΓB(X)| + 2|X| holds.

Ahlswede and Cai [3, 4] proved for SO(2) a number of isoperimetric inequalities related
to Theorem 20. The following perhaps is the central one.

Theorem 21 (Ahlswede, Cai [4]). Let P = SO(2), and let m, k, a be natural numbers
such that 1 ≤ m = 2k −1+a and a < 2k. Then the set X = P0∪P1∪ . . .∪Pk−1∪C(a, Pk)
has minimum-sized vertex-boundary Γ(X) among all m-element subsets of P .

For proving relations like the one in Theorem 21, the following simple observation
turns out to be crucial: If X ⊆ Ni(SO(2)), then C(X) and L(X) are isomorphic. The
corresponding isomorphism maps every letter xj of x ∈ C(X) to the letter 1− xj , i.e. we
interchange the roles of the 0’s and 1’s. Clearly, this implies |∆(C(X))| = |∆(L(X))| for
all X ⊆ Ni(SO(2)) and all i. Macaulay posets satisfying this equality are called shadow
symmetric.

Theorem 22 (Engel, Leck [54]). Let P be a Macaulay poset. If P is shadow symmetric,
then P additive.

According to the above theorem, SO(2) and its dual are additive. The next properties
are also important for applications.

Theorem 23 (Engel, Leck [54]).

a. The subword order SO(2) is shadow increasing.

b. The dual of SO(2) is weakly shadow increasing.
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Unfortunately, the dual of SO(2) is obviously not shadow increasing (just consider
the final element of each level). In fact, this poset is even shadow decreasing , that means
|∇(X)| ≥ |∇(Y )| holds for all final segments X ⊆ Ni(SO(2)), Y ⊆ Ni+1(SO(2)) with
|X| = |Y | and for all i (see [54] for a proof). Fortunately, for some applications (see
Section 5.1) the weak shadow increase property can serve as a substitute.

Let us now briefly discuss the case of larger alphabets. In [20] a Kruskal-Katona type
theorem for SO(n) with n ≥ 2 was presented but there is a mistake in the proof, as
pointed out by Danh and Daykin [47]. They also provided an example showing that the
statement itself is not true at all for n > 2.

Daykin [50] introduced the V -order , an extension of the VIP-order for SO(n) with
n ≥ 2. He conjectured that this order is a Macaulay order for SO(n). For n ≥ 3,
a counterexample to this conjecture is given in [75]. Even worse, this example and a
tedious case study yield the following result.

Theorem 24 (Leck [75]). If n > 2, then the subword order SO(n) is not a Macaulay
poset.

4.5 The linear lattice

The linear lattice Ln is another example of a poset which is not representable as a cartesian
product of other posets. This poset is defined to be the collection of all proper nonempty
subspaces of PG(n, 2) ordered by inclusion (cf. Fig. 18 for n = 2).

s s s

s s s

s



















��
��

��
��
�

J
J
J
J
J
J
J
JJ

HH
HH

HH
HH

H

1 6 7

2 45

3

a.

s

s

s

s

s

s

s

s

s

s

s

s

s

s

A
A
A
A
A
A

@
@
@
@
@
@

�
�
�
�
�
�

@
@
@
@
@
@

Q
Q
Q
Q
Q
Q
Q
QQ

�
�
�
�
�
�

A
A
A
A
A
A

Q
Q
Q
Q
Q
Q
Q
QQ

�
�
�
�
�
�

A
A
A
A
A
A

@
@
@
@
@
@

�
�
�
�
�
�

�
�

�
�

�
�

@
@
@
@
@
@

�
�
�
�
�
�

������������

A
A
A
A
A
A

������������������

�
�
�
�
�
�

1 2 3 4 5 6 7
L2

0

L2
1

b.

Figure 18: PG(2, 2) and the poset L2.

Although it is well known that this poset and the Boolean lattice have some similar
features, for n ≥ 3 the linear lattice is not Macaulay as shown by Bezrukov and Blokhuis
in [19]. However, they found some partial analogue of the Kruskal-Katona theorem for
the poset Ln.

Note that the 2n+1−1 points of PG(n, 2) are just (n+1)-dimensional non-zero binary
vectors (β1, . . . , βn+1). Using the lexicographic ordering of the points, let us represent each
subspace a ∈ Ln by its characteristic vector, i.e. by the (2n+1 − 1)-dimensional binary
vector (α2n+1−1, . . . , α1), where αi corresponds to the ith point of PG(n, 2).
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For two subspaces a, b ∈ Ln, we say that a is greater than b in the order O if the
characteristic vector of a is greater than the one of b in the lexicographic order. Such
an ordering is shown in Fig. 18a for PG(2, 2), where the points are represented by their
lexicographic numbers.

Now for t > 0 and A ⊆ Ln
t denote

∆̂(A) = {x ∈ Ln
0 | x ≤ y, y ∈ A}

and consider the SMP for the levels Ln
t and Ln

0 .

Theorem 25 (Bezrukov, Blokhuis [19]). Let n ≥ 1 and t > 0. Then any IS of the order
Ot has minimal shadow ∆̂(·). The shadow ∆̂(·) of any IS is an IS itself.

It is known that if one considers the set of hyperplanes of PG(n, 2) as a collection of
points, then it is possible to construct a new geometry PG′(n, 2) on this set. It is also
known that the two geometries PG(n, 2) and PG′(n, 2) are isomorphic. This implies that
Ln is isomorphic to its dual. Thus, it is possible to extend Theorem 25 for the SMP
with respect to the levels n − 1 (the level of hyperplanes) and t < n − 1. The general
result concerning the dual of a Macaulay poset (cf. Proposition 1) provides an order O′ of
hyperplanes, each initial segment of which has minimal shadow ∆̂(·) in Ln

t . It is worth to
mention that the orders On−1 and O′ are different in general, while a similar construction
in the Boolean lattice leads to two isomorphic (namely lexicographic) orders.

Counterexamples show that none of the orders O and O′ is Macaulay. Nevertheless, let
us mention an interesting phenomenon in the case n = 3. In this case the order O′ works
for the minimization of ∆(·) for t = 2 and the order O works the for minimization of ∆(·)
for t = 1. Moreover, both orders work for the minimization of ∆̂(·) for t = 2. However,
as it is shown in [19], there is no universal order, which would provide the Macaulayness
of L3.

5 Related problems and applications

In this section we will be concerned with some optimization problems for which solutions
are known for a rich class of Macaulay posets.

Let P be a poset, and let IR+ denote the set of nonnegative real numbers. Furthermore,
let there be a weight function w : P 7→ IR+ on P . If w(x) = w(y) whenever r(x) = r(y),
the function w(·) is called rank-symmetric. If w(·) is a rank-symmetric weight function
and w(x) ≤ w(y) whenever r(x) < r(y), then w(·) is called monotone. Now define the
weight of a subset X ⊆ P as w(X) =

∑
x∈X w(x).

5.1 Generated ideals of minimum weight

Consider the problem of constructing an antichain X ⊆ P of given cardinality m ≤ d(P )
such that the ideal generated by X has minimum weight for some monotone weight
function.
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This problem was considered by Frankl [57] for the Boolean lattice. For chain products,
the problem was solved by Clements [36] who generalized preliminary results of Kleitman
[64] and Daykin [49]. A further generalization is due to Engel [52] who provided a solution
for the class of Macaulay posets P such that P and P ∗ are graded, additive, and shadow
increasing. Unfortunately, the subword order SO(2) is not included in this class since
its dual is not shadow increasing (see Section 4.4). Therefore, Engel and Leck [54] gave
the following strengthening which applies to the classical Macaulay posets as well as to
SO(2).

Theorem 26 (Engel, Leck [54]). Let P be a Macaulay poset such that P and P ∗ are
weakly shadow increasing. Furthermore, let m ≤ d(P ) be a positive integer, and put
i := min{j | m ≤ |Pj|} and a := min{b | b + |Pi−1| − |∆(C(b, Pi))| = m}. Then the set

X := C(a, Pi) ∪ (Pi−1 \ ∆(C(a, Pi)))

is an antichain of size m. Moreover, w(I(X)) ≤ w(I(Y )) holds for all antichains Y ⊆ P
with |Y | = m with respect to any monotone weight function.

This theorem provides a sufficient condition for a poset to be Sperner (cf. [54] for
details).

Corollary 2 Let P be a Macaulay poset such that P is not an antichain. If P and P ∗ are
weakly shadow increasing, then P is graded and has the Sperner property, i.e. the width
of P is equal to maxi |Pi|.

What if the set X is not necessarily an antichain? If X ⊆ Pi for some i then, obviously,
the best choice for X is X = C(|X|, Pi). It turns out that a similar approach is well applied
if X can be chosen from a couple of consecutive levels of P .

Theorem 27 (Bezrukov, Heijnen [24]). Let P be a rank-greedy poset with a monotone
weight function and let Pi,j = Pi∪Pi+1∪· · ·∪Pj for some fixed i, j with 0 ≤ i ≤ j ≤ r(P ).
Then the minimum weight ideal generated by a subset X ⊆ Pi,j of a fixed size is obtained
for X = C(|X|, Pi,j).

An interesting question arises if we combine the claims for X in Theorems 26 and
27. Namely, which antichains of Pi,j generate ideals of minimum weight? The question is
nontrivial even for j = i + 1.

5.2 Ideals with the maximum number of maximal elements

Now consider a problem dual to the last one. Namely, we are looking for an ideal of a
given size, which has the maximum number of maximal elements. In order to present a
solution to this problem, we first introduce quasispheres. A quasisphere of size m in a
ranked poset P is a set of the form

P0 ∪ P1 ∪ · · · ∪ Pi ∪ C(a, Pi+1),

where the numbers a and i are (uniquely) defined by m =
∑i

j=0 |Pj| + a, 0 ≤ a < |Pi+1|.
Obviously, any quasisphere is an ideal.
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Theorem 28 (Engel, Leck [54]). Let P be a Macaulay poset such that P and P ∗ are
weakly shadow increasing. Then a quasisphere of size m has the maximum number of
maximal elements in the class of all ideals of size m in P .

Clearly, the set of maximal elements of some ideal is an antichain. For Boolean lattices,
a related problem was considered by Labahn [71]. He determined the maximum size of
an antichains X such that the ideal generated by X contains exactly m elements of Pi.

5.3 Maximum weight ideals

Now consider the problem of finding an ideal I∗ ⊆ P such that w(I∗) ≥ w(I) for any other
ideal I ⊆ P with |I| = |I∗|. We call this problem the Maximum Weight Ideal problem
(MWI for brevity). Denote wi = w(x) for any x ∈ Pi.

The MWI problem is closely related to the edge-isoperimetric problems (cf. Section
3.2 and [14, 17] for more details) and was first considered by Bernstein and Steiglitz in
[7] for the Boolean lattice and applied to a problem in coding theory.

Theorem 29 (Bernstein, Steiglitz [7]). If � is a lexicographic order, then for any m =
0, . . . , 2n the set C(m, Bn) is a solution to the MWI problem for Bn with respect to any
monotone weight function.

This result can be well applied, for example, to the Boolean lattice for constructing
ideals which contain the maximum number of subcubes of a fixed dimension t [31, 32].
To see this, note that the number of subcubes in question contained in an ideal I
equals

∑
v∈I

(
r(v)

t

)
, and, thus, depends just on the cardinalities of the subsets I ∩ Pi,

i = 0, . . . , r(P ), rather than on the subsets themselves. Therefore, the sets C(m, Bn)
contain also the maximum number of subcubes of all dimensions.

Clements and Lindström in [43] extended Theorem 29 to the chain products in the
case wi = i for all i, where a similar solution with respect to the lexicographic order was
obtained by using Theorem 5. It turns out that the MWI problem is a direct consequence
of the shadow minimization problem, as presented in the following theorem (see [9, 52]).

Theorem 30 Let (P,≤,�) be a rank-greedy Macaulay structure with a monotone weight
function. Then the set C(m, P ) is a solution to the MWI problem for P .

What if the weight function is not monotone? It is easily seen that if w0 ≥ w1 ≥ · · · ≥
wn then a solution to the MWI problem is attained on a quasisphere for any ranked poset
P . For some less trivial nonmonotone weight functions a solution to the MWI is known
for the Boolean lattice.

Theorem 31 (Ahlswede, Katona [5]). Consider the Boolean lattice and let � be the
lexicographic order.

a. If w0 ≤ w1 ≤ · · · ≤ wi−1 ≥ wi ≥ · · · ≥ wn, then a solution to the MWI problem is
attained on an intersection of C(m′, Bn) with a quasisphere for some m′ ≤ m.
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b. If w0 ≥ w1 ≥ · · · ≥ wi−1 ≤ wi ≤ · · · ≤ wn, then a solution to the MWI problem is
attained on a union of C(m′, Bn) with a quasisphere for some m′ ≤ m.

However, the proof technique of [5] is based on manipulations with binomial coeffi-
cients and is hardly extendable to other posets. Bezrukov and Voronin in [27] proposed a
new approach to this problem which significantly explores the Macaulay property. They
showed that a similar result holds for the chain products. We conjecture that the argu-
ments of [27] can be well applied to any rank-greedy Macaulay poset to show that the
sets described in Theorem 31 give a solution to the MWI problem.

Note that the methods of neither [5] nor [27] provide exact values of m′. The cor-
responding results describe the situation just qualitatively and only ensure that such m′

does exist. We guess that the approach of [27] can be extended to qualitatively describe
maximum weight ideals for any rank-symmetric weight function, at least for the Boolean
lattice and the products of chains. We leave the development of this question to interested
readers.

Let us go back to Theorem 30. Evidently, the MWI and the SMP are closely related.
The principal question is what we should suppose about the solutions to the MWI problem
in order to deduce the Macaulayness of the corresponding poset? In other words, assume
there exists a total order L on the poset P , each IS of which provides a solution to
the MWI problem (i.e. we have nestedness in the MWI), is it true that the order L is
Macaulay on P ? The interest in this question is explained by constructions for Macaulay
posets from the EIP approach (cf. Section 3.3). If the EIP has nested solutions for some
graph G, then the MWI problem for the corresponding poset P has nested solutions with
respect to the rank function taken as the weight function (i.e. if wi = i for all i). In this
case we refer to such MWI problem as to the Maximum Rank Ideals (MRI) problem. It
is shown in [17, 18] that the EIP on Gn for n ≥ 2 has nested solutions, iff so has the MRI
on P n.

Surprisingly enough the nestedness in the MRI problem on a poset P does not imply
the Macaulayness of P in general. It is proved in [23] that the lexicographic order provides
a solution to the MRI problem on any cartesian power of the poset P shown in Fig. 19.
However, it can be shown that for any n ≥ 2 the poset P n is not Macaulay. This provides
another counterexample to a conjecture in [50] concerning the products of complete posets.
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Figure 19: A Macaulay poset any cartesian power of which is not Macaulay
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It follows from the above discussion that the SM problem is, in a sense, a more difficult
problem than the MWI. Let us try to find a weaker problem that would imply the MWI,
too.

Consider the problem of finding a subset A ⊆ Pk such that |I(A) ∩ P0| is minimal
among all subsets of Pk of the same size. This problem is solved for the linear lattice (cf.
Section 4.5), although this poset is not Macaulay. On the other hand, if P is Macaulay,
then, obviously, the IS of the Macaulay order restricted to Pk provides a solution to the
new problem. Therefore, this problem is, in a sense, strictly weaker, than the SMP. It
would be interesting to investigate under which conditions the nestedness in the new
problem implies the nestedness in the MWI.

Another interesting problem, which is closely related to the MWI is to construct a
maximum weight ideal among the set of all ideals I with |I ∩P0| = m for a fixed m. If P
is Macaulay then any rank-greedy Macaulay order does the job and provides nestedness in
this problem. What if we do not know if P is Macaulay? What are the relations between
this problem and the one we considered in the last paragraph?

5.4 Some computational problems

The Kruskal-Katona theorem was intensively used by Korshunov [67] (see also [93]) to
compute the asymptotics for the number of Boolean functions on n variables. This prob-
lem was posed by Dedekind in 1897. Remember that a Boolean function f : {0, 1}n 7→
{0, 1} is called monotone if f(x1, . . . , xn) ≤ f(y1, . . . , fn) whenever xi ≤ yi for i = 1, . . . , n.

To demonstrate the connection to the SMP, assume that the values of f are determined
on levels Bn

0 , . . . , Bn
k for some k. How many ways are there to extend this function to

the level Bn
k+1 preserving its monotonicity? Let A ⊆ Bn

k be the set of vertices where f
takes the value 1. Then, due to the monotonicity, f takes the value 1 at any vertex of
∇(A). The values of f at the vertices of Bn

k \ ∇(A) can be defined arbitrarily keeping f

monotone. Thus, there are 2(
n

k+1)−|∇(A)| possibilities to extent f for Bn
k+1. This provides

an approach for computing an upper bound for the number of monotone functions used
in [67], the most difficult part of the Dedekind’s problem.

A similar approach can be well used for a number of related problems, even if they
look quite differently. Let us consider the problem of computing the number of binary
codes with code distance 2. This problem is among the central problems in coding theory.
Korshunov and Sapozhenko in [68] used the poset Qn (cf. Section 2.1) to derive an
asymptotic formula for this number. Let C ⊂ Bn be a code with distance 2, and let
Ci = C ∩ Qn

i , i = 0, 1. Then C1 ∩ ∇(C0) = ∅. Therefore, for any choice of a set C0 (note
that C0 is a code with distance 2) there are exactly 2|Q

n
1 |−|∇(C0)| = 22n−1−|∇(C0)| possibilities

to extend C0 on Bn preserving the code distance. Thus, we come to the problem of
estimating min|C0|=m |∇(C0)|, which is equivalent to the estimation of min|C1|=m′ |∇(C1)|
and is done in Theorem 4. Therefore, the number of codes in question is

22n−1 ∑
C0⊆Qn

0

2−|∇(C0)|. (7)
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In order to estimate the sums of the type (7) in arbitrary posets with two levels (satisfying
certain conditions), Sapozhenko develops the so-called method of boundary functionals ,
which he applied to a number of computational problems [91, 92, 93]. The SMP plays an
important role for this method. The method is well applicable for the Dedekind problem,
for computing the number of antichains in ranked posets, for computing the number of
pairs of subsets of Bn at distance 2, and to many other problems.

Alon in [6] used a similar approach to derive an upper bound for the number of inde-
pendent sets in bipartite graphs. Suppose X and Y are two vertex-classes of a bipartite
graph G. For a set A ⊆ X let N(A) denote the set of its neighbors in Y . The set A is
called an s-set if |N(A)| = s. Denote by I(s, t) the number of s-sets of size t. Then then
total number of independent sets in G is

|X|∑
t=0

|Y |∑
s=0

I(s, t) · 2|Y |−s.

Thus, we have the problem of estimating a sum of the type (7). The bipartite graph G
can be represented as a poset with two levels corresponding to the sets X and Y . Then
N(A) corresponds to the shadow function. The Kruskal-Katona theorem was used in [6]
to estimate the sum above.

5.5 Separation in graphs

Let G and H be graphs with |VG| ≤ |VH |. A separator of G in H is any bijective
mapping f : VG 7→ VH . The minimum distance of a separator f is defined as |f | =
min{distH(f(x), f(y)) | (x, y) ∈ EG}. Now define sep(G, H), the separation of G in H ,
as the maximum of |f | over all separators f .

The number sep(G, H) is considered for a number of graphs in the literature. In
particular, the case G = Kp and H = Bn is interesting for the theory of binary error-
correcting codes. A lot of results on the separation in graphs can be found in the survey
[83].

Miller and Pritikin used the Kruskal-Katona theorem in [83] to compute the separation
of complete bipartite graphs in the n-cube, i.e., the number sep(Kr,s, B

n). They used a
result of Frankl and Füredi [58] to conclude that among all separators f : Kr,s 7→ Bn, the
maximum value of |f | is achieved when one of the independent sets of Kr,s is mapped to
a Hamming ball about some vertex α of Bn and the other one is mapped to a Hamming
ball about the complement of α.

Let X and Y be the independent sets of Kr,s, and let α = (0, . . . , 0). Represent the

numbers r and s in the form r =
∑k′

i=0

(
n
i

)
+ δ′ and s =

∑k′′
i=0

(
n
i

)
+ δ′′ with 0 ≤ δ′ <

(
n

k′+1

)
and 0 ≤ δ′′ <

(
n

k′′+1

)
. Then f(X) consists of all vertices of Bn of rank at most k′ together

with δ′ vertices of rank k′ + 1 (denote this set by X ′), and f(Y ) consists of all vertices of
Bn of rank at least n − k′′ together with some vertices of rank n − k′′ − 1 (the set Y ′).
A nontrivial case occurs if X 6= ∅ and Y 6= ∅. In this case by using the Kruskal-Katona
theorem it is shown in [83] that to maximize |f | one can choose X ′ = L(δ′, Bn

k′+1) (with
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respect to the lexicographic order) and Y ′ = C(δ′′, Bn
n−k′′−1). This leads to an exact

formula for sep(Kr,s, B
n). A similar approach was used in [11] to compute the maximum

size of a subset of Bn with a fixed diameter.
Now consider a dual problem: find two subsets A, B in a chain product such that

maxa∈A, b∈B dist(a, b) is minimum among all subsets of the same size. Note that we allow
the sets A and B to intersect. Interesting enough that this problem has principally
different solutions for the Boolean lattice and the chain products with all the chains
of even length. Kleitman and Schulman showed in [65] that for the Boolean lattice
the best choices for A and B are initial segments of the lexicographic order of vectors
(r(x),−x1, . . . ,−xn), where x = (x1, . . . , xn) ∈ Bn. In other terms, this order is nothing
else than the VIP order introduced by Harper in [60].

What concerns the chain product, the same authors [65] used the Clements-Lindström
method to show that the best choices for A and B are initial segments of the following
order O. For x = (x1, . . . , xn) ∈ S(k1, . . . , kn) with −ci ≤ xi ≤ ci denote by (σ1, . . . , σn) a
binary vector with σi = 1 iff xi > 0, i = 1, . . . , n. The order O is the lexicographic order
of the vectors (r(x),−σ1, . . . ,−σn)

5.6 Network reliability

Suppose we have a network which we represent by a graph G = (VG, EG), and let s and t
be two distinct vertices of G. Assume that each edge of G is operational with a probability
p, and failed with probability q = 1 − p. Define the two-terminal connection probability
for the nodes s, t to be the probability that operational edges include an s, t-path, or,
equivalently, that the failed edges do not include an s, t-cut. Denote by Fi the number of
sets of i edges which do not contain an s, t-cut, and let e = |EG|. Then Fiq

ipe−i is the
probability that exactly i edges fail and the network remains operational. Therefore, the
two-terminal connection probability CP(p) satisfies

CP(p) =
m∑

i=0

Fiq
ipe−i.

Let l be the length of the shortest s, t-path, and denote by c the size of the minimum
s, t-cut. Then Fi = 0 for i > e − l and Fi =

(
c
i

)
for i < c.

The Kruskal-Katona theorem implies [66] that if Fk = m, then Fi ≥ m(i/k) for i ≤ k,
and Fi ≤ m(i/k) for i ≥ k (cf. Section 2.1 for the definition of m(i/k)). Using these
inequalities, we obtain the Kruskal-Katona bounds

CP(p) ≥
c−1∑
i=0

(
e

i

)
pe−iqi +

d∑
i=c

F
(i/d)
d pe−iqi,

CP(p) ≤
c−1∑
i=0

(
e

i

)
pe−iqi +

d−1∑
i=c

((
e

c

)
− 1

)(i/c)

pe−iqi + Fdp
e−dqd,

where d = e − l. For further bounds and more information we refer to [33] and to the
excellent book of Colbourn [44].
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5.7 Algebra and combinatorial topology

Let M be a collection of monomials in the variables x1, x2, . . .. The set M is called an
order ideal of monomials if whenever v ∈ M and a monomial u divides v then u ∈ M . Let
mk(M) be the number of monomials in M or degree k, and assume that mk is represented
in the form (2). The theorem of Macaulay [81] says that (m0, m1, . . .) is the m-vector of

some order ideal of monomials iff m0 = 1 and mk−1 ≥
(

ak−1
k−1

)
+ · · ·+

(
at−1
t−1

)
for k ≥ 1.

Now let C be a simplicial complex on the vertex set V = {x1, . . . , xp}, i.e., C is a
collection of subsets of V such that {xi} ∈ C, i = 1, . . . , p, and if σ ∈ C and τ ⊆ σ then
τ ∈ C. The elements of C are called faces. A facet of C is a face σ such that τ ∈ C
and σ ⊆ τ imply σ = τ . Furthermore, let fi = fi(C) be the number of faces σ ∈ C with
|σ| = i + 1. Similarly, let ni = ni(C) be the number of facets τ ∈ C with |τ | = i + 1.

In other terms, a simplicial complex C corresponds to an ideal I in the Boolean lattice,
and the set of the facets of C corresponds to the generating antichain of I. Therefore, for a
simplicial complex C with f -vector (f0, f1, . . .), the condition f

(i−1/i)
i ≤ fi−1 for all i ≥ 1 is

a necessary and sufficient condition for C to exist (here f
(i−1/i)
i is the pseudopower defined

in Section 2.1). The complex for which this bound is attained is called Kruskal-Katona
complex .

Herzog and Hibi in [61] used the Kruskal-Katona theorem to derive an upper bound

for the numbers ni of the form ni−1 ≤ fi−1 − f
(i−1/i)
i . They also introduced the concept of

j-facets of C. A face σ ∈ C is called j-facet if j is equal to the largest integer k for which
there exists a face τ ∈ C such that σ ∩ τ = ∅ and σ ∪ τ ∈ C. Let nj

i denote the number of
j-facets of C of size i− 1. It is shown in [61] that if C is a simplicial complex and C̃ is the
Kruskal-Katona complex with the same f -vector, and if n0

i + · · ·+ nj−1
i = ñ0

i + · · ·+ ñj−1
i

for all i ≥ 0, then nj
i ≤ ñj

i for all i ≥ 0.
Wegner in [99] extended the Kruskal-Katona theorem to c-semilattices. A c-semilattice

is a ranked poset (P,≤) such that for any two elements x, y ∈ P there exists a minimum
x ∧ y ∈ P , and for any two compatible elements x, y ∈ P with r(y) − r(x) ≥ 2 there
exist at least two elements z1, z2 ∈ P with x < z1, z2 < y. Any simplicial complex is
a c-semilattice, but not vice versa. Denote fi = |Pi|. Wegner proved that if (f0, f1, . . .)

is the f -vector of a c-semilattice, then f
(i−1/i)
i ≤ fi−1 for all i ≥ 1, thus, extending the

Kruskal-Katona theorem.
For more information on the topic, and for further applications we refer to [28, 30],

and to the books of Stanley [94] and Ziegler [100].
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